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Abstract

We present a “physics-enhanced deep-surrogate” (“PEDS”)
approach to fast surrogate models for complex physical sys-
tems described by partial differential equations (PDEs) and
similar models: we embed a low-fidelity “coarse” solver layer
in a neural network that generates “coarsified” inputs, trained
end-to-end to globally match the output of an expensive
high-fidelity numerical solver. In this way, by incorporating
complex physical knowledge in the form of the low-fidelity
model, we find that a PEDS surrogate can be trained with at
least 10× less data than a “black-box” neural network for the
same accuracy. Asymptotically, PEDS appears to learn with
a steeper power law than black-box surrogates, and benefits
even further in combination with active learning. We demon-
strate this using an example problem in electromagnetic scat-
tering that appears in the large-scale optimization of optical
metamaterials using scientific computing.

Introduction
In mechanics, optics, thermal transport, physical chemistry,
climate models, and many other fields, data-driven surrogate
models—such as polynomial fits, radial basis functions, or
neural networks—are widely used as an efficient solution
to replace repetitive calls to slow numerical solvers (Baker
et al. 2019; Benner, Gugercin, and Willcox 2015; Willard
et al. 2020; Hoffmann et al. 2019; Pestourie et al. 2018).
However the reuse benefit of surrogate models comes at a
significant cost in training time, where a costly high-fidelity
numerical solver must be evaluated many times to provide
an adequate training set, and this cost rapidly increases with
the number of model parameters (the “curse of dimension-
ality”) (Boyd 2001). In this paper, we explore one promis-
ing route to increasing training-data efficiency: incorporat-
ing some knowledge of the underlying physics into the sur-
rogate by training a generative neural network (NN) “end-to-
end” with an approximate physics model. We call this hybrid
system a “physics-enhanced deep surrogate” (PEDS), and
demonstrate multiple-order-of-magnitude improvements in
sample and time complexity on a test problem involving op-
tical metamaterials—composite materials whose properties
are designed via microstructured geometries (Pestourie et al.
2020). In inverse design of metamaterials, similar geometric
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components may be re-used thousands or millions of times
in a large structure such as an optical metasurface (Pestourie
et al. 2018; Pestourie 2020), making surrogate models espe-
cially attractive to accelerate computational design (Bayati
et al. 2021; Li et al. 2021).

In particular, we present a PEDS architecture for mod-
eling transmission through a microstructured multilayer
“metasurface” (Pestourie et al. 2020), where the high-
fidelity model solves Maxwell’s equations, in which a deep
NN is combined with an fast approximate Maxwell solver
based on an extremely coarse discretization, as depicted in
Fig. 1 (Sec. ). By itself, the coarse model yields > 100%
error if it is applied directly to a downsampled/coarsified ge-
ometry, but it qualitatively captures key underlying physics
of scattering and resonance. To obtain an accurate surrogate,
we apply a deep NN to generate a coarse geometry, adap-
tively mixed with the downsampled input geometry, which
is then used as an input into approximate solver and trained
end-to-end to minimize the overall error. In this way, the
NN learns to nonlinearly correct for the errors in the coarse
model, but at the same time the coarse model “builds in”
some knowledge of the physics and geometry. We compare
the result of our PEDS model against a NN-only baseline
model (Sec. ) as well as previous “space-mapping” (SM)
(Bakr et al. 2000; Zhu et al. 2016; Feng et al. 2019) ap-
proach where we combine a coarse Maxwell solver with a
NN transforming only a low-dimensional parameterization
of the fine geometry to a similar low-dimensional parame-
terization of the coarse geometry (Sec. ).We find that PEDS
not only lowers the error of the surrogate for a given amount
of data, but it actually seems to improve the asymptotic rate
of learning (≈ 5× larger power law), so that the benefits in-
crease as accuracy tolerance is lowered (Fig. 2 and Sec. ).
For 3.5% accuracy, PEDS requires several orders of mag-
nitude less data than the competing approaches. We show
through an ablation study that adding information from the
downsampled structure increases the accuracy by 15% in
a low-data regime. Furthermore, we find that PEDS gains
significant additional benefits by combining it with active-
learning techniques from our earlier work (Pestourie et al.
2020), and in fact the benefits of active learning seem to
be even greater for PEDS than for competing approaches.
Although the resulting PEDS surrogate is more expensive
to evaluate than a NN by itself, due to the coarse Maxwell



solver, it is still much faster than the high-fidelity Maxwell
solver (> 100× in 2D, > 104× in 3D). Furthermore, since
our NN generates a coarsified version of the geometry, this
output can be further examined to gain insight into the fun-
damental physical processes affecting the output.

