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Figure 1. Multi-track timeline control: We introduce a new problem setting for text-driven motion synthesis, where the input consists of parallel
tracks allowing simultaneous actions, as well as continuous temporal intervals enabling sequential actions. A long and complex motion can be
generated (top) given the structured input of multiple simple textual descriptions, each corresponding to a temporal interval (bottom).

Abstract

Recent advances in generative modeling have led to promis-001
ing progress on synthesizing 3D human motion from text, with002
methods that can generate character animations from short003
prompts and specified durations. However, using a single text004
prompt as input lacks the fine-grained control needed by anima-005
tors, such as composing multiple actions and defining precise006
durations for parts of the motion. To address this, we intro-007
duce the new problem of timeline control for text-driven motion008
synthesis, which provides an intuitive, yet fine-grained, input009
interface for users. Instead of a single prompt, users can specify010
a multi-track timeline of multiple prompts organized in tem-011
poral intervals that may overlap. This enables specifying the012
exact timings of each action and composing multiple actions013
in sequence or at overlapping intervals. To generate compos-014
ite animations from a multi-track timeline, we propose a new015
test-time denoising method. This method can be integrated with016
any pre-trained motion diffusion model to synthesize realistic017
motions that accurately reflect the timeline. At every step of018
denoising, our method processes each timeline interval (text019
prompt) individually, subsequently aggregating the predictions020
with consideration for the specific body parts engaged in each021
action. Experimental comparisons and ablations validate that022
our method produces realistic motions that respect the semantics023
and timing of given text prompts.024

1. Introduction 025

Motivated by applications in video games, entertainment, 026
and virtual avatar creation, recent work has demonstrated 027
substantial progress in learning to generate 3D human mo- 028
tion [27, 37, 44, 60]. Generating motions from text descriptions 029
is of particular interest; it has the potential to democratize anima- 030
tion with a natural language interface that is intuitive for beginner 031
and expert users alike. To this end, several methods have been 032
proposed that synthesize reasonable character animations given 033
a single text prompt and fixed duration as input [38, 53, 65]. 034

While these methods are a promising first step towards faster 035
and more accessible animation interfaces, they lack the precise 036
control that is crucial for many animators. Consider the input 037
prompt (see Fig. 2d): “A human walks in a circle clockwise, 038
then sits, simultaneously raising their right hand towards the 039
end of the walk, the hand raising halts midway through the 040
sitting action.” Due to a lack of representative training data, 041
prior work struggles with such complex text prompts [38, 53]. 042
Namely, the prompt includes temporal composition [4] where 043
multiple actions are performed in sequence (e.g., walking 044
then sitting), along with spatial composition [5] where several 045
actions are performed simultaneously with differing body parts 046
(e.g., walking while raising hand). Furthermore, such lengthy 047
prompts quickly become unwieldy for the user and, despite 048
their detailed descriptions, are still ambiguous with respect to 049
the timing and duration of the constituent actions. 050
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Figure 2. Text-driven motion synthesis tasks: Our framework
generalizes (a) traditional text-to-motion synthesis given one text and
one duration, (b) temporal composition given a sequence of texts for
non-overlapping intervals, and (c) spatial composition given a set of
texts for a single interval. (d) Multi-track timeline control uses a set
of texts for arbitrary intervals, allowing fine-grained control over the
timings of several complex actions.

To improve controllability, we propose the new problem of051
multi-track timeline control for text-driven 3D human motion052
synthesis. In this task, the user provides a structured and053
intuitive timeline as input (Fig. 1), which contains several054
(potentially overlapping) temporal intervals. Each interval055
corresponds to a precise textual description of a motion. As056
shown in Fig. 2d, the complex example prompt discussed057
earlier becomes simple to specify within the timeline, and058
allows animators to control the timing of each action. Such a059
timeline interface is already common in animation and video060
editing software, and is analogous to control interfaces that061
have recently emerged from the text-to-image community [64],062
e.g., image generation from a segmentation mask.063

Multi-track timeline control for text-driven motion synthesis064
is a generalization of several motion synthesis tasks, and065
therefore brings many challenges. In particular, the multi-track066
timeline input can achieve (see Fig. 2):067
• Text-to-motion synthesis [18, 38] – specifying a single interval068

(i.e., duration) with one textual description,069
• Temporal composition [4, 66] – a sequence of textual070

descriptions corresponding to non-overlapping intervals,071
• Spatial (body-part) composition [5] – a set of text prompts072

performed simultaneously with differing body parts.073
Solving this task is difficult due to the lack of training data con-074
taining complex compositions and long durations. For example,075
a timeline-controlled model must handle the multi-track input076
containing several prompts, rather than a single text description.077
Moreover, the model must account for both spatial and temporal078
compositions to ensure seamless transitions, unlike prior work079
that has addressed each of these individually. The timeline also080
relaxes the assumption of a limited duration (<10 sec) made081
by many recent text-to-motion approaches [11, 53, 65].082

