
Size and depth of monotone neural networks:
interpolation and approximation

Dan Mikulincer
Massachusetts Institute of Technology

Daniel Reichman
Worcester Polytechnic Institute

Abstract

Monotone functions and data sets arise in a variety of applications. We study the
interpolation problem for monotone data sets: The input is a monotone data set
with n points, and the goal is to find a size and depth efficient monotone neural
network with non negative parameters and threshold units that interpolates the
data set. We show that there are monotone data sets that cannot be interpolated
by a monotone network of depth 2. On the other hand, we prove that for every
monotone data set with n points in Rd, there exists an interpolating monotone
network of depth 4 and size O(nd). Our interpolation result implies that every
monotone function over [0, 1]d can be approximated arbitrarily well by a depth-
4 monotone network, improving the previous best-known construction of depth
d+ 1. Finally, building on results from Boolean circuit complexity, we show that
the inductive bias of having positive parameters can lead to a super-polynomial
blow-up in the number of neurons when approximating monotone functions.

1 Introduction

The recent successes of neural networks are owed, at least in part, to their great approximation and
interpolation power. However, some prediction tasks require their predictors to possess specific
properties. This work focuses on monotonicity and studies the effect on overall expressive power
when restricting attention to monotone neural networks.

Given x, y ∈ Rd we consider the partial ordering,

x ≥ y ⇐⇒ for every i = 1, . . . d, [x]i ≥ [y]i.

Here, and throughout the paper, we use [x]i for the ith coordinate of x. A function f : [0, 1]d → R
is monotone1 if for every two vectors x, y ∈ [0, 1]d,

x ≥ y =⇒ f(x) ≥ f(y).

Monotone functions arise in several fields such as economics, operations research, statistics, health-
care, and engineering. For example, larger houses typically result in larger prices, and certain fea-
tures are monotonically related to option pricing [12] and bond rating [9]. As monotonicity con-
straints abound, there are specialized statistical methods aimed at fitting and modeling monotonic
functions such as Isotonic Regression [1, 22, 24] as well as many other works related to monotone
approximation [7,17,41]. Neural networks are no exception: Several works are devoted to the study
of approximating monotone functions using neural networks [9, 35, 38].

When using a network to approximate a monotone function, one might try to “force” the network
to be monotone. A natural way to achieve this is to consider only networks where every parameter

1As we will only be dealing with monotone increasing functions, we shall refer to monotone increasing
functions as monotone.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

(other than the biases) is non-negative2. Towards this aim, we introduce the following class of
monotone networks.

Recall that the building blocks of a neural network are the single one-dimensional neurons
σw,b(x) = σ(⟨w, x⟩+ b) where x ∈ Rk is an input of the neuron, w ∈ Rk is a weight parametrizing
the neuron, σ : R → R is the activation function, and b ∈ R is a bias term. Two popular choices for
activation functions, that we shall also consider, are the ReLU activation function σ(z) = max(0, z)
and the threshold activation function σ(z) = 1(z ≥ 0), which equals 1 if z ≥ 0 and zero otherwise.
We slightly abuse the term and say that a network is monotone if every single neuron is a monotone
function. Since both ReLU and threshold are monotone, this requirement, of having every neuron a
monotone function, translates to w having all positive entries.

Such a restriction on the weights can be seen as an inductive bias reflecting prior knowledge that the
functions we wish to approximate are monotone. One advantage of having such a “positivity bias” is
that it guarantees the monotonicity of the network. Ensuring that a machine learning model approx-
imating a monotone function is indeed monotone is often desirable [15, 25, 26]. Current learning
methods such as stochastic gradient descent and back-propagation for training a network are not
guaranteed (when applied to a monotone training set) to return a network computing a monotone
function. Furthermore, while there are methods for certifying that a given neural network imple-
ments a monotone function [25, 38], the task of certifying monotonicity remains a non-trivial task.

Restricting the weights raises several questions on the behavior of monotone neural networks com-
pared to their more general, unconstrained, counterparts. For example, should we still expect mono-
tone networks to be able to approximate arbitrary monotone functions within an arbitrarily small
error?

Continuing a line of work on monotone networks, [9,35], we further elucidate the above comparison
and uncover some similarities (a universal approximation theorem) and some surprising differences
(the interplay of depth and monotonicity) between monotone and general networks. We will mainly
be interested in expressiveness, the ability to approximate monotone functions and to interpolate
monotone data sets using monotone neural networks of constant depth.

1.1 Our contributions

First, it is not a priori clear that monotone networks can approximate every possible monotone
function or even fit any monotone data set. Here a monotone data set is a set of n labeled points
(xi, yi)i∈[n] ∈ (Rd × R)n with the properties

i ̸= j =⇒ xi ̸= xj and xi ≤ xj =⇒ yi ≤ yj .

In the monotone interpolation problem we seek to find a monotone network N such that for every
i ∈ [n], N(xi) = yi.

On expressive power and interpolation: While it is well-known that general networks with
ReLU activation are universal approximators (can approximate any continuous function on a
bounded domain), perhaps surprisingly, the same is not true for monotone networks and monotone
functions. Namely, there are monotone functions that cannot be approximated within an arbitrary
small additive error by a monotone network with ReLU gates regardless of the size and depth of the
network. This fact was mentioned in [25]: We provide a proof for completeness.
Lemma 1. There exists a monotone function f : [0, 1] → R and a constant c > 0, such that for any
monotone network N with ReLU gates, there exists x ∈ [0, 1], such that

|N(x)− f(x)| > c.

