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ABSTRACT

In complex scenes, semantic segmentation often encounters challenges such as
difficulty in detecting distant small or weak targets and recognizing occluded ob-
jects. Existing methods still suffer from limited robustness and suboptimal multi-
modal feature fusion. To address these issues, this paper proposes an interactive
multimodal semantic segmentation framework based on frequency domain dy-
namic routing and activation region guidance, which effectively enhances the fea-
ture extraction capability, fusion robustness, and semantic representation of mul-
timodal images. The proposed framework consists of three core modules: first,
an edge feature enhancement module that performs fine-grained selection of key
regions on the initial features to enhance weak targets and edge details; second,
an activation region guided hybrid attention module that effectively fuses promi-
nent region information from infrared and visible modalities; and finally, a deep
semantic enhancement learning module that incorporates dynamic convolutional
masks to improve the semantic consistency of fused features at both global and
local levels. Experimental results on multiple public datasets demonstrate that the
proposed method outperforms existing approaches in terms of image fusion qual-
ity, segmentation accuracy, and object detection performance, showing especially
strong robustness and generalization ability in complex and occluded scenes.

1 INTRODUCTION

Semantic segmentation, as a core technology for pixel-level scene understanding, plays a vital role
in areas such as autonomous driving and medical image analysis. In autonomous driving, it enables
accurate recognition of roads, obstacles, and pedestrians Seichter et al. (2021); Wu et al. (2025b),
while in the medical domain, it facilitates precise localization and analysis of lesions Hao et al.
(2024); Zhang et al. (2025b). However, current semantic segmentation methods face two major
challenges, as shown in Figure 1: they often struggle to detect small or low-signal (weak) targets
at long distances, and they have difficulty perceiving partially occluded objects. To enhance model
robustness in complex scenarios, multimodal image fusion methods have attracted increasing at-
tention—particularly infrared and visible image fusion—which has shown significant advantages in
military reconnaissance and nighttime surveillance applications Li et al. (2018); Lu et al. (2020).

Figure 1: This paper proposes a multimodal fusion framework for weak and occluded targets in complex scenes, enabling accurate object
detection and segmentation.
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Although deep learning has driven rapid progress in image fusion technologies in recent years—with
methods based on autoencoders Li & Wu (2019), convolutional neural networks Ma et al. (2021),
and generative adversarial networks Ma et al. (2019; 2020)—existing approaches still face two fun-
damental technical issues. First, most current methods lack a unified cross-modal representation
mechanism. Due to the significant heterogeneity between infrared and visible images in terms of
imaging principles, semantic structures, and texture details, existing approaches often rely on simple
feature concatenation or alignment strategies, which fail to deeply model the shared and comple-
mentary features across modalities Geng et al. (2024). Second, most fusion frameworks use fixed
or heuristic fusion rules, lacking the ability to dynamically adapt to different scene conditions. As
a result, their generalization performance and robustness in real-world applications remain limited
Liu et al. (2022).

To address the above issues, this paper proposes an interactive multimodal semantic segmentation
framework based on frequency domain dynamic routing and activation region guidance. The frame-
work enhances weak targets and edge details in images by leveraging frequency energy path selec-
tion and interactions between high and low frequency components. Additionally, a hybrid attention
module guided by activation regions is introduced to adaptively focus on high quality features, en-
abling precise fusion of complementary information from infrared and visible modalities. Finally, a
deep semantic mask learning strategy, combining global and local features, is introduced to improve
the semantic consistency and discriminability of the fused features, thereby significantly enhancing
segmentation performance and robustness. This method systematically improves multimodal fea-
ture extraction, information fusion, and semantic understanding, significantly boosting the visual
quality of fused images, semantic segmentation accuracy, and object detection performance. The
three main innovations of this paper are as follows:

In summary, (1) For multimodal fusion, a method combining dynamic frequency-domain energy
and activation region-guided attention is proposed to enhance feature robustness and achieve precise
multimodal fusion. (2) For semantic segmentation, a hierarchical semantic learning approach is
introduced, which captures deep semantic information based on dynamic masks of global and local
regions. (3) The proposed multimodal fusion framework excels in semantic segmentation, image
fusion quality, and object recognition.

2 RELATED WORK

Infrared–visible image fusion is vital for semantic segmentation. Current methods mainly include
feature-level, attention-based, and deep interactive fusion to enhance accuracy and robustness.

2.1 FEATURE LEVEL FUSION METHODS

Early multimodal research primarily employed encoder-decoder architectures for feature fusion.
FuseNet Hazirbas et al. (2016) pioneered multimodal fusion for semantic segmentation, but simple
feature concatenation or weighting struggled to deeply model cross-modal correlations. Ferrod et
al.’s CroDiNo-KD Ferrod et al. (2025) improved modality alignment through disentangled distilla-
tion; however, distillation of shallow features limited deep interaction and caused information loss.
Chen et al.’s TransUNet Chen et al. (2021) leveraged Transformers to enhance single-modality rep-
resentation in medical imaging but lacked sufficient cross-modal interaction. Wei et al. Wei et al.
(2023) pointed out that shallow fusion in nighttime segmentation failed to capture deep illumination
information. Overall, shallow fusion provides limited feature information and easily loses com-
plementary information, restricting support for semantic segmentation. To address this, this paper
proposes a frequency-domain energy-driven dynamic routing method to improve the robustness of
bimodal features, and incorporates frequency features for interactive modeling, thereby providing
rich information for subsequent fusion.