To address these challenges, we introduce a method for083
Spatio-Temporal Motion Collage (STMC). Our method copes084
with the lack of appropriate training data by operating at test085
time, leveraging a pre-trained motion diffusion model such086
as off-the-shelf MDM [53] or MotionDiffuse [65]. At each087
denoising step, STMC first applies the diffusion model on088
each text prompt in the timeline independently to predict a089
denoised motion for the corresponding intervals. Our key090

insight is to stitch together such independent generations 091
in both space and time before continuing to denoise. For 092
spatial compositions, automatic body part associations [5] 093
allow coherently concatenating predictions together. Score 094
arithmetic [66] is used to ensure smooth transitions for temporal 095
compositions. To further improve the performance of STMC, 096
we introduce MDM-SMPL, which makes several improvements 097
to prior motion diffusion models [53], including directly using 098
the SMPL [34] body representation. 099

The performance of STMC on timeline control for 100
text-driven motion synthesis is verified through comprehensive 101
comparisons and a perceptual user study. In summary, the 102
central contribution of this work consists of: (i) the new problem 103
of multi-track timeline control for text-driven 3D human motion 104
synthesis, and (ii) a novel test-time technique, STMC, that 105
effectively structures the denoising process to ensure faithful 106
execution of all prompts in a timeline. As a side contribution, 107
(iii) we upgrade MDM to directly support the SMPL body 108
representation instead of skeletons, and reduce runtime through 109
fewer denoising steps. Code will be released upon publication. 110

2. Related Work 111

Human motion synthesis. A large body of work in both vi- 112
sion and graphics has been dedicated to generating 3D hu- 113
man motions [70]. This generation process can be uncon- 114
ditional [36, 56] or conditioned on actions [10, 17, 37], mu- 115
sic [32, 50, 52, 57], speech [3, 69], goals [30, 51, 60], previous 116
motion [13, 15, 44, 62] (i.e., future motion prediction), sce- 117
nes/objects [21, 31, 58, 59], and text [1, 2, 11, 16, 19, 29, 53, 118
65]. Technical approaches vary from early statistical models 119
[8, 15] to modern generative models like VAEs [20, 37, 38], 120
GANs [6, 12, 49, 61], normalizing flows [22, 57], and diffu- 121
sion [11, 29, 30, 60, 68]. Our work is most related to recent 122
text-conditioned diffusion models [53, 65], however we solve 123
a new problem where the model is conditioned on a timeline 124
containing several text inputs instead of a single prompt. 125
Motion composition. Due to the lack of training data, a par- 126
ticular challenge for action and text-conditioned motion gen- 127
eration is to synthesize compositional motions. Several works 128
[4, 41, 66] focus on generating motions from a sequence of text 129
prompts and durations, i.e., temporal compositions. TEACH [4] 130
autoregressively generates one motion (per text prompt) at a 131
time, conditioning the next motion in the sequence with the 132
previous one. EMS [41] proposes a two-stage approach, by 133
first generating each action separately and then merging them 134
through a subsequent network. Diffusion models EDGE [54] 135
and PriorMDM [48] ensure consistency between adjacent mo- 136
tions by enforcing temporal constraints at transitions. Our ap- 137
proach to temporal composition is based on DiffCollage [66], 138
which stitches motions (or images) together throughout the de- 139
noising process via score arithmetic at overlapping transitions. 140

Other work generates motions from a set of texts to be 141
executed at the same time, i.e., spatial (body-part) composition. 142
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SINC [5] labels ground truth motion capture (mocap) sequences143
with corresponding body parts by prompting GPT-3 [9].144
These labels are used to create a synthetic dataset of motions145
stitched together from mocap sequences with compatible146
body parts, thereby improving performance of VAE-based147
3D motion generation methods [38] for spatial composition.148
MotionDiffuse [65] proposes a noise interpolation method to149
control different body part motions separately. Our approach,150
STMC, takes inspiration from SINC [5] by using body part151
labels to stitch motions together during test-time denoising.152
Overall, our problem of timeline-conditioned generation153
generalizes temporal and spatial composition, and STMC must154
tackle both issues simultaneously, unlike most prior work.155
Controllable motion diffusion. Following success in im-156
age [43, 46, 47], video [26], and 3D [33, 40, 63] domains,157
diffusion has become a useful approach to generate high-158
quality 3D human motions [3, 28, 54], especially from text159
inputs [11, 14, 53, 65]. Some works focus on improving the160
controllability of motion diffusion models, e.g., by enabling161
temporal [48, 66] and spatial [65] composition of text prompts.162
Other controls such as following specific keyframe poses, joint163
trajectories, and waypoints have also been achieved using a mix164
of test-time diffusion guidance [28, 30, 45], in-painting [48, 53],165
and direct conditioning [60]. We focus on making text-to-166
motion generation more controllable by handling several text167
prompts in a fine-grained timeline format through a composi-168
tional denoising process.169

