
Under review as a conference paper at ICLR 2024

UNDERSTANDING AND MITIGATING EXTRAPOLATION
FAILURES IN PHYSICS-INFORMED
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-informed Neural Networks (PINNs) have recently gained popularity due
to their effective approximation of partial differential equations (PDEs) using deep
neural networks (DNNs). However, their out of domain behavior is not well un-
derstood, with previous work speculating that the presence of high frequency com-
ponents in the solution function might be to blame for poor extrapolation perfor-
mance. In this paper, we study the extrapolation behavior of PINNs on a represen-
tative set of PDEs of different types, including high-dimensional PDEs. We find
that failure to extrapolate is not caused by high frequencies in the solution func-
tion, but rather by shifts in the support of the Fourier spectrum over time. We term
these spectral shifts and quantify them by introducing a Weighted Wasserstein-
Fourier distance (WWF). We show that the WWF can be used to predict PINN
extrapolation performance, and that in the absence of significant spectral shifts,
PINN predictions stay close to the true solution even in extrapolation. Finally, we
propose a transfer learning-based strategy to mitigate the effects of larger spectral
shifts, which decreases extrapolation errors by up to 82%.

1 INTRODUCTION

Understanding the dynamics of complex physical processes is crucial in many applications in sci-
ence and engineering. Oftentimes, these dynamics are modeled as partial differential equations
(PDEs) that depend on time. In the PDE setting, we want to find a solution function u(x, t) that
satisfies a given governing equation of the form

f(x, t) := ut +N (u) = 0, x ∈ Ω, t ∈ [0, T ] (1)

where ut :=
∂u
∂t denotes the partial derivative of u with respect to time, N is a - generally nonlinear

- differential operator, Ω ⊂ Rd, with d ∈ {1, 2, 3} is a spatial domain, and T is the final time for
which we’re interested in the solution. Moreover, we impose an initial condition u(x, 0) = u0(x),
∀x ∈ Ω on u(x, t), as well as a set of boundary conditions. Together, these conditions specify the
behaviors of the solution on the boundaries of the spatio-temporal domain.

Following the recent progress in deep learning, physics-informed neural networks (PINN) as intro-
duced in Raissi et al. (2019) have garnered attention because of their simple, but effective way of
approximating time-dependent PDEs with deep neural networks. PINNs preserve important physical
properties described by the governing equations by parameterizing the solution and the governing
equation simultaneously with a set of shared network parameters. After the success of the seminal
paper Raissi et al. (2019), many sequels have applied PINNs to solve various PDE applications, e.g.
Anitescu et al. (2019); Yang et al. (2021); Zhang et al. (2018); Doan et al. (2019). Physics-informed
loss terms have also proven useful in machine learning more generally Davini et al.; Cai et al. (2021).

Related work. Most previous studies using the standard PINNs introduced in Raissi et al. (2019)
have demonstrated the performances of their methods in interpolation only, i.e. on a set of testing
points sampled within the same temporal range that the network was trained on. We refer to points
sampled beyond the final time of the training domain as extrapolation. In principle, standard PINNs
are expected to be able to learn the dynamics in Eq. (1) and, consequently, to approximate u(x, t)
accurately in extrapolation. However, previous work in Kim et al. (2020) and Bonfanti et al. (2023)
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has shown that this is not the case: PINNs can deviate significantly from the true solution once they
are evaluated in an extrapolation setting, calling into question their capability as a tool for learning
the dynamics of physical processes.

From a foundational standpoint, studying extrapolation can therefore give us insights into the lim-
itations of PINNs more generally. From a practical standpoint, constantly retraining PINNs from
scratch when faced with a point that is outside their initial training domain is undesirable (Bonfanti
et al. (2023); Zhu et al. (2022)), so anticipating whether their predictions remain accurate is cru-
cial. Several recent papers have recognized the importance of the extrapolation problem in PINNs
(Kapoor et al. (2023); Bonfanti et al. (2023); Cuomo et al. (2022); Kim et al. (2020)), and at least
two have proposed methods to address it (Kim et al. (2020); Kapoor et al. (2023)). However, even
a basic characterization of extrapolation behavior for PINNs trained to solve time-dependent PDEs
is still absent from the literature. Previous works consider standard PINNs incapable of extrapolat-
ing beyond the training domain and suspect implicit biases in deep neural networks to lead to the
learned solution becoming smooth or flat in extrapolation, thus implying that the presence of high
frequencies in the solution function might lead to extrapolation failures (Bonfanti et al. (2023)). Fi-
nally, there are to the best of our knowledge no theoretical works on the extrapolation capabilities
of PINNs. Previous works have focused on PINN generalization in interpolation only (Mishra and
Molinaro (2022)).

Contributions. In this paper, our contributions are therefore as follows. (i) We show that PINNs are
capable of almost perfect extrapolation behavior for certain PDEs. (ii) We characterize these PDEs
by analyzing the Fourier spectra of their solution functions and argue that standard PINNs generally
fail to anticipate shifts in the support of the Fourier spectrum over time. We quantify these spectral
shifts using the Wasserstein-Fourier distance. (iii) We clarify that unlike with training failures in
interpolation, the presence of high frequencies alone is not to blame for the poor extrapolation
behavior of PINNs on some PDEs. (iv) We show that these insights generalize to high-dimensional
PDEs, and (v) we demonstrate the transfer learning on a set of similar PDEs can reduce extrapolation
errors significantly when spectral shifts are present.

The structure of the paper is as follows: in section 2, we formally introduce PINNs and define
what we mean by interpolation and extrapolation. Section 3 characterizes the PDEs for which good
extrapolation accuracy is possible using the Fourier spectra of their solution functions and introduce
the Weighted Wasserstein-Fourier distance. In section 4, we investigate the viability of transfer
learning approaches in improving extrapolation. Section 5 discusses our results and concludes.

2 BACKGROUND AND DEFINITIONS

Physics-Informed Neural Networks. As mentioned in the previous section, PINNs parameterize
both the solution u and the governing equation f . Denote the neural network approximating the
solution u(x, t) by ũ(x, t; θ) and let θ be the network’s weights. Then the governing equation f is
approximated by a neural network f̃(x, t, ũ; θ) := ũt +N (ũ(x, t; θ)). The partial derivatives here
can be obtained via automatic differentiation. We note that f̃(x, t, ũ; θ) shares its network weights
with ũ(x, t; θ). The name “physics-informed” neural network comes from the fact that the physical
laws we’re interested in are enforced by applying an extra, problem-specific, nonlinear activation,
which is defined by the PDE in Eq. (1) (i.e., ũt +N (ũ)).