2.2 ATTENTION FUSION METHOD

Attention mechanisms are important for salient regions in images. Zhang et al. Zhang et al. (2021)
introduced RFN-Nest, which combined channel and spatial attention modules. Chen et al. Chen
et al. (2022) proposed RegionViT, which integrates regional and local attention mechanisms to cap-
ture the global contextual information required for multimodal fusion. Yu et al. Qi et al. (2025)
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developed a cross-modality enhancement module that models both intra- and inter-modality depen-
dencies through cross-modality attention, thereby improving the feature fusion capability between
infrared and visible modalities. Although attention mechanisms have played a crucial role in multi-
modal fusion, two major limitations still lead to suboptimal fusion performance: an over-reliance on
global average pooling in the attention mechanism may cause the loss of local details such as edge
textures; and static attention weights cannot dynamically adapt to scene-related changes in feature
distributions. To address these issues, this paper proposes an activation region guided fusion method.
Instead of directly fusing features through attention, the method first focuses on activation regions
and then selectively guides attention features for precise fusion. This approach can dynamically
adapt to scene-related changes in feature distributions.

2.3 DEEP INTERACTIVE FUSION METHODS

With the rise of the Transformer architecture, researchers have begun to explore deeper cross-modal
interaction mechanisms. Chen et al. Li et al. (2024a) proposed a cross-modal network based on the
Swin Transformer, utilizing hierarchical cross-attention to achieve feature reorganization. Liu et al.
Liu et al. (2023b) introduced a hybrid network incorporating deformable convolutions, which effec-
tively enhances the model’s ability to capture semantic information from complex visual features.
Kim et al. Kim et al. (2024) presented a novel graph-structured modeling network that performs
well in complex urban scenes. In the latest research, Jiang et al. Jiang & Shen (2024) proposed a
Swin Transformer based cross modal network to enhance medical image fusion. Although the above
methods have achieved significant performance improvements, they still incur high computational
costs Chaudhary et al. (2024); Yuan et al. (2024); Zhao et al. (2024a). Moreover, these methods’
heavy reliance on Transformer architectures often results in insufficient modeling and perception
of local image semantic details, limiting their ability to learn semantic information of edge regions
as well as small and weak targets. To this end, this paper proposes a module that integrates Trans-
former and masked convolutional filtering to achieve joint perception of local and global semantics.
Meanwhile, by adopting the Transformer optimization strategies from Shen et al. (2021), the model
significantly improves computational efficiency while maintaining segmentation accuracy.

3 METHOD

Figure 2 shows the overall framework of this paper, which consists of three modules: (1) A dynamic
frequency domain feature enhancement module that addresses issues such as the lack of detail in
infrared images, high noise in visible images, and the difficulty of simultaneously extracting com-
plete weak target features from both modalities; (2) A activation region guided fusion enhancement
modules designed to avoid occlusion neglect commonly found in naive fusion approaches; and (3) A
hierarchical semantic feature enhancement module is dedicated to improving the high level semantic
representation ability in segmentation and detection tasks.

Figure 2: A saliency driven interactive multimodal fusion framework for robust semantic segmentation in complex occluded scenes, with
three modules enhancing feature representation, fusion, and semantic alignment.

3.1 DYNAMIC FREQUENCY DOMAIN FEATURE ENHANCEMENT

Infrared and visible images differ significantly in imaging principles and information representa-
tion, and existing methods often fail to comprehensively extract cross-modal information. To ad-
dress this issue, as shown in Figure 3 (which clearly illustrates that the energy distribution across
frequency-domain regions varies significantly between modalities, and only the frequency-domain
energy corresponding to the target regions can provide richer information), we propose a dynamic

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

routing module based on frequency-domain energy computation. This module automatically selects
the frequency fusion path according to the frequency-domain energy and its corresponding regions.

Our module adopts a novel frequency energy selection method to enhance multimodal feature ex-
traction by integrating frequency domain decomposition and energy guided routing. For spatial
domain features extracted by CNN fIR(x, y) and fVIS(x, y), we apply 2D FFT to obtain frequency do-
main representations: FIR(u, v) = F (fIR(x, y)) , FVIS(u, v) = F (fVIS(x, y)). where F(·) encodes
magnitude and phase. To separate frequency bands, we design two masks: a low-pass filter mask
Mlow(u, v) for contours and smooth areas, and a high-pass filter mask Mhigh(u, v) = 1−Mlow(u, v)
for edges and textures. These masks are element-wise multiplied with the frequency features for
decomposition:

F
i
IR = FIR(u, v) · Mi(u, v), i ∈ (low, high)

F
i
V IS = FV IS(u, v) · Mi(u, v), i ∈ (low, high)

(1)

where F low
IR , Fhigh

IR , F low
V IS , Fhigh

V IS represent the low frequency and high frequency features of the in-
frared image, and the low frequency and high frequency features of the visible image, respectively.
This decomposition enables modality-specific processing of spectral components and serves as the
foundation for subsequent cross-attention interaction and energy-based fusion.

