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Abstract
Handling the substantial communication burden
in federated learning (FL) still remains a signifi-
cant challenge. Although recent studies have at-
tempted to compress the local gradients to address
this issue, they typically perform compression
only within the original parameter space, which
may potentially limit the fundamental compres-
sion rate of the gradient. In this paper, instead of
restricting our scope to a fixed traditional space,
we consider an alternative space that provides an
improved compressibility of the gradient. To this
end, we utilize the structures of input activation
and output gradient in designing our mapping
function to a new space, which enables lossless
gradient sparsification, i.e., mapping the gradient
to our new space induces a greater number of near-
zero elements without any loss of information. In
light of this attribute, employing sparsification-
based compressors in our new space allows for
more aggressive compression with minimal infor-
mation loss than the baselines. More surprisingly,
our model even reaches higher accuracies than the
full gradient uploading strategy in some cases, an
extra benefit for utilizing the new space. We also
theoretically confirm that our approach does not
alter the existing, best known convergence rate
of FL thanks to the orthogonal transformation
properties of our mapping.

1. Introduction
Federated learning (FL) is a well-established approach based
on which a large number of clients collaborate to construct
a global prediction model while keeping their local data
private (McMahan et al., 2017; Bonawitz et al., 2019; Li
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et al., 2020a; Zhu et al., 2021). Due to its effectiveness, FL
has been extensively deployed in many privacy-sensitive ap-
plications, such as healthcare system, financial services, and
autonomous driving (Antunes et al., 2022; Li et al., 2021b;
Aurna et al., 2023; Nguyen et al., 2022; Zhang et al., 2021).
During FL training, the participating nodes repeatedly com-
municate their weight updates with the server instead of
directly transmitting their individual data. However, upload-
ing the gradients to the server every round can potentially
impose a significant communication burden, particularly on
resource-constrained network edges, such as mobile phones,
drones, and Internet of Things (IoT) devices.

To reduce the communication load during the uplink trans-
mission, previous works have attempted to compress the
local updates based on various types of approaches including
quantization, sparsification, low-rank compression, to name
a few (Li et al., 2021a; Hyeon-Woo et al., 2022; Rothchild
et al., 2020). Quantization-based methods compress the
gradients by representing them with low bit-width (e.g. 1 ∼
4 bits), resulting in a smaller communication burden com-
pared to full precision of floating point (Alistarh et al., 2017;
Reisizadeh et al., 2020; Jhunjhunwala et al., 2021). Sparsifi-
cation, or the Top-k algorithm, selects the largest k elements
based on their magnitudes and let the remaining ones zero
(Wangni et al., 2018; Shi et al., 2019). Some works em-
ployed both Top-k and quantization (Sattler et al., 2019;
Li & Li, 2023) in pursuit of more aggressive compression
during each communication round.

Motivation. Despite the numerous prior efforts that have
been made on minimizing communication overheads, ma-
jority of such endeavors have tended to consider only the
original parameter space. Specifically, most existing meth-
ods compressed the weight updates only within the space
where the gradient vector originally lies in. However, lim-
iting the scope to a fixed, certain space may potentially
restrict the fundamental compression rate of the gradient.
In this paper, we turn our focus on exploring an alternative
space in which we can endow the gradient with higher com-
pressibility. In short, our goal in this work boils down to
answering the following questions:

Is there any alternative space suitable for more aggressive
yet reliable compression beyond the original space? If
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Figure 1: (a) An overview of our approach in FL setup. The numbers in red circles indicate the order of the entire process. As our
mapping space is designed to enable lossless gradient sparsification, we can compress the gradient, which is denoted by ∆w, without
significant information loss in the subsequent compression. (b) Histogram of the gradient magnitudes in both original and mapping space
for a specific layer of initialized ResNet18 on CIFAR100. Each bar represents the number of elements within a certain binwidth range.

so, can we find a mapping function that can transfer the
gradient to such a new space?

Goal & Overview. In this paper, we aim to construct a
new mapping function, designed to be exploited by indi-
vidual clients (as in the third step of Figure 1a) to achieve
lossless gradient sparsification – sparsification in a sense
that most elements of the gradient become near-zero with-
out any loss of information. To showcase the effectiveness
of the proposed solution, we visualize the distributions of
gradient magnitudes at a specific layer in both the original
space and the alternative space constructed by our mapping
function. As shown in Figure 1b, the gradient in the map-
ping space tends to have more near-zero elements than its
original counterpart. Hence, the information of the gradient
can be mostly captured with a remaining, relatively fewer
number of elements in the mapping space. This property
is a significant advantage of the proposed approach since
the near-zero elements can be removed in the alternative
space with negligible performance loss. As a result, apply-
ing existing sparsification-based compressors (e.g., Top-k,
Sparse-Binary) in this new space facilitates more effective
compression compared to applying them in the original
space, enhancing communication efficiency in FL.

Main Contribution. To design a mapping space that
achieves the above property, we start by rewriting the weight
gradient of a specific layer as a multiplicative form of two
vectors: (i) the input activation and (ii) the gradient with
respect to the output of the layer (hereafter referred to as the
“output gradient” throughout the paper). We then manipulate
these vectors towards having a greater sparsity. Specifically,
we capture the leading components for both input activation
and the output gradient via singular value decomposition
(SVD), and then make majority of information contained in
these vectors to be aligned with them. This makes the gradi-
ent sparser than the original one as shown in the histograms

in Figure 1b, allowing for more aggressive compression
in the alternative space. In addition, we can formalize our
mapping to be an orthogonal transformation, thereby en-
suring that the amount of information is not compromised
during the mapping process. We also theoretically verify
that our approach does not alter the existing convergence
rate of FL as we design our mapping to inherit all the desired
properties of the orthogonal transformation.

Throughout extensive simulations, we demonstrate that
our approach effectively minimizes the uplink communi-
cation load required to reach the desired accuracy com-
pared to the baselines. In particular, our proposed mapping
space enhances the communication efficiency of the exist-
ing sparsification-based compressors thanks to the lossless
gradient sparsification property. Even more surprisingly,
our model achieves a final accuracy higher than the conven-
tional FedAvg model without compression, especially when
Sparse-Binary compressor is employed, which is not the
case when adopting it in the original space.

2. Preliminaries
2.1. Federated Learning

Let us define the local dataset of each client n = 1, 2, . . . N
as Dn where N is the total number of clients collaborat-
ing in the federated learning (FL) system. We also let
Fn(w) := 1

|Dn|
∑

x∈Dn
ℓ(x;w) be the loss function com-

puted at each n-th client using Dn, where w ∈ Rd denotes
the parameter of the model. The goal of FL is to train a
global prediction model, aiming to solve the following op-
timization problem of the form (McMahan et al., 2017; Li
et al., 2020b): minw∈Rd F (w) = 1

N

∑N
n=1 Fn(w).

During FL, each n-th client updates the model and sends
its local update ∆wn to central server. The server then ag-
gregates all the received gradients as ∆w = 1

N

∑N
n=1 ∆wn
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and broadcasts ∆w to all the participating clients. After
receiving ∆w sent from the server, each client updates the
model with w ← w+∆w, synchronizing it to global model
across all the clients. This process repeats until the global
model converges. Note that in the case of conducting multi-
ple local updates, the gradient is obtained from difference
between the parameter before and after the local training,
i.e., ∆wn = wn − w, where wn denotes the parameter
obtained from multiple local updates starting from w.

2.2. Gradient Compression

As aforementioned, a sparsification-based compression ap-
pears to be highly compatible with our mapping approach
due to its sparsifying property. Here we consider the Top-k
(Stich et al., 2018) and Sparse-Binary (Sattler et al., 2019; Li
& Li, 2023) compressors, both of which are well-recognized
sparsification-based schemes in the FL literature.

Definition 2.1 (Top-k). For any vector g ∈ Rd, Top-k
operator Ck(·) is defined as

[Ck(g)]i ←

{
[g]i if [|g|]i ≥ vk

0 otherwise
, ∀i ∈ {1, 2, . . . , d},

where [·]i represents the i-th element of the vector, and vk
denotes the k-th largest value among all the elements of |g|.
Definition 2.2 (k-Sparse-Binary). For any vector g ∈ Rd,
k-Sparse-Binary operator CkSB(·) is defined as

[CkSB(g)]i ←

{
∥Ck(g)∥1

∥Ck(g)∥0
· Sign([Ck(g)]i) if [Ck(g)]i ̸= 0

0 otherwise

for all i ∈ {1, 2, . . . , d}, where ∥ · ∥0 denotes the number
of non-zero elements and Sign(·) refers to the sign operator.

In words, the Top-k compressor selects the k (which is much
smaller than d) elements based on their magnitudes and sets
the remaining ones to zero. The Sparse-Binary scheme is
designed for a more aggressive compression beyond the
Top-k method that quantizes non-zero elements to a 1 bit-
width right after the Top-k operation. In our simulations
regarding CkSB(·), the magnitude ∥Ck(g)∥1

∥Ck(g)∥0
is computed in

the layer-wise manner as suggested in (Zheng et al., 2019;
Li & Li, 2023).

We also quantify the amount of error induced by the gradient
compression (also known as compression error) by means
of its norm, which has been adopted as a common practice
in many existing works (Reisizadeh et al., 2020; Qu et al.,
2022a; Li & Li, 2023; Horváth & Richtarik, 2021).

Definition 2.3. Given any compressor C(·), the compressor
is said to induce a compression error to the extent of at most
1 − ρ with respect to its l2 norm, if E[∥g − C(g)∥22|g] ≤

(1− ρ)∥g∥22 holds1 for all g ∈ Rd where 0 < ρ ≤ 1.

For Top-k as an example, it is obvious that selecting smaller
k elements results in a smaller ρ, implying a greater in-
formation loss. In a later discussion, we will demonstrate
that the trade-off between k and ρ in our mapping space is
considerably milder than in the original space.

3. Proposed Method
In this section, we provide a detailed description of our
approach. First, we explain how our mapping operation
works towards lossless gradient sparsification, and then
outline the overall procedure for utilizing the mapping in
communication-efficient FL setting.

3.1. Lossless Gradient Sparsification

We first start by revisiting how the gradient of2 weight ma-
trix is derived for a specific layer. Let Wl and al be the
weight matrix and the input activation for the l-th layer,
respectively. Then the forward propagation is given by
zl = Wlal, where zl denotes the output of the l-th layer. By
the chain rule, the gradient of Wl can be derived as follows:

dWl = dzl · a⊤l , (1)

where dWl and dzl represent the derivative of loss w.r.t. Wl

and zl respectively. In other words, the weight gradient can
be expressed in terms of both the input activation and output
gradient as the form of their outer product. Thus, if we can
align the majority of information with only a few number of
elements for these vectors, i.e., most elements become near-
zero, the weight gradient may comprise a larger number
of near-zero as well. Drawing on the insight, we consider
the singular value decomposition (SVD) of the covariance
matrices of activations and the output gradients as follows:

AlA
⊤
l = PlΛlP

⊤
l and ZlZ

⊤
l = QlDlQ

⊤
l , (2)

where Al and Zl refer to the matrices constructed by stack-
ing al and dzl regarding multiple data points in column-wise
manner respectively, and Λl, Dl are the diagonal matrices
having singular values, and Pl, Ql are the corresponding
orthogonal matrices. Now we define our mapping operation
φl(·) as the multiplications of Pl and Ql on both sides of
the gradient as shown below:

φl(dWl) := Q⊤
l dWlPl = Q⊤

l dzl · a⊤l Pl. (3)

Note that both Pl and Ql consist of leading principal com-
ponents, constituting certain subspaces in which most of the
input activations and the output gradients are concentrated.