We learn the shared network weights using a loss function consisting of two terms, which are asso-
ciated with approximation errors in ũ and f̃ , respectively. Raissi et al. (2019) considers a loss of the
form L := αLu + βLf , where α, β ∈ R are coefficients and Lu and Lf are defined as follows:

Lu =
1

Nu

Nu∑
i=1

∣∣u(xi
u, t

i
u)− ũ(xi

u, t
i
u; θ)

∣∣ ; Lf =
1

Nf

Nf∑
i=1

∣∣∣f̃(xi
f , t

i
f , ũ; θ)

∣∣∣2 (2)

Lu enforces the initial and boundary conditions using a set of training data
{
(xi

u, t
i
u), u(x

i
u, t

i
u)
}Nu

i=1
.

The first element of the tuple is the input to the neural network ũ and the second element is the ground
truth that the output of ũ attempts to match. We can collect this data from the specified initial and
boundary conditions since we know them a priori. Meanwhile, Lf minimizes the discrepancy be-
tween the governing equation f and the neural network’s approximation f̃ . We evaluate the network
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at collocation points
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sists of all zeros. We also refer to 1
Nf
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∣∣∣f̃(xi
f , t

i
f , ũ; θ)

∣∣∣ as the mean absolute residual (MAR):
its value denotes how far the network is away from satisfying the governing equation. Note that
using this loss, i) no costly evaluations of the solutions u(x, t) at collocation points are required to
gather training data, ii) initial and boundary conditions are enforced using a training dataset that
can easily be generated, and iii) the physical law encoded in the governing equation f in Eq. (1) is
enforced by minimizing Lf . In the original paper by Raissi et al. (2019), both loss terms have equal
weight, i.e. α = β = 1, and the combined loss term L is minimized.

Interpolation and extrapolation. For the rest of this paper, we refer to points (xi, ti) as interpola-
tion points if ti ∈ [0, Ttrain], and as extrapolation points if ti ∈ (Ttrain, Tmax] for Tmax > Ttrain. We are
primarily interested in the L2 error of the learned solution, i.e. in ∥u(xi, ti)− ũ(xi, ti; θ)∥2, and in
the L2 relative error, which is the L2 error divided by the norm of the function value at that point,
i.e. ∥u(xi, ti)∥2. When we sample evaluation points from the extrapolation domain, we refer to
the L2 (relative) error as the (relative) extrapolation error. Similarly, we are interested in the (mean)
absolute residual as defined above, i.e. in

∣∣∣f̃(xi, ti, ũ; θ)
∣∣∣. For points sampled from the extrapolation

domain, we refer to this as the extrapolation residual.

In this paper, we are interested in the extrapolation performance of PINNs, by which we broadly
mean the following questions: how quickly does the performance of a PINN deteriorate as we move
away from the interpolation domain? What aspects of the model or underlying PDE affect this?
When we speak of ”near perfect” extrapolation, we therefore always mean the accuracy of the model
on a bounded extrapolation domain, usually neighboring the interpolation domain. This is in line
with Kim et al. (2020) and distinct from the question whether MLPs more generally can extrapolate
to arbitrary domains Haley and Soloway (1992); Cardell et al. (1994); Ziyin et al. (2020).

PDEs considered. We investigate the extrapolation capabilities of PINNs on a representative set
of 7 PDEs, all of which are widely used as examples in the PINN literature Basir (2022); Raissi
et al. (2019); Penwarden et al. (2023); Jagtap and Karniadakis (2021). These include the Allen-
Cahn equation, the viscous Burger’s equation, a heat equation, a diffusion equation, a diffusion-
reaction equation, the Beltrami flow, and the non-linear Schrodinger equation. Details on all PDEs
considered can be found in Appendix A.1.

3 UNDERSTANDING EXTRAPOLATION FAILURES VIA SPECTRAL SHIFTS

3.1 EFFECTS OF MODEL SIZE, ACTIVATION FUNCTIONS, & NUMBER OF TRAINING SAMPLES

Before we begin our investigation of what determines extrapolation performance in PINNs, we iden-
tify several aspects of a model that do not have an effect. This will make our analysis in the second
half of this section easier. To this end, we analyze the extrapolation errors and residuals which stan-
dard PINNs display for the Allen-Cahn equation, the viscous Burgers equation, a diffusion equation,
and a diffusion-reaction equation.

(a) (b)

Figure 1: (a) L2 relative extrapolation error of MLP(5, 64) with tanh activation, trained on [0, 0.5].
and (b) MAR for the same MLP.
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PINN extrapolation performance depends on the underlying PDE. For each of the four PDEs
introduced above, we train a 5-layer MLP with 64 neurons per layer and tanh activation on the
interpolation domains specified for 50000 epochs using the adam optimizer. As seen in Figure
1 observe that the L2 relative errors for the Burgers’ equation and for the Allen-Cahn equation
become significantly larger than for the diffusion and diffusion-reaction equations when we move
from t = 0.5 to t = 1. The solution learned for the diffusion-reaction equation disagrees only
minimally with the true solution, even at t = 1, which shows that for this particular PDE, PINNs
can extrapolate almost perfectly well. More detailed results can be found in Appendix A.2.

Extrapolation performance is generally independent of model parameters. While we observe
drastically different extrapolation behaviors depending on the underlying PDE as mentioned above,
the extrapolation for a given PDE seems to be more or less independent of model parameters, such
as number of layers or neurons per layer, activation function, number of samples, or training time.
Once the chosen parameters allow the model to achieve a low error in the interpolation domain -
1e − 5 is a value commonly used for this in the literature Raissi et al. (2019); Chen et al. (2023);
Wang et al. (2022); Han and Lee (2021) - adding more layers, neurons, or samples, or alternatively
training longer does not seem to have an effect on the extrapolation error and MAR.

These results allow us to focus our further analyses on a single architecture. Unless otherwise
stated, we use an MLP with 5 layers with 64 neurons each and tanh activation, initialized with the
commonly used Xavier normal initialization, and trained for 50000 epochs using Adam.