PEDS should not be confused with physics-informed
neural networks (PINNs), which solve the full PDE (im-
posed pointwise throughout the domain) for the entire PDE
solution (not a surrogate for a finite set of outputs like
the complex transmission) (Karniadakis et al. 2021; Lu
et al. 2021b), and which do not employ any pre-existing
solver; indeed, current PINNs tend to be slower than con-
ventional “fine” PDE solvers (e.g. based on finite ele-
ments) (Shin, Darbon, and Karniadakis 2020), but offer po-
tentially greater flexibility. Universal ordinary differential
equations (UODEs) (Rackauckas et al. 2020) also tackle a
different problem from PEDS: they identify unknown dy-
namics in an ODE by replacing the unknown terms with neu-
ral networks trained on data. In contrast to DeepONet (Lu
et al. 2021a) and Fourier neural operators (Li et al. 2020),
PEDS includes a numerical solver layer. Finally, in contrast
to error correction techniques at the output level of the sur-
rogate (Lu et al. 2020; Koziel, Bandler, and Madsen 2006),
PEDS includes the solver in an end-to-end fashion during
the training process.

Results

Figure 1: Diagram of PEDS: (Main) from the geometry pa-
rameterization, the surrogate generates a coarse structure
which is combined with a downsampled version of the ge-
ometry (in a pixel averaging sense) to be fed in a coarse
solver for Maxwell’s equations (symbolized by a cartoon
picture of James Clerk Maxwell). (Inset) the training date
is generated by solving more costly simulations directly on
a fine solver (symbolized by a photograph of James Clerk
Maxwell).

Physical model and solvers
Similarly to (Pestourie et al. 2020), our surrogate model
predicts the complex transmission tfine(p) of a 2D “meta-
atom” unit cell with a parameterized geometry p, which
consists of ten layers of air holes with independent widths
etched in a substrate (of dielectric constant ε = 2.1 corre-
sponding to silica), with periodic boundary conditions in x

and outgoing radiation boundary conditions in the y direc-
tion and an incoming normal-incident planewave from be-
low. In terms of the vacuum wavelength λ of the incident
wave (for the largest λ considered below), the period in x
is 0.95λ and the total thickness is 11λ (with hole heights
of 0.75λ and interstices of 0.35λ); the fact that the structure
is several wavelengths in diameter causes the transmission
tfine(p) to be a complicated oscillatory function that makes
the surrogate training challenging (Pestourie et al. 2020).
(A “metasurface” consists of a collection of many of these
meta-atoms, designed to perform some optical function such
as focusing (Li et al. 2021). The full solution for a metasur-
face can be approximated in terms of the transmissions of
individual periodic ‘unit cells via a local periodic approx-
imation (Pestourie et al. 2018).) A schematic unit cell with
3 holes is showed in Fig. 1, and an example 10-hole structure
from the training set is shown in Fig. 2 (right).

Both the “fine” (high-fidelity) and “coarse” (low-
fidelity) solvers in this paper employ finite-difference
frequency-domain (FDFD) discretizations of Maxwell’s
equations (Champagne II, Berryman, and Buettner 2001),
using perfectly matched layers (PMLs) (Sacks et al. 1995)
to implement outgoing boundary conditions. FDFD essen-
tially represents the geometry by a grid of discretized ε “pix-
els,” which is some function fine(p) of the parameters (hole
widths) p. (In particular, each pixel’s ε is assigned to a sub-
pixel average of the infinite-resolution structure, which both
increases accuracy (Oskooi, Kottke, and Johnson 2009) and
makes fine(p) piecewise differentiable.)