3. Human Motion Synthesis from Timelines170

We first formulate the new problem setup of multi-track171
timeline control (Sec. 3.1), then propose a motion denoising172
strategy to handle timeline inputs (Sec. 3.2 and Sec. 3.3), and173
finally summarize our improved diffusion model (Sec. 3.4).174

3.1. Timeline Control Problem Formulation175

Inputs. As illustrated in Fig. 1, the multi-track timeline enables176
users to define multiple intervals, each linked to a natural lan-177
guage prompt describing the desired human motion. For the178
jth prompt in the timeline, we represent its temporal interval as179
[aj,bj] and the corresponding prompt as Cj. The intervals are180
arranged in a multi-track layout on the timeline, allowing for181
overlaps. Both the duration of each interval and of the overall182
timeline are variable, and users can add an arbitrary number of183
tracks (rows) to the timeline (although, in practice, a character184
can most often perform a handful of actions simultaneously).185
Outputs. The goal is to generate a 3D human motion that fol-186
lows all the text instructions at the specified intervals. A human187
motion x lasting N timesteps is represented as a sequence of188
pose vectors x=(x1,...,xN) with each pose xi∈Rd. Several189
recent works [53, 65] use the pose representation from Guo190
et al. [18] with d=263, which contains root velocities along191
with local joint positions, rotations, and velocities. Other pose192
representations like SMPL [34] can also be used (see Sec. 3.4).193

3.2. Background: Motion Diffusion Models 194

Our generation method (Sec. 3.3) leverages a pre-trained motion 195
diffusion model such as MDM [53] or MotionDiffuse [65] 196
trained on single text prompts, which we briefly review here. 197
These methods follow a denoising diffusion scheme and 198
synthesize animations through iterative denoising of a noisy 199
pose sequence. Given a clean motion x0, a Gaussian diffusion 200
process is employed to corrupt the data to be approximately 201
N (0,I). Each step of this process is given by: 202

q(xt|xt−1)=N (xt;
√
1−βtxt−1,βtI) (1) 203

with βt defined by the noise schedule. Note the denoising step 204
t is not to be confused with the temporal timestep i, which 205
indexes the sequence of poses in the motion. In practice, one 206
can make sampling xt easier by using the reparameterization 207
trick xt=

√
ᾱtx0+

√
1−ᾱtϵ, where ϵ∼N (0,I), αt=1−βt, 208

and ᾱt=
∏t

s=0αs. 209
Sampling from a diffusion model requires reversing this 210

process to recover a clean motion from random noise. While 211
q(xt−1|xt) is hard to compute, the probability conditioned on 212
x0 is tractable [25]: 213

q(xt−1|xt,x0)=N (xt−1;µt(xt,x0),Σt) , (2) 214

where 215

µt(xt,x0)=

√
αt(1−ᾱt−1)

1−ᾱt
xt+

√
ᾱt−1βt
1−ᾱt

x0 (3) 216

Σt=
1−ᾱt−1

1−ᾱt
βtI . (4) 217

Since xt is known at sampling time, we approximate the 218
reverse distribution by training a denoising model x̂θ(xt,t,C) 219
to estimate x0, where C is the text conditioning. This model 220
is trained with the simplified loss function as in Ho et al. [25] 221
(i.e., without the t-dependent factor): 222

L=Eϵ,t,x0,C∥x̂θ(xt,t,C)−x0∥22 (5) 223

with x0 and C sampled from a dataset of motion-text pairs, 224
step t sampled uniformly, and noise ϵ∼N (0,I) used to corrupt 225
the ground truth motion. To enable classifier-free guidance [24] 226
at sampling time, the text conditioning C is dropped with 227
some probability at each training iteration. At test time, the 228
sampling (reverse) process starts from random noise and 229
denoises iteratively for T steps to obtain a clean 3D human 230
motion. At each denoising step, the model is conditioned on 231
the single input text prompt (e.g., Fig. 2a). 232

3.3. STMC: Spatio-Temporal Motion Collage 233

STMC operates only at test time, enabling an off-the-shelf, pre- 234
trained denoising model to generate motion conditioned on a 235
multi-track timeline. At every denoising step, our method takes 236
as input the current noisy motion xt encapsulating the entire 237
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Figure 3. Overview of STMC: Before denoising, the multi-track timeline is first (a) partitioned into relevant body parts per text (using LLM-based
labeling [5]) to create body part timelines, which are then (b) extended to overlap, leading to the transition intervals used for temporal stitching per
body part with DiffCollage [66]. (c) At each denoising step, motions for each prompt are denoised independently before being combined based on the
body-part timelines. The composite motion is re-noised by samplingxt−1 fromN (µt(xt,x̂0),Σt) (as in Eq. (2)) before being passed to the next step.