Considering that existing methods often neglect the complementary information between differ-
ent modalities and suffer from misalignment between modal features, we adopt an extended cross-
attention mechanism to perform interactive enhancement of the decomposed frequency features.
Specifically, for each modality, the module not only produces an enhanced frequency feature but
also outputs a corresponding attention map that highlights the most informative regions. Formally,
this can be expressed as:(
F

enh
low,VIS, AVIS

)
= CrossAttention

(
F

low
VIS, F

high
IR , F

high
IR

)
,
(
F

enh
high,IR, AIR

)
= CrossAttention

(
F

high
IR , F

low
VIS, F

low
VIS

)
.

(2)

where F enh
low,VIS and F enh

high,IR represent the enhanced visible low-frequency and infrared high-
frequency features, respectively, while AVIS and AIR are the corresponding attention maps. This
design allows the visible low-frequency features to incorporate high-frequency details from the in-
frared modality, and vice versa, facilitating cross-modal feature fusion and implicitly generating soft
ROIs for subsequent energy-based weighting. For the pixel coordinates (u, v) of the ROI location,
the low- and high-frequency energies are defined as:

elow(u, v) = AVIS(u, v) |F enh
low,VIS(u, v)|

2
, ehigh(u, v) = AIR(u, v) |F enh

high,IR(u, v)|2

We then compute the pixel-wise energy difference and predict the dynamic fusion weight:
∆e(u, v) = elow(u, v) − ehigh(u, v), W (u, v) = σ

(
gθ(∆e(u, v))

)
, W ∈ [0, 1]

H×W
, (3)

where gθ is a lightweight learnable predictor (e.g., a 1× 1 convolution) and σ is the Sigmoid activa-
tion.

These pixel-wise weights W (u, v) adaptively balance the contributions of low- and high-frequency
information inside the key regions and guarantee smooth transitions to surrounding areas, thereby
preserving the integrity of the overall structural information. For the final frequency-feature en-
hancement, the fused representation is generated by combining the enhanced frequency-domain
features using the predicted weights, and then transforming the result back to the spatial domain
through a single inverse transform:

Ffused(u, v) = W (u, v) · F enh
low,VIS(u, v) +

(
1 − W (u, v)

)
· F enh

high,IR(u, v), Ifused(x, y) = F−1(
Ffused(u, v)

)
(4)

where F−1(·) denotes the inverse Fourier transform and W ∈ [0, 1]H×W is the pixel-wise dynamic
weight predicted from the ROI energy differences.

This operation adaptively balances the visible low-frequency and infrared high-frequency contribu-
tions in the frequency domain, ensuring smooth transitions across the key regions while preserving
the global structural integrity. Finally, the enhanced outputs for the two modalities are obtained by
adding the fused result back to their respective original spatial features:

x1 = Ifused(x, y) + fIR(x, y), x2 = Ifused(x, y) + fVIS(x, y) (5)

where x1 and x2 represent the final infrared-enhanced and visible-light-enhanced features, respec-
tively.
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3.2 ACTIVATION REGION GUIDED FUSION ENHANCEMENT

Salient regions (such as thermal targets or highlighted textures) can effectively guide feature align-
ment within the modality and help address spatial misalignment between modalities. However,
existing methods typically extract salient regions through fixed attention mechanisms, which are
insufficient for handling modality alignment during feature fusion. Therefore, we propose a dynam-
ically guided attention mechanism that adaptively focuses on salient regions to enhance cross modal
alignment.

As shown in Figure 2, the activation region guided fusion modules first inputs the features x1 and
x2 output by the dynamic frequency domain enhancement module into the channel attention and
spatial attention mechanismsHu et al. (2018). The channel attention generates the channel attention
map W c

n ∈ R2×1×1×c through concatenation, global pooling, and a multilayer perceptron; the spatial
attention generates the spatial attention map W s

n ∈ RH×W×1 through pooling, concatenation, and
convolution. Finally, the obtained channel attention and spatial attention can be expressed as: gc =
W c

n ∈ R1×1×C and the spatial attention is gs = W s
n ∈ RH×W×1.

The feature activation extraction process is as follows. For the visible light feature map x1 and the
infrared feature map x2, channel fusion is first performed: Fc(x, y) = x1⊗x2. Then, the maximum
activation region of the spatial global information is extracted along the dimension of a single feature
channel:

M
h
i =

W
max
x=1

Fc(:, x) ∈ RB×C×H×1
, M

w
j =

H
max
y=1

Fc(y, :) ∈ RB×C×1×W (6)

where Ma,Mb ∈ RB×C×H×W represent the activation maps of the two input modalities. They are
given by Ma = Mh

a ⊗Mw
b and Mb = Mh

a ⊗Mw
b . The following guided attention fusion process is carried

out in four steps:

(1) Nonlinear feature fusion: A weighted geometric fusion strategy is adopted here to enhance the
synergistic effect of the dual attention features:

Mfused = (αMa + βMb) ⊙
√

|Ma ⊙ Mb| (7)

where α = β = 0.5 is a tunable weight (default value α = β = 0.5), and ⊙ denotes element-wise
multiplication. The geometric mean

√
|Ma ⊙Mb| strengthens the co-activated regions of the input

features, aligning with the ”consensus-first” principle in guided fusion.