3.2 EXTRAPOLATION IN THE PRESENCE OF HIGH FREQUENCIES

Recent literature has found that neural networks tend to be biased towards low-complexity solu-
tions due to implicit regularization inherent in their gradient descent learning processes Neyshabur
et al. (2014); Neyshabur (2017). In particular, deep neural networks have been found to possess
an inductive bias towards learning lower frequency functions, a phenomenon termed the spectral
bias of neural networks Rahaman et al. (2019); Cao et al. (2019), which for example Bonfanti et al.
(2023) suspect to be related to extrapolation failures in PINNs. They find evidence for this when
considering time-independent PDEs.

Figure 2: For times t = 0.25 (top, interpolation) and t = 0.99 (bottom, extrapolation), we plot the
reference and predicted solutions in the spatio-temporal (left) and Fourier (middle) domains for the
Burgers’ equation. The absolute difference in the Fourier spectra is plotted on the right.

Following this hypothesis, we would expect most of the extrapolation error to come from the higher
frequencies: the predicted function might become smooth or flat in extrapolation, similar to what
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has been observed with training failures in interpolation Basir (2022). We plot both the reference
solution and the predicted solution in the Fourier domain for all four of our PDEs, as well as the
absolute difference between the two Fourier spectra of the reference and predicted solution. Plots
for the Burgers’ equation are provided in Figure 2 while plots for the other PDEs are provided in
Appendix A.3.

High frequencies only account for a small fraction of extrapolation errors. In all cases, the
majority of the error in the Fourier domain is concentrated in the lower-frequency regions. While this
is partially due to the fact that the low frequency components of the solutions have larger magnitude,
it suggests that in extrapolation, PINNs fail even to learn the low frequency parts of the solution.
Thus, the presence of high frequencies alone fails to explain the extrapolation failure of PINNs.
We provide some additional evidence for this by studying the extrapolation behavior of Multi-scale
Fourier feature networks Wang et al. (2020) in Appendix A.6. Even though these architectures were
designed specifically to make learning higher frequencies easier, we find their extrapolation error to
be at least as large or larger than that of standard PINNs.

PINNs can extrapolate well in the presence of high frequencies. To isolate the effect that the
presence of high frequencies alone has on extrapolation performance, we consider the following
variation of the Diffusion-Reaction for x ∈ [−π, π] and t ∈ [0, 1].

∂u

∂t
=

∂2u

∂x2
+ e−t

 K∑
j=1

(j2 − 1)

j
sin(jx)

 (3)

u(x, 0) =

K∑
j=1

sin(jx)

j
u(−π, t) = u(π, t) = 0 (4)

The reference solution is given by u(x, t) = e−t
(∑K

j=1
sin(jx)

j

)
. As with our other experiments,

we use t ∈ [0, 0.5] as the temporal training domain and consider t ∈ (0.5, 1] as the extrapolation
area. K here is a hyperparameter that controls the size of the spectrum of the solution. Note that
for a fixed K, the support of the Fourier spectrum of the reference solution never changes over time,
with only the amplitudes of each component scaled down by an identical constant factor.

(a) (b)

Figure 3: Mean L2 relative interpolation and extrapolation errors, trained on [0, 0.5]. In (a), we plot
this against the size of the spectrum i.e. the parameter K in Equation (4), and in (b) we plot this
against the speed of the decay of the amplitudes, i.e. the parameter M in Equation (6).

For various values of K, we find that our trained PINNs are able to extrapolate well as can be
seen in Figure 3 (a). For the sake of completeness, we also investigate the effect of the speed of
decay of the amplitudes in the Fourier spectra. We train a PINN on the following variation of the
Diffusion-Reaction equation.

∂u

∂t
=

∂2u

∂x2
+ e−Mt

 ∑
j∈{1,2,3,4,8}

(j2 − 1)

j
sin(jx)

 (5)
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for x ∈ [−π, π] and t ∈ [0, 1] with the initial condition u(x, 0) = sin(x) + sin(2x)
2 + sin(3x)

3 +
sin(4x)

4 + sin(8x)
8 and the Dirichlet boundary condition u(−π, t) = u(π, t) = 0. The reference

solution is

u(x, t) = e−Mt

(
sin(x) +

sin(2x)

2
+

sin(3x)

3
+

sin(4x)

4
+

sin(8x)

8

)
(6)

with the same interpolation and extrapolation areas as before. Figure 3 (b) shows the relative in-
terpolation and extrapolation errors against increasing values of M . We find that an increase in the
speed of the exponential decay seems to increase the extrapolation error more than an increase in
the size of the spectrum.

3.3 SPECTRAL SHIFTS

While the solutions to the Allen-Cahn equation and to the Burger’s equation do not exhibit expo-
nentially fast changes in their amplitudes, they have Fourier spectra whose support shifts over time,
unlike the diffusion and diffusion-reaction equations. We argue that PINNs struggle to extrapolate
well when these spectral shifts in the true solution’s Fourier spectrum are large.

Weighted Wasserstein-Fourier distance. To quantify the temporal shifts in the support of the
Fourier spectrum, we introduce the Weighted Wasserstein-Fourier Distance (WWF) between the
normalized Fourier spectra of the PDE solution in two disjoint time domains. The Weighted
Wasserstein-Fourier Distance is based on the Wasserstein-Fourier distance, which compares the
Fourier spectra of the solution function at two different points in time. Consider two discrete CDFs
F1, F2 supported on the domain X . The Wasserstein distance between F1 and F2 is defined as
W (F1, F2) =

∑
x∈X |F1(x) − F2(x)|. Given two discrete Fourier spectra f1, f2, the Wasserstein-