Proof. It is known that a sum of convex functions fi,
∑

αifi is convex provided that for every
i, αi ≥ 0. It is also known that the maximum of convex functions gi, maxi{gi} is a convex function.
It follows from the definition of the ReLU gate (in particular, ReLU is a convex function) that a
neural network with positive weights at all neurons is convex. As there are monotone functions that
are not convex, the result follows.

2We restrict our attention to non negative prediction problems: The domain of the function we seek to
approximate does not contain vectors with a negative coordinate.

2

For a concrete example one may take the function f(x) =
√
x for which the result holds with c = 1

8 .

In light of the above, we shall henceforth only consider monotone networks with a threshold activa-
tion function and discuss, for now, the problem of interpolation. For general networks (no restriction
on the weights) with threshold activation, it has been established, in the work of Baum [3], that even
with 2 layers, for any labeled data set in Rd, there exists an interpolating network.

Our next result is another negative result, which shows that there is an inherent loss of expressive
power, when transitioning to 2-layered monotone threshold networks, provided that the dimension
is at least two. When the input is real-valued there always exists an interpolating monotone network.
This is a simple fact whose proof is omitted: It can be proved using similar ideas to those in [9].
Lemma 2. Let d ≥ 2. There exists a monotone data set (xi, yi)i∈[n] ∈ (Rd × R)n, such that any
depth-2 monotone network N , with threshold activation must satisfy,

N(xi) ̸= yi,

for some i ∈ [n].

Given the limitation of depth-2 monotone networks, it may seem that, like the case of ReLUs,
the class of monotone networks with threshold activation is too limited, in the sense that it cannot
approximate any monotone function, with constant depth (allowing the depth to scale with the input
dimension was considered in [9], see below). One reason for such a belief is that, for non-monotone
networks, depth 2 suffices to ensure universality: any continuous function over a bounded domain
can be approximated by a depth-2 network [2, 8, 19] and this universality result holds for networks
with threshold or ReLUs as activation functions. Our first main result supports the contrary to this
belief. We establish a depth separation result for monotone threshold networks, and show that, by
slightly increasing the number of layers, monotone networks can interpolate arbitrary monotone
data sets. Thereafter a simple argument shows that monotone networks of bounded depth become
universal approximators of monotone functions. As noted, this is in sharp contrast to general neural
networks, where adding extra layers can affect the efficiency of the representation [13], but does not
change the expressive power.
Theorem 1. Let (xi, yi)i∈[n] ∈ (Rd × R)n be a monotone data set. There exists a monotone
threshold network N , with 4 layers and O(nd) neurons such that,

N(xi) = yi,

for every i ∈ [n].

Moreover, if the set (xi)i∈[n] is totally-ordered, in the sense that, for every i, j ∈ [n], either xi ≤ xj

or xj ≥ xi, then one may take N to have 3 layers and O(n) neurons.

We also complement Theorem 1 with a lower bound that shows that the number of neurons we use
is essentially tight, up to the dependence on the dimension.
Lemma 3. There exists a monotone data set (xi, yi)i∈[n] ⊂ (Rd × R)n such that, if N is an
interpolating monotone threshold network, the first layer of N must contain n units. Moreover, this
lower bound holds when the set (xi)i∈[n] is totally-ordered.

The lower bound of Lemma 3 demonstrates another important distinction between monotone and
general neural networks. According to [3], higher-dimensions allow general networks, with 2 layers,
to be more compact. Since the number of parameters in the networks increase with the dimension,
one can interpolate labeled data sets in general position with only O

(
n
d

)
neurons. Moreover, for

deeper networks, a recent line of work, initiated in [40], shows that O(
√
n) neurons suffice. Lemma

3 shows that monotone networks cannot enjoy the same speed-up, either dimensional or from depth,
in efficiency.

Since we are dealing with monotone functions, our interpolation results immediately imply a uni-
versal approximation theorem for monotone networks of depth 4.
Theorem 2. Let f : [0, 1]d → R be a continuous monotone function and let ε > 0. Then, there
exists a monotone threshold network N , with 4 layers, such that, for every x ∈ [0, 1]d,

|N(x)− f(x)| ≤ ε.

3

If the function f is L-Lipschitz, for some L > 0, one can take N to have O

(
d
(

L
√
d

ε

)d)
neurons.

While it was previously proven, in [9], that monotone networks with threshold activation can approx-
imate any monotone function, the depth in the approximating network given by [9] scales linearly
with the input dimension. Our result is thus a significant improvement which only requires constant
depth. When looking at the size of the network, the linear depth construction, in [9], iteratively
evaluates Riemann sums, and builds a network which is piecewise-constant on a grid. Hence, for
L-Lipschitz functions, it would require a similar amount of neurons. Again, we see that comparable
results can be obtained while maintaining constant depth. Whether one can achieve similar results
to Theorems 1 and 2 with only 3 layers is an interesting question which we leave for future research.

