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Abstract

Visual Relation Extraction (VRE) is a power-
ful means of discovering relationships between
entities within visually-rich documents. Ex-
isting methods often focus on manipulating
entity features to find pairwise relations, yet
neglect the more fundamental structural infor-
mation that links disparate entity pairs together.
The absence of global structure information
may make the model struggle to learn long-
range relations and easily predict conflicted re-
sults. To alleviate such limitations, we propose
a GlObal Structure knowledge-guided relation
Extraction (GOSE) framework. GOSE initi-
ates by generating preliminary relation predic-
tions on entity pairs extracted from a scanned
image of the document. Subsequently, global
structural knowledge is captured from the pre-
ceding iterative predictions, which are then in-
corporated into the representations of the enti-
ties. This “generate-capture-incorporate” cycle
is repeated multiple times, allowing entity rep-
resentations and global structure knowledge to
be mutually reinforced. Extensive experiments
validate that GOSE not only outperforms exist-
ing methods in the standard fine-tuning setting
but also reveals superior cross-lingual learn-
ing capabilities; indeed, even yields stronger
data-efficient performance in the low-resource
setting. The code for GOSE will be available
at https://github.com/chenxn2020/GOSE.

1 Introduction

Visually-rich document understanding (VrDU)
aims to automatically analyze and extract key in-
formation from scanned/digital-born documents,
such as forms and financial receipts (Jaume et al.,
2019; Cui et al., 2021). Since visually-rich doc-
uments (VrDs) usually contain diverse structured
information, Visual Relation Extraction (VRE), as

∗ Work done during an internship at DAMO Research,
Alibaba Group.

†Corresponding author.

True Positive False Positive False Negative

（a）Conflicted Links （b）Missing Links(a) Conflicted Links (b) Missing Links

Figure 1: Incorrect relation predictions by the LiLT
model on FUNSD.

a critical part of VrDU, has recently attracted exten-
sive attention from both the academic and industrial
communities (Jaume et al., 2019; Xu et al., 2021;
Hwang et al., 2021; Wang et al., 2022a). The VRE
task aims to identify relations between semantic
entities in VrDs, severing as the essential basis of
mapping VrDs to structured information which is
closer to the human comprehension process of the
VrDs (Zhang et al., 2021b). Recently, inspired
by the success of pre-training in visually-rich doc-
ument understanding (Li et al., 2021a; Xu et al.,
2020; Wang et al., 2022a), many fine-tuning works
predict relation for each entity pair independently,
according to local semantic entity representations
derived from the pre-trained model.

Although existing VRE methods have achieved
promising improvement, they ignore global struc-
ture information, i.e. dependencies between en-
tity pairs. Without considering global struc-
ture knowledge, the model may easily predict
conflicted links and struggle to capture long-
range relations. Taking the state-of-the-art model
LiLT (Wang et al., 2022a) as an example, as shown
in Figure 1(a), although each relational entity pair
predicted by the LiLT may make sense semanti-
cally, there are conflicted relational entity pairs
such as (Labels, Blue) and (Closures, White), as
well as (Tear Tape, White) and (Cartons, White),
whose link crosses each other from a global view.

https://github.com/chenxn2020/GOSE


This phenomenon indicates that methods only us-
ing local features do not have the sufficient dis-
criminatory ability for conflicted predictions. Fur-
thermore, as shown in Figure 1(b), even though
LiLT accurately identifies the relational entity pairs
(No.OF STORES, 19) and (No.OF STORES, 18),
LiLT still hardly learns long-range relations such
as (No.OF STORES, 16) and (No.OF STORES, 17).
Our intuition is that global structure knowledge
can help the model learn long-range relations. The
model can predict the relational entity pair (No.OF
STORES, 17) by analogy with the global structure
consistency between (No.OF STORES, 17) and
(No.OF STORES, 18).

In this paper, we present the first study on lever-
aging global structure information for visual rela-
tion extraction. We focus on how to effectively
mine and incorporate global structure knowledge
into existing fine-tuning methods. It has the fol-
lowing two challenges: (1) Huge Mining Space.
Considering N entities in a VrD, the computational
complexity of capturing dependencies between en-
tity pairs is quadratic to entity pair size (N2 ×N2).
So it is difficult to mine useful global structure
information in the lack of guidance. (2) Noisy
mining process. Since the process of mining de-
pendencies between entity pairs relies on initial
entity representations and lacks direct supervision,
global structure information learned by the model
is likely to contain noise. Mined noisy global struc-
ture knowledge by a model can in turn impair the
performance of the model, especially when the
model has low prediction accuracy in the early
training stage.