1Note that the expectation E[·] is taken over the compressor
C(·). We can omit this expectation if the compressor is determinis-
tic, e.g., Top-k and k-Sparse-Binary.

2We will interchangeably use “gradient of” to refer to “gradient
with respect to (w.r.t.)” for brevity in the paper.
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Figure 2: An illustrative figure of how our mapping function
works. The color intensity indicates the magnitude of each element.
Since both P and Q contain the leading components for a and dz
respectively, most of the elements in ã and dz̃ are aligned with the
fewer components than the original counterpart.

Multiplying Pl to al make the values in vector al focused
on certain elements, and hence a⊤l Pl becomes more sparse
than al. This similarly applies to dzl and Ql. As a result,
their outer product, i.e., the gradient of the weight, would
be more sparsified in the mapping space than in the original
one. Figure 2 visually shows how our proposed mapping
leads to a sparse gradient. The vector with a tilde on top of it
denotes itself in the mapping space after the transformation.

Since Pl and Ql are orthogonal matrices, our mapping op-
eration does not compromise the amount of information at
all, i.e., preserves the l2 distance. In other words, our map-
ping admits its inverse function, denoted by φ−1

l (·), which
allows us to fully recover the original one as follows:

φ−1
l (φl(dWl)) := Qlφl(dWl)P

⊤
l = dWl. (4)

Eq. (4) implies that the information loss in the gradient
only occurs during the subsequent compression, while full
information is retained during mapping or inverse mapping
process. Note that once we prepare Pl and Ql for forward
mapping, the inverse mapping can be naturally obtained by
transposing them.

3.2. Application to Communication-efficient FL

In the following, we introduce how our mapping, outlined
in Sec. 3.1, is utilized for communication-efficient FL.

Mapping construction and broadcasting. We first let
the gradient of full model ∆w be expressed by the stack
of the gradient w.r.t. weight matrices for all L layers, i.e.,
∆w = [dW1; dW2; . . . ; dWL]. Then we define a mapping
operation for the full gradient φ(∆w) as follows:

∆φw := φ(∆w) = [φ1(dW1); . . . ;φL(dWL)], (5)

where φl(·) is the mapping function obtained from Eq. (2)
in each layer. That is, the mapping φl(·) is applied in layer-
wise manner. Since the structures of the input activation
and output gradient change drastically throughout the FL
training, the mapping must be reconstructed as the learning
progresses. For every specified round of t ∈ P , where P

is a predefined set of rounds for mapping construction, the
server computes the mapping and broadcasts it to all the
participating clients. This ensures a synchronization of an
up-to-date mapping function being used across all the clients
and the server. Note that the server utilizes public data, that
is assumed to be publicly available, in constructing mapping.
A detailed discussion on public data will follow shortly.

Client-side local updates. For a specific round of t, each
n-th client’s model is initialized with the t-th global weight
as wt,0

n ← wt. Then the client updates its model wt,0
n with

H iterations on the local dataset Dn as follows,

wt,i+1
n = wt,i

n − ηt∇̃Fn(w
t,i
n ) for i = 0, . . . ,H − 1 (6)

where ∇̃Fn(w
t
n) is the stochastic gradient computed via

mini-batch SGD, which is an unbiased estimator of the true
gradient∇Fn(w

t
n). After the local updates as in Eq. (6), the

client compute its local gradient as ∆wt
n = wt,H

n − wt, i.e.,
the difference between before and after the local training.

Gradient mapping and compression. After the local
gradient is computed, the client transfers the gradient to
alternative space through a given mapping function φ(·)
as φ(∆wt

n) which could induce a sparse gradient. Then
the client performs the compression in this mapping space.
Here, since our chosen compressors, e.g., Top-k and k-
Sparse-Binary, are not unbiased estimators, the error accu-
mulated between the compressed and the original gradient
is unavoidable even in expectation, which may hinder the
reliable convergence behavior. To compensate this, we em-
ploy a well-known technique, called error feedback, which
has been prevalent in many recent studies (Stich et al., 2018;
Wu et al., 2018; Karimireddy et al., 2019; Basu et al., 2019;
Li & Li, 2023). To correct this bias, we reflect the error
that is accumulated so far before applying compression:
∆φw

t
n = φ(∆wt

n) + etn, and subsequently we accumulate
the error again as et+1

n = ∆φw
t
n−C(∆φw

t
n). After that, we

compress ∆φw
t
n as C(∆φw

t
n) and upload it to the server.

Server-side aggregation. Upon receiving the gradients
C(∆φw

t
n) sent from the clients, the server aggregates all

these received gradients as follows:

∆φw
t =

N∑
n=1

κnC(∆φw
t
n), (7)

where κn is defined as |Dn|/
∑N

i=1 |Di|. The aggregation
becomes a simple average when all the clients have the
same dataset size, i.e., κn = 1/N . After the aggregated
gradient is broadcast, it is inversely mapped back to the
original space, i.e., ∆wt = φ−1(∆φw

t) as ∆φw
t is the

gradient that is expressed by means of the new mapping
space. Then the clients update the t-th round model by the
following update rule: wt+1 ← wt + ∆wt. This process
repeats until the global model converges. The pseudo code
of our approach is provided in Algorithm 1.
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Algorithm 1 An employment of our mapping in FL

1: Input: Initialized weight w0, error e0n = 0 for each client
n = 1, 2, . . . N , compressor C(·), mapping function φ(·) that
is constructed and broadcast from the server.

2: for t = 0, 1, . . . , T − 1 do
3: for n ∈ {1, 2, . . . , N} in parallel do
4: wt,0

n ← wt

5: for i = 0, 1, . . . , H − 1 do
6: wt,i+1

n = wt,i
n − ηt∇̃Fn(w

t,i
n )

7: end for
8: ∆wt

n = wt,H
n − wt // Obtaining local gradient

9: ∆φw
t
n = φ(∆wt

n) + etn // Mapping & error feedback
10: Compress ∆φw

t
n as C(∆φw

t
n)

11: Upload C(∆φw
t
n) to the server

12: et+1
n = ∆φw

t
n − C(∆φw

t
n) // Error accumulation

13: end for
14: (Server-side) ∆φw

t =
∑N

n=1 κnC(∆φw
t
n)

15: (Server-side) Broadcast ∆φw
t to all the clients

16: for n ∈ {1, 2, . . . , N} and server in parallel do
17: ∆wt = φ−1(∆φw

t)
18: wt+1 = wt +∆wt

19: end for
20: end for

Remark (Public data). Since the construction of mapping
function needs computations of input activation and output
gradient as in Eq (2), this process requires the use of data
at the server. To this end, we employ the notion of public
data, i.e., some open source data publicly available at the
server, which has been widely adopted in many recent works
(Li & Wang, 2019; Chen & Chao, 2020; Park et al., 2021;
Huang et al., 2022; Fang & Ye, 2022; Cho et al., 2022).
However, since utilizing public data along with their labels
can pose additional difficulties in practice, we adopt a milder
assumption where the labels are not available, aiming to
relieve this limitation. The server can simply obtain the
output gradient from the surrogate cross entropy loss where
one-hot vector is replaced by the output probability, i.e.,
softmax of the output logit for each data. In our simulations,
we set only 1% of the entire dataset as the (unlabeled) public
data, which is shown to be sufficient for constructing the
effective mapping. Finally, we would like to highlight that
the requirement of public data at the server is not an issue
in traditional distributed learning settings where privacy is
less of a concern. Our approach can naturally adapt to this
setup by choosing a small portion of training dataset for
constructing the mapping before partitioning the data.

4. Convergence Analysis
In this section, we analyze the convergence behavior of our
mapping approach for communication-efficient FL.

Assumption 4.1. Fn(·) is an L-smooth function for each n,
i.e., ∥∇Fn(u)−∇Fn(w)∥ ≤ L∥u− w∥ for any u and w.
Assumption 4.2. The variance of the stochastic gradient is
bounded for each n, i.e., E[∥∇Fn(w)− ∇̃Fn(w)∥2] ≤ σ2

n,
and the global variance of the local gradient is bounded, i.e,
1
N

∑N
n=1 ∥∇Fn(w)−∇F (w)∥2 ≤ σ2

g for any w.
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Figure 3: A figure illustrating the trade-off between compression
error and sparsity (left), and constant C1 associated with each
sparsity level (right) in the original and mapping space.

Assumptions 4.1 and 4.2 are standard in a wide range of FL
literature (Li & Li, 2023; Li et al., 2023; Yang et al., 2021b;
Reddi et al., 2021; Yang et al., 2021a; Wang et al., 2019). It
is worth noting that our analysis does not rely on a bounded
gradient assumption, which may not be realistic in practice.
Now we are ready to state the following result.
Theorem 4.3. Let Fn(w) adhere to assumptions 4.1 and
4.2, and suppose compressor C(·) induces a compression
error to the extent of at most 1− ρ in terms of l2 norm, i.e.,
∥g−C(g)∥2 ≤ (1− ρ)∥g∥2. Let σ2

l = maxn∈[N ]{σ2
n} and

C1 = 3
4 + 8(1−ρ)

ρ2 . Then if we choose the learning rate that
satisfies ηt ≤ 1√

144C1HL
in Algorithm 1, it holds that

1

ΩT

T−1∑
t=0

ηtE
[
∥∇F (wt)∥2

]
≲

F (w0)− F (w∗)

ΩTH

+
Lσ2

l

2ΩTN

T−1∑
t=0

η2t +
3C1HL2

(
6Hσ2

g + σ2
l

)
ΩT

T−1∑
t=0

η3t

(8)

where w∗ = argminw∈Rd F (w) and ΩT =
∑T−1

t=0 ηt.

The proof can be found in Appendix A.1. As can be seen,
the convergence bound in Eq. (8) depends on constant C1

in the third term, which is affected by the compression er-
ror 1− ρ. The constant C1 takes its minimum value when
there is no compression error, i.e, ρ = 1, and becomes
larger as ρ gets close to 0. Thus, achieving more aggres-
sive compression under a certain allowable error of 1 − ρ
results in greater communication efficiency while maintain-
ing the same convergence bound. As shown in Figure 3,
our mapping space is indeed tailored to achieve enhanced
compression rate within some specific tolerable error. Con-
versely, our mapping exhibits lower C1 within the same
communication budget, which leads to a more favorable
convergence bound than the original space.

Note that if we choose the learning rate ηt such that∑T−1
t=0 ηt → ∞ and

∑T−1
t=0 η2t < ∞,

∑T−1
t=0 η3t < ∞ as

T grows (e.g. ηt = η0

c+t for some constant c > 0), the right
hand side of Eq (8) becomes 0 as T → ∞. This reveals
that our result in Theorem 4.3 guarantees the convergence
to a stationary point. Next, the following corollary gives an
asymptotic rate for a pre-specified number of rounds T .
Corollary 4.4. Under conditions in Theorem 4.3, for a fixed

learning rate ηt = η chosen to satisfy η = Θ
(√

N
TH

)
for a
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given number of rounds T , the convergence of Algorithm 1
achieves the rate O

(
1√

NTH

)
as long as H = O

(
T 1/3

N

)
.