Efficiency when compared to general networks: We have shown that, with 4 layers, monotone
networks can serve as universal approximates. However, even if a monotone network can approx-
imate a monotone function arbitrarily well it might be that it requires a much larger size, when
compared to unconstrained networks. In this case, the cost of having a much larger network might
outweigh the benefit of having a network that is guaranteed to be monotone.

In our second main result we verify that this can sometimes be the case. We show that using mono-
tone networks to approximate, in the ℓ∞-norm, a monotone function h : [0, 1]d → R can lead to a
super-polynomial blow-up in the number of neurons. Namely, we demonstrate a smooth monotone
function h : [0, 1]d → R with a poly(d) Lipschitz constant such that h can be approximated within
an additive error of ε > 0 by a general neural network with poly(d) neurons. Yet any monotone
network approximating h within error smaller than 1

2 requires super-polynomial size in d.

Theorem 3. There exists a monotone function h : [0, 1]d → R, such that:

• Any monotone threshold network N which satisfies,

|N(x)− h(x)| < 1

2
, for every x ∈ [0, 1]d,

must have eΩ(log2 d) neurons.

• For every ε > 0, there exists a general threshold network N , which has poly(d) neurons
and such that,

|N(x)− h(x)| < ε, for every x ∈ [0, 1]d.

2 Related work

We are not aware of previous work studying the interpolation problem for monotone data sets us-
ing monotone networks. For general data sets and interpolation using networks with no positivity
requirement there is extensive research regarding the size and depth needed to achieve interpo-
lation [5, 10, 40, 44] starting with the seminal work of Baum studying this problem for networks
with threshold units [3]. Known constructions of neural networks achieving interpolations are non-
monotone: they may result in negative parameters even for monotone data sets.

Several works have studied approximating monotone (real) functions over a bounded domain using a
monotone network. Sill [35] provides a construction of a monotone network (all parameters are non-
negative) with depth 3 where the first layer consists of linear units divided into groups, the second
layer consists of max gates where each group of linear units of the first layer is fed to a different
gate and a final gate computing the minimum of all outputs from the second layer. It is proven in
[35] that this class of networks can approximate every monotone function over [0, 1]d. We remark
that this is very different than the setting considered in this present work. First, using both min and
max gates in the same architecture with positive parameters does not fall into the modern paradigm
of an activation function. Moreover, we are not aware of works prior to Theorem 2, that show
how to implement or approximate min and max gates, with arbitrary fan-ins, using constant depth
monotone networks. 3 Finally, the results from [35] focus on approximating arbitrary monotone
functions and do not consider the monotone interpolation problem studied here.

3There are constructions of depth-3 threshold circuits with discrete inputs that are given m numbers each
represented by n bits and compute the maximum of these numbers [37] This setting is different from ours
where the inputs are real numbers.

4

Later, the problem of approximating arbitrary monotone functions with networks having non-
negative parameters using more standard activation functions such as thresholds or sigmoids has
been studied in [9]. In particular [9] gives a recursive construction showing how to approximate in
the ℓ∞ norm an arbitrary monotone function using a network of depth d+ 1 (d-hidden layers) with
threshold units and non-negative parameters. In addition [9] provides a construction of a monotone
function g : [0, 1]2 → R that cannot be approximated in the ℓ∞ norm with an error smaller than
1/8 by a network of depth 2 with sigmoid activation and non-negative parameters, regardless of
the number of neurons in the network. Our Lemma 2 concerns networks with threshold gates and
applies to arbitrary dimension larger than 1. It can also be extended to provide monotone functions
that cannot be approximated by monotone networks with thresholds of depth 2.

Lower bounds for monotone models of computation have been proven for a variety of models [11],
including monotone De Morgan4 circuits [14, 18, 30, 31], monotone arithmetic circuits and compu-
tations [6,21,43], which correspond to polynomials with non-negative coefficients, and circuits with
monotone real gates [20, 28] whose inputs and outputs are Boolean. One difference between our
separation result regarding monotone and non-monotone networks and these works is that we con-
sider real differentiable functions as opposed to Boolean functions. Furthermore we need functions
that can be computed by an unconstrained neural network of polynomial size. In contrast, known
lower bounds for circuits with real monotone gates apply to Boolean functions that are believed to
be intractable (require a super polynomial number of gates) to compute even with non-monotone
circuits (e.g., deciding if a graph contains a clique of a given size). Finally our model of compu-
tation of neural networks with threshold gates differs from arithmetic circuits [34] which use gates
that compute polynomial functions.

To achieve our separation result we begin with a Boolean function m, which requires a super-
polynomial size to compute by any Boolean circuit with monotone threshold gates, but can be
computed efficiently with arbitrary threshold circuits: the existence of m follows from [31]. There-
after we show how to smoothly extend m to have domain [0, 1]d while preserving monotonicity.
Proving lower bounds for neural networks with a continuous domain by extending a Boolean func-
tion f for which lower bounds are known to a function f ′ whose domain is [0, 1]d has been done
before [39, 42]. However the extension method in these works do not yield a function that is mono-
tone. Therefore, we use a different method based on the multi-linear extension.

3 Preliminaries and notation

We work on Rd, with the Euclidean inner product ⟨·, ·⟩. For k ∈ N, we denote [k] = {1, 2, . . . , k}
and use {ei}i∈[d] for standard unit vectors in Rd. That is, for i ∈ [d], ei = (0, . . . , 0︸ ︷︷ ︸

i−1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
d−i times

).