(2) Next, local context normalization is applied to the features. A 3×3 local average pooling is
used to introduce a smoothing constraint M̂fused = AvgPool3×3 (Mfused), followed by normaliza-
tion: mathop M̄ = LayerNorm

(
ˆMfused

)
. This step suppresses high-frequency noise and preserves a

smooth saliency distribution that aligns with human visual perception.

(3) Adaptive thresholding: The saliency threshold is dynamically determined based on image con-
tent:

τ = γ · E
[
M fused

]
(8)

where E
[
M̄fused

]
represents the mean value of all elements in the fused saliency map M fused result-

ing in a scalar. This scalar serves as the baseline for the threshold, which is then multiplied by
the scaling factor γ (default value 0.5) to achieve adaptive thresholding. The final binary mask
Mmask = I

(
M fused ≥ τ

)
is generated through threshold comparison. where the symbol I(·) denotes

the indicator function, which is used to evaluate a given condition. This adaptive mechanism ensures
stable saliency detection sensitivity across different input images.

(4) Guided Fusion Application: The generated mask Mfused can be used to guide multimodal image
fusion: In regions with high mask response, spatial details (e.g., PAM features) are preferentially
preserved.In regions with low response, channel features (e.g., CAM features) are emphasized.This
can be formulated as:

Fout = Mmask ⊙ gs +
(
1 − Mmask

)
⊙ gc (9)

In summary, we propose an activation region guided fusion module that uses the activation region
to guide the attention mechanism to focus on important cross modal salient regions or common
saliency areas. This effectively guides feature alignment within the modalities and helps address
the spatial misalignment issue during cross modal fusion. Finally, the output of this module is
x′

1 = Fout ⊙ x1 + x1 and x′
2 = Fout ⊙ x2 + x2.

5
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3.3 HIERARCHICAL SEMANTIC FEATURE ENHANCEMENT

Considering the importance of deep semantic information for downstream tasks such as object seg-
mentation and detection, this paper addresses the issue that existing methods relying on a single
Transformer or static CNN lead to incomplete extraction of deep semantic information. It proposes
a dynamic semantic information mining module that integrates Transformer and CNN. This module
employs dynamic masking to adjust the global and local semantic information of the fused features
based on convolutional response strength, selectively retaining deep semantic information.

As shown in Figure 2, the output feature x′
1 from the activation region guided fusion enhance-

ment module is used to compute the self-attention matrices: Qx′
1 , Kx′

1 , V x′
1 ∈ RHW×C . Dot-

product attention is calculated to weight V x′
1 , producing the self-attention output: Attention = soft

max

(
Q

x′
1K

x′
1T

√
dk

)
V x′

1 . Then, a feed-forward network (FFN) fuses the input with the attention output
to update the features: Xself

1 = FFN
(
x′
1+ Attention ). The traditional MLP in the FFN is replaced by

depthwise separable and 1×1 convolutions to reduce parameters. Similarly, the self-attention output
for feature x′

2 is denoted as Xself
2 .

The calculation process of the core components of this module is described as follows: first, the
input tensor X1

self , with shape (B,N,C)—where B is the batch size and N = H × W is the spa-
tial dimension—is reshaped into the standard convolutional feature map format(B,C,H,W), de-
noted as Xself conv

1 ∈ RB×C×H×W . The following describes the generation of the dynamic mask:
R = Wconv ∗ Xself conv

1 ∈ RB×Cout×H×W . where R is the response map obtained by applying the con-
volution kernel Wconv ∈ RCout×C×K×K to the feature map. Among them, Cout represents the num-
ber of output channels of the convolutional layer, and K represents the spatial size of the con-
volution kernel. The dynamic modulation parameters are then generated from the response map:
γ = GlobalAvgPool(R) ∈ RCout , β = GlobalMaxPool(R) ∈ RCout , where γ and β represent channel-wise scaling
and shifting parameters respectively, and θ is a learnable scaling factor (initialized to 0.5). The final
kernel adjustment is performed as:

Wadjusted[c, :, :, :] = (θ · γ[c] + (1 − θ) · β[c]) · Wconv[c, :, :, :], ∀c ∈ [1, Cout] (10)

This channel-wise modulation adaptively adjusts each output channel of the convolution kernel
based on the feature responses. Next, a convolution is performed on the entire attention output using
the mask-adjusted kernel: out global1 = Conv2D(X self conv

1 ,Wadjusted). Similarly, the same operation is
applied to Xself

2 (after reshaping to Xself conv
2 ) to obtain out global2.

For the local semantic information in the attention features, the following describes the feature
separation process. The self-attention output Xself conv

1 is split along the channel dimension into G
groups:

{featurei}G
i=1 = Split(Xself conv

1 ), where featurei ∈ RB×(C/G)×H×W (11)

For each feature group, we generate group-specific modulation parameters: γi = GlobalAvgPool(W ′
conv ∗

featurei) ∈ RCout/G (i = 1, ..., G), adjust the group convolution kernel as Wadjusted,i[c, :, :, :] = γi[c] · W ′
conv[c, :

, :, :] (∀c ∈ [1, Cout/G]), and compute the local feature locali = Conv2D(featurei,Wadjusted,i), where W ′
conv is

a group convolution kernel. Finally, all local features are concatenated and permuted to restore the
original dimensions:

out local1 = Permute(Concat(local1, ..., localG)) ∈ RB×C×H×W (12)

Similarly, for the Xself
2 features, after undergoing the same processing, the result is denoted as

out local2. To enhance the fused features in both global and local semantics, we adopt an interactive
attention mechanism. The features after dynamic masked convolution out global1 and out global2
mutually enhance self-attention outputs, while local features out local1 and out local2 similarly
enhance corresponding self-attention features. Taking the enhancement of Xself

2 by out global1 as

an example: Attention2 = softmax

(
Q

X
self
2 K

outglobal1T
√

dk

)
V outglobal1 , Xcross

global2
= FFN(Xself

2 + Attention2).