As per Corollary 4.4, Algorithm 1 achieves a linear speedup
with respect to the number of clients, which matches the
existing, best known convergence result of FedAvg. In other
words, our mapping does not compromise the convergence
speed in spite of its effectiveness. Furthermore, we would
like to highlight that our result of linear speedup does not
rely on the assumption on the compression of the aggregated
gradients (Li & Li, 2023; Haddadpour et al., 2021; Alistarh
et al., 2018), which has been made in previous studies (see
Assumption 3 in Li & Li, 2023) that utilize the error feed-
back to guarantee the rate of O

(
1√

NTH

)
. More detailed

statement of Corollary 4.4 is provided in Appendix A.1.

5. Related Works
Approaches to reducing communication frequency in
FL. There has been a surge in the development of various
communication-efficient distributed/federated learning al-
gorithms in response to the demands for minimizing the
heavy communication load. One type of technique among
these works aims to reduce communication frequency by
updating the model with multiple local iterations on each
device before uploading the model or gradient to the central
server (McMahan et al., 2017; Yu et al., 2019; Wang & Joshi,
2019; Haddadpour et al., 2019). Compared to these works,
we take an orthogonal approach by sparsifying the gradient
during FL based on the proposed mapping function.

Sparsification & quantization-based methods. A wide
range of gradient/model compression methods have been
suggested (Basu et al., 2019; Shi et al., 2019; Shlezinger
et al., 2020; Qiao et al., 2021; Vargaftik et al., 2022) to
improve communication efficiency. Sparsification-based
compressors select only a small subset of the elements in
the gradient or the model, e.g., based on their absolute
magnitudes, to reduce the total amount of communication
bits to be transmitted (Wangni et al., 2018; Wang et al.,
2018; Shi et al., 2019; Ozfatura et al., 2021; Shah & Lau,
2021; Jiang et al., 2022; Feng et al., 2023; Wang et al.,
2023). On the other hand, quantization-based compression
methods reduce the bit-width used in representing and trans-
mitting the gradient/model elements, and have been also
combined with sparsification-based compressors to pursue
heavier compression (Alistarh et al., 2017; Wen et al., 2017;
Sattler et al., 2019; Reisizadeh et al., 2020; Jhunjhunwala
et al., 2021; Hönig et al., 2022; Qu et al., 2022a; Li &
Li, 2023). Although not limited to sparsification or quan-
tization compressor, there have been recent works where
unbiased compression is applied for the case of convex and
non-convex objectives (Condat et al., 2023; Grudzień et al.,
2023; Condat et al., 2024; Gorbunov et al., 2021; Tyurin
& Richtárik, 2023; Haddadpour et al., 2021). While all

these works conduct compression in the original space, we
propose to compress the gradient in the new space that fa-
cilitates lossless sparsification. Later in Section 6, we show
that the performance of well-known compression methods,
specifically Top-k and Sparse-Binary, can be significantly
improved when used in conjunction with the proposed map-
ping function thanks to its lossless sparsifying nature.

Other types of approaches. Beyond sparsification and
quantization, different strategies that utilize low-rank com-
pression, countsketch, and other techniques (Li et al., 2021a;
Sery et al., 2021) have been also proposed. Low-rank based
communication-efficient methods decompose the weight of
each layer into smaller matrices, or starts training from de-
composed (smaller) ones, which downsizes the total size of
the gradient to be communicated (Hyeon-Woo et al., 2022;
Konečnỳ et al., 2016; Qiao et al., 2021). We would like
to highlight that instead of leveraging the structure of the
weight or decomposing it as done in these works, we make
use of the structures of the input activation and the output
gradient, both of which are explicitly related to the gradient
itself. Additionally, countsketch-based compressors reduce
or project the original dimension of computed gradient into
the smaller dimension, from which the elements with large
magnitudes can later be recovered (Rothchild et al., 2020;
Ivkin et al., 2019). In these approaches, however, either
an additional assumption or a second round of communica-
tion is needed to guarantee the convergence of FL. On the
contrary, our mapping approach maintains the existing con-
vergence rate without requiring any further conditions on the
gradient or the model other than the standard assumptions.

In addition to these works, there have been recent papers that
share a conceptual similarity with our work. Specifically,
(Qian et al., 2022) aimed to identify a new set of vectors
that allows the Hessian to be expressed using a smaller num-
ber of basis vectors, thereby enhancing its compressibility,
which is crucial for the Newton’s method in the problem of
Generalized Linear Model (GLM). Similarly, in (Safaryan
et al., 2021; Wang et al., 2022), they utilize what is known
as a smoothness matrix, multiplying it with the computed
gradient to make it a more compressible vector. Compared
to these works, our work considers a new set of vectors to
represent the element of the mapping space for each layer by
utilizing the input vectors. This makes our method applica-
ble to a broader range of modern architectures like complex
DNNs with arbitrary non-convex objectives. Our approach
can be adopted to any structure that turns out to be linear
operation, which allows us to implement our method to vari-
ous types of modules, e.g., attention layer in the transformer
architectures. Moreover, based on the gradient derivation,
we are able to find a more effective mapping by considering
not only the input activation but also the output gradient,
which further maximizes the compressibility.
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Figure 4: Comparative analysis of accuracy versus number of communication bits across various benchmarks, including SVHN, CIFAR10,
CIFAR100 and TinyImageNet under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients. Note that
both Top-k and kSB improve significantly when combined with our mapping scheme (+Map).

6. Experiments
In this section, we evaluate our proposed mapping approach
in terms of communication efficiency in FL setup.

6.1. Experimental Details
We simulate FL training where the number of clients is
set to be N = 100, with the contact ratio being 0.1, that
is, 10 clients are randomly sampled for communication at
each FL round. We evaluate our method in comparison
with other baselines on four benchmark datasets: SVHN,
CIFAR10, CIFAR100, and TinyImageNet. We essentially
follow the settings outlined in previous FL works (Gao
et al., 2022; Acar et al., 2021). We investigate a non-IID
data setup, and we configure the data split to follow the
Dirichlet distribution with parameter values α = 0.6 and
α = 0.3. Data heterogeneity gets more pronounced as α
decreases. The dataset size is balanced across all clients.
For the SVHN and CIFAR10 datasets, we use a CNN model,
which consists of two 5× 5 convolution layers followed by
three fully-connected layers, and as for the CIFAR100 and
TinyImageNet datasets, we use the ResNet18 model. In the
construction of mapping, we randomly sample and desig-
nate 1% of the entire dataset as the unlabeled public data.
We then split the remaining data to be assigned to the clients.
To validate the effectiveness of our approach, we apply our
mapping to two types of sparsification-based compressors,
namely, Top-k and k-Sparse-Binary to fully reap the benefit
of the lossless sparsifiying nature of our mapping. When
applying Top-k and k-Sparse-Binary in our mapping space,
the accumulated error for the error feedback is initialized
to zero whenever the mapping is newly constructed to ac-
count for the staleness of near-zero elements in the mapping
space. More detailed design parameters including periods
for mapping construction are provided in Appendix A.2.

Baselines. We compare our approach with various com-
munication efficient FL baselines: Top-k, k-Sparse-Binary
(kSB), FedDQ (Qu et al., 2022a) and FedPara (Hyeon-Woo
et al., 2022). To make a fair comparison, we design two
additional baselines that utilize the public data. We relieve
the assumption in that the public data can also be accessed
by the clients, so that all the participating clients can make
prediction on a given shared public data. Each client then
uploads its predicted output probability along with the local
update at each round. There are two possible approaches
here: one involves incorporating the gradient computed
from distilled loss to the aggregated gradient in Eq. (7), and
the other is to train the model on public data in the server
right after the model update with the aggregated gradient,
which we denote PD1 and PD2, respectively. We apply PD1
and PD2 to both Top-k and Sparse-Binary as baselines. See
Appendix A.5 for more details.

As for Top-k and its counterpart applied with mapping
(denoted by ‘Top-k + Map’), we evaluate these methods
across four different levels of compression error, 1− ρ, i.e.,
ρ = {0.9, 0.8, 0.7, 0.6}. This can be done by sparsifying
the smallest elements until the desired value of ρ is reached.
For kSB and kSB + Map, as it is difficult to directly control
the compression error due to subsequent quantization pro-
cess, we control the sparsity s with four different levels, i.e.,
s = {0.1, 0.05, 0.03, 0.01}. We present the case of ρ = 0.7
for Top-k and s = 0.03 for kSB in the main results. Results
for other values of ρ and s are provided in Appendix A.12.

6.2. Main Results

Mapping improves communication efficiency. We first
provide comparative analysis of accuracy versus number
of bits per client during uplink transmission. Following
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Figure 5: Comparative figures of accuracy versus communication
rounds on CIFAR100 and TinyImageNet in the case of α = 0.3.
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Figure 6: Comparison results of accuracy versus communication
rounds with PD baselines in the case of α = 0.3.

the prior works (Isik et al., 2023; Li & Li, 2023; Vargaftik
et al., 2022; Qu et al., 2022a; Haddadpour et al., 2021;
Bernstein et al., 2018; Wen et al., 2017), we focus on the
uplink communication load, which is the main bottleneck
in FL (Kairouz et al., 2021). As can be seen in Figure 4,
our mapping approach (solid lines) improves the existing
sparsification based methods, Top-k and kSB (dotted lines)
in terms of communication efficiency across all the datasets.
Although FedDQ slightly outperforms Top-k + Map on the
CIFAR10 and CIFAR100 datasets, our mapping makes the
existing Top-k scheme either comparable to or outperform
the baselines on SVHN and TinyImageNet. Moreover, kSB
+ Map surpasses other baselines with large gaps across all
datasets, which is not the case for the naive kSB.

SB reaches higher accuracy than vanilla FedAvg. We
provide comparison results across communication rounds,
which shows selective results on CIFAR100 and TinyIma-
geNet due to space limitation. As shown in Figure 5, kSB +
Map achieves higher accuracy, even than the conventional
FedAvg where the uncompressed gradient is uploaded. This
additional benefit may partly be attributed to the ability of
the quantization-based compressors to reduce the deviation
among local updates induced by data heterogeneity, as can
seen in (Oh et al., 2023). One notable aspect of our mapping
space is the concentration of most of the information into
a smaller number of elements in a lossless manner before
compression. As such, the mapping space can preserve a
greater amount of information than the original space while

Table 1: The amount of bits (GiB) required to reach the desired
target accuracy of 78% for CIFAR10 and 41% for CIFAR100.

Dataset FedAvg LMap HMap

CIFAR10 1.014 0.0068 (×149.1) 0.0075 (×135.2)
CIFAR100 23.09 0.0940 (×245.6) 0.0899 (×256.8)

Table 2: The amount of bits required to reach the target accuracy
of 41% for CIFAR100 across various ratios of public data.

Ratio of public data 0.1% 0.5% 1% 5%

Bits (GiB) 0.0956 0.0903 0.0940 0.0944

sparsifying it. This property of our mapping space, cou-
pled with the quantizer’s ability to lessen the effects of data
heterogeneity, leads to better accuracy than vanilla FedAvg.

PD baselines fail to enhance Top-k and kSB. Lastly,
we compare our approach with more fair baselines, Top-
k and kSB that utilize the public data (we denote these
baselines as ‘+ PD1’ and ‘+ PD2’), as mentioned above.
As can be seen in Figure 6, incorporating public data fails
to enhance the performance of the existing Top-k and kSB
schemes due to the limited availability of the public data.
Given this, despite utilizing the same quantity of public data,
our mapping approach is the only strategy that uniquely
succeeds in improving the existing method, especially the
kSB compressor. Additional results on varying values of s,
ρ, α and other datasets are supplemented in Appendix A.13.