For x ∈ Rd and i ∈ [d], we write [x]i := ⟨x, ei⟩, the ith coordinate of x.

With a slight abuse of notation, when the dimension of the input changes to, say, Rk, we will also
use {ei}i∈[k] to stand for standard unit vectors in Rk. To avoid confusion, we will always make sure
to make the dimension explicit.

A neural network of depth L is a function N : Rd → R, which can be written as a composition,

N(x) = NL(NL−1(. . . N2(N1(x)) . . .),

where for ℓ ∈ [L], Nℓ : Rdℓ → Rdℓ+1 is a layer. We set d1 = d, dL+1 = 1 and term dℓ+1 as the
width of layer ℓ. Each layer is composed of single neurons in the following way: for i ∈ [dℓ+1],
[Nℓ(x)]i = σ(⟨wℓ

i , x⟩ + bℓi) where σ : R → R is the activation function, wℓ
i ∈ Rdℓ is the weight

vector, and bℓi ∈ R is the bias. The only exception is the last layer which is an affine functional of
the previous layers, NL(x) = ⟨wL, x⟩+ bL. For a weight vector wL ∈ RdL and bias bL ∈ R.
Suppose that the activation function is monotone. We say that a network N is monotone, if, for
every ℓ ∈ [L] and i ∈ [dℓ+1], the weights vector wℓ

i has all positive coordinates. In other words,
[wℓ

i]j ≥ 0, for every j ∈ [dℓ].

4Circuits with AND as well as OR gates without negations.

5

4 A counter-example to expressibility

We outline the ideas behind Lemma 2. We find it instructive to consider the case d = 2. Lemma
2 follows via a simple generalization of this case: a proof5 of the Lemma can be found in the
supplementary material. Recall that σ(x) = 1(x ≥ 0) is the threshold function and consider the
monotone set,

x1 = (2, 0), y1 = 0

x2 = (0, 2), y2 = 0

x3 = (1, 1), y3 = 1.

Assume towards a contradiction that there exists a network N(x) :=
r∑

m=1
amσ (⟨x,wm⟩ − bm),

which interpolates the set. Set

I = {m ∈ [r]|⟨x3, wm⟩ ≥ bm} = {m ∈ [r]|[wm]1 + [wm]2 ≥ bml}.

The set I is the set of all neurons which are active on x3, and, since N(x3) = 1, I is non-empty. We
also define,

I1 = {m ∈ I|[wm]1 ≥ [wm]2}
I2 = {m ∈ I|[wm]2 ≥ [wm]1}.

It is clear that I1 ∪ I2 = I. Observe that for m ∈ I1, by monotonicity, we have ⟨x1, wm⟩ =
2[wm]1 ≥ [wm]1 + [wm]2 = ⟨x3, wm⟩. Since the same also holds for m ∈ I2 and x2, we have,

N(x1) +N(x2) ≥
∑
m∈I1

amσ (⟨x1, wm⟩ − bm) +
∑
m∈I2

amσ (⟨x2, wm⟩ − bm)

≥
∑
m∈I1

amσ (⟨x3, wm⟩ − bm) +
∑
m∈I2

amσ (⟨x3, wm⟩ − bm)

≥
∑
m∈I

amσ (⟨x3, wm⟩ − bm) = N(x1) = 1. (1)

Hence, either N(x1) ≥ 1
2 or N(x2) ≥ 1

2 .

5 Four layers suffice with threshold activation

Let (xi, yi)
n
i=1 ∈ (Rd × R)n be a monotone data set, and assume, with no loss of generality,

0 ≤ y1 ≤ y2 ≤ · · · ≤ yn. (2)

If, for some i, i′ ∈ [n] with i ̸= i′ we have yi = yi′ , and xi ≤ xi′ , we will assume i < i′. Other
ties are resolved arbitrarily. Note that the assumption that the yi’s are positive holds without loss of
generality, as one can always add a constant to the output of the network to handle negative labels.

This section is dedicated to the proof of Theorem 1, and we will show that one can interpolate the
above set using a monotone network with 3 hidden layers. The first hidden layer is of width dn and
the second and third of width n.

Throughout we shall use σ(t) = 1(t ≥ 0), for the threshold function. For ℓ ∈ {1, 2, 3} we will
also write (wℓ

i , b
ℓ
i) for the weights of the ith neuron in level ℓ. We shall also use the shorthand,

σℓ
i (x) = σ(⟨x,wℓ

i ⟩ − bℓi).

We first describe the first two layers. The second layer serves as a monotone embedding into Rn.
We emphasize this fact by denoting the second layer as E : Rd → Rn, with ith coordinate is given
by, [E(x)]i = σ2

i (N1(x)), where [N1(x)]j = σ1
j (x), for j = 1, . . . , nd, are the outputs of the first

layer.

5The 2D example here as well its generalization for higher dimensions can be easily adapted to give an
example of a monotone function that cannot be approximated in ℓ2 by a depth-two monotone threshold network.

6

First hidden layer: The first hidden layer has dn units. For j = 1, . . . , dn. We let ei be the ith

standard basis vector in Rd and define,

σ1
j (x) := σ

(
⟨x, e(j mod d)+1⟩ − ⟨x⌈ j

d ⌉
, e(j mod d)+1⟩

)
.