The other three cross outputs Xcross
global1

, Xcross
local1

, and Xcross
local2

are computed similarly. Finally, the
obtained cross-semantic features are fused using concatenation and element-wise multiplication:
xout =

(
Xcross

global1
⊕Xcross

global2

)
⊙

(
Xcross

local1
⊕Xcross

local2

)
, where ⊕ denotes feature concatenation op-

eration and ⊙ denotes element-wise multiplication. For the semantic segmentation head, we adopt

6
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the multilayer perceptron (MLP) decoder from SegFormerXie et al. (2021) because it is simple,
lightweight, and effectively captures global scene semantics. The semantic segmentation is super-
vised using the standard cross-entropy loss, formalized as: Lseg = −

∑
P log IS , where P denotes the

ground truth label, and IS represents the classification probability output by the segmentation head.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION

We evaluate on MFNet (1,569 pairs), PST900 (1,038), and FMB (1,500) with test sets of 393, 288,
and 280 pairs at 480×640, 720×1280, and 600×800. The model trains 500 epochs per dataset with
batch size 3, learning rate 1e− 6, using Adam on dual RTX 3090 GPUs.

4.2 SEMANTIC SEGMENTATION

We conducted comparative experiments on semantic segmentation by evaluating our method against
nine state-of-the-art approaches: SeAFusion Tang et al. (2022), EGFNet Zhou et al. (2022), LAS-
Net Li et al. (2023b), SegMiF Liu et al. (2023a), MDRNet+ Wang et al. (2023), SGFNet Zhou
et al. (2023), MMSNet Liang et al. (2023), EAEFNet Liang et al. (2023), MRFSZhang et al. (2024),
MultiTVIF Zhao et al. (2025), and SAGEWu et al. (2025a). In the comparative experiments, we
reproduced and retrained all methods on the three datasets. As shown in Tables 1, 2, and 3, our
proposed method consistently achieves superior performance across all datasets, with the most sig-
nificant improvement observed on the MFNet dataset. This is primarily attributed to the advantages
of MFNet in terms of spatial alignment and scene diversity between infrared and visible images.

Table 1: Semantic segmentation on the MFNet dataset.

Method Car Person Bike Curve Car Stop Guar. Cone Bump mIoU

SeAFusion 84.2 71.1 58.7 33.1 20.1 0.0 40.4 33.9 48.8
EGFNet 87.6 69.8 58.8 42.8 33.8 7.0 48.3 47.1 54.8
LASNet 84.2 67.1 56.9 41.1 39.6 18.9 48.8 40.1 54.9
SegMiF 87.8 71.4 63.2 47.5 31.1 0.0 48.9 50.3 56.1
MDRNet+ 87.1 69.8 60.9 47.8 34.2 8.2 50.2 55.0 56.8
SGFNet 88.4 77.6 64.3 45.8 31.0 6.0 57.1 55.0 57.6
MMNet 89.2 69.1 63.5 46.4 41.9 8.8 48.8 57.6 58.1
EAEFNet 87.6 72.6 63.8 48.6 35.0 14.2 52.4 58.3 58.9
MRFS 89.4 75.4 65.0 49.0 37.2 5.4 53.1 58.8 59.1
MFS 96.6 80.4 74.0 65.0 44.2 21.4 57.1 65.8 63.8

Table 2: Semantic segmentation on the PST900.

Method Hand-Drill BackPack Fire-Extinguisher Survivor mIoU

SeAFusion 65.6 59.6 41.1 29.5 58.9
EGFNet 64.7 83.1 71.3 74.3 78.5
LASNet 77.8 86.5 82.8 75.5 84.4
MDRNet+ 63.0 76.3 63.5 71.3 74.6
SegMiF 66.0 81.4 76.3 75.5 79.7
MMNet 62.4 89.2 73.3 74.7 79.8
SGFNet 82.8 75.8 79.9 72.7 82.1
EAEFNet 80.4 87.7 84.0 76.2 85.6
MRFS 79.4 87.4 88.0 79.6 86.9
MFS 81.3 89.5 90.1 80.5 88.3

Table 3: Semantic segmentation on the FMB.