timeline and outputs a corresponding clean motion x̂0. As238
shown in Fig. 3c, STMC uses the denoising model to indepen-239
dently predict a clean motion crop corresponding to each of the240
input text prompts. These predictions are stitched together spa-241
tially using body part annotations for each text prompt (Fig. 3a),242
and stitched in time to ensure the clean motion smoothly spans243
the entire timeline (Fig. 3b). This final composite motion be-244
comes the output of the current step x̂0, which is used to sample245
xt−1 with Eq. (2) and continue the denoising process. To enable246
body part stitching, STMC assumes the denoiser operates on247
explicit poses [53, 65], rather than in a latent space [11].248

Motion cropping and denoising. The input xt at denoising249
step t extends over the duration of the entire timeline. As shown250
in Fig. 3c, we first temporally split the input into motion “crops”251
to separately denoise each text prompt. For each interval [aj,bj],252

the motion is cropped in time to x
aj:bj
t =xt[aj :bj]. The crop,253

along with the text prompt Cj, is given to the denoising model254

to predict a corresponding clean motion crop x̂
aj:bj
0 . Denoising255

each text prompt independently gives high-quality motion from256
pre-trained models since each prompt typically contains a single257
action and the interval duration is reasonably short (<10 sec).258

Two or more text prompts in the timeline may overlap in259
time, meaning the predicted clean crops will also overlap. As260
a concrete example, suppose the crops for “walking in a circle”261
and “raising right hand” are overlapping, as in Fig. 3. In this262
case, it is not clear which of the two generated motions should263
be assigned to the overlapping region. To construct a motion that264
matches both prompts, we need the leg motion from “walking265
in a circle” and the right arm motion from “raising right hand”.266
We therefore stitch together outputs from overlapping prompts267
based on automatically labeled body parts, as detailed next.268

Spatial (body-part) stitching. Spatial stitching follows269
SINC [5], which proposed to combine compatible body-part270

motions from mocap sequences through simple concatenation. 271
While SINC applies stitching only once, STMC does so at every 272
step of denoising, encouraging a more coherent composition 273
of movements by allowing the denoiser to correct any artifacts. 274
This is possible because the denoiser outputs explicit human 275
poses (i.e., we know which indices correspond to arms, legs, 276
etc. within the pose vector), so we can extract body-part mo- 277
tions from separate crops and spatially combine them to obtain 278
a composite motion. To achieve this, we first pre-process the 279
input timeline to assign a text prompt to each body part at every 280
timestep, thereby creating a separate motion timeline for every 281
body part (see Fig. 3a): left arm, right arm, torso, legs and head. 282

As shown in Fig. 3a, each text prompt in the multi-track 283
timeline is first annotated with a set of body parts involved in the 284
motion. This can be done automatically by querying GPT-3 [9] 285
as in SINC, or directly given by the user for additional creative 286
control. Then, each text prompt is assigned to its annotated 287
body parts within the corresponding time interval, which 288
assumes that body parts at overlapping intervals are compatible 289
(e.g., if a prompt is annotated with “legs”, then no other prompt 290
should involve legs throughout its entire interval). To fill in the 291
remainder of the body-part timelines where body parts have not 292
been annotated to a text prompt, heuristics similar to SINC are 293
used. Please see the Appendix B and the Fig. A.1 for full details. 294

Finally, during the denoising step (Fig. 3c), each crop x
aj:bj
t is 295

split into separated body-part motions and concatenated together 296
as specified by the body-part timelines to obtain the output x̂0. 297
Temporal stitching. Because the motion crops are denoised 298
independently, simple temporal concatenation of body-part mo- 299
tions from different text prompts will cause abrupt transitions. 300
To mitigate these potential artifacts, we apply DiffCollage [66] 301
to each body-part motion. As shown in Fig. 3b, instead of 302

directly denoising x
aj:bj
t for each text prompt, we denoise an 303

expanded time interval [aj−l,bj+l], where l is the desired over- 304
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lap length between adjacent motion crops (e.g., fixed to 0.25305
sec). Concretely, for the temporal transition between prompts j306

and k, we have x̂aj−l:bj+l
0 and x̂ak−l:bk+l

0 after denoising. We307
then unconditionally denoise a small (0.5 sec) crop of motion308
centered on the overlap between j and k to obtain x̂uncond

0 . The309
final predicted motion spanning intervals j and k is computed as310

x̂0= x̂
aj−l:bj+l
0 +x̂ak−l:bk+l

0 −x̂uncond
0 , as depicted in Fig. 3c.311

This equation derives from a factor graph representation of the312
problem, as detailed in DiffCollage [66].313