In other words, w1
j = e(j mod d)+1 and b1j = ⟨x⌈ j

d ⌉
, e(j mod d)+1⟩ (the addition of 1 offsets the fact

that mod operations can result in 0). To get a feeling of what the layer does, suppose that j ≡ r
mod d, then unit j is activated on input x iff the (r + 1)th entry of x is at least the (r + 1)th entry
of x⌈ j

d ⌉
.

Second hidden layer: The second layer has n units. For j = 1, . . . , nd, with a slight abuse
of notation we now use ej for the jth standard basis vector in Rnd and define unit i = 1, . . . , n,
σ2
i : Rnd → R, by,

σ2
i (y) = σ

(
d∑

r=1

⟨y, ed(i−1)+r⟩ − d

)
.

Explicitly, w2
i =

∑d
r=1 ed(i−1)+r and b2i = d. With this construction in hand, the following is the

main property of the first two layers.

Lemma 4. Let i = 1, . . . , n. Then, [E(x)]i = 1 if and only if x ≥ xi. Otherwise, [E(x)]i = 0.

Proof. By construction, we have [E(x)]i = 1 if and only if
∑d

r=1 σ
1
d(i−1)+r(x) ≥ d. For each r ∈

[d], σ1
d(i−1)+r(x) ∈ {0, 1}. Thus, [E(x)]i = 1 if and only if, for every r ∈ [d], σ1

d(i−1)+r(x) = 1.
But σ1

d(i−1)+r(x) = 1 is equivalent to [x]r ≥ [xi]r. Since this must hold for every r ∈ [d], we
conclude x ≥ xi.

The following corollary is now immediate.

Corollary 4. Fix j ∈ [n] and let i ∈ [n]. If j < i, then [E(xj)]i = 0. If j ≥ i, then there exists
i′ ≥ i such that [E(xj)]i′ = 1.

Proof. For the first item, if j < i, by the ordering of the labels (2), we know that xj ≱ xi. By
Lemma 4, [E(xj)]i = 0.

For the second item, by construction, [E(xj)]j = 1. Since j ≥ i, the claim concludes.

The third hidden layer: The third layer contains n units with weights given by w3
i =∑n

r=i er and b3i = 1. Thus,

σ3
i (E(x)) = σ

(
n∑

r=i

[E(x)]r − 1

)
. (3)

Lemma 5. Fix j ∈ [n] and let i ∈ [n]. σ3
i (E(xj)) = 1 if j ≥ i and σ3

i (E(xj)) = 0 otherwise.

Proof. By Corollary 4, [E(xj)]r = 0, for every r > j. In particular, if i > j, by (3), we get,
σ3
i (E(xj)) = σ(−1) = 0. On the other hand, if j ≥ i, then by Corollary 4, there exists i′ ≥ i such

that [E(xj)]i′ = 1, and, σ3
i (E(xj)) = σ([E(xj)]i′ − 1) = 1.

The final layer: The fourth and final layer is a linear functional of the output of the third layer.

Formally, for x ∈ Rd, the output of the network is, N(x) =
n∑

i=1

[w4]iσ
3
i (E(x)), for some weights

vector w4 ∈ R. To complete the construction we now define the entries of w4, as [w4]i = yi − yi−1

with y0 = 0. We are now ready to prove Theorem 1.

7

Proof of Theorem 1. Consider the function N(x) =
n∑

i=1

[w4]iσ
3
i (E(x)) described above. Clearly,

it is a network with 3 hidden layers, by construction. To see that it is monotone, observe that for
ℓ ∈ {1, 2, 3} each wℓ

i is a sum of standard basis vectors, and thus has non-negative entries. The
weight vector w4 also has non-negative entries, since, by assumption, yi ≥ yi−1.

We now show that N interpolates the data set (xj , yj)
n
j=1. Indeed, fix j ∈ [n]. By Lemma 5, we

have, N(xj) =
n∑

i=1

[w4]iσ
3
i (E(xj)) =

j∑
i=1

[w4]i =
j∑

i=1

(yi − yi−1) = yj − y0 = yj . The proof is

complete, for the general case.

To handle the case of totally-ordered (xi)i∈[n], we slightly alter the construction of the first two
layers, and compress them into a single layer satisfying Lemma 4, and hence Lemma 5.

The total-order of (xi)i∈[n] implies the following: For every i ∈ [n], there exists r(i) ∈ [d], such
that for any j ∈ [n], [xi]r(i) < [xj]r(i) if and only if i < j. In words, for every point in the set, there
exists a coordinate which separates it from all the smaller points. We thus define w1

i = er(i) and
bi = 1.

From the above it is clear that σ1
i (xj) = σ([xj]r(i) − 1) =

{
1 if i ≤ j

0 if i > j
.

As in the general case, we define E(x) : Rd → Rn by [E(x)]i = σ1
i (x), and note that Lemma

4 holds for this construction of E as well. The next two layers are constructed exactly like in the
general case and the same proof holds.