6.3. Further Studies

Robustness to heterogeneous public data. In this study,
we investigate the robustness of our mapping to the degree
of heterogeneity in public data. We evaluate on the CI-
FAR10 and CIFAR100 datasets under α = 0.6 using the
kSB compressor. To simulate scenarios with heterogeneous
public data, we sample from CIFAR10 dataset and use the
samples as public data when evaluating on CIFAR100, and
vice versa. Table 1 shows the number of bits required to
achieve desired target accuracy for both Low heterogeneous
Map (denoted by ‘LMap’, which is the map used so far)
and High heterogeneous Map (denoted by ‘HMap’, which
represents the map created from a different dataset). As
can be seen, HMap shows enhanced communication effi-
ciency just as good as LMap. It achieves an efficiency of
×256.8 to reach target accuracy on CIFAR100 compared
to naive FedAvg. These results indicate that our mapping
can provide a sufficiently effective new space, even when
constructed with public data from different classes, as long
as the domains are similar.

Ablation on the amount of public data. Here we conduct
an ablation study on varying amounts of public data used in
constructing mapping. We evaluate our approach in the abla-
tion on CIFAR100 under α = 0.6 using the kSB compressor
across different ratios of public data from 0.1% to 5% of the
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entire dataset. For the case of 5%, we additionally sample
the public data from the remaining data after distributing
them, to ensure consistency in data configurations among
clients cross ratios. As can be seen in Table 2, our map-
ping still yields reasonable results, even when constructed
with a very small amount of public data, specifically 0.1%.
This indicates that a very limited quantity of data suffices to
establish an effective mapping space.

Extra costs for mapping function. Although our focus is
on the uplink transmission as done in many previous works,
there are extra costs incurred in both (downlink) communi-
cation and (server-side) computation when employing the
mapping function. Our mapping allows a trade-off by of-
floading the heavy communication burden on the client-side
to the server. We wish to highlight that this is a beneficial
trade-off in practice, since the server typically has a large
computing power and downlink tends to have a higher com-
munication rate compared to the uplink transmission. We
have further elaborated on this issue in Appendix A.6.

Further considerations. There can be other considerations
including time duration for mapping, the effects of the pe-
riods for mapping reconstruction on the performance, and
sparse encoding strategies. We have further discussed these
aspects in Appendix A.7, A.8 and A.9.

7. Conclusion
In this paper, we presented a novel approach to mitigating
heavy communication load in federated learning scenarios.
We move beyond the original space and propose to construct
a mapping function that can provide more sparsified gra-
dients in a lossless manner. In light of this, applying our
mapping to sparsification-based compressors can achieve
more aggressive compression with minimal information
loss, leading to enhanced communication efficiency during
FL, which is also verified by our theoretical analysis. Un-
like other baselines in the original space, our method often
reaches higher accuracy than conventional FedAvg, which
is an additional benefit unique to our mapping space.
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P. Marina: Faster non-convex distributed learning with
compression. In International Conference on Machine
Learning, pp. 3788–3798. PMLR, 2021.
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A. Appendix
A.1. Convergence Analysis

In this section, we analyze the convergence behavior of our approach for communication-efficient federated learning. To this
end, we consider the following assumptions.

Assumption A.1. Fn(·) is L-smooth function for each n, i.e., ∥∇Fn(u)−∇Fn(w)∥ ≤ L∥u− w∥ for any u and w.

Assumption A.2. The variance of the stochastic gradient is bounded for each n, i.e., E[∥∇Fn(w)− ∇̃Fn(w)∥2] ≤ σ2
n, and

the global variance of the local gradient is bounded, i.e, 1
N

∑N
n=1 ∥∇Fn(w)−∇F (w)∥2 ≤ σ2

g for any w.

Moreover, since our mapping φ(·) is constructed and defined based on Eq. (2) - (5), we have the following useful properties.

Property A.3. Mapping φ(·) : Rd → Rd is a linear transformation, i.e., φ(αu+ βw) = αφ(u) + βφ(w) for any α, β ∈ R
and v, w ∈ Rd. Its inverse mapping φ−1(·) : Rd → Rd follows the same property.

Property A.4. Mapping φ(·) : Rd → Rd preserves the l2 norm, i.e., ∥φ(u)∥ = ∥u∥ for any u ∈ Rd. Its inverse mapping
φ−1(·) : Rd → Rd follows the same property.

Now we start with the following intermediate lemmas, drawing on (Yang et al., 2021a; Reddi et al., 2021; Li & Li, 2023).

Lemma A.5. Under Assumption A.1 and A.2, for any i ∈ [H] and ηt ≤ 1
4HL , it is observed that,

1

N

N∑
n=1

E
[
∥wt,i

n − wt∥2
]
≤ 3Hη2t

(
6Hσ2

g +
1

N

N∑
n=1

σ2
n

)
+ 18H2η2tE

[
∥∇F (wt)∥2

]
.

Proof. For any i = 1, . . . ,H , we have

1

N

N∑
n=1

E
[
∥wt,i

n − wt∥2
]
=

1

N

N∑
n=1

E
[
∥wt,i−1

n − wt − ηt∇̃Fn(w
t,i−1
n )∥2

]
=

1

N

N∑
n=1

E
[
E
[
∥wt,i−1

n − wt − ηt∇Fn(w
t,i−1
n ) +

(
ηt∇Fn(w

t,i−1
n )− ηt∇̃Fn(w

t,i−1
n )

)
∥2|wt,i−1

n

]]
=

1

N

N∑
n=1

E
[
∥wt,i−1

n − wt − ηt∇Fn(w
t,i−1
n )∥2

]
+

1

N

N∑
n=1

E
[
∥ηt∇Fn(w

t,i−1
n )− ηt∇̃Fn(w

t,i−1
n )∥2

]
=

1

N

N∑
n=1

E
[
∥wt,i−1

n − wt − ηt∇Fn(w
t,i−1
n ) + ηt∇Fn(w

t)− ηt∇Fn(w
t) + ηt∇F (wt)− ηt∇F (wt)∥2

]
+

1

N

N∑
n=1

E
[
∥ηt∇Fn(w

t,i−1
n )− ηt∇̃Fn(w

t,i−1
n )∥2

]
︸ ︷︷ ︸

≤ η2
t

N

∑N
n=1 σ2

n via Assumption A.2

(a)

≤ 2H

2H − 1
· 1
N

N∑
n=1

E
[
∥wt,i−1

n − wt∥2
]
+

6H

N

N∑
n=1

E
[
∥ηt∇Fn(w

t,i−1
n )− ηt∇Fn(w

t)∥2
]

+
6H

N

N∑
n=1

E
[
∥ηt∇Fn(w

t)− ηt∇F (wt)∥2
]

︸ ︷︷ ︸
≤6Hη2

tσ
2
g via Assumption A.2

+
6H

N

N∑
n=1

E
[
∥ηt∇F (wt)∥2

]
+

η2t
N

N∑
n=1

σ2
n

≤ 2H

2H − 1
· 1
N

N∑
n=1

E
[
∥wt,i−1

n − wt∥2
]
+

6Hη2tL
2

N

N∑
n=1

E
[
∥wt,i−1

n − wt∥2
]

︸ ︷︷ ︸
Due to Assumption A.1

+ η2t

(
6Hσ2

g +
1

N

N∑
n=1

σ2
n

)
+ 6Hη2tE

[
∥∇F (wt)∥2

]
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=

(
2H

2H − 1
+ 6Hη2tL

2

)
1

N

N∑
n=1

E
[
∥wt,i−1

n − wt∥2
]
+ η2t

(
6Hσ2

g +
1

N

N∑
n=1

σ2
n

)
+ 6Hη2tE

[
∥∇F (wt)∥2

]
(b)

≤

(
2H + 1

2H − 1

)
1

N

N∑
n=1

E
[
∥wt,i−1

n − wt∥2
]
+ η2t

(
6Hσ2

g +
1

N

N∑
n=1

σ2
n

)
+ 6Hη2tE

[
∥∇F (wt)∥2

]

where (a) comes from Jensen’s inequality and (b) comes from the fact that 6Hη2tL
2 ≤ 6

16H ≤
1

2H−1 when ηt ≤ 1
4HL . By

repeating the above derivation while keeping in mind that wt,0
n = wt, we attain

1

N

N∑
n=1

E
[
∥wt,i

n − wt∥2
]
≤

i−1∑
j=0

(
2H + 1

2H − 1

)j[
η2t

(
6Hσ2

g +
1

N

N∑
n=1

σ2
n

)
+ 6Hη2tE

[
∥∇F (wt)∥2

]]

≤
H−1∑
j=0

(
2H + 1

2H − 1

)H[
η2t

(
6Hσ2

g +
1

N

N∑
n=1

σ2
n

)
+ 6Hη2tE

[
∥∇F (wt)∥2

]]

≤ 3H

[
η2t

(
6Hσ2

g +
1

N

N∑
n=1

σ2
n

)
+ 6Hη2tE

[
∥∇F (wt)∥2

]]

where the last inequality is due to
(
2H+1
2H−1

)H ≤ 3 whenever H ≥ 1, which completes the proof.

Lemma A.6. For a given compressor C(·) that satisfies ∥g − C(g)∥2 ≤ (1− ρ)∥g∥2 for all g ∈ Rd, and for any t ≥ 1, one
can verify that,

1

N

N∑
n=1

E
[
∥etn∥2

]
≤ 2(1− ρ)

ρ

1

N

N∑
n=1

t−1∑
j=0

(
2− ρ

2

)j

E
[
∥∆wt−j−1

n ∥2
]
.

Proof. By the definition of etn and the property of given compressor C(·), we have

E
[
∥etn∥2

]
= E

[
∥φ(∆wt−1

n ) + et−1
n − C

(
φ(∆wt−1

n ) + et−1
n

)
∥2
]

≤ (1− ρ)E
[
∥φ(∆wt−1

n ) + et−1
n ∥2

]
≤
(
τ + 1

τ

)
(1− ρ)E

[
∥φ(∆wt−1

n )∥2
]
+(τ + 1)(1− ρ)E

[
∥et−1

n ∥2
]
.

Here if we choose τ = ρ
2(1−ρ) , then we obtain

E
[
∥etn∥2

]
≤ (2− ρ)(1− ρ)

ρ
E
[
∥φ(∆wt−1

n )∥2
]
+

(
2− ρ

2

)
E
[
∥et−1

n ∥2
]

≤ 2(1− ρ)

ρ
E
[
∥φ(∆wt−1

n )∥2
]
+

(
2− ρ

2

)
E
[
∥et−1

n ∥2
]

=
2(1− ρ)

ρ
E
[
∥∆wt−1

n ∥2
]
+

(
2− ρ

2

)
E
[
∥et−1

n ∥2
]

where the second inequality is due to the fact that (2− ρ)(1− ρ) ≤ 2(1− ρ) for 0 < ρ ≤ 1, and the last equality is due to
Property A.4. Thus unfolding the above recursive equation with e0n = 0 yields

E
[
∥etn∥2

]
≤ 2(1− ρ)

ρ

t−1∑
j=0

(
2− ρ

2

)j

E
[
∥∆wt−j−1

n ∥2
]

Taking summation over n = 1, . . . , N on both sides results in a desired bound.