3.4. SMPL Support for Motion Diffusion Model314

While STMC works well with off-the-shelf models [53, 65]315
(see Sec. 4), we propose several practical improvements to316
MDM [53] to further enhance results. Our model, MDM-SMPL,317
employs a skinned human body SMPL [34]: we use SMPL pose318
parameters instead of the joint rotation features in the original319
pose representation of Guo et al. [18]. In contrast to models that320
use the joint position outputs from the pose representation of321
[18], this SMPL-based representation avoids the need for expen-322
sive test-time optimization [7, 71] to fit the generated motion323
on a SMPL body. Moreover, the local joint rotations in SMPL,324
which are relative to parents in the kinematic tree, are more325
amenable to body-part stitching than root-relative joint positions.326
This is because any change to a joint rotation is propagated to all327
children in the kinematic tree, unlike root-relative joint positions328
which may not be coherent when simply concatenated together.329
Additional improvements include lowering the number of330
diffusion steps to T=100 from 1000 to substantially speed up331
sampling, and various architectural changes. We provide more332
details on MDM-SMPL in Appendix D.333

4. Experiments334

We first present the data (Sec. 4.1) and the evaluation protocols335
(Sec. 4.2) used in the experiments. We then show comparisons336
with baselines quantitatively (Sec. 4.3) and with a perceptual337
study (Sec. 4.4), followed by qualitative results (Sec. 4.5). We338
conclude with a discussion of the limitations (Sec. 4.6).339

4.1. Datasets340

HumanML3D [18] is a text-motion dataset that provides tex-341
tual descriptions for a subset of the AMASS [35] and Human-342
Act12 [17] motion capture datasets. It consists of 44970 text343
annotations for 14616 motions. This dataset is used to train344
all diffusion models used in our experiments. For MDM [53]345
and MotionDiffuse [65], we use publicly available models pre-346
trained on the released version of HumanML3D with the origi-347
nal motion representation from Guo et al. [18]. Consequently,348
these methods require test-time optimization to obtain SMPL349
pose parameter outputs. For training our MDM-SMPL diffu-350
sion model, which is designed to directly generate SMPL pose351
parameters, we re-process the dataset and exclude the Human-352
Act12 subset as SMPL poses are not available for this dataset.353

Multi-track timeline (MTT) dataset. To properly evaluate our 354
new task, we introduce a new challenging dataset of 500 multi- 355
track timelines. Each timeline in the dataset is automatically 356
constructed and contains three prompts on a two-track timeline 357
(e.g., Fig. 2d). To construct these timelines, we first manually 358
collect a set of 60 texts covering a diverse set of “atomic” ac- 359
tions (e.g., “punch with the right hand”, “jump forward”, “run 360
backwards”, see Appendix C for the full list), and annotate the 361
involved body parts for each text. To serve as ground truth for 362
computing evaluation metrics (Sec. 4.2), we also select motion 363
samples from AMASS that correspond to each text. Based on 364
the atomic texts, we automatically generate timelines containing 365
three prompts and two tracks (rows). For each timeline, the first 366
track is filled with two consecutive prompts sampled from the 367
set of texts and given randomized durations. A third random 368
text with complementary body-part annotations is then placed 369
in the second track at a random location in time. 370

The main reasons for restricting the evaluation to three 371
prompts are (i) to keep the cognitive load for users low in the 372
perceptual study, subsequently increasing the reliability of the 373
results, and (ii) to construct a minimal setup where we can fairly 374
compare against baselines in a controlled setting, eliminating 375
confounding factors such as the number of prompts. Though 376
these timelines contain only three prompts, they already pose 377
a significant challenge (see Sec. 4.3). Examples of timelines 378
in the dataset are provided in Fig. A.2 and qualitative results 379
beyond three prompts can be found in the supplementary video. 380

4.2. Evaluation Metrics 381

Given the novelty of the task, identifying relevant metrics to 382
evaluate different methods is crucial. Instead of relying on a 383
single metric, we disentangle the evaluation of semantic cor- 384
rectness (how faithful individual motion crops are to the textual 385
descriptions) from that of realism (e.g., temporal smoothness). 386