Fourier distance Cazelles et al. (2020) can be computed as W
(

f1
∥f1∥1

, f2
∥f2∥1

)
. We now define the

Weighted Wasserstein-Fourier Distance given a function f as

WWF (f) :=
∑
s∈I

∑
t∈E

(Tmax + s− t)W

(
fs

∥fs∥1
,

ft
∥ft∥1

)

where I and E are the interpolation and extrapolation domains, respectively. We present plots
of the pairwise Wasserstein-Fourier distances for each t1, t2 ∈ [0, Tmax] in Appendix A.4. The
Wasserstein-Fourier distance of the true solution is zero everywhere for both the diffusion and
diffusion-reaction equations, leading to a Weighted Wasserstein-Fourier Distance of zero, which
reflects the constant support of the spectra. In contrast, the pairwise distance matrices for the Burg-
ers’ and Allen-Cahn equations exhibit a block-like structure, with times in disjoint blocks exhibiting
pronouncedly different distributions in the amplitudes of their respective Fourier spectra. These
shifts are not captured by the learned solution, leading to large L2 errors.
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Figure 4: For both Burgers’ Equation (a) and the Allen-Cahn equation (b), we train 50 PINNs on a
variety of different PDE parameters for each equation. More extreme spectral shifts in the underlying
solution are correlated with poorer extrapolation performance.
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The Weighted Wasserstein-Fourier distance allows us to capture the effects that other properties
of the underlying PDE have on extrapolation performance. To illustrate this, we train PINNs for
50 different Burgers’ equations, each with a different viscosity parameter ν – equally spaced from
0.001 to 0.1, and for 50 variants of the Allen-Cahn equation with varying values of d, equally spaced
from 0.0001 to 0.1. We find that different PDE coefficients lead to large differences in extrapolation
performance and that this relationship is moderated quite heavily through shifts in the underlying
Fourier spectra. Figure 4 plots the WWF distance between the spectra against the relative L2 error
in extrapolation. PDE coefficients that induce larger shifts in the spectra correspond to overall worse
extrapolation performance.

3.4 HIGHER-DIMENSIONAL AND MORE COMPLEX PDES

Our findings so far demonstrate that the extrapolation performance of PINNs depends heavily on
the presence of spectral shifts in the underlying PDE. We conclude this section by showing that this
remains true for higher-dimensional and more complex PDEs. To this end, we train PINNs on the
Beltrami Flow and the non-linear Schrodinger equation.

The reference solution to the non-linear Schrodinger equation exhibits significant shifts in the spec-
tra, with a WWF Distance distance between the interpolation and extrapolation domains of 0.034
and 0.036 in the real and imaginary domain respectively. Based on our results for lower-dimensional
PDEs, we expect extrapolation performance to be poor. Our experimental results agree: while the
PINN achieves a small interpolation error (1e−5), it exhibits poor extrapolation behavior, achieving
max L2 relative errors of 0.94, and 4.27 (in the real and imaginary domain respectively).

On the other hand, the Beltrami flow does not exhibit a spectral shift over time for any of the solution
functions. The PINN achieves similarly small interpolation error (1e − 5) and produces very small
L2 relative extrapolation errors of 0.009, 0.013, 0.006, and 0.008 in u, v, w, and p, respectively.
This is in line with what we would expect based on the lower-dimensional examples consider so far,
and is in fact comparable to the diffusion-reaction equation.

4 MITIGATING EXTRAPOLATION FAILURES WITH TRANSFER LEARNING

Finally, we show that transfer learning from PINNs trained across a family of similar PDEs can
improve extrapolation performance. Empirically, in other domains, transfer learning across multiple
tasks has been effective in improving generalization Dong et al. (2015); Luong et al. (2016). Here,
we perform transfer learning following the procedure outlined in Pellegrin et al. (2022), where we
initially train a PINN with multiple outputs on a sample from a family of PDEs (e.g. the Burgers’
equation with varying values of the viscosity) and transfer to a new unseen PDE in the same family
(e.g. the Burgers’ equation with a different viscosity) by freezing all but the last layer and training
with the loss this new PDE induces. We note that Pellegrin et al. (2022) only consider transfer
learning for linear PDEs by analytically computing the final PINN layer but we extend their method
to nonlinear PDEs by performing gradient descent to learn the final layer instead.

4.1 TRANSFER LEARNING CAN HELP WITH SPECTRAL SHIFTS

We perform transfer learning from a collection of Burgers’ equations with varying viscosities
(ν/π = {0.01, 0.05, 0.1}) to a new Burgers equation (ν/π = 0.075). In the first set of experiments,
we train on equations in the domain t ∈ [0, 0.5], and in the second set, we train on equations in the
domain t ∈ [0, 1]. Similarly, for the non-linear Schrodinger equation we transfer learn on equations
with slightly varying initial conditions (h(x, 0) ∈ {1.95sech(x), 2.05sech(x), 2.1sech(x)}). We
evaluate on a new non-linear Schrodinger equation with initial condition h(x, 0) = 2sech(x). Our
results are reported in Table 1. We perform 15 runs for each, changing only the random seed.

Compared to the baseline (no transfer learning), we find an average reduction in extrapolation error
of 82% when transfer learning from the full domain, and of 51% when transfer learning from half
the domain, i.e. with t ∈ [0, 0.5] for the Burger’s equation. The improvements for the non-linear
Schrodinger equation are similar, although slightly smaller. transfer learning from the full domain
reduces the extrapolation error in the real (imaginary) component of the solution by 55% (51%).
Transfer learning from half the domain still reduces it by 32% (30%). Details on the same transfer
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L2 Relative Extrapolation Error
Setting Burger’s Eq. Schrodinger (real) Schrodinger (imag.)
Baseline 0.383± 0.143 0.944± 0.212 4.276± 0.538
Transfer (half) 0.189± 0.116 0.630± 0.227 2.963± 0.599
Transfer (full) 0.072± 0.065 0.423± 0.201 2.074± 0.526

Table 1: L2 extrapolation errors for the baseline (no transfer learning), transfer learning from t ∈
[0, 0.5] (half), and transfer learning from t ∈ [0, 1] (full). Values obtained from 15 MLPs per setting.

learning experiments for the Allen-Cahn equation, as well as visualizations of the learned solutions
can be found in subsection A.8 in the appendix.

Figure 5: Domain, boundary, and combined mean squared interpola-
tion error (top) and extrapolation error (bottom) between our baseline
(PINNs trained from scratch) and transfer learning experiments. The
only variation between data points is the random seed. There are 50,
11, and 10 runs of the baseline, transfer with t ∈ [0, 1], and transfer
with t ∈ [0, 0.5], respectively. Note the vertical scales differ between
the interpolation and extrapolation domains.

Why does transfer learn-
ing help? By transfer
learning from other PDEs
that exhibit similar spec-
tral shifts, we hope that
the model can learn to rec-
ognize PDEs that exhibit
these shifting spectra and
modify its predictions ac-
cordingly. As we freeze
all but the last layer when
performing transfer learn-
ing, one can think of this
as projecting the new PDE
onto a shared feature space,
one of these features po-
tentially capturing the de-
gree to which the underly-
ing spectra shift over time.
Given that the initial train-
ing is conducted on a larger
temporal domain, the hope
is that even if the model
is trained on a new PDE
only from t = 0 to
t = 0.5, its understanding
of frequency shifts from
similar PDEs (for which
it knows how the spectra
evolve/shift from t = 0 to
t = 1) will allow it to ex-
trapolate better than it oth-
erwise would.