We conclude this section with two comments. First, as noted, our interpolation scheme can be
used to prove that any continuous monotone function can be approximated by a monotone threshold
network which is Theorem 2. A proof can be found in the supplementary. Second, interpolating
monotone networks are wide: It turns out, Ω(n) neurons may be needed for monotone interpola-
tion. A proof of this (Lemma 3) can be found in the supplementary as well. For general threshold
networks (no restriction on the weights) one can interpolates n points using O(

√
n + f(δ)) neu-

rons where f depends on the minimal distance between any two of the data points [29, 40]. Hence
Lemma 3 shows that there exist monotone data sets such that interpolating them with a monotone
network entails a quadratic blowup in the size of the network even if the data set is well separated.

6 A super polynomial separation between the size of monotone and
arbitrary threshold networks

By the universal approximation result for monotone threshold networks, Theorem 2, we can ap-
proximate monotone functions by monotone networks. Are there functions such that monotone
networks approximating them provably require a much larger size than networks which are allowed
to have negative parameters as well? We show that the answer is positive when seeking an ℓ∞-
approximation smaller than ε for any ε ∈ [0, 1/2).

Our proof of this fact builds on findings from monotone complexity theory of Boolean functions.
Given an undirected graph G = (V,E) with 2n vertices a matching M is a set of pairwise disjoint
edges. A perfect matching is a matching of size n (which is largest possible). There are efficient
algorithms for deciding if a bipartite graph has a perfect matching [23]. Furthermore, by standard
results that convert Turing machines that decide an algorithmic problem with inputs of size n in
time t(n) to threshold circuits with O(t(n)2) gates, [32, 36], it follows that there is a network of
size polynomial in n that decides, given the incidence matrix of a graph, whether it has a perfect
matching. A seminal result by Rzaborov [31] shows that the monotone complexity of the matching
function is not polynomial.
Theorem 5. Let g be the Boolean function that receives the adjacency matrix of a 2n-vertex graph
G and decides if G has a perfect matching. Then, any Boolean circuit with AND and OR gates that
computes g has size nΩ(logn). Furthermore, the same lower bound applies if the graph is restricted
to be a bipartite graph G(A,B,E) where |A| = |B| = n is the bi-partition of the graph.
Definition 6 (Matching probabilities in non-homogeneous random bipartite graphs). Let p =
(pij)

n
i,j=1 ∈ [0, 1]n×n and define G(p) to be a random bipartite graph on vertex set [n] × [n],

8

such that each edge (i, j) appears independently with probability pij , for every 1 ≤ i, j ≤ n.
Define m : [0, 1]n×n → [0, 1] as6, m(p) = P (G(p) contains a perfect matching).

When p ∈ {0, 1}n×n, m(p) reduces to the indicator function of a perfect matching in a given
bipartite graph. Thus m(p) should be thought of as the harmonic (or multi-linear) extension of the
indicator function to the solid cube [0, 1]n×n.

Theorem 3 is an immediate consequence of the following more specific theorem, which is our main
result for this section.

Theorem 7. The function m defined above is a smooth monotone function with Lipschitz constant
≤ n, which satisfies the following: If N is a monotone threshold network of size eo((logn)2), there
exists p ∈ [0, 1]n×n, such that, |N(p)−m(p)| ≥ 1

2 . Furthermore, for every fixed ε > 0 there exist
a general threshold network N of polynomial size in n, such that for all p ∈ [0, 1]n×n, |N(p) −
m(p)| ≤ ε.

Our proof of Theorem 7 is divided into three parts. We first establish the relevant properties of m.
We then show that m cannot be approximated by a monotone network of polynomial size. Finally,
we show that m can be approximated, arbitrarily well, by a general network with polynomial size.
We begin by collecting several simple facts about the function m. All missing proofs can be found
in the supplementary. A standard coupling argument (omitted) shows that m is monotone.

We have that m is Lipschitz continuous: Let p,p′ ∈ [0, 1]n×n. Then, |m(p)−m(p′)| ≤ n∥p−p′∥.
This is a simple consequence of the fact that m is the harmonic extension of a bounded function.
The fact that m is smooth can again be seen from the multi-linear extension. Proofs that m has
these properties can be found in the supplementary. The proof (whose details can be found in the
supplementary) that the function m cannot be approximated by a monotone network of polynomial
size uses the fact [4] that a threshold gate with s inputs, non negative parameters and Boolean
inputs can be computed by a monotone De Morgan circuit of size poly(s). Therefore, if there was
a monotone network of size eo((logn)2) approximating m(x) we could replace each gate with a
monotone De Morgan circuit entailing a polynomial blowup to the size of the network. This in turn
would imply the existence of a monotone De Morgan circuit of size eo((logn)2) computing m over
Boolean inputs which would contradict7 Theorem 5. Summarizing:

Lemma 6. If N is a monotone threshold network of size eo((logn)2), there exists p ∈ [0, 1]n×n, such
that, |N(p)−m(p)| ≥ 1

2 .

Finally, we show how to approximate m with a network (without weight restrictions) of polynomial
size. To estimate the probability a graph G(p) drawn according to a probability vector p has a
perfect matching we can realize independently (polynomially) many copies of graphs distributed as
G(p) and estimate the number of times a perfect matching is detected. In order to implement this
idea two issues need to be addressed: the use of randomness by the algorithm (our neural networks
do not use randomness) and the algorithm dealing with probability vectors in [0, 1]n×n that may
need infinitely many bits to be represented in binary expansion.