Now we ready to prove the following convergence guarantee.
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Theorem A.7. Let Fn(w) adhere to assumption A.1 and A.2, and suppose compressor C(·) induces a compression error
to the extent of at most 1 − ρ in terms of l2 norm, i.e., ∥g − C(g)∥2 ≤ (1 − ρ)∥g∥2. Let σ2

l = maxn∈[N ]{σ2
n} and

C1 = 3
4 + 8(1−ρ)

ρ2 . Then if we choose the learning rate that satisfies ηt ≤ 1√
144C1HL

in Algorithm 1, it holds that

1

ΩT

T−1∑
t=0

ηtE
[
∥∇F (wt)∥2

]
≲

F (w0)− F (w∗)

ΩTH
+

Lσ2
l

2ΩTN

T−1∑
t=0

η2t +
3C1HL2

(
6Hσ2

g + σ2
l

)
ΩT

T−1∑
t=0

η3t ,

where w∗ = argminw∈Rd F (w) and ΩT =
∑T−1

t=0 ηt.

Proof. Before delve into the detailed proof, we introduce the intermediate variable, w̃t := wt + φ−1( 1
N

∑N
n=1 e

t
n). Here

we define wt,i = 1
N

∑N
n=1 w

t,i
n for i = 0, 1, . . . ,H . Now let us unroll the 1

N

∑N
n=1 e

t+1
n by the definition as,

1

N

N∑
n=1

et+1
n =

1

N

N∑
n=1

(
φ(∆wt

n) + etn
)
− 1

N

N∑
n=1

C
(
φ(∆wt

n) + etn
)

(9)

And we rewrite the update rule after aggregating the gradients recieved from the clients as follows.

wt+1 = wt + φ−1

(
1

N

N∑
n=1

C
(
φ(∆wt

n) + etn
))

(10)

Then if we take inverse mapping φ−1(·) on both sides of Eq 9, and add it to both sides of Eq 10, we have

wt+1 + φ−1

(
1

N

N∑
n=1

et+1
n

)
= wt + φ−1

(
1

N

N∑
n=1

C
(
φ(∆wt

n) + etn
))

+ φ−1

(
1

N

N∑
n=1

(
φ(∆wt

n) + etn
)
− 1

N

N∑
n=1

C
(
φ(∆wt

n) + etn
))

= wt + φ−1

(
1

N

N∑
n=1

C
(
φ(∆wt

n) + etn
))

+ φ−1

(
1

N

N∑
n=1

(
φ(∆wt

n) + etn
))
− φ−1

(
1

N

N∑
n=1

C
(
φ(∆wt

n) + etn
))

= wt +
1

N

N∑
n=1

φ−1(φ(∆wt
n)) + φ−1

(
1

N

N∑
n=1

etn

)

= wt + φ−1

(
1

N

N∑
n=1

etn

)
+

1

N

N∑
n=1

∆wt
n

where the second and third equality is due to Property A.3 of mapping φ(·) and φ−1(·).

Then by the definition of intermediate variable w̃t, for a specific round of t, the following holds,

w̃t+1 − w̃t =
1

N

N∑
n=1

∆wt
n = − 1

N

N∑
n=1

H−1∑
i=0

ηt∇̃Fn(w
t,i
n ).

By L-smoothness property of F (w) = 1
N

∑N
n=1 Fn(w) and taking expectation on both sides, we have

E[F (w̃t+1)− F (w̃t)] ≤ E[⟨∇F (w̃t), w̃t+1 − w̃t⟩] + L

2
E[∥w̃t+1 − w̃t∥2]

(a)
= E

[〈
∇F (w̃t),− 1

N

N∑
n=1

H−1∑
i=0

ηt∇Fn(w
t,i
n )
〉]

+
η2tL

2
E
[∥∥∥ 1

N

N∑
n=1

H−1∑
i=0

∇̃Fn(w
t,i
n )
∥∥∥2]
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= E
[〈
∇F (wt),− 1

N

N∑
n=1

H−1∑
i=0

ηt∇Fn(w
t,i
n )
〉]

︸ ︷︷ ︸
A1

+ηt E
[〈
∇F (wt)−∇F (w̃t),

1

N

N∑
n=1

H−1∑
i=0

∇Fn(w
t,i
n )
〉]

︸ ︷︷ ︸
A2

+
η2tL

2
E
[∥∥∥ 1

N

N∑
n=1

H−1∑
i=0

∇̃Fn(w
t,i
n )
∥∥∥2]︸ ︷︷ ︸

A3

(11)

where (a) comes from taking expectation with respect to stochasticity of the gradient due to mini-batch. Now we start with
the term A1 as follows,

A1 = E
[〈
∇F (wt),− 1

N

N∑
n=1

H−1∑
i=0

ηt∇Fn(w
t,i
n ) + ηtH∇F (wt)− ηtH∇F (wt)

〉]
= −ηtHE

[
∥∇F (wt)∥2

]
+E

[〈
∇F (wt),− 1

N

N∑
n=1

H−1∑
i=0

ηt∇Fn(w
t,i
n ) + ηtH∇F (wt)

〉]
︸ ︷︷ ︸

A
′
1

.

And then we bound the term A
′

1 as,

A
′

1 = E
[〈
∇F (wt),− 1

N

N∑
n=1

H−1∑
i=0

ηt∇Fn(w
t,i
n ) + ηtH∇F (wt)

〉]
= E

[〈
∇F (wt),− 1

N

N∑
n=1

H−1∑
i=0

ηt∇Fn(w
t,i
n ) +

1

N

N∑
n=1

H−1∑
i=0

ηt∇Fn(w
t)
〉]

= E
[〈√

ηtH∇F (wt),−
√
ηt

N
√
H

N∑
n=1

H−1∑
i=0

(
∇Fn(w

t,i
n )−∇Fn(w

t)
)〉]

(c)
=

ηtH

2
E
[
∥∇F (wt)∥2

]
− ηt
2HN2

E
[∥∥∥ N∑

n=1

H−1∑
i=0

∇Fn(w
t,i
n )
∥∥∥2]+ ηt

2HN2
E
[∥∥∥ N∑

n=1

H−1∑
i=0

(
∇Fn(w

t,i
n )−∇Fn(w

t)
)∥∥∥2]

(d)

≤ ηtH

2
E
[
∥∇F (wt)∥2

]
− ηt
2HN2

E
[∥∥∥ N∑

n=1

H−1∑
i=0

∇Fn(w
t,i
n )
∥∥∥2]+ ηt

2N

N∑
n=1

H−1∑
i=0

E
[∥∥∥∇Fn(w

t,i
n )−∇Fn(w

t)
∥∥∥2]

(e)

≤ ηtH

2
E
[
∥∇F (wt)∥2

]
− ηt
2HN2

E
[∥∥∥ N∑

n=1

H−1∑
i=0

∇Fn(w
t,i
n )
∥∥∥2]+ ηtL

2

2N

N∑
n=1

H−1∑
i=0

E
[
∥wt,i

n − wt∥2
]

where (c) comes from ∥z1 − z2∥2 = ∥z1∥2 + ∥z2∥2 − 2 ⟨z1, z2⟩, and (d) comes from Jensen’s inequality, and (e) is due to
L-smoothness of Fn(w). Next, by the assumption A.2 and the fact that E[∥z−E[z]+E[z]∥2] = E[∥z−E[z]∥2]+E[∥E[z]∥2],
the term A3 is bounded as,

A3 = E
[∥∥∥ 1

N

N∑
n=1

H−1∑
i=0

∇̃Fn(w
t,i
n )
∥∥∥2]

= E
[∥∥∥ 1

N

N∑
n=1

H−1∑
i=0

(
∇̃Fn(w

t,i
n )−∇Fn(w

t,i
n )
)∥∥∥2]+ E

[∥∥∥ 1

N

N∑
n=1

H−1∑
i=0

∇Fn(w
t,i
n )
∥∥∥2]

(f)
=

1

N2

N∑
n=1

H−1∑
i=0

E
[∥∥∥∇̃Fn(w

t,i
n )−∇Fn(w

t,i
n )
∥∥∥2]+ 1

N2
E
[∥∥∥ N∑

n=1

H−1∑
i=0

∇Fn(w
t,i
n )
∥∥∥2]

(g)

≤ H

N2

N∑
n=1

σ2
n +

1

N2
E
[∥∥∥ N∑

n=1

H−1∑
i=0

∇Fn(w
t,i
n )
∥∥∥2]
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where (f) comes from the fact that if z1, z2, . . . , zn are independent and zero mean random variables, it holds that
E[∥z1 + z2 + · · · + zn∥2] = E[∥z1∥2] + E[∥z2∥2] + · · · + E[∥zn∥2], and (g) is due to the Assumption A.2. Thirdly, the
term A2 is bounded as the following.

A2 = E
[〈
∇F (wt)−∇F (w̃t),

1

N

N∑
n=1

H−1∑
i=0

∇Fn(w
t,i
n )
〉]

(h)

≤ 1

2a
E
[∥∥∥∇F (wt)−∇F (w̃t)

∥∥∥2]+ a

2
E
[∥∥∥ 1

N

N∑
n=1

H−1∑
i=0

∇Fn(w
t,i
n )
∥∥∥2]

≤ L2

2a
E
[∥∥wt − w̃t

∥∥2]+ a

2
E
[∥∥∥ 1

N

N∑
n=1

H−1∑
i=0

∇Fn(w
t,i
n )
∥∥∥2]

(i)

≤ 2HL2E
[∥∥wt − w̃t

∥∥2]+ 1

8H
E
[∥∥∥ 1

N

N∑
n=1

H−1∑
i=0

∇Fn(w
t,i
n )
∥∥∥2]

= 2HL2E
[∥∥φ−1(

1

N

N∑
n=1

etn)
∥∥2]+ 1

8H
E
[∥∥∥ 1

N

N∑
n=1

H−1∑
i=0

∇Fn(w
t,i
n )
∥∥∥2]

(j)

≤ 2HL2 1

N

N∑
n=1

E
[
∥etn∥2

]
+

1

8H
E
[∥∥∥ 1

N

N∑
n=1

H−1∑
i=0

∇Fn(w
t,i
n )
∥∥∥2]︸ ︷︷ ︸

A4

where (h) comes from the fact that ⟨z1, z2⟩ ≤ 1
2a∥z1∥

2 + a
2∥z2∥

2 for any a > 0, and (i) is derived by choosing a = 1
4H ,

and (j) is due to Property A.4 and Jensen’s inequality. Finally, we rewrite the term A4 as shown below.

A4 = E
[∥∥∥ 1

N

N∑
n=1

H−1∑
i=0

∇Fn(w
t,i
n )
∥∥∥2]

= E
[∥∥∥ 1

N

N∑
n=1

H−1∑
i=0

∇Fn(w
t,i
n )− 1

N

N∑
n=1

H−1∑
i=0

∇Fn(w
t) +

1

N

N∑
n=1

H−1∑
i=0

∇Fn(w
t)
∥∥∥2]

≤ 2E
[∥∥∥ 1

N

N∑
n=1

H−1∑
i=0

∇Fn(w
t,i
n )− 1

N

N∑
n=1

H−1∑
i=0

∇Fn(w
t)
∥∥∥2]+ 2E

[∥∥∥ 1

N

N∑
n=1

H−1∑
i=0

∇Fn(w
t)
∥∥∥2]

≤ 2H

N

N∑
n=1

H−1∑
i=0

E
[∥∥∥∇Fn(w

t,i
n )−∇Fn(w

t)
∥∥∥2]+ 2H2E

[∥∥∥ 1

N

N∑
n=1

∇Fn(w
t)︸ ︷︷ ︸

=∇F (wt)

∥∥∥2]

≤ 2HL2

N

N∑
n=1

H−1∑
i=0

E
[
∥wt,i

n − wt∥2
]
+ 2H2E

[∥∥∇F (wt)
∥∥2]

where the second and third inequalities are due to Jensen’s inequality and the last inequality comes from Assumption A.1.
By putting it altogether, Eq (11) can be rewritten as follows.