Method Car PersonTruckT-LampT-SignBuil.Vege.PolemIoU

SeAFusion76.2 59.6 15.1 34.4 68.0 80.1 83.5 38.4 51.9
LASNet 73.2 58.3 33.1 32.6 68.5 80.8 83.4 41.0 55.7
SegMiF 78.7 65.5 42.4 35.6 71.7 80.1 85.1 35.7 58.5
MDRNet+ 75.4 67.0 27.0 41.4 68.4 79.8 82.7 45.3 55.5
SGFNet 75.0 67.2 34.6 45.8 71.4 78.2 82.7 42.8 56.0
EAEFNet 79.7 61.6 22.5 34.3 74.6 82.3 86.6 46.2 58.0
MRFS 76.2 71.3 34.4 50.1 75.8 85.5 87.0 53.6 61.2
MultiTVIF77.8 69.4 38.2 51.4 76.2 85.8 86.5 52.9 61.8
SAGE 77.2 72.6 36.2 48.7 76.1 83.9 87.4 51.8 61.5
MFS 81.7 73.3 39.8 45.7 76.2 86.1 88.2 53.7 62.6

Figure 3: The correspondence between image energy and frequency

4.3 ABLATION EXPERIMENTS

Ablation studies validate the necessity of each component through module removal. The multimodal
dynamic frequency-domain feature enhancement module (DFD) improves image details by enhanc-
ing the complementarity between frequency and energy features; the activation region-guided fusion
module (ARG) focuses on salient regions in multimodal data to enrich key information in the fused
image; the hierarchical semantic feature enhancement module (HSF) strengthens global and local se-
mantic representations through attention mechanisms and dynamic convolutional masks. As shown
in Table 4, the synergistic effect of these three modules achieves optimal segmentation performance
on the FMB dataset, with consistent patterns observed on other datasets. Removing any module im-
pairs feature robustness, semantic enhancement, or guided fusion capability, thereby compromising
image clarity, structural integrity, and semantic completeness.
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Table 4: Ablation Study on Individual Modules.

Model Car Person Truck T-Lamp T-Sign Buil. Vege. Pole mIoU

DFD 80.5 70.1 38.6 44.1 75.2 84.9 87.3 52.8 61.5
ARG 77.4 67.7 36.2 40.8 72.9 84.9 86.2 50.9 59.7
HSF 78.9 70.0 38.4 43.7 74.0 84.0 86.8 51.5 60.4
MFS 81.7 73.3 39.8 45.7 76.2 86.1 88.2 53.7 62.6

Table 5: Ablation Study on ARG and HSF Key Components.

Model Car Person Truck T-Lamp T-Sign Buil. Vege. Pole mIoU

ARG- 78.3 68.9 37.4 41.2 74.4 85.9 87.2 51.8 61.5
HSF- 79.7 71.1 38.8 43.9 75.6 84.9 87.3 52.6 61.2
MFS 81.7 73.3 39.8 45.7 76.2 86.1 88.2 53.7 62.6

As shown in Table 5, removing the attention fusion component from the Activation Region Guided
Fusion module (ARG) significantly degrades model performance. This component identifies key
regions through activation areas and allocates attention weights accordingly. Similarly, removing
the dynamic convolutional mask component from the Hierarchical Semantic Feature Enhancement
module (HSF) also leads to performance degradation. This component enhances cross-modal col-
laboration through dynamic modulation to capture deep semantic relationships.

4.4 VISUALIZATION RESULTS

Visualization is essential in computer vision, intuitively showing bounding boxes for object detec-
tion and pixel-level classification for semantic segmentation. The figure below presents the results
on the FMB and MFNet datasets. We conducted visual comparison experiments on the semantic
segmentation task to evaluate the visual performance of our method against seven state-of-the-art
algorithms: EGFNet, LASNet , SegMiF , MDRNet+, SAGE, and MultiTVIF, MRFS. As shown in
Figure 4, the experimental results demonstrate that our method achieves superior visual segmen-
tation performance, characterized by the best classification accuracy and complete object contour
delineation. For instance, our approach effectively preserves fine-grained details in the contours of
pedestrians and vehicles, presenting vivid shapes, whereas other methods can only identify rough
regions.

Figure 4: Segmentation Results on the MFNet and FMB Figure 5: Detection Results on the MFNet and FMB

We conducted comprehensive experimental evaluations for object detection tasks, comparing our
method with seven state-of-the-art approaches: CACFNet Zhou et al. (2024), TINet Zhang et al.
(2023), M²FNet Liu et al. (2024b), Cascade Li et al. (2024b), IVGF Liu et al. (2024a), and FSAT-
Fusion Zhang et al. (2025a), MRFSZhang et al. (2024). The experimental procedure involved first
fusing infrared and visible-light images into more information-rich representations using each re-
spective model, then feeding the fused images into the YOLOv5Jocher (2020) detector to evaluate
detection performance. As demonstrated in Figures 5, the results show that our method achieves
superior performance in object detection, characterized by higher localization accuracy and more
complete bounding box regression. Specifically, our approach precisely captures human poses and
detects faint targets (e.g., infants), while competing methods suffer from missed detections or bound-
ing box misalignment.

4.5 GAINS FROM THE ACTIVATION REGION GUIDED FUSION

To evaluate the effectiveness of the Activation Region Guided Fusion Enhancement module (ARG)
and the Hierarchical Semantic Feature Enhancement module (HSF) in improving multimodal in-
formation fusion and semantic information learning, we respectively integrate these two modules
into the Tufusion Zhao et al. (2024b) and MATCNN Liu et al. (2025) frameworks for comparative
validation. In the experiments, we perform quantitative analysis on the TNO dataset Toet (2017)
using the following five key evaluation metrics: Mutual Information (MI), which measures the de-
pendency between the fused and source images; Entropy (EN), reflecting the information richness

8
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of the fused result; Standard Deviation (SD), indicating contrast quality; the Edge and Texture De-
tection Metrics (Qabf), evaluating edge preservation; and Spatial Frequency (SF), assessing spatial
detail activity.As shown in Tables 6 and 7, the experimental results demonstrate that the ARG and
HSF modules effectively help preserve key information in the fused images and enhance semantic
information.