To give some evidence to support this intuition, our transfer learning experiments use Burgers’
equations with similar viscosities (ν) to the target PDE – and thus similar spectral shift. We find that
additional transfer learning on more PDEs, with viscosities that are further from that of the target
PDE, seems to make a minimal impact.

Motivated by Kim et al. (2020), we can also examine the interpolation and extrapolation loss of each
run as well as decomposed into domain and boundary terms (recall Section 2) using the example of
the Burger’s equation in Figure 5. We observe that transfer learning from PDEs on the whole domain
(t ∈ [0, 1]) substantially improves results compared to baseline. However, we find that transfer
learning even when the model does not see the extrapolation domain during initial training (e.g.
t ∈ [0, 0.5]) also improves performance over baseline, though less than transfer learning from the full
domain. We find the reverse in interpolation: our baseline model has the lowest interpolation error,
followed by half-domain transfer learning, and then full-domain transfer learning, which performs
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the worst in interpolation. This may suggest that transfer learning enforces stronger inductive biases
from the wider PDE family which in turn improves extrapolation performance.

4.2 WITHOUT SPECTRAL SHIFTS, TRANSFER LEARNING YIELDS NO IMPROVEMENTS

We repeat the experiments in the previous subsection with PDEs that exhibit no spectral shifts to
test whether transfer learning can further boost extrapolation performance. We transfer learn on
Diffusion-Reaction equations with different amplitude parameters (recall section 4, here M =
{0.5, 2, 3}) and evaluate on a Diffusion-Reaction equation with amplitude parameter M = 1.
As a high-dimensional analogue, we transfer learn on the Beltrami Flow PDE with Re =
{0.95, 1.05, 1.1} and evaluate on Re = 1. We present our results in table 2.

L2 Relative Extrapolation Error
Setting Diff.-Reac. Beltrami (u) Beltrami (v) Beltrami (w) Beltrami (p)
Baseline 0.038± 0.021 0.009± 0.004 0.013± 0.006 0.006± 0.003 0.008± 0.004
Transfer (half) 0.051± 0.033 0.011± 0.005 0.009± 0.007 0.007± 0.003 0.006± 0.003
Transfer (full) 0.043± 0.024 0.008± 0.004 0.012± 0.007 0.006± 0.005 0.007± 0.005

Table 2: L2 extrapolation errors for the baseline (no transfer learning), transfer learning from t ∈
[0, 0.5] (half), and transfer learning from t ∈ [0, 1] (full). Values obtained from 15 MLPs per setting.

Unlike with the PDEs in the previous section, which showed a significant spectral shift, we find
no improvement in extrapolation performance for the Diffusion-Reaction equation or the Beltrami
Flow after transfer learning. In line with our reasoning for why transfer learning helps with spectral
shifts, we suspect that because there are no spectral shifts in any of the PDEs considered, there is
nothing for the model to pick up while transfer learning. Similarly, in the absence of spectral shifts,
stronger inductive biases need not improve extrapolation, and in fact might make it harder.

5 DISCUSSION

In this paper, we revisited PINNs’ extrapolation behavior and pushed back against claims previously
made in the literature. In our experiments on the effects of different architecture choices, we found
evidence against a double-descent phenomenon for the extrapolation error, which Zhu et al. (2022)
speculated might exist. We also saw that PINNs do not necessarily perform poorly in extrapolation,
as was previously suspected (Kim et al. (2020); Kapoor et al. (2023)). For some PDEs, near perfect
extrapolation is possible. Following this, we examined the solution space learned by PINNs in the
Fourier domain and argued that extrapolation performance depends on spectral shifts in the under-
lying PDE. We showed that the presence of high frequencies in the solution function has minimal
effect on extrapolation, pushing back against Bonfanti et al. (2023), and demonstrated that PINNs’
extrapolation errors can be predicted from the Fourier spectra of the solution function. To this end,
we introduced the Weighted Wasserstein-Fourier distance between interpolation and extrapolation
domains. Finally, we provided the first investigation of the effects of transfer learning on extrap-
olation behavior in PINNs and demonstrated that transfer learning can help mitigate the effects of
spectral shifts.

Limitations. There are several avenues for further investigation. We believe that extending our
analysis from standard PINNs to other architectures or sampling methods is a promising direction.
Future research might, for example, try to answer whether some PINN variants can deal better
with spectral shifts than others and why. Furthermore, in the present work, we only examined the
two most common activation functions, sin and tanh, and found them to lead to similar model
performance in extrapolation. While this is in line with experiments presented in related works Kim
et al. (2020), investigating activation functions specifically introduced for improved extrapolation
performance in MLPs, such as Ziyin et al. (2020), could also prove insightful. Ultimately, we
believe that a theoretical investigation of PINNs’ difficulties with spectral shifts in the fashion of
Wang et al. (2020) could significantly deepen our understanding of these models’ capabilities.
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A.1 PDES UNDER CONSIDERATION

A.1.1 VISCOUS BURGER’S EQUATION

The viscous Burger’s equation is given by

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(7)

Here, we consider x ∈ [−1, 1] and t ∈ [0, 1]. We set ν = 0.01 and use the Dirichlet boundary
conditions and initial conditions

u(−1, t) = u(1, t) = 0 , u(x, 0) = − sin(πx) (8)

We consider t ∈ [0, 0.5] as the interpolation domain and t ∈ (0.5, 1] as the extrapolation domain.

A.1.2 ALLEN-CAHN EQUATION

The Allen-Cahn equation is of the form

∂u

∂t
= d · ∂

2u

∂x2
+ 5

(
u− u3

)
(9)

for x ∈ [−1, 1] and t ∈ [0, 1] We set d = 0.001 and consider t ∈ [0, 0.5] as the interpolation domain
and (0.5, 1] as the extrapolation domain. The initial and the boundary conditions are given by

u(x, 0) = x2 cos(πx);u(−1, t) = u(1, t) = −1 (10)

A.1.3 DIFFUSION EQUATION

We consider the diffusion equation

∂u

∂t
=

∂2u

∂x2
− e−t

(
sin(πx)− π2 sin(πx)

)
(11)

for x ∈ [−1, 1] and t ∈ [0, 1] with the initial condition u(x, 0) = sin(πx) and the Dirichlet boundary
condition u(−1, t) = u(1, t) = 0. The reference solution is u(x, t) = e−t sin(πx). We use
t ∈ [0, 0.5] as the temporal training domain and consider t ∈ (0.5, 1] as the extrapolation area.