E[F (w̃t+1)− F (w̃t)] ≤ −ηtHE
[
∥∇F (wt)∥2

]
+A

′

1 + ηtA2 +
η2tL

2
A3

≤ −ηtH

2
E
[
∥∇F (wt)∥2

]
− ηt
2HN2

E
[∥∥∥ N∑

n=1

H−1∑
i=0

∇Fn(w
t,i
n )
∥∥∥2]+ ηtL

2

2N

N∑
n=1

H−1∑
i=0

E
[
∥wt,i

n − wt∥2
]

+ 2ηtHL2 1

N

N∑
n=1

E
[
∥etn∥2

]
+
ηtL

2

4N

N∑
n=1

H−1∑
i=0

E
[
∥wt,i

n − wt∥2
]
+

ηtH

4
E
[
∥∇F (wt)∥2

]
+

η2tHL

2N2

N∑
n=1

σ2
n +

η2tL

2N2
E
[∥∥∥ N∑

n=1

H−1∑
i=0

∇Fn(w
t,i
n )
∥∥∥2]
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= −ηtH

4
E
[
∥∇F (wt)∥2

]
+
3ηtL

2

4N

N∑
n=1

H−1∑
i=0

E
[
∥wt,i
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]
+ 2ηtHL2 1

N
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E
[
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]
+

(
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2N2
− ηt
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)
︸ ︷︷ ︸

≤0 when ηt≤ 1
HL

E
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i=0

∇Fn(w
t,i
n )
∥∥∥2]+ η2tHL

2N2

N∑
n=1
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≤ −ηtH

4
E
[
∥∇F (wt)∥2
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+
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2
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E
[
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1

N
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(
2− ρ

2

)j

E
[
∥∆wt−j−1

n ∥2
]
+
η2tHL

2N2
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n

where the last inequality comes from Lemma A.6 and 1[·] is the indicator function.

Then taking telescoping sum over t = 0 to t = T − 1 on both sides yields,

E[F (w̃T )]− F (w0) ≤ −H

4

T−1∑
t=0

ηtE
[
∥∇F (wt)∥2

]
+
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where the second and third inequalities hold when ηt is non-increasing, which falls within our scope of interest, and the
second last inequality comes from Lemma A.5. If we define σ2

l := maxn∈[N ]{σ2
n} and C1 := 3

4 + 8(1−ρ)
ρ2 , then we can
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simplify the above derivation as follows.

E[F (w̃T )]− F (w0) ≤
T−1∑
t=0

(
− ηtH

4
+ 18C1η

3
tH

3L2

)
︸ ︷︷ ︸

A5

E
[
∥∇F (wt)∥2

]

+
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3C1η
3
tH

2L2
(
6Hσ2

g + σ2
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)
+
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η2tHL

2N
σ2
l

Here if we choose the learning rate that satisfies ηt ≤ 1√
144C1HL

, the term A5 is bounded as A5 ≤ −ηtH
8 . Finally,

rearranging the terms and dividing ΩT :=
∑T−1

t=0 ηt on both sides yields the following results.

H

8ΩT

T−1∑
t=0

ηtE
[
∥∇F (wt)∥2

]
≤ F (w0)− F ∗

ΩT
+

HL

2ΩTN
σ2
l

T−1∑
t=0

η2t +
3C1H

2L2
(
6Hσ2

g + σ2
l

)
ΩT

T−1∑
t=0

η3t

where F ∗ is the global minimum value of F (w), which completes the proof.

Corollary A.8. Under conditions stated in Theorem A.7, for a fixed learning rate ηt = η for all t, that is chosen to satisfy
η = Θ

( √
N√
TH

)
, the global model trained according to Algorithm 1 exhibits the following convergence behavior.

1

T

T−1∑
t=0

E
[
∥∇F (wt)∥2

]
= O

(
F (w0)− F (w∗)√

NTH
+

Lσ2
l√

NTH
+

NC1L
2

T

(
6Hσ2

g + σ2
l

))
.

That is, our convergence result achieves a linear speedup with respect to the number of clients N , i.e., achieves a rate of
O
(

1√
NTH

)
as long as H = O

(
T 1/3

N

)
.

A.2. Design Parameters

Throughout all the simulations, we use SGD optimizer with learning rate 0.1, which is decayed with a rate of 0.998 at each
round. The weight decay is set to be 5e-4. Following the implementation of current works (Qu et al., 2022b; Gao et al.,
2022; Acar & Saligrama, 2022; Acar et al., 2021), the local gradient norm clipping is adopted. Moreover, the local epoch is
set to be 5 with batch size of 50, and we run FL training for 600 rounds in total. Regarding the FedPara (Hyeon-Woo et al.,
2022), the compression ratio is set to be 0.2 for each layer. We conduct all the experiments for 3 times with different random
seeds and report the averaged values.

Note that FL training at the initial stage may drastically change the model parameters. Thus we set the period for constructing
and broadcasting of the mapping function P as follows: the server constructs and broadcasts the mapping every 20 round at
the first 100 rounds, every 50 round during rounds 100 to 300, and every 100 round for the remaining rounds from 300 to
600. We conduct the ablation on how varying period for constructing/broadcasting affects the performance in Sec. A.8.

A.3. Sparsifying Attribute of the Mapping for the Case of Multiple Iterations

Here we describe our sparsifying attribute of the mapping approach in case of multiple iterations induced from multiple
local updates H and mini-batch SGD in detail. Recall that we define the local gradient as the weight difference between the
parameters before and after the local update, i.e, ∆wn = wn − w with multiple number of iterations H , as we mentioned in
the main manuscript. However, as explained in Eq (1), for the sake of easier understanding, we presented the formula in its
simplest form, considering a single batch and iteration. There appears to be a slight discrepancy between the explanation
and actual operation, due to the need to account for the number of iterations.

Here we would like to emphasize that our lossless sparsification property of our mapping still holds, even if we account for
multiple number of iterations in the gradient computation. If we consider multiple local iterations, Eq (1) in main paper can
be rewritten in the general form as follows: dW =

∑H−1
i=0 dzi · ai⊤ where dzi and ai⊤ denote the input and output gradient
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computed at i-th iteration respectively. Since the mapping operation is linear, the following holds:

φ(dW ) = Q⊤dWP = Q⊤(

H−1∑
i=0

dzi · ai⊤)P =

H−1∑
i=0

(Q⊤dzi · ai⊤P ).

In other words, taking the mapping operation after the summation is equivalent to the summation after mapping. Here, the
gradient Q⊤dzi ·ai⊤P for each iteration i is obviously the sparsified gradient, i.e., φ(dW ) is the summation of the sparsified
gradients. Since the gradient computed at each iteration dzi · ai⊤ is computed from the local data following the same local
data distribution within a single client, the positions of elements tending towards near-zero would be similar. Hence, the
summation of each sparsified gradient,

∑H−1
i=0 (Q⊤dzi · ai⊤P ), becomes sparsified more than dW =

∑H−1
i=0 dzi · ai⊤,

which is also supported by the fact that specifying the local epochs as 5 (the total number of iterations becomes about
50 in CIFAR10 and CIFAR100) still successfully improves the communication efficiency compared to the baselines, as
demonstrated in the main experimental results.

Moreover, the gradient can indeed be expressed as 1
B

∑B
i=1 dz

(i) · a(i)⊤ in case of mini-batch SGD, where we again define
dz(i) and a(i) to be input and output gradient vectors of i-th data sample. As the gradient can be written in the form of linear
combination of gradient computed on each i-th sample, the same argument can be applied here, i.e., mapping operation after
the summation is equivalent to the summation after the mapping. Therefore, the gradient computed with mini-batch SGD
also becomes sparsified gradient in the mapping space, and this is directly evidenced by Figure 1b in the main manuscript,
which is the very plot that shows the magnitude of gradients computed with batch size of 50.

A.4. Detailed Mechanism of the Mapping

Regarding more detailed description of our method, we again define Al and Zl with concrete dimension as follows. We
stack the vectors of input (output gradient) computed on each i-th data samples in Al (Zl), where the batch information is
already incorporated in these matrices, as follows:

Al = [a
(1)
l , a

(2)
l , . . . , a

(B)
l ] ∈ Rm×B ,

Zl = [dz
(1)
l , dz

(2)
l , . . . , dz

(B)
l ] ∈ Rn×B

where a(i)l ∈ Rm and dz
(i)
l ∈ Rn. Thus we can directly exploit the structures, by considering each input and output gradient

computed on all the samples one by one. Moreover, the mapping computation φ(∆w) can be rewritten as shown in Eq (5):

φ(∆w) = [φ1(dW1); . . . ;φL(dWL)]

where φl(dWl) = Q⊤
l dWlPl, i.e., apply the mapping φl, which is defined with Ql, Pl derived at each layer, to the gradient

of each weight matrix Wl. In addition, when we apply the compression operator to the mapped gradient as C(φ(∆w)), The
operator can also be seen as being applied to each sparsified gradient, where each dWl is mapped to φl(dWl) for all layers
l = 1, . . . , L, and then stacked together, i.e., C(φ(∆w)) = [C(φ1(dW1)); . . . ; C(φL(dWL))].

A.5. Details on Baselines Utilizing Public Data

Since our mapping function necessitates the use of public data for the server, we also consider two more baselines that utilize
the public data to make our comparisons as fair as possible. Specifically for these baselines, we relieve the assumption so
that the clients can access the public data as well. Each client is then able to upload its own predicted output probability
on the shared public data to the server. Then the server can aggregate (ensemble) the output probabilities that have been
received from participating clients in every communication round. There are two possibilities to integrate the public data
into FL training as shown below.

Approach 1. Directly combining server-side gradient (PD1)

The first approach directly combines the server-side gradient into the aggregated gradient. The server-side gradient is
computed from the distillation loss with the ensembled output probability on the shared public data. Specifically, we modify
the aggregation rule in Eq. (7) as follows,

∆wt =
1

N + 1

(
N∑

n=1

φ−1

(
C(∆φw

t
n)

)
+∆wt

server

)
(12)

20



Achieving Lossless Gradient Sparsification via Mapping to Alternative Space in Federated Learning

where ∆wt
server refers to the amount of local update, starting from global model of t-th round wt, with distillation loss

computed on the server. In words, the server is treated as one of the participating nodes and we directly incorporate the
server-side gradient into aggregated gradient by averaging altogether. Note that the predicted output probability for the
public data on each client is obtained using its locally trained model wt,H

n that has been updated through the local iterations
of H for all n = 1, . . . , N . After computing the global update as in Eq. (12), the server broadcasts it to all the participating
clients.

Approach 2. Distilling after the model update (PD2)

The second approach for utilizing the public data is to train the model on the server-side right after updating the model with
the aggregated gradient. Specifically, upon receiving the predicted output probabilities and the local updates, the server
update the global model using the aggregated gradient in Eq. (7) to get the intermediate model as follows,

wt+ 1
2 ← wt +

1

N

N∑
n=1

φ−1
(
C(∆φw

t
n)
)
.