An FDFD resolution of 40 pixels per wavelength is used
as our “fine” solver, the source of our training data as in-
dicated in Fig. 1 (inset). This resolution is typical for high-
fidelity solvers in electromagnetism, because it is compa-
rable to the manufacturing accuracy in nanophotonics and
hence suffices for practical metalens design (Li et al. 2021;
Bayati et al. 2021) within fabrication uncertainty. (Sharp/-
narrowband resonances can shift if one refines the resolu-
tion further, but the positions and the bandwidths of the res-
onances are accurate to within a few percent.) Each fine-
solver data point required ≈ 1 s (on a 3.5 GHz 6-Core Intel
Xeon E5); an analogous simulation in 3D takes tens of min-
utes. Our PEDS surrogate (below) uses an FDFD solver at
a coarser resolution of 10 pixels per wavelength, which is
about 100× faster in 2D and > 104× faster in 3D, but has
much worse accuracy; as quantified in Sec. , it differs from
the fine solver’s transmission by > 100% on our test set.

The upfront cost of building the training dataset S =

{(pi, tfinei ), i = 1...N} is the most time-consuming part of
developing a supervised surrogate model. By building some
approximate “coarse” physics knowledge into the surrogate,
we will show that PEDS greatly reduces the number N of
expensive simulations, especially when combined with ac-
tive learning.

PEDS
The PEDS surrogate model t̃(p) is shown schematically
in Fig. 1, and is computed in the following stages (“layers”):

1. Given the parameters p of the geometry, a deep genera-



tive NN model yields a grid of pixels describing a coarse
FDFD geometry. We call this function generatorNN(p)

2. We also compute a coarse-grid downsampling (sub-pixel
averaging) of the geometry, denoted coarse(p), e.g. by
downsampling fine(p).

3. We make a weighted combination G of the NN-
generated and downsampled geometries: G(p) = w ·
generatorNN(p) + (1 − w) · coarse(p), with a weight
w ∈ [0, 1] (independent of p) sta that is another learned
parameter.

4. If there are any additional constraints/symmetries that
the physical problem imposes on the geometry, they can
be applied as projections P [G]. (For example, in our
metasurface problem we could average G with its mir-
ror image to ensure that the generated structure is mirror-
symmetric like the exact structure.)

5. Finally, given G, we evaluate the coarse solver to obtain
the complex transmission t̃(p) = tcoarse(P [G(p)]).

In summary, the PEDS model is

t̃(p) = tcoarse (P [w · generatorNN(p) + (1− w) · coarse(p)])
(1)

A basic PEDS training strategy could simply minimize
the mean-square error

∑
(p,tfine)∈S |t̃(p)−tfine|2 (for a train-

ing set S) with respect to the parameters of the NN and the
weight w. In our case, we employ a more complicated loss
function that allows us to easily incorporate active-learning
strategies (Pestourie et al. 2020). We optimize the Gaus-
sian negative log-likelihood of a Bayesian model (Lakshmi-
narayanan, Pritzel, and Blundell 2016)

−
∑

(pi,t
fine
i )∈S

log PΘ(t
fine
i |pi) ∝

∑
(pi,t

fine
i )∈S

[
log σ(pi) +

(tfinei − t̃(pi))
2

2σ(pi)2

]

where PΘ is a Gaussian likelihood parameterized by the
model parameters Θ, and the heteroskedastic “standard de-
viation” σ(p) > 0 is the output of another NN (trained
along with our surrogate model). In practice, rather than
examining the entire training set S at each training step,
we follow the standard “batch” approach (Goodfellow, Ben-
gio, and Courville 2016) of sampling a random subset of S
and minimizing the expected loss with the Adam stochastic
gradient-descent algorithm (Kingma and Ba 2014) (via the
Flux.jl (Innes 2018b) software in the Julia language).

We train our model to predict the complex transmission
for 3 frequencies, which are encoded with a one-hot encod-
ing vector. The input of the model p is the concatenation of
the 10 widths and the one-hot encoding of the frequency.
The coarse solver is a layer of the PEDS model, which
is trained end-to-end, so we must backpropagate its gradi-
ent ∇Gt

coarse through the other layers to obtain the overall
sensitivities of the loss function. This is accomplished effi-
ciently using well-known “adjoint” methods (Molesky et al.
2018), which yield a vector-Jacobian product that is then au-
tomatically composed with the other layers using automatic

differentiation (AD) (via the Zygote.jl (Innes 2018a) soft-
ware).