A.1.4 DIFFUSION-REACTION EQUATION

The diffusion-reaction equation we consider is closely related to the diffusion equation above, but
has a larger Fourier spectrum. Formally, we consider

∂u

∂t
=

∂2u

∂x2
+ e−t

(
3
sin(2x)

2
+ 8

sin(3x)

3
+ 15

sin(4x)

4
+ 63

sin(8x)

8

)
(12)

for x ∈ [−π, π] and t ∈ [0, 1] with the initial condition

u(x, 0) = sin(x) +
sin(2x)

2
+

sin(3x)

3
+

sin(4x)

4
+

sin(8x)

8
(13)

and the Dirichlet boundary condition u(−π, t) = u(π, t) = 0. The reference solution is

u(x, t) = e−t

(
sin(x) +

sin(2x)

2
+

sin(3x)

3
+

sin(4x)

4
+

sin(8x)

8

)
(14)

We consider the same interpolation and extrapolation domains as before.
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A.1.5 HEAT EQUATION

The heat equation we consider is given by

∂u

∂t
= α

∂2u

∂x2
(15)

with thermal diffusivity coefficient α = 0.4 and x ∈ [−1, 1], t ∈ [0, 1]. The Dirichlet boundary
conditions are

u(0, t) = u(1, t) = 0 (16)

and the initial condition is given by

u(x, 0) = sin (πx) (17)

The exact solution is
u(x, t) = eπ

2αt sin(πx) (18)

A.1.6 BELTRAMI FLOW

We consider the following Beltrami flow PDE:

∂u

∂t
+

(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
+

∂p

∂x
− 1

Re

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
= 0

∂v

∂t
+

(
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
+

∂p

∂y
− 1

Re

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
= 0

∂w

∂t
+

(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
+

∂p

∂z
− 1

Re

(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)
= 0

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

for (x, y, z) ∈ [−1, 1]3, t ∈ [0, 1] and with Dirichlet boundary conditions. The solution functions
are given by

u(x, y, z, t) = −a[eax sin(ay + dz) + eaz cos(ax+ dy)]e−d2t (19)

v(x, y, z, t) = −a[eay sin(az + dx) + eax cos(ay + dz)]e−d2t (20)

w(x, y, z, t) = −a[eaz sin(ax+ dy) + eay cos(az + dx)]e−d2t (21)

p(x, y, z, t) = −0.5a2[e2ax + e2ay + e2az + 2 sin(ax+ dy) cos(az + dx)ea(y+z)

+ 2 sin(ay + dz) cos(ax+ dy)ea(z+x)

+ 2 sin(az + dx) cos(ay + dz)ea(x+y)]e(−2d2t)

(22)

where a = d = Re = 1 unless explicitly stated otherwise. We consider the same interpolation and
extrapolation domains as before.
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A.1.7 NON-LINEAR SCHRODINGER EQUATION

The Nonlinear Schrodinger equation we consider is defined as

i
∂h

∂t
+

1

2

∂2h

∂x2
+ |h|2h = 0 (23)

subject to the periodic boundary conditions x ∈ [−5, 5], h(t,−5) = h(t, 5), hx(t,−5) = hx(t, 5)
and the initial condition h(0, x) = 2sech(x). We use t ∈ [0, π/4] as the interpolation domain and
t ∈ (π/4, π/2] as the extrapolation domain.

A.1.8 NAVIER-STOKES EQUATIONS IN TWO DIMENSIONS

The Navier-Stokes equations in two dimensions are given explicitly by

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

∂p

∂x
− ν

(
∂2u

∂x2
+

∂2u

∂y2

)
= 0

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

∂p

∂y
− ν

(
∂2v

∂x2
+

∂2v

∂y2

)
= 0

∂u

∂x
+

∂v

∂y
= 0

for x ∈ [−1, 1], y ∈ [−0.5, 0.5] and t ∈ [0, 1] and with Dirichlet boundary conditions. As before,
we consider t ∈ [0, 0.5] as the interpolation domain and t ∈ (0.5, 1] as the extrapolation domain.
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A.2 EFFECTS OF MODEL PARAMETERS ON EXTRAPOLATION PERFORMANCE

A.2.1 BURGER’S EQUATION

(a) (b)

Figure 6: L2 relative extrapolation errors of various MLPs with tanh activation in (a), and with sin
activation in (b). Trained on [0, 0.5] using the same hyperparameters as in Section 3.1.

A.2.2 ALLEN-CAHN EQUATION

(a) (b)

Figure 7: L2 relative extrapolation errors of various MLPs with tanh activation in (a), and with sin
activation in (b). Trained on [0, 0.5] using the same hyperparameters as in Section 3.1.
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(a) (b) (c)

Figure 8: (a) L2 relative extrapolation error of MLP(5, 64) with tanh activation, trained on [0, 0.5].
(b) MAR for the same MLP, and (c) the solution for the diffusion-reaction equation at t = 1 and the
function learned by the corresponding MLP.

(a) (b) (c)

Figure 9: Mean L2 relative errors over the interpolation (extrapolation) domain of MLP(5, 64) with
tanh activation (a) and with sin activation (b) with increasing number of training epochs trained to
solve the Burger’s equation. (c) plots the relative error against the number of samples, in the order
(domain, boundary condition, initial condition).
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A.3 ANALYZING EXTRAPOLATION PERFORMANCE IN THE FOURIER DOMAIN

A.3.1 ALLEN-CAHN EQUATION

Figure 10: For times t = 0.25 (top, interpolation) and t = 0.99 (bottom, extrapolation), we plot the
reference and predicted solutions in the spatio-temporal (left) and Fourier (middle) domains for the
Allen-Cahn equation. The absolute difference in the Fourier spectra is plotted on the right.