Semantic metrics. Firstly, we evaluate the alignment between 387
the generated motion and the text description within the speci- 388
fied intervals on the timeline, which we term “per-crop semantic 389
correctness”. To assess this, we utilize the recent text-to-motion 390
retrieval model TMR [39]. Similar to how CLIP [42] functions 391
for images and texts, TMR provides a joint embedding space 392
that can be used to determine the similarity between a text and 393
motion. Using TMR, we encode each atomic text prompt and 394
corresponding motion from our MTT dataset to obtain ground 395
truth text and motion embeddings, respectively. Each generated 396
motion crop is also embedded and the TMR-Score, a measure of 397
cosine similarity ranging from 0 to 1, is calculated between the 398
generated motion embedding and the ground truth. We report 399
both motion-to-text similarity by comparing against the ground 400
truth text embedding (TMR-Score M2T) and motion-to-motion 401
similarity against the ground truth motion embedding (TMR- 402
Score M2M). Such embedding similarity measures are akin to 403
BERT-Score [67] for text-text, CLIP-Score [23] for image-text, 404
and more recently TEMOS-Score [4] for motion-motion similar- 405
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ity. Since TMR is trained contrastively, its retrieval performance406
is better than TEMOS [38] which only trains with positive pairs,407
leading to our decision to instead use TMR-Score. Moreover,408
its embedding space is optimized with cosine similarity, making409
the values potentially more calibrated across samples.410

Ideally, the TMR-Score M2T between a generated motion411
crop and the corresponding input text prompt should surpass412
those of other texts. Hence, we also measure motion-to-text413
retrieval metrics (as in [18]) including the frequency of the414
correct text prompt being in the top-1 (R@1) and top-3 (R@3)415
retrieved texts from the entire set of atomic texts.416

Realism metrics. Secondly, we evaluate the realism of the gen-417
erated motions, which includes transitioning smoothly between418
actions. While the Frechet Inception Distance (FID) between419
generated and ground truth motion in a learned feature space420
(e.g., TMR) is a common metric for quality, the embedding421
space of TMR is not trained on motions that are longer than 10422
sec, and may therefore be unreliable for longer motions. Hence,423
we follow DiffCollage [66] and compute the FID+ to evaluate424
transitions. The FID+ metric measures FID based on 5 random425
5-second motion crops from each timeline-conditioned motion426
generation. Following TEACH [4], we also measure the tran-427
sition distance as the Euclidean distance (in cm) between the428
poses in two consecutive frames around the transition time. We429
choose to compute this distance in the local coordinate system430
of the body to more effectively capture transitions for individual431
body parts, rather than being dominated by global motion. This432
metric is sensitive to abrupt pose changes, and a motion should433
not have high transition distance to remain realistic.434

Perceptual study. Since no quantitative metric can fully cap-435
ture the subtleties of human motion, we also conduct perceptual436
studies, where human raters on Amazon Mechanical Turk judge437
the quality of the generated motions [55]. To compare two438
generation methods, raters are presented with two videos of439
generated motions side-by-side rendered on a skeleton. The440
multi-track timeline is also visible with an animated bar that441
progresses along the timeline as the videos play. Users are442
asked which motion is more realistic and which one is better at443
following the text in the timeline; they may choose one of the444
two motions or mark “no preference”. The studies presented in445
Sec. 4.3 are performed on a set of 100 motions with multiple446
raters judging each pair. The preference for each video is deter-447
mined by a majority vote from all raters. Responses are filtered448
for quality by using three “warmup” questions at the start of449
each 15-question survey along with two “honeypot” examples450
with objectively correct answers. The honeypot examples test a451
rater’s understanding of the task: one example shows a motion452
with obviously severe limb stretching (realism understanding453
test) and the other displays a motion generated from a different454
timeline than the one displayed (timeline understanding test). If455
a rater fails to answer either of these questions correctly, all of456
their responses are discarded.457

4.3. Quantitative Comparison with Baselines 458

We apply our STMC test-time approach on the pretrained 459
diffusion models of MotionDiffuse [65], MDM [53], and 460
MDM-SMPL (ours). For each denoiser, we establish several 461
strong baselines by repurposing existing methods to the 462
timeline-conditioned generation task for comparison. Results 463
are shown in Tab. 1. Next to each method, the table indicates 464
how many tracks the input timelines have (#tracks) and how 465
many text prompts can be contained in a track (#crops). Next, 466
we introduce each baseline and analyze results. 467
Single-text input [53, 65] baseline. The simplest approach 468
to condition motion diffusion on a timeline is to convert the 469
timeline into a single text description, which aligns with the 470
model’s training input format (e.g., Fig. 2a). Given that our 471
timeline dataset is consistently comprised of three motions (A, 472
B, and C), we formulate single-text prompts as follows: “A and 473
then B while C”. While timing information can be included 474
in the prompt, e.g., “A for 4 seconds”, this is out-of-distribution 475
for models trained on HumanML3D, leading to worse results. 476
This method parallels the baseline strategies of SINC [5] for 477
spatial composition and TEACH [4] for temporal composition. 478