We first present a randomized polynomial-time algorithm, denoted A, for approximating m(p). We
then show how to implement it with a (deterministic) threshold network. Algorithm A works as
follows. Let q(), r() be polynomials to be defined later. First, the algorithm (with input p) only
considers the q(n) most significant bits in the binary representation of every coordinate in p. Next it
realizes r(n) independent copies of G(p). It checks8 for each one of these copies whether it contains
a perfect matching of size n. Let t be the number of times a perfect matching is detected (t depends
on p: We omit this dependency to lighten up notation). The algorithm outputs A(p) := t

r(n) .
Clearly the running time of this algorithm is polynomial.

Let p̃ be the vector obtained from p when considering the q(n) most significant bits in each coor-
dinate, and observe A(p)

law
= A(p̃). We next show how to implement this algorithm by a neural

network of polynomial size that does not use randomness. For a proof please see the supplementary.

6The function m depends also on n but we omit this dependency as it is always clear from the context.
7This shows that the size of such a monotone network cannot be polynomial in n.
8We use the flow-based poly-time algorithm to decide if a bipartite graph has a perfect matching.

9

Lemma 7. Let δ ∈ (0, 1) be a fixed constant. Then, if p̃ ∈ [0, 1]n×n is such that every coordinate
p̃ij can be represented by at most q(n) bits there exists a neural network of polynomial size N such
that for every p ∈ [0, 1]n×n, |m(p)−N(p))| ≤ δ + n2

√
2
q(n) .

We can now prove the following Lemma concluding the proof of Theorem 7.
Lemma 8. For every fixed ε > 0 there exist a general threshold network N of polynomial size in n,
such that for all p ∈ [0, 1]n×n, |N(p)−m(p)| ≤ ε.

Proof. Set δ = ε
2 and let N be the network constructed in Lemma 7 with accuracy parameter δ.

Choose q(n) which satisfies q(n) > log(4n
4

ε2). Thus, Lemma 7 implies, for every p ∈ [0, 1]n×n:

|m(p)−N(p))| ≤ δ +
n2

√
2
q(n)

≤ ε

2
+

ε

2
= ε.

7 Conclusion

We studied neural networks with nonnegative weights and examined their power and limitation in
approximating monotone functions.

Our results reveal that for the ReLU activation, restricting the weights to be nonnegative severally
limits the ability of the model to express monotone functions. For threshold activation we have
shown that the restriction to positive parameters is less severe and that universality can be achieved
at constant depth. In addition, we have shown that monotone neural networks can be much more
resource consuming, in terms of the number of neurons needed to approximate monotone functions.

We focused on the threshold activation function. It is an interesting direction to extend our results for
other activation functions such as sigmoids. For the universality result of depth 4 monotone function
it seems plausible one could approximate thresholds by sigmoids to prove that monotone networks
of depth 4 with sigmoids are universal approximators of monotone functions. For our lower bounds
based on the matching function m it appears that new ideas are needed to show a super polynomial
separation between the size needed for monotone as opposed to arbitrary networks with sigmoids to
approximate m.

The field of Boolean circuit complexity has been used before to address theoretical questions related
to neural networks (e.g., [6, 16, 27, 33]) and we believe that additional insights could be found by
studying the intersection of circuit complexity and deep learning. With regard to monotone neural
networks it is likely that stronger lower bounds can be proved when the depth of the network is
bounded. Proving separation between monotone and non monotone networks with respect to the
square loss is another avenue for further research.

One aspect we did not consider here is learning neural networks with positive parameters using gra-
dient descent. It would be interesting to examine the efficacy of gradient methods both empirically
and theoretically. Such study could lead to further insights regarding methods that ensure that a neu-
ral network approximating a monotone function is indeed monotone. Finally, we did not deal with
generalization properties of monotone networks: Devising tight generalization bounds for monotone
networks is left for future study.

References

[1] Richard E. Barlow, Daniel J. Bartholomew, James M. Bremner, and Hugh D. Brunk. Statistical
inference under order restrictions: the theory and application of isotonic regression. Wiley,
1972.

[2] Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information theory, 39(3):930–945, 1993.

[3] Eric B. Baum. On the capabilities of multilayer perceptrons. J. Complexity, 4(3):193–215,
1988.

10

[4] Amos Beimel and Enav Weinreb. Monotone circuits for monotone weighted threshold func-
tions. Inform. Process. Lett., 97(1):12–18, 2006.

[5] Sebastien Bubeck, Ronen Eldan, Yin Tat Lee, and Dan Mikulincer. Network size and size of
the weights in memorization with two-layers neural networks. Advances in Neural Information
Processing Systems, 33:4977–4986, 2020.

[6] Arkadev Chattopadhyay, Rajit Datta, and Partha Mukhopadhyay. Lower bounds for monotone
arithmetic circuits via communication complexity. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, pages 786–799, 2021.

[7] Paolo Costantini and Carla Manni. A local shape-preserving interpolation scheme for scattered
data. Computer Aided Geometric Design, 16(5):385–405, 1999.

[8] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

[9] Hennie Daniels and Marina Velikova. Monotone and partially monotone neural networks.
IEEE Transactions on Neural Networks, 21(6):906–917, 2010.