A.3.2 DIFFUSION EQUATION

Figure 11: For times t = 0.25 (top, interpolation) and t = 0.99 (bottom, extrapolation), we plot the
reference and predicted solutions in the spatio-temporal (left) and Fourier (middle) domains for the
diffusion equation. The absolute difference in the Fourier spectra is plotted on the right.
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A.3.3 DIFFUSION-REACTION EQUATION

Figure 12: For times t = 0.25 (top, interpolation) and t = 0.99 (bottom, extrapolation), we plot the
reference and predicted solutions in the spatio-temporal (left) and Fourier (middle) domains for the
diffusion-reaction equation. The absolute difference in the Fourier spectra is plotted on the right.

A.3.4 HEAT EQUATION

Figure 13: For times t = 0.25 (top, interpolation) and t = 0.99 (bottom, extrapolation), we plot the
reference and predicted solutions in the spatio-temporal (left) and Fourier (middle) domains for the
heat equation. The absolute difference in the Fourier spectra is plotted on the right.
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A.4 WASSERSTEIN-FOURIER DISTANCE PLOTS

For each of our four PDEs, we plot the pairwise Wasserstein-Fourier distances for both the reference
and predicted solutions for (t1, t2) ∈ {0, 0.01, . . . , 0.99} × {0, 0.01, . . . , 0.99}. We also plot the
absolute difference between the two pairwise distance matrices to understand where the predicted
solution is failing to capture the changing spectra. All differences are clipped below at 10−3 for
stability reasons.

A.4.1 BURGERS’ EQUATION

Figure 14: Pairwise Wasserstein-Fourier distances for the Burgers’ equation. Reference solution
(top left), predicted solution (top right), absolute difference (bottom).

A.4.2 ALLEN-CAHN EQUATION

Figure 15: Pairwise Wasserstein-Fourier distances for the Allen-Cahn equation. Reference solution
(top left), predicted solution (top right), absolute difference (bottom).
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A.4.3 DIFFUSION EQUATION

Figure 16: Pairwise Wasserstein-Fourier distances for the diffusion equation. Reference solution
(top left), predicted solution (top right), absolute difference (bottom).

A.4.4 DIFFUSION-REACTION EQUATION

Figure 17: Pairwise Wasserstein-Fourier distances for the diffusion-reaction equation. Reference
solution (top left), predicted solution (top right), absolute difference (bottom).
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A.5 EXPERIMENTS WITH UNCHANGING SUPPORT

Here, we examine the solutions for the PDEs examined in section 3.2 in the Fourier domain.

A.5.1 VARYING THE SIZE OF THE SUPPORT

We first look at the PDE defined in equations (4) and (5). The reference solution is given by u(x, t) =

e−t
(∑K

j=1
sin(jx)

j

)
. For a fixed K, the support of the Fourier spectra is constant – we plot the

solutions for K ∈ {10, 15, 20} in Figures 18, 19, and 20 respectively.

Figure 18: For times t = 0.25 (top, interpolation) and t = 0.99 (bottom, extrapolation), we plot
the reference and predicted solutions in the spatio-temporal (left) and Fourier (middle) domains for
K = 10. The absolute difference in the Fourier spectra is plotted on the right.

While extrapolation behavior is quite good, the highest frequency is still relatively small compared
to the Burgers’ or Allen-Cahn equations. To further examine whether spectral bias is a concern, we
train a PINN on the PDE defined by

∂u

∂t
=

∂2u

∂x2
+ e−t

 k∑
j=1

(πj)2 − 1

j
sin(π · jx)


with reference solution u(x, t) = e−t

(∑K
j=1

sin(π·jx)
j

)
for K = 20. The results are plotted in

Figure 21. Note that the reference solution has frequencies as high as 10, similar to Allen-Cahn, but
extrapolation remains near-perfect.
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Figure 19: For times t = 0.25 (top, interpolation) and t = 0.99 (bottom, extrapolation), we plot
the reference and predicted solutions in the spatio-temporal (left) and Fourier (middle) domains for
K = 15. The absolute difference in the Fourier spectra is plotted on the right.

Figure 20: For times t = 0.25 (top, interpolation) and t = 0.99 (bottom, extrapolation), we plot
the reference and predicted solutions in the spatio-temporal (left) and Fourier (middle) domains for
K = 20. The absolute difference in the Fourier spectra is plotted on the right.

A.5.2 VARYING AMPLITUDE DECAY

Next, we look at the PDE defined in equation (6) with reference solution u(x, t) =

e−Mt
(
sin(x) + sin(2x)

2 + sin(3x)
3 + sin(4x)

4 + sin(8x)
8

)
. For a fixed value of M , the support remains

constant over time, but the amplitudes of the Fourier coefficients decay more rapidly over time for
larger M . We plot the solutions for M ∈ {1, 3, 5.5} in Figures 22, 23, and 24 respectively.
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Figure 21: For times t = 0.25 (top, interpolation) and t = 0.99 (bottom, extrapolation), we plot the
reference and predicted solutions in the spatio-temporal (left) and Fourier (middle) domains. The
absolute difference in the Fourier spectra is plotted on the right.

Figure 22: For times t = 0.25 (top, interpolation) and t = 0.99 (bottom, extrapolation), we plot
the reference and predicted solutions in the spatio-temporal (left) and Fourier (middle) domains for
M = 1. The absolute difference in the Fourier spectra is plotted on the right.
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Figure 23: For times t = 0.25 (top, interpolation) and t = 0.99 (bottom, extrapolation), we plot
the reference and predicted solutions in the spatio-temporal (left) and Fourier (middle) domains for
M = 3. The absolute difference in the Fourier spectra is plotted on the right.

Figure 24: For times t = 0.25 (top, interpolation) and t = 0.99 (bottom, extrapolation), we plot
the reference and predicted solutions in the spatio-temporal (left) and Fourier (middle) domains for
M = 5.5. The absolute difference in the Fourier spectra is plotted on the right.
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A.6 PREDICTING EXTRAPOLATION BEHAVIOR THROUGH FOURIER REPRESENTATIONS

Given the observed relationship between Fourier spectra and extrapolation behavior, one may ask
how well a reference solution’s Fourier spectra predict the extrapolation performance of a PINN.
Towards answering this question, we train a vanilla PINN – MLP(4, 50) – on the Burger’s equation
for 50 different viscosities, equally spaced from 0.001

π to 0.1
π .

Given these learned solutions, we obtain relative L2 errors for each of the 50 PDEs, comparing
them to reference solutions obtained via numerical methods. Finally, we train a simple 4-layer
MLP to predict the relative L2 errors for t = {0, 0.1, . . . , 1.0} from the Fourier transforms of
the reference solution at t = {0, 0.05, 0.1, . . . , 1.0} with standard MSE loss. For the purposes of
numerical stability, we predict scaled errors, where all errors are multiplied by a factor of 10.