As shown for each denoiser in Tab. 1, this approach is 479
ineffective for both semantic correctness metrics and realism. 480
Since these models cannot generate motions longer than 10 481
sec and there is no timing information in the prompt, for this 482
experiment, outputs are limited to a maximum duration of 483
10 sec and semantic correctness metrics are reported over the 484
entire duration of the motion rather than per-crop. The poor 485
performance is a result of the models not being trained on 486
the types of complex compositional prompts that result from 487
collapsing the timeline to a single text description. 488
DiffCollage [66] baseline. Instead of converting the multi-track 489
timeline into a single prompt, one can collapse it into a single 490
track timeline containing a series of consecutive text prompts, 491
i.e., transform the problem to be one of temporal composition. 492
DiffCollage can then be used to temporally compose the se- 493
quence of actions. For example, the timeline in Fig. 2d would 494
be split into [“walking in a circle,” “walking in a circle while 495
raising the right hand,” “sitting down while raising the right 496
hand,” “sitting down”]. Note that, unlike the single-text baseline, 497
this splitting preserves the timings (#crops) in the timeline. 498

While the DiffCollage baseline generally produces smooth 499
transitions and reasonable FID scores, the semantic accuracy 500
is consistently worse than STMC. This is due to the complex 501
spatial compositions within the prompts after collapsing the time- 502
line into a single track, which models trained on HumanML3D 503
struggle with. In contrast, STMC uses body-part stitching 504
throughout denoising to compose actions from simpler prompts. 505
SINC [5] baseline. Rather than performing body-part stitching 506
iteratively at every denoising step, an alternative approach is 507
to stitch body motions together only once after all crops have 508
finished the entire denoising process. This is most similar to 509
SINC and forms the basis for two baselines that accept the full 510
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Input type Per-crop semantic correctness Realism
Method #tracks #crops R@1 ↑ R@3 ↑ TMR-Score ↑ FID ↓ Transition

M2T M2M distance ↓
Ground truth - - 55.0 73.3 0.748 1.000 0.000 1.5

MotionDiffuse [65] Single Single 10.9 21.3 0.558 0.546 0.621 1.9
DiffCollage Single Multi 22.6 43.3 0.633 0.612 0.532 4.6
SINC w/o Lerp Multi Multi 23.8 45.9 0.656 0.630 0.554 3.8
SINC w/ Lerp ′′ ′′ 24.9 46.7 0.663 0.632 0.552 1.0
STMC (ours) ′′ ′′ 24.8 46.7 0.660 0.632 0.531 1.5

MDM [53] Single Single 9.5 19.7 0.556 0.549 0.666 2.5
DiffCollage Single Multi 24.9 42.3 0.636 0.623 0.600 2.2
SINC w/o Lerp Multi Multi 21.5 41.8 0.629 0.626 0.638 10.2
SINC w/ Lerp ′′ ′′ 23.3 43.1 0.634 0.628 0.630 2.8
STMC (ours) ′′ ′′ 25.1 46.0 0.641 0.633 0.606 2.4

MDM-SMPL Single Single 12.1 23.5 0.573 0.578 0.484 1.8
DiffCollage Single Multi 29.1 49.7 0.675 0.656 0.446 1.2
SINC w/o Lerp Multi Multi 32.3 50.5 0.676 0.667 0.463 4.2
SINC w/ Lerp ′′ ′′ 31.8 51.0 0.679 0.668 0.457 1.2
STMC (ours) ′′ ′′ 30.5 50.9 0.675 0.665 0.459 0.9

Table 1. Quantitative baseline comparison: Our method STMC is compared to several strong baselines when using three different denoising
models. The single-text and DiffCollage baselines struggle to handle complex compositional prompts that results from collapsing the timeline
down to a single track. The SINC baselines produce reasonable semantic accuracy by denoising prompts independently as in STMC, but cause
abrupt or unnatural transitions with higher transition distance (underlined) or FID.

Figure 4. Perception study results: Our STMC method is preferred
over baselines by human raters for both motion realism and semantic
accuracy. (Left) Comparison against the strong SINC with Lerp
baseline. (Right) Comparison against the DiffCollage baseline.
MDM [53] is used as the denoiser in these experiments.

multi-track timeline as input, similar to STMC.511

SINC w/o Lerp concatenates body part motions at the end512
of denoising without considering temporal transitions. As513
a result, transitions tend to be abrupt as evidenced by high514
transition distances in Tab. 1 and occasional “teleporting” limbs515
in qualitative results. To mitigate this, SINC w/ Lerp employs516
linear interpolation (lerp) at transitions for smoother results,517
similar to the approach in TEACH [4]. Though this leads518
to smoothness at transitions, FID scores tend to be slightly519
higher than STMC. The cause is obvious qualitatively, where520
the generated motion often appears mechanical and unnatural,521
sometimes resulting in foot sliding. Despite issues with motion522
quality, these SINC baselines effectively capture the semantics523
of each motion crop since crops are denoised independently.524