Static and dynamic training In this paper, we investi-
gated two types of supervised end-to-end training, a static
training which takes a training set sampled at random, and
a dynamic Bayesian training where the training set is iter-
atively expanded using an active learning algorithm (Pes-
tourie et al. 2020). Essentially, active learning attempts to
sample training points where the model uncertainty is great-
est, thereby reducing the number of costly training points
that must be generated (by the fine solver). Our previous
work on active learning reached more than an order of mag-
nitude improvement in data efficiency for a black-box NN,
and in this paper (Sec. below) we also substantial improve-
ments from active learning for PEDS.

The active-learning algorithm iteratively builds a training
set by filtering randomly generated points with respect to a
trained measure of uncertainty (Pestourie et al. 2020). The
hyperparameters of this algorithm are ninit, which is the
number of points the surrogate models is initially trained
with, T , the number of exploration iteration, M and K,
which are such that M ×K points are randomly generated
at each iteration and only K points with highest uncertainty
σ(p) are explored, i.e. we run the expensive fine solver to
get the PDE solutions of these points. We have trained sur-
rogates as well as ensemble of 5 independent surrogates.
We found that models optimizing the negative log-likelihood
perform similarly to models optimizing the mean squared er-
ror in the case static training. This is not surprising, because
the mean squared error is part of the negative log-likelihood
objective.

SM baseline Our PEDS has similarities with input space
mapping (SM) (Koziel, Cheng, and Bandler 2008), espe-
cially neural SM (Bakr et al. 2000) and coarse mesh/fine
SM (Feng et al. 2019), where the input of a fine solver is
mapped into the input of a coarse solver. However, SM uses
the same parameterization p (e.g. the widths of the holes) for
the fine solver and the coarse solver, whereas PEDS uses a
much richer coarse-geometry input (a grid of material val-
ues, whose dimensionality is different in the coarse and fine
geometries) and can therefore incorporate more geometric
and physical inductive biases, such as symmetries and the
downsampled structure. For comparison, we trained an in-
put SM baseline model, which is a combination of neural
and coarse mesh/fine mesh SM (Zhu et al. 2016; Feng et al.
2019). In this model, the NN is learning a mapping that
creates modified geometry parameters p which are then fed
to the coarse solver (see Sec. for implementation details).
Since the coarsified parameterized geometry is implemented
via sub-pixel averaging as described in Sec. , this function is
differentiable, so the gradient can backpropagate all the way
to the mapping NN.

Accuracy and performance
We compared PEDS to a NN-only baseline (Sec. ) and an
SM baseline. In Fig. 2, we show that PEDS clearly outper-
forms all other models when combined with active learning.



Figure 2: (Left) Fractional error (FE) on the test set: PEDS
outperforms the other models significantly when combined
with active learning (AL). SM performs poorly compared
to PEDS and does not gain much accuracy from ensem-
bling nor from active learning. (Right) Geometry of the unit
cell of the surrogate model. Each of the 10 air holes have
independent widths, the simulation is performed with pe-
riodic boundary conditions on the long sides, the incident
light comes from the bottom and the complex transmission
is measured at the top of the geometry.

In low-data regime, it is 2.9× more accurate than the base-
line. Asymptotically, in high-data regime, it converges to the
true value with a power law exponent 5× better, with a slope
of -0.5, in contrast to -0.1 for the baseline on the loglog plot.
SM does not gain much accuracy from ensembling nor from
active learning, and is even worse than the baseline NN.
(We found that SM can perform comparably to the base-
line NN if the coarse-solver resolution is doubled to 20, not
shown here, at the expense of ≈ 10× more computational
effort.)

From a data-efficiency perspective, the PEDS+AL solver
achieves 20% accuracy on the test set with ≈ 21× less data
than the baseline NN, ≈ 8× less data than the baseline NN
with AL, and orders of magnitudes less data than space map-
ping (SM) with AL. Only PEDS+AL reaches 3.5% accu-
racy, but if we extrapolate the other curves it is clear that
they would require at least two orders of magnitude more
data to achieve similar accuracy.