[10] Amit Daniely. Neural networks learning and memorization with (almost) no over-
parameterization. Advances in Neural Information Processing Systems, 33:9007–9016, 2020.

[11] SF de Rezende, M Göös, and R Robere. Guest column: Proofs, circuits, and communication.
ACM SIGACT News, 53(1):59–82, 2022.

[12] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incor-
porating second-order functional knowledge for better option pricing. Advances in neural
information processing systems, 13, 2000.

[13] Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In
Conference on learning theory, pages 907–940. PMLR, 2016.

[14] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds
from resolution. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 902–911, 2018.

[15] Maya Gupta, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin Canini, Alexander
Mangylov, Wojciech Moczydlowski, and Alexander Van Esbroeck. Monotonic calibrated
interpolated look-up tables. The Journal of Machine Learning Research, 17(1):3790–3836,
2016.

[16] András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán. Threshold
circuits of bounded depth. Journal of Computer and System Sciences, 46(2):129–154, 1993.

[17] Peter Hall and Li-Shan Huang. Nonparametric kernel regression subject to monotonicity con-
straints. The Annals of Statistics, 29(3):624–647, 2001.

[18] Danny Harnik and Ran Raz. Higher lower bounds on monotone size. In Proceedings of the
thirty-second annual ACM symposium on Theory of computing, pages 378–387, 2000.

[19] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[20] Pavel Hrubeš and Pavel Pudlák. A note on monotone real circuits. Inform. Process. Lett.,
131:15–19, 2018.

[21] Mark Jerrum and Marc Snir. Some exact complexity results for straight-line computations
over semirings. J. Assoc. Comput. Mach., 29(3):874–897, 1982.

[22] Adam Tauman Kalai and Ravi Sastry. The isotron algorithm: High-dimensional isotonic re-
gression. In COLT 2009 - The 22nd Conference on Learning Theory, Montreal, Quebec,
Canada, 2009.

[23] Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education India, 2006.

[24] Rasmus Kyng, Anup Rao, and Sushant Sachdeva. Fast, provable algorithms for isotonic re-
gression in all lp-norms. Advances in neural information processing systems, 28, 2015.

[25] Xingchao Liu, Xing Han, Na Zhang, and Qiang Liu. Certified monotonic neural networks.
Advances in Neural Information Processing Systems, 33:15427–15438, 2020.

11

[26] Mahdi Milani Fard, Kevin Canini, Andrew Cotter, Jan Pfeifer, and Maya Gupta. Fast and
flexible monotonic functions with ensembles of lattices. Advances in neural information pro-
cessing systems, 29, 2016.

[27] Ian Parberry. Circuit complexity and neural networks. MIT press, 1994.

[28] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computa-
tions. The Journal of Symbolic Logic, 62(3):981–998, 1997.

[29] Shashank Rajput, Kartik Sreenivasan, Dimitris Papailiopoulos, and Amin Karbasi. An expo-
nential improvement on the memorization capacity of deep threshold networks. Advances in
Neural Information Processing Systems, 34, 2021.

[30] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. In Proceedings
38th Annual Symposium on Foundations of Computer Science, pages 234–243. IEEE, 1997.

[31] Alexander A Razborov. Lower bounds on monotone complexity of the logical permanent.
Mathematical Notes of the Academy of Sciences of the USSR, 37(6):485–493, 1985.

[32] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[33] John S Shawe-Taylor, Martin HG Anthony, and Walter Kern. Classes of feedforward neural
networks and their circuit complexity. Neural networks, 5(6):971–977, 1992.

[34] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Now Publishers Inc, 2010.

[35] Joseph Sill. Monotonic networks. Advances in neural information processing systems, 10,
1997.

[36] Michael Sipser. Introduction to the theory of computation. ACM Sigact News, 27(1):27–29,
1996.

[37] Kai-Yeung Siu and Jehoshua Bruck. On the power of threshold circuits with small weights.
SIAM Journal on Discrete Mathematics, 4(3):423–435, 1991.

[38] Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein, and Guy Van den Broeck.
Counterexample-guided learning of monotonic neural networks. Advances in Neural Infor-
mation Processing Systems, 33:11936–11948, 2020.

[39] Gal Vardi, Daniel Reichman, Toniann Pitassi, and Ohad Shamir. Size and depth separation
in approximating benign functions with neural networks. In Conference on Learning Theory,
pages 4195–4223. PMLR, 2021.

[40] Roman Vershynin. Memory capacity of neural networks with threshold and rectified linear
unit activations. SIAM Journal on Mathematics of Data Science, 2(4):1004–1033, 2020.

[41] Karin Willemans and Paul Dierckx. Smoothing scattered data with a monotone powell-sabin
spline surface. Numerical Algorithms, 12(1):215–231, 1996.

[42] Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Net-
works, 94:103–114, 2017.

[43] Amir Yehudayoff. Separating monotone VP and VNP. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, pages 425–429, 2019.

[44] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning (still) requires rethinking generalization. Communications of the ACM,
64(3):107–115, 2021.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

12

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Our contributions

	Related work
	Preliminaries and notation
	A counter-example to expressibility
	Four layers suffice with threshold activation
	A super polynomial separation between the size of monotone and arbitrary threshold networks
	Conclusion