Analysis of the results. Our method STMC consistently per-525

forms effectively across both semantic and realism metrics, 526
unlike baselines that tend to sacrifice performance in one cate- 527
gory for the other. For example, DiffCollage achieves the best 528
FID using MDM, but its inability to handle spatial compositions 529
results in worse semantics than STMC across all models. Addi- 530
tionally, SINC baselines perform best in terms of semantics for 531
MotionDiffuse and MDM-SMPL, but result in abrupt or unnatu- 532
ral transitions with FID or transition distance that is often higher 533
than STMC. Such transitions are also readily apparent in quali- 534
tative results (see supplementary video). It is also notable that 535
using MDM-SMPL with STMC performs on par with MDM 536
and MotionDiffuse, while enabling direct SMPL output and 537
significantly reducing (by 10×) the number of diffusion steps. 538
Fewer steps, combined with pre-computing text embeddings, 539
enable sampling MDM-SMPL in less than 5 seconds on average. 540
This is a substantial improvement over MDM, which takes 4 541
minutes to generate motions followed by 8 min of optimization 542
to obtain SMPL poses, on average. 543

While the performance of STMC is promising, the semantic 544
metrics for ground truth motions indicate room for improvement. 545
As discussed in Sec. 4.6, STMC is currently limited by the 546
pre-trained diffusion model that it leverages for each motion 547
crop; we expect improvements in these models to also boost 548
STMC. An additional experiment on varying the overlap length 549
for temporal stitching can be found in Appendix E. 550

4.4. Perceptual Study 551

We perform two separate user studies to compare STMC to 552
SINC with Lerp and DiffCollage when using MDM. Fig. 4 553
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Kick with the left foot Quickly walk backwards

Drink with the right hand
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Play the violin

Jumping jacks Run

Touches back of head 
with left hand
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Walk in a circle clockwise Hop to the right
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Figure 5. Qualitative results: We visualize the results of STMC with MDM-SMPL on several input timelines and color the bodies depending
on their location in the timeline. We see that STMC is capable of generating realistic motions, which capture the semantics of the given text prompts
with the desired timing and duration. In (a) and (c), STMC generates motions that precisely follow the instructions, controlling a single arm while
still performing another action. The accurate timing of intervals is demonstrated in (b) where the arms are still up in the air when transitioning
from “walking” to “jumping”, which is difficult to achieve with alternative methods. In (c) and (d), we observe that STMC is capable of generating
compositions that were not present in the ground truth data, such as “walking backwards while eating” or “walking while playing violin”.

shows results of both studies, measuring human preference for554
motion realism and semantic accuracy. On the left, STMC is555
preferred or similar to SINC 66% of the time for realism and556
62% of the time for semantic accuracy, with 4.2 raters judging557
each video on average after filtering bad responses. Compared558
to DiffCollage on the right, our method is preferred or similar559
68% of the time for realism and 70% for semantic accuracy, with560
2.8 raters judging each video after filtering. This demonstrates561
that STMC improves the motion in ways that are discernible by562
humans but may not be fully captured in quantitative metrics.563

4.5. Qualitative Results564

We visualize motions generated by STMC with MDM-SMPL565
in Figure 5, given multi-track timelines as input from our MTT566
dataset. The coloring follows the input text, prioritizing the567
newest prompt when there is an overlap across tracks. These568
results show that STMC is capable of generating realistic569
motions for complex multi-prompt timelines, which follow570
the timing and duration of the given intervals. Please see the571
caption for full analysis of these examples, and we refer to572
the supplementary video for additional qualitative results and573
comparison to generated motions from baseline methods.574

4.6. Limitations575

While STMC expands the capabilities of pre-trained motion576
diffusion models to take a multi-track timeline as input, it577

is also limited by the models that it relies on. For example, 578
our proposed body-part stitching process produces spatially 579
composed motions throughout denoising that the off-the-shelf 580
models are not trained to robustly handle. One potential 581
direction to ameliorate this is a more sophisticated stitching 582
“schedule” where body parts are not combined until later in the 583
denoising process instead of at every step. STMC also inherits 584
the limitations of SINC, e.g., restricting overlapping motions 585
to have compatible body part combinations. 586

5. Conclusion 587

In this work, we proposed the new problem of multi-track time- 588
line control for text-driven 3D human motion generation. The 589
timeline input gives users fine-grained control over the timing 590
and duration of actions, while still maintaining the simplicity 591
of natural language. We tackled this challenging problem 592
using a new test-time denoising process called spatio-temporal 593
motion collage (STMC), which enables pre-trained diffusion 594
models to handle the spatial and temporal compositions present 595
in timelines. Finally, extensive quantitative and qualitative 596
evaluation demonstrated the advantage of STMC over strong 597
baseline methods and its ability to generate realistic motions 598
that are faithful to a multi-track timeline from the user. 599
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