Timing was compared on a 3.5 GHz 6-Core Intel Xeon
E5. Evaluating the baseline (with an ensemble of neural net-
works) takes 500 µs, while PEDS evaluates in 5 ms, which
is about a ten times slower. However the fine solver is about
a hundred times slower, evaluating at ≈ 1s. In order to sim-
ulate the data set quickly, and without loss of generality, we
showed results for PEDS in 2D. Although PEDS is already
faster than the fine model by two orders of magnitude, this
difference will be even starker for 3D simulations. The sim-
ulation of the equivalent structure in 3D evaluates in about
100 ms with the coarse model, and in 2462 s with the fine
model. In this occurrence, PEDS would represent a speed-
up by at least four orders of magnitude. Moreover, as we
discuss in Sec. , the general PEDS approach can be applied

to a wide variety of “coarse physics” models, which can be
chosen to have a wide range of performance benefits com-
pared to a high-fidelity model.

In order to understand the effect of mixing the gener-
ated structure with a downsampled structure, we performed
an ablation study on an AL ensemble model in the low-
data regime (1280 training points), with results given in
Table 1. The edge cases of using only the downsampled
structure with the coarse solver performs the worst (1.24
error), corresponding to w = 0.0 in Eq. (1). Conversely,
using the NN generator only, corresponding to w = 1.0 in
Eq. (1), is still about 15% worse (0.20 error) than using adap-
tive mixing 0 < w < 1. Imposing mirror symmetry, via
P [G] = (G + mirror image)/2 in Eq. (1), did not improve
the accuracy of the model in this case (but is a useful option
in general, since symmetry may have a larger effect on the
physics in other applications).

Generative model for coarse geometry FE on test set
w = 0.0 (coarsified only) 1.24
w = 1.0 (generator only) 0.20
PEDS with symmetry 0.18
PEDS 0.17

Table 1: Ablation study of PEDS with ensembling and ac-
tive learning for 1280 training points, showing the impact
of mixing generated and coarsified geometries, as well of as
imposing symmetry.

Discussion and outlook
The significance of the PEDS approach is that it can eas-
ily be applied to a wide variety of physical systems. It is
common across many disciplines to have models at vary-
ing levels of fidelity, whether they simply differ in spatial
resolution (as in this paper) or in the types of physical pro-
cesses they incorporate. For example, in fluid mechanics
the “coarse” model could be Stokes flow (neglecting iner-
tia), while the “fine” model might be a full Navier–Stokes
model (vastly more expensive to simulate) (Ferziger, Perić,
and Street 2002), with generator NN correcting for the defi-
ciencies of the simpler model.

In addition to applying the PEDS approach to additional
physical systems, there are a number of other possible tech-
nical refinements. For example, one could easily extend
the PEDS NN to take an image of the fine-structure ge-
ometry rather than its parameterization, perhaps employ-
ing convolutional neural networks to represent a translation-
independent “coarsification.” Another interesting direction
might be to develop new “coarsified” physics models that
admit ultra-fast solvers but are too inaccurate to be used ex-
cept with PEDS; for instance, mapping Maxwell’s equations
in 3D onto a simpler (scalar-like) wave equation or map-
ping the materials into objects that admit especially efficient
solvers (such as impedance surfaces (Pérez-Arancibia, Pes-
tourie, and Johnson 2018) or compact objects for surface-
integral equation methods (Jin 2015)).
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Ferziger, J. H.; Perić, M.; and Street, R. L. 2002. Computa-
tional methods for fluid dynamics, volume 3. Springer.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
learning. MIT press.
Hoffmann, J.; Bar-Sinai, Y.; Lee, L. M.; Andrejevic, J.;
Mishra, S.; Rubinstein, S. M.; and Rycroft, C. H. 2019. Ma-
chine learning in a data-limited regime: Augmenting experi-
ments with synthetic data uncovers order in crumpled sheets.
Science Advances, 5(4): eaau6792.
Innes, M. 2018a. Don’t unroll adjoint: Differentiating ssa-
form programs. arXiv preprint arXiv:1810.07951.
Innes, M. 2018b. Flux: Elegant Machine Learning with Ju-
lia. Journal of Open Source Software.
Jin, J.-M. 2015. The finite element method in electromagnet-
ics. John Wiley & Sons.
Karniadakis, G. E.; Kevrekidis, I. G.; Lu, L.; Perdikaris, P.;
Wang, S.; and Yang, L. 2021. Physics-informed machine
learning. Nature Reviews Physics, 3(6): 422–440.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Koziel, S.; Bandler, J. W.; and Madsen, K. 2006. A space-
mapping framework for engineering optimization—Theory
and implementation. IEEE Transactions on Microwave The-
ory and Techniques, 54(10): 3721–3730.
Koziel, S.; Cheng, Q. S.; and Bandler, J. W. 2008. Space
mapping. IEEE Microwave Magazine, 9(6): 105–122.

Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. 2016.
Simple and scalable predictive uncertainty estimation using
deep ensembles. arXiv preprint arXiv:1612.01474.
Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhat-
tacharya, K.; Stuart, A.; and Anandkumar, A. 2020. Fourier
neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895.
Li, Z.; Pestourie, R.; Park, J.-S.; Huang, Y.-W.; Johnson,
S. G.; and Capasso, F. 2021. Inverse design enables large-
scale high-performance meta-optics reshaping virtual real-
ity. arXiv preprint arXiv:2104.09702.
Lu, L.; Dao, M.; Kumar, P.; Ramamurty, U.; Karniadakis,
G. E.; and Suresh, S. 2020. Extraction of mechanical prop-
erties of materials through deep learning from instrumented
indentation. Proceedings of the National Academy of Sci-
ences, 117(13): 7052–7062.
Lu, L.; Jin, P.; Pang, G.; Zhang, Z.; and Karniadakis, G. E.
2021a. Learning nonlinear operators via DeepONet based
on the universal approximation theorem of operators. Nature
Machine Intelligence, 3(3): 218–229.
Lu, L.; Pestourie, R.; Yao, W.; Wang, Z.; Verdugo, F.; and
Johnson, S. G. 2021b. Physics-informed neural networks
with hard constraints for inverse design. arXiv preprint
arXiv:2102.04626.
Molesky, S.; Lin, Z.; Piggott, A. Y.; Jin, W.; Vucković, J.;
and Rodriguez, A. W. 2018. Inverse design in nanophoton-
ics. Nature Photonics, 12(11): 659–670.
Oskooi, A. F.; Kottke, C.; and Johnson, S. G. 2009. Accu-
rate finite-difference time-domain simulation of anisotropic
media by subpixel smoothing. Optics letters, 34(18): 2778–
2780.
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Appendix
Coarse solver and gradient In the present work, the
coarse solver is similar to the fine solver except that it uses a
much coarser resolution of 10, which corresponds to a reso-
lution of less than 5 pixels per wavelength in the worst case,
instead of 40 for the fine model. The symmetry action was
a simple mirror symmetry, implemented by averaging of the
geometry with its mirror flip.

Implementation details of PEDS and baselines The gen-
erator neural network of PEDS has two hidden layers
with 256 nodes and relu activation functions, and outputs
a flattened version of the coarse geometry of dimension
1100 with a hardtanh activation function (hardtan(x) =
max(min(x, 1), 0)). The network that outputs the variance
of the models, takes the generated coarse geometry as in-
put, has 3 hidden layers with relu activation functions and
outputs a scalar with a relu activation function. The cor-
responding baseline, which is a neural-network only (NN-
only) method, was chosen to be as close as possible to PEDS
architecture, it replaces the coarse solver with a fully con-
nected layer, and outputs two scalars with a tanh activation
function. Note that it does not have the information of the
downsampled structure. The mapping neural network of the
input SM implementation has two hidden layers with 256
nodes and relu activation functions, and outputs the coarse
geometry parameters of dimension 10 with a hardtanh ac-
tivation function. The variance network is similar to PEDS
except that the inputs are the SM output geometry param-
eters. The batch size was set to 64 and the learning rate to
10−3. Every training went through 10 epochs.

Active learning implementation details The active learn-
ing training (Pestourie et al. 2020) used the following param-
eters ninit = 256, T = 8, M = 4, and K took powers of 2
ranging from 26 to 216.

Parallelization In order to accelerate the training of the
surrogate model, we parallelized the training at the batch
loop level. For ensemble learning, we used 320 computing
units which were split into 5 groups (one group per model
in the ensemble) of 64 computing units. With a batch size of
64, each worker evaluates the surrogate only once per batch
loop (a batch size of a multiple of 64 would work well too).

Code The code was implemented in Julia language ver-
sion 1.6, using MPI.jl for parallelization with MPI, Flux.jl
for the neural network training framework, ChainRules.jl for
custom differentiation rules, and Zygote.jl for other auto-
matic differentiation.