Starting from wt+ 1
2 , the server then trains the model on the shared public data via distillation loss with ensembled probability

of the public data. To put it clearly, the server initializes the model as wt+ 1
2 ,0 ← wt+ 1

2 and conducts local update with the
following update rule.

wt+ 1
2 ,i+1 = wt+ 1

2 ,i − ηt∇̃Fserver(w
t+ 1

2 ,i) for i = 0, . . . ,H − 1

where ∇̃Fserver(w
t+ 1

2 ,i) is the unbiased estimator of the true gradient computed on the server-side via distillation loss. After
finishing the server-side local update, the server computes the total amount of global update as ∆wt = wt+ 1

2 ,H − wt and
then broadcasts it to all the clients.

In both approach 1 and approach 2, upon receiving the global update ∆wt on the client-side, each client updates the model
as wt+1 ← wt +∆wt, which synchronizes the global model. This process repeats until the global model converges.

A.6. Extra Costs For Employing Mapping Approach in FL

Although we focus on reducing uplink transmission which is the main bottleneck in FL, there are two additional costs when
employing our mapping approach; 1) server-side computation for mapping computation, and 2) downlink communication
load for broadcasting mapping function.

Table 3: Elapsed time (sec) for mapping construction on the server-side and local training per client per round on the client-side.

Mapping construction Local training

CIFAR10 (CNN) 3.5906 1.3708
CIFAR100 (ResNet18) 47.9614 3.6108

Computation cost on the server-side. Since our mapping construction necessitates the process of singular value
decomposition (SVD), of which the computational complexity is known as O(n3) given n× n matrix, it appears that our
mapping construction introduces significant latency into FL training rounds. However the server typically has sufficient
computation power, which allows for relatively fast computation of SVD. In addition, since we can adopt relatively longer
period (cycle) for mapping broadcasting as FL rounds progresses as we set in Sec. A.2, the computation burden decreases
in later stage of FL. Table 3 provides the elapsed time for constructing mapping on CIFAR10 (CNN) and CIFAR100
(ResNet18) along with the real time taken for local training per each client per round. As can be seen, the time taken to
construct mapping function is not that significant compared to that of the local iterations, which are conducted hundreds of
times during FL training. Moreover, as discussed in Sec. A.8, we can see that a longer period of mapping construction to
reduce the computational burden is still effective in communication-efficient FL.

Downlink cost for mapping broadcasting. Regarding the communication load, since the global model can be broadcast to
all clients using sufficient bandwidth during downlink communication, reducing the uplink transmission is more significant.
However, there is an extra downlink cost for broadcasting of the mapping function at a certain round of t ∈ P relative to the
baselines. We provide the experimental result of our approach that incorporates the additional bits communicated during
downlink communication (for mapping broadcasting), denoted by ‘kSB + Map (with downlink)’ as shown in Figure 7. All
other methods without ‘(with downlink)’ only consider uplink transmission. Although our approach incorporating downlink
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bits for mapping falls slightly short compared to the baselines in terms of communication efficiency, it still demonstrates
higher efficiency compared to FedAvg (which considers the uplink only), and still provides the benefit in terms of accuracy
compared to all the baselines. In addition, we want to emphasize that as per the size of communication load incurred in
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Figure 7: Accuracy versus number of communication bits
on CIFAR10 and CIFAR100 under Dirichlet distribution
with α = 0.6 (top row) and α = 0.3 (bottom row)
among clients (s = 0.03 for kSB and kSB + Map).

FedAvg during the uplink, the downlink cost of mapping may be
negligible compared to other baselines when incorporating the com-
munication load for broacasting the aggregated gradient in every
round across all the baselines.

Moreover, our strategy can be seen as the new space offers an
advantage of offloading the heavy communication burdens from
the client-side to the server-side. This is a favorable trade-off since
the downlink tends to have a higher communication rate (allowable
rate at which the data or information is transmitted) compared to
the uplink. Moreover, as outlined in the case of computational cost,
we can see that a longer period of mapping construction to reduce
the downlink communication is still valid as shown in Sec. A.8.

Finally, there could be a possible solution to mitigate this limitation.
If we relieve the assumption that the public data can also be available
at the client-side as done in PD baselines, the mapping can be
constructed by the client itself without the need for broadcasting
of the mapping from the server. Moreover, a sufficiently effective
mapping can be constructed even with access to a very small amount
of data, which is already validated in Sec. 6.3.

A.7. Practical Implementation

For the ease of implementing our mapping process, we transfer the
weight matrix instead of the gradient in practice, which allows for the gradient to be automatically transferred to the mapped
space during backward propagation. This efficiency is thanks to the equivalence of the mapped gradient of the weight
parameter and the gradient of the mapped weight parameter. Indeed, this implementation keeps the original algorithmic
behavior exactly the same as it is. We adopt the implementation from (Kim et al., 2023) where the new weight space is
explored in the context of continual learning, which turns out to be interestingly similar to our mapping process. To explain
the equivalence of the gradient of the mapped weight parameter and the mapped gradient of the original weight parameter,
we first express the weight matrix Worig for a specific layer as follows.

Worig = QWnewP
⊤ (13)

where Q and P are orthogonal matrices obtained from Eq. (2). Then Wnew can be written as,

Wnew = Q⊤WorigP = φ(Worig). (14)

On the one hand, by the chain rule, one can easily verify that the gradient of Wnew can be derived as follows.

dWnew = Q⊤dWorigP = φ(dWorig) (15)

Thus, once we transfer the weight as in Eq. (14) and reparameterize the Worig as in Eq. (13), then we can automatically map
the gradient during gradient computation through autograd, provided by well-known machine learning framework such as
Pytorch. Then whenever the mapping function is newly updated and broadcast, all the clients and the server convert the
current space which the weight matrices lie within into the new space as the following sense.

Wnew ← φcurr(φ
−1
prev(Wnew)) (16)

where φcurr(·), φprev(·) denote the new and previous mapping function respectively. Then the weight matrices are again
reparameterized as in Eq. (13) and repeat the FL process. After the server broadcasts the aggregated gradient to all the
clients, i.e., broadcast ∆wnew :=

∑N
n=1 κnC(∆φw

t
n), then each local device updates its model without transferring the

aggregated gradient to the original space as shown below.

wt+1
new = wt

new +∆wt
new (17)
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Table 4: Elapsed time (sec) for gradient computation and gradient + mapping process per one local iteration on each dataset.

CIFAR10 CIFAR100 TinyImageNet

Gradient 0.00261 0.01901 0.02003
Gradient + Mapping 0.00428 0.02890 0.03750

where wt
new refers to the weight of t-th global model, which comprises newly parameterized weights Wnew for all layers.

Based on this implementation, we measured the elapsed time for mapping process on various datasets, including CIFAR10
for CNN (consists of two 5× 5 convolution layers followed by three fully-connected layers), CIFAR100 and TinyImageNet
for ResNet18. Specifically, we measured the time required for gradient computation and the time encompassing both
gradient computation and mapping process, per one local iteration in seconds. As can be seen in Table 4, the elapsed time
for encompassing both gradient computation and mapping (referred to as ‘Gradient + Mapping’) is less than twice than
the duration time required for gradient computation only (referred to as ‘Gradient’). In other words, the time taken for
mapping process is less than the elapsed time for gradient computation. Although the time duration for the mapping process
is not negligible, it can be considered a favorable trade-off for the improvements in both communication efficiency and
performance.

A.8. Effect of Period of Mapping Construction

0 100 200 300 400 500 600
Communication Rounds

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR100 (sparsity = 0.01)

0 100 200 300 400 500 600
Communication Rounds

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5
CIFAR100 (sparsity = 0.03)

0 100 200 300 400 500 600
Communication Rounds

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5
CIFAR100 (sparsity = 0.05)

0 100 200 300 400 500 600
Communication Rounds

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5
CIFAR100 (sparsity = 0.1)

108 109 1010 1011

Number of Bits Uploaded
30

32

34

36

38

40

42

44

Te
st

 A
cc

ur
ac

y 
(%

)

108 109 1010 1011

Number of Bits Uploaded
30

32

34

36

38

40

42

44

108 109 1010 1011

Number of Bits Uploaded
30

32

34

36

38

40

42

44

108 109 1010 1011

Number of Bits Uploaded
30

32

34

36

38

40

42

44

Ours (P = 20) Ours (P = 50) Ours (P = 100) Ours (P = 200) FedAvg

Figure 8: The effects of period of mapping construction on the performance and communication efficiency under α = 0.6 on CIFAR100.

In this section, we conduct the ablation on varying period of construction of mapping function across various sparsity level,
i.e., sparsity = {0.01, 0.03, 0.05, 0.1}, for kSB applied in our mapping (referred to as ‘Ours’ in the Figure 8) on CIFAR100.
We evaluate our approach for periods of 20, 50, 100 and 200, where P = 20 in Figure 8 indicates the construction and
broadcasting of mapping function by the server every 20 communication rounds. As can be seen in the top row, which
represents the accuracy versus communication rounds, it is likely to observe the higher performance in shorter periods setup
as sparsity increases. Although performance of our approach falls short of FedAvg when sparsity level is 0.01, it becomes
comparable to or even outperforms FedAvg from 0.03 sparsity level. Thus, as can be seen in the bottom row of the figure,
which represents the accuracy versus the number of bits, good communication efficiency can be guaranteed with large P .
This indicates that the favorable results can be achieved without the need for frequent mapping construction.

A.9. Sparse Encoding Strategy

In measuring the communication bits required to upload a sparse gradient vector g ∈ Rd, we must consider not only the
bit-width for representing each non-zero element but also its position information. Here we adopt block sparse encoding
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from (Ozfatura et al., 2021) when estimating the position bits during the uplink transmission. To encode the position of the
non-zero element in g, we first partition the vector into multiple disjoint blocks of equal size. If each block is of size dB ,
then log2(dB) bits are sufficient to fully encode/decode every positions of the elements that we desire to upload within each
block. Now we start from the first block to store the location of the non-zero elements. If there is non-zero element in the
current block, store the position using log2(dB) + 1 bits. The additional 1 bit used here is to indicate whether or not there
is non-zero element. For example, when the current non-zero element is 5-th position (position counting starts from 0-th)
within the current block of size dB = 16, the encoding bits would be

1︸︷︷︸
Indicator

0110︸︷︷︸
Position

. (18)

If there is no more non-zero elements in the current block, insert a 0 into the encoding stream to indicate the corresponding
status and then go to the next block. This encoding process repeats until there is no more non-zero elements in the last block.
Given this encoded bits stream, the decoding strategy is as follows. a) Initialize the current block as the first block. b) Check
whether the first bit of encoded stream is 1 or 0. If this indicator bit is 1, read the next log2(dB) bits to decode the position
within the current block. c) Read the next bit and return to the step b). If the indicator bit is 0, go to the next block, set it as
the current block and return to the step c). This process repeats until the last bit is encountered.

Given the above strategy, the position bits for each non-zero elements would be log2(dB) + 1 (including the indicator bit for
1), and the indicator bit for 0 would show up ⌈d/dB⌉, i.e., total number of blocks, times in total. Following the (Ozfatura
et al., 2021), we set the size of each block to be dB = 2⌊log2(1/s)⌋. Hence, the required position bits in total would be

(1 + ⌊log2(1/s)⌋)× k + ⌈d/2⌊log2(1/s)⌋⌉, (19)

where k is the number of non-zero elements.