We withhold 5 of the 50 PDEs as a test set and evaluate the model’s performance on this set. To en-
sure that we have a representative test set, we use stratified sampling to split our range of viscosities
into five contiguous regions, sampling one PDE from each region for the test set. Predictions are
shown in Figure 25 for these 5 PDEs, with the model achieving an R2 of 0.85.

Figure 25: True and predicted L2 Relative Errors for the Burgers’ PDEs withheld for the test set.
Our model achieves an R2 of 0.85 on these 5 samples.
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A.7 MULTI-SCALE FOURIER FEATURE NETWORKS

Sigmas Domain Loss Boundary Loss Int. Error Ext. Error Int. MAR Ext. MAR
1, 5 2.42e-4 2.95e-7 0.0026 0.7709 0.0057 1.6353
1, 10 5.35e-5 7.24e-7 0.0034 0.5612 0.0093 1.7226
1, 15 1.23e-4 3.07e-6 0.0272 0.5379 0.0289 2.0883
1, 5, 10 7.25e-5 5.19e-5 0.0156 0.7985 0.0127 2.2197
No MFFN 3.35e-5 1.66e-6 0.0031 0.5261 0.0082 1.1964

Table 3: Extrapolation performance of Multi-Fourier Feature Networks with 4 layers, 50 neurons
each, and sin activation trained on the Burger’s equation specified in Appendix A.1, for various
values of sigma. The last row provides the baseline comparison by using the standard architecture
without multi-Fourier feature embeddings for the input.

A.8 EFFECTS OF TRANSFER LEARNING ON INTERPOLATION & EXTRAPOLATION

Figure 26: Solutions learned during transfer learning (top row) and solution learned for the tar-
get PDE (bottom row), for the Burger’s equation (left), the Allen-Cahn equation (center), and the
Diffusion-Reaction equation specified in Appendix A.1 (right).
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(a) (b)

(c) (d)

Figure 27: Solutions learned during transfer learning on the non-linear Schrodinger equation (a, b,
c) and solution learned for the target PDE (d).

Setting Int. Domain Loss Int. Boundary Loss Int. Combined Loss
Baseline 0.00191± 0.00202 0.00134± 0.00183 0.00246± 0.00225
Transfer t ∈ [0, 0.5] 0.00458± 0.00178 0.05612± 0.12291 0.08345± 0.16787
Transfer t ∈ [0, 1] 0.03245± 0.02273 0.00348± 0.00299 0.03296± 0.02333

Table 4: Interpolation loss terms for the baseline setting (no transfer learning), transfer learning from
half the domain (t ∈ [0, 0.05]), and transfer learning from the full domain (t ∈ [0, 1]), in the form
mean± std. Values obtained from 15 MLPs per setting, trained on the Burger’s equation.

Setting Ext. Domain Loss Ext. Boundary Loss Ext. Combined Loss
Baseline 11.6506± 6.58194 0.00055± 0.00038 9.93962± 5.42231
Transfer t ∈ [0, 0.5] 3.49251± 2.59067 0.04385± 0.09974 3.75796± 2.70572
Transfer t ∈ [0, 1] 0.45959± 0.44864 0.00397± 0.00337 0.52353± 0.35683

Table 5: Extrapolation loss terms for the baseline setting (no transfer learning), transfer learning
from half the domain (t ∈ [0, 0.05]), and transfer learning from the full domain (t ∈ [0, 1]), in the
form mean± std. Values obtained from 15 MLPs per setting, trained on the Burger’s equation.

A.9 INVESTIGATIONS INTO DYNAMIC PULLING

We examine the improved extrapolation performance of the dynamic pulling method (DPM) pro-
posed by Kim et al. (2020). In brief, their method modifies the gradient update in PINN training
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to dynamically place more emphasis on decreasing the domain loss in order to stabilize the domain
loss curve during training.

We implement DPM for the Burgers’ equation with viscosity ν = 0.01
π and compare to a standard

PINN without DPM. For both sets of experiments, we use the architecture that Kim et al. (2020)
found to have the best extrapolation performance on this particular PDE (MLP PINN with residual
connections, 8 hidden layers, 20 hidden units per layer, tanh activation, and Xavier normal initial-
ization). We train using Adam with learning rate 0.005 and otherwise default parameters. When
training with DPM, we use ϵ = 0.001, ∆ = 0.08, w = 1.001.

Figure 28: Domain, boundary, and combined mean squared extrapolation error between our baseline
(PINNs trained from scratch) and PINNs with DPM-modified gradient updates. We train 77 models
with DPM and 60 models without DPM. The only difference between model runs is the random
seed.

We train 77 DPM models and 60 standard models, differing only in the random seed. Our results
are shown in Figure 28. As before, we find that our extrapolation error is dominated by the domain
loss. Notably, we find that DPM on average does considerably worse in extrapolation than our
baseline. However, the errors are higher variance and a number of DPM models perform better in
extrapolation than any of our baseline models. The particular training dynamics induced by DPM
which cause these shifts are unclear but potentially deserve more detailed investigation.

A.10 TRAINING & HARDWARE DETAILS

Section Model Activation Initialization Optimizer LR Epochs Samples
3.1 (Figure 1) MLP(4, 50) tanh Xavier Adam 1e-4 50000 10000, 40, 80
3.2 (Figure 2) MLP(4, 50) tanh (a), sin (b) Xavier Adam 1e-4 Varying Varying
4.1 (Figure 3) MLP(3, 20) tanh Xavier Adam 1e-4 50000 10000, 40, 80
4.2 (Figure 4) MLP(6, 50) tanh Xavier Adam 1e-4 100000 20000, 80, 160
5 (Figure 5) MLP(5, 100) tanh Xavier Adam 1e-4 Varying Varying

Table 6: Training details for the experiments presented in the main text. Here, MLP(4, 50) refers to
a fully-connected neural network with 4 layers and 50 neurons per layer; Xavier refers to the Xavier
normal initialization; Adam refers to the Adam optimizer with all parameters set to default; and the
samples are in the form (domain, boundary condition, initial condition).

Hardware: All our experiments were conducted on an NVIDIA A100 GPU with 16 GB RAM.
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