Table 6: Enhance feature fusion through the ARG module.

Method MI EN SD Qabf SF

Tufusion 2.3796 6.5051 0.1143 0.2515 0.0218
Tufusion+ 2.4149 6.8397 0.1368 0.3689 0.0285
MATCNN 3.3978 6.9862 0.1913 0.5291 0.05015
MATCNN+ 3.4234 7.0482 0.1945 0.5189 0.05258

Table 7: Feature fusion enhancement via HSF module.

Method MI EN SD Qabf SF

Tufusion 2.8444 6.4944 0.1587 0.1852 0.02443
Tufusion+ 3.0492 6.6237 0.1368 0.2347 0.02558
MATCNN 4.7847 6.7987 0.1904 0.5983 0.04815
MATCNN+ 4.9695 7.1437 0.1945 0.5659 0.05167

4.6 GAIN FROM THE HIERARCHICAL SEMANTIC FEATURE

To verify the effectiveness of the Hierarchical Semantic Feature Enhancement (HSF) module in
semantic modeling and the Activation Region Guided (ARG) fusion module in key region explo-
ration, we integrate them separately into the Mask DINO Li et al. (2023c) and DI-MaskDINO Xu
et al. (2024) frameworks for comparative experiments. Eight key metrics are used: AP box, AP box

S ,
AP box

M , AP box
L , APmask, APmask

S , APmask
M , and APmask

L . Object detection and semantic segmen-
tation experiments are conducted on the COCO Lin et al. (2014) dataset. As shown in Tables 8 and
9, the experimental results demonstrate that these modules significantly improve the performance of
the original models, validating their effectiveness in enhancing semantic information and capturing
key image regions, thereby improving the model’s ability to understand and recognize targets.

Table 8: Semantic information enhancement of features based on
the HSF module.

Method Epochs AP box AP box
S AP box

M AP box
L

MaskDINO 12 52.2 34.8 55.6 69.9
MaskDINO+ 12 53.1 36.2 56.1 69.2
DI-MaskDINO 12 53.3 36.7 56.7 70.4
DI-MaskDINO+ 12 53.8 37.5 56.4 71.5
MaskDINO 50 56.8 40.2 60.2 72.3
MaskDINO+ 50 57.2 40.8 60.4 72.2
DI-MaskDINO 50 57.8 41.5 61.2 73.9
DI-MaskDINO+ 50 58.7 42.7 60.6 74.5

Table 9: Semantic information enhancement of features based on
the HSF module.

Method EpochsAPmask APmask
S APmask

M APmask
L

MaskDINO 12 47.2 26.3 50.3 69.1
MaskDINO+ 12 48.0 26.9 50.0 69.9
DI-MaskDINO 12 47.9 27.7 51.5 69.3
DI-MaskDINO+ 12 48.8 28.9 52.4 70.6
MaskDINO 50 51.0 31.3 54.1 71.2
MaskDINO+ 50 51.4 31.7 54.5 72.0
DI-MaskDINO 50 51.8 31.8 55.1 72.2
DI-MaskDINO+ 50 52.6 32.5 56.3 72.8

We visualized the different training stages (i.e., epoch = 12 and epoch = 50) of MaskDINO and
DI-MaskDINO on the COCO dataset. As shown in Figure 6, the effectiveness of the proposed HSF
module is clearly demonstrated. Our method exhibits higher robustness in detection tasks, especially
for small and medium-sized objects. Similarly, Figure 7 illustrates the effectiveness of the proposed
ARG module in enhancing semantic features and reinforcing key target information.

Figure 6: Segmentation performance curves on the COCO dataset Figure 7: Detection performance curves on the COCO dataset

4.7 CONCLUSION

This paper proposes a multimodal semantic segmentation framework combining frequency-domain
dynamic routing and activation region guidance. By leveraging edge enhancement, hybrid attention,
and deep semantic learning modules, it achieves efficient image fusion, segmentation, and object
detection. Experiments show strong robustness and generalization, especially for small, weak, and
occluded targets.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Isha Chaudhary, Alex Renda, Charith Mendis, and Gagandeep Singh. COMET: neu-
ral cost model explanation framework. In Proceedings of the Seventh Annual Con-
ference on Machine Learning and Systems, Santa Clara, CA, USA, May 2024. ml-
sys.org. URL https://proceedings.mlsys.org/paper_files/paper/2024/
hash/eb261df4322a8bd0a73093c4d8a0d02d-Abstract-Conference.html.

Chun-Fu Chen, Rameswar Panda, and Quanfu Fan. Regionvit: Regional-to-local attention for vision
transformers. In Proceedings of the Tenth International Conference on Learning Representations.
OpenReview.net, 2022. URL https://openreview.net/forum?id=T__V3uLix7V.

Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L Yuille,
and Yuyin Zhou. Transunet: Transformers make strong encoders for medical image segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 66–76. Springer, 2021.

Hao Chi, Delin Luo, and Song Wang. Lmdfusion: A lightweight infrared and visible image fusion
network for substation equipment based on mask and residual dense connection. Infrared Physics
& Technology, 138:105218, 2024. doi: 10.1016/j.infrared.2024.105218.
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A APPENDIX

A.1 VISUALIZATION

We further conducted a comprehensive visual evaluation experiment on visible and infrared image
fusion tasks, comparing our method with seven state-of-the-art approaches, including SeAFusion
Li et al. (2022), DATFuseTang et al. (2023), Gan-HALu et al. (2024), ADF-NetShen et al. (2024),
U2FusionXu et al. (2022), TGFuseRao et al. (2023a), and CDDFuse Zhao et al. (2023), where all
experiments were performed under identical hardware configurations to ensure fair and consistent
visual comparisons. As demonstrated in Figures 8, the experimental results reveal that our method
exhibits remarkable advantages in both multi-modal feature preservation and detail enhancement:
specifically, it excels at retaining fine visible-light textures (such as road signs and building contours)
where other methods tend to produce blurred or incomplete results; it significantly enhances ther-
mal radiation targets (like pedestrians and vehicles) by presenting clearer thermal signatures without
overexposure or low-contrast issues; and most importantly, it achieves an optimal balance between
natural visual appearance and target saliency that outperforms all competing methods. These ex-
perimental findings collectively confirm that our method has reached state-of-the-art performance in
visible-infrared image fusion tasks.

Figure 8: Qualitative Fusion Results on the MFNet and FMB Dataset

A.2 ABLATION EXPERIMENTS

Ablation studies effectively validate the necessity of each module within the model. By remov-
ing or replacing key components in these modules, the individual contributions of each part are
clearly demonstrated, which enhances the credibility of the overall conclusions. Based on this, we
conducted extensive ablation experiments to evaluate the modular design of the proposed method.
Figures 9 and 10 present the visual ablation analysis results for the three key modules of our model.
Each module plays an important role in both semantic image segmentation and object detection.
The multimodal dynamic frequency domain feature enhancement module (DFD) strengthens com-
plementary information between modalities in the frequency and energy domains, improving detail
clarity and structural reconstruction capability and facilitating the extraction of rich feature informa-
tion. The activation region guided multimodal fusion module (ARG) uses activation regions to guide
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the attention mechanism to focus on key areas in the image, thereby enhancing the accurate fusion
of targets. The hierarchical semantic feature enhancement module (HSF) dynamically models deep
semantic information through masks based on both global and local regions, improving the model’s
understanding of multi-source semantic information.

Figure 9: Ablation study on Object Detection based on visible and infrared image fusion.

Figure 10: Ablation study on Semantic Segmentation based on visible and infrared image fusion

In the visible and infrared image fusion task, we propose an activation region guided attention fu-
sion module (ARG). This module uses activation regions to guide the dynamic allocation of attention
weights, effectively leveraging the detailed texture information of visible images and the thermal ra-
diation information of infrared images, enabling the model to selectively focus on salient features
from both modalities. As shown in Figure 11, the first row displays feature maps generated by the
conventional attention mechanism, while the second row shows outputs enhanced by our guided
attention. Visual comparison clearly demonstrates that our method successfully guides the model to
focus on key regions of the modalities (such as structural edges and thermal targets), while effec-
tively suppressing noise interference, thereby validating the effectiveness of the module in improving
the quality of multimodal image fusion.

Figure 11: Visual Comparison of ARG Module Guided Attention Mechanism on the MFNet Dataset
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A.3 COMPLEXITY ANALYSIS

To comprehensively evaluate the computational complexity of different semantic segmentation and
image fusion methods, we conducted a quantitative analysis of parameter count and FLOPs (see
Table 10Li et al. (2023a); Wang et al. (2023); Zhou et al. (2023); Liang et al. (2023); Chi et al. (2024);
Rao et al. (2023b); Zhang et al. (2024); Wu et al. (2025a); Zhao et al. (2025). As shown in Table 10,
the table clearly compares the parameter count and FLOPs of each method, and our approach shows
clear advantages over some advanced semantic segmentation or image fusion methods.

Table 10: Comparison of different methods in segmentation, image fusion, computational cost
(FLOPs), and parameters.

Method Segmentation Image Fusion FLOPs (G) Params (M)
LASNet ✓ ✗ 371.03 93.58
MDRNet+ ✓ ✗ 891.82 210.87
SGFNet ✓ ✗ 225.63 125.12
EAEFNet ✓ ✗ 316.49 147.21
LMDFusion ✗ ✓ 26.67 44.28
TGFuse ✗ ✓ 137.34 19.34
MRFS ✓ ✓ 219.16 134.97
SAGE ✓ ✓ 102.53 13.06
MultiTVIF ✓ ✓ 125.21 2.47
MFS ✓ ✓ 11.80 0.34

B REPRODUCIBILITY STATEMENT

The partially anonymized code of this paper is as follows: https://anonymous.4open.
science/r/MFS_Net-CB23. I hereby commit that, if this paper is accepted, all code will be
immediately open-sourced to facilitate reproducibility.
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