A.10. Additional Comparison with Other Baselines

In this section, we provide the additional comparison of our method against more baselines to supplement the empirical
results of our work as shown below. The additional baselines include DASHA (Tyurin & Richtárik, 2023) and FedComGate
(Haddadpour et al., 2021), both of which utilized the unbiased compressor, and PowerSGD (Vogels et al., 2019) which
adopted a low-rank based approach. We evaluate methods on CIFAR100 dataset for ResNet18 under 0.6 Dirichlet distribution.
Regarding the unbiased compressor for DASHA and FedComGate we use stochastic quantization. The quantization bit
is set to be 4 in DASHA, and set to be 2 in FedComGate. The rank in PowerSGD is set to be 30. Note that we include
momentum technique when implementing PowerSGD as done in their paper, which could provide an additional performance
improvement. Unless stated otherwise, ‘SB’ in the table denotes the Sparse-Binary applied in the original space and ‘Ours’
refers to Mapping + Sparse-Binary. ‘NA’ stands for Not Achieved, meaning that the target accuracy never reached.

Table 5: The amount of bits (GiB) required to reach the target accuracy on CIFAR100 dataset

SB (s=0.03) SB (s=0.1) DASHA FedComGate PowerSGD Ours (s=0.03) Ours (s=0.1)

Target=36% 0.06658 0.14137 1.20775 0.32939 1.54883 0.04481 0.10950
Target=40% NA 0.36854 NA 0.67707 2.26146 0.07921 0.16588
Target=44% NA NA NA NA NA NA 0.40695

As can be seen in Table 5, our approach requires the fewest bits to reach each target accuracy, and it also achieves the highest
accuracy among the baselines. As DASHA and PowerSGD did not consider severe heterogeneity or setups with a large
scale of clients in their paper, these baselines fall short of our method in our setup. Moreover, while conventional unbiased
compression-based methods (especially the methods that use stochastic quantization) have limitations in compression rate
(× 32 in maximum), our approach combines the quantization with sparsification to demonstrate higher communication
efficiency with better performance.

A.11. Discussion on Time Complexity

One may argue that the mapping approach requires a bit amount of time for constructing mapping, and transferring the
gradient. In this section, we address concern regarding the time complexity and practicality of our approach in the following
three aspects.
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Firstly, we highlight that without requiring highly frequent periods for mapping construction, the performance of our
approach remains solid. For the experiments in the main manuscript, we constructed the mapping every 20 rounds during
the initial 100 rounds when evaluating our method. However, constructing mappings with such frequent period can reduce
practicality in some cases. Thus, we have included an ablation study on the period of mapping construction as shown
in Appendix A.8 (Figure 8). As can be seen, constructing the mapping once every 50 rounds, or even once every 100
rounds in our method, still allows us to reach a accuracy higher than, or comparable to the final accuracy of FedAvg in a
communication-efficient manner.

Secondly, we measured the elapsed time taken for mapping construction and local training on the same GPU device in Table
3. However, this evaluation does not consider the actual difference in computing power between the server and clients. In
fact, servers usually possess greater computing power compared to the participating nodes, which are typically resource
constrained devices, such as smartphones, drones and IoT devices. Moreover, as set in the main results, only occasional
construction also proves to be sufficient as the rounds progress (e.g. constructing mapping every 100 round from 300 to 600
rounds is sufficient).

Lastly, we can also consider an alternative option, called randomized SVD (RSVD) instead of SVD when computation
resource is highly limited. The time complexity of RSVD is generally O(mnk) with n × m matrix when obtaining k
leading components, which could be much faster than that of vanilla SVD with time complexity of O(min(mn2, nm2)). In
fact, since we only need to accurately compute a few principal components which the vectors are mostly concentrated on,
considering such efficient randomized algorithms would also work well in practice. Note that adopting randomized SVD
does not change our algorithm at all; we simply replace the SVD process in our framework to randomized SVD as a tool for
obtaining leading components. Since most of the SVD latency originates from the computation of the SVD on the input,
RSVD is only performed for input activation (computation of leading components of output gradient was still performed
using SVD). The following Table 6 shows the time (sec) taken for mapping construction, final accuracy, and required bits to
reach target accuracy when using RSVD in comparison to SVD on CIFAR100 dataset (sparsity= 0.03). As can be seen,
using RSVD allows for a reduction in time by more than 10%.

Table 6: Comparison of accuracy (%), elapsed time (sec), required bits (GiB) when constructing the mapping with SVD and RSVD

Construction with SVD Construction with RSVD

Time taken for mapping construction 47.9614 4.5782
Final Accuracy 42.597 41.057
Required bits (acc=40%) 0.07921 0.09688

We also provide the total local training time (sec) required to reach the target accuracy as shown in Table 7. We compare
our method with FedAvg, Sparse-Binary, PowerSGD (Vogels et al., 2019) and ours with mapping constructed with RSVD.
Here we only consider the local training time per client in measuring the time taken to reach the target accuracy. Note that
for each compression method except for FedAvg, the total training time and the time per batch (or per round) includes the
elapsed time for client-side compression. We also include the time taken to construct the mapping in our approach. We set
rank as 30 for PowerSGD (including momentum technique), and set sparsity = 0.1 for for Sparse-Binary and ours. Unless
stated otherwise, ‘Ours’ in the table refers to Mapping + Sparse-Binary. The target accuracy is 40%.

Table 7: Comparison of total time taken to reach the target accuracy, time per batch and time per round across baselines

FedAvg Sparse-Binary PowerSGD Ours (SVD) Ours (RSVD)

Time per batch 0.0565 0.0642 0.0573 0.0992 0.0819
Time per round 2.8248 3.2111 2.8628 4.9622 4.0945
Time to reach target acc 983.05 1448.20 1571.66 1197.44 1051.11

As rounds progress, since the mapping period becomes less frequent, taking the average per round overall does not result
in a significant difference, and this is even more the case when using RSVD to construct the mapping. Moreover, when
considering the time it takes to reach the target accuracy, our method is faster than some baselines, which demonstrates that
our approach is capable of achieving both desired performance and speed. This suggests that, although it takes longer time
per round compared to other methods, it is not problematic in terms of satisfying the target accuracy. Additionally, we note
that we have not yet considered the asymmetry in computation power between the client and the server. If we take this into
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account, the time per round would also become increasingly negligible.

A.12. Supplemental Experiments for Main Results

In this section, we supplement main results with additional experiments. These results are evaluated based on varying
Dirichlet parameters α, compression error 1 − ρ for Top-k, sparsity level s for kSB, and across various datasets. The
following figures (Figure 9 - 16) illustrate the accuracy over communication rounds and bits. As can be seen, better
enhancements in communication efficiency compared to baselines can be observed in most cases, which is consistent with
the main plot.
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Figure 9: Accuracy versus number of communication bits across various benchmarks, including SVHN, CIFAR10, CIFAR100 and
TinyImageNet under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients (s = 0.01, ρ = 0.6).
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Figure 10: Accuracy versus communication rounds across various benchmarks, including SVHN, CIFAR10, CIFAR100 and TinyImageNet
under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients (s = 0.01, ρ = 0.6).
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Figure 11: Accuracy versus number of communication bits across various benchmarks, including SVHN, CIFAR10, CIFAR100 and
TinyImageNet under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients (s = 0.03, ρ = 0.7).

A.13. Supplemental Results for PD Baselines

In this section, we supplement the additional PD baseline results (Figure 17 - 24). As previously mentioned, we evaluated
these results based on various α, ρ, s across various datasets. These findings are consistent with the selective results in the
main manuscript, indicating that all the PD baselines fail to enhance the existing compressors. Given this, our approach is
still the only method among those utilizing public data that improves performance.
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Figure 12: Accuracy versus communication rounds across various benchmarks, including SVHN, CIFAR10, CIFAR100 and TinyImageNet
under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients (s = 0.03, ρ = 0.7).
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Figure 13: Accuracy versus number of communication bits across various benchmarks, including SVHN, CIFAR10, CIFAR100 and
TinyImageNet under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients (s = 0.05, ρ = 0.8).
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Figure 14: Accuracy versus communication rounds across various benchmarks, including SVHN, CIFAR10, CIFAR100 and TinyImageNet
under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients (s = 0.05, ρ = 0.8).
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Figure 15: Accuracy versus number of communication bits across various benchmarks, including SVHN, CIFAR10, CIFAR100 and
TinyImageNet under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients (s = 0.1, ρ = 0.9).
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Figure 16: Accuracy versus communication rounds across various benchmarks, including SVHN, CIFAR10, CIFAR100 and TinyImageNet
under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients (s = 0.1, ρ = 0.9).
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Figure 17: Comparison results with PD baselines for accuracy versus communication bits across various benchmarks, including SVHN,
CIFAR10, CIFAR100 and TinyImageNet under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients.
(s = 0.01, ρ = 0.6).
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Figure 18: Comparison results with PD baselines for accuracy versus communication rounds across various benchmarks, including SVHN,
CIFAR10, CIFAR100 and TinyImageNet under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients.
(s = 0.01, ρ = 0.6).
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Figure 19: Comparison results with PD baselines for accuracy versus communication bits across various benchmarks, including SVHN,
CIFAR10, CIFAR100 and TinyImageNet under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients.
(s = 0.03, ρ = 0.7).

31



Achieving Lossless Gradient Sparsification via Mapping to Alternative Space in Federated Learning

0 100 200 300 400 500 60086

87

88

89

90

91

92

93

94

Te
st

 A
cc

ur
ac

y 
(%

)

SVHN

0 100 200 300 400 500 60060

65

70

75

80

CIFAR10

0 100 200 300 400 500 60032

34

36

38

40

42

44

CIFAR100

0 100 200 300 400 500 60020

22

24

26

28

30 TinyImageNet

0 100 200 300 400 500 600
Communication Rounds

86

87

88

89

90

91

92

93

94

Te
st

 A
cc

ur
ac

y 
(%

)

0 100 200 300 400 500 600
Communication Rounds

60

65

70

75

80

0 100 200 300 400 500 600
Communication Rounds

32

34

36

38

40

42

44

0 100 200 300 400 500 600
Communication Rounds

20

22

24

26

28

30

Di
ric

hl
et

=0
.6

Di
ric

hl
et

=0
.3

Top-k Top-k + Map kSB kSB + Map Top-k + PD1 Top-k + PD2 kSB + PD1 kSB + PD2

Figure 20: Comparison results with PD baselines for accuracy versus communication rounds across various benchmarks, including SVHN,
CIFAR10, CIFAR100 and TinyImageNet under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients.
(s = 0.03, ρ = 0.7).
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Figure 21: Comparison results with PD baselines for accuracy versus communication bits across various benchmarks, including SVHN,
CIFAR10, CIFAR100 and TinyImageNet under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients.
(s = 0.05, ρ = 0.8).
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Figure 22: Comparison results with PD baselines for accuracy versus communication rounds across various benchmarks, including SVHN,
CIFAR10, CIFAR100 and TinyImageNet under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients.
(s = 0.05, ρ = 0.8).
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Figure 23: Comparison results with PD baselines for accuracy versus communication bits across various benchmarks, including SVHN,
CIFAR10, CIFAR100 and TinyImageNet under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients.
(s = 0.1, ρ = 0.9).
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Figure 24: Comparison results with PD baselines for accuracy versus communication rounds across various benchmarks, including SVHN,
CIFAR10, CIFAR100 and TinyImageNet under Dirichlet distribution with α = 0.6 (top row) and α = 0.3 (bottom row) among clients.
(s = 0.1, ρ = 0.9).
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