To this end, we propose a general global struc-
ture knowledge-guided visual relation extraction
method named GOSE, which can efficiently and
accurately capture dependencies between entity
pairs. GOSE is plug-and-play, which can be flex-
ibly equipped to existing pre-trained VrDU mod-
els. Specifically, we first propose a global struc-
ture knowledge mining (GSKM) module, which
can mine global structure knowledge effectively
and efficiently. The GSKM module introduces a
novel spatial prefix-guided self-attention mecha-
nism, which takes the spatial layout of entity pairs
as the attention prefix to progressively guide min-
ing global structure knowledge in a local-global
way. Our intuition is the spatial layout of entity
pairs in VrDs may be a valuable clue to uncov-
ering global structure knowledge. As shown in

Figure 1(a), we can recognize crossover between
entity pairs in 2D space by computing the spatial
layout of linking lines. Furthermore, in order to
increase the robustness of GOSE and handle the
noisy mining process, we introduce an iterative
learning strategy to combine the process of entity
representations learning and global structure min-
ing. The integration of global structure knowledge
can help refine entity embeddings, while better
entity embeddings can help mine more accurate
global structure knowledge.

In summary, the contributions of our work are as
follows:

• We propose a global structure knowledge-
guided visual relation extraction method,
named GOSE. It can use the spatial layout as a
clue to mine global structure knowledge effec-
tively and leverage the iterative learning strat-
egy to denoise global structure knowledge.

• GOSE can be easily applied to existing pre-
trained VrDU models. Experimental re-
sults on the standard fine-tuning task over 8
datasets show that our method improves the
average F1 performance of the previous SOTA
models by a large margin: LiLT(+14.20%)
and LayoutXLM(+12.88%).

• We further perform comprehensive exper-
iments covering diverse settings of VRE
tasks, such as cross-lingual learning, and low-
resource setting. Experimental results illus-
trate advantages of our model, such as cross-
lingual transfer and data-efficient learning.

2 Preliminaries

In this section, we first formalize the visually-rich
document relation extraction task and then briefly
introduce how the task was approached in the past.

2.1 Problem Formulation
The input to the VRE task is a scanned image
of a document. Each visually rich document
contains a set of semantic entities, and each en-
tity is composed of a group of words and coor-
dinates of the bounding box. We use a lower-
case letter e to represent semantic entity, where
e = {[w1, w2, ..., wk], [x1, y1, x2, y2]}. The se-
quence [w1, w2, ..., wk] means the word group,
x1/x2 and y1/y2 are left/right x-coordinates and
top/down y-coordinates respectively. The corre-
sponding boldface lower-case letter e indicates its
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Figure 2: An illustration of the proposed GOSE framework. (a) The overview of GOSE. The framework consists of
a Base module to generate initial key/value features based on entity representations from a pre-trained VrDU model,
a relation feature generation (RFG) module to generate a relation feature for each entity pair, and a global structure
knowledge mining (GSKM) module to mine global structure information in a local-global way. Besides, the RFG
and GSKM modules are performed K times in an iterative way to generate final predictions. (b) Spatial prefix
construction. The spatial geometric features of entity pairs are computed as the spatial prefix to guide attention.

embedding. Let E and R represent the set of enti-
ties and relations respectively, where E = {ei}Ni=1,
R = {(ei, ej)} ⊆ E × E , (ei, ej) mean the key-
value entity pair and the directed link from ei to ej .
So each visually rich document can be denoted as
D = {E ,R}. The goal of VRE task is to determine
whether a relation (link) exists between any two
semantic entities. Notably, the semantic entity may
exist relations with multiple entities or does not
have relations with any other entities.

2.2 Fine-tuning for Visual Relation Extraction

Inspired by the success of pre-training in visually-
rich document understanding, most existing meth-
ods (Jaume et al., 2019; Xu et al., 2021; Wang et al.,
2022a) fine-tune pre-trained VrDU model for VRE
task. These methods take entity representations
from a pre-trained VrDU model as input and then
train a binary classifier to predict relations for all
possible semantic entity pairs. Specifically, these
methods project entity representations to key/value
features respectively by two FFN layers. The fea-
tures of key and value are concatenated and fed into
a binary classifier to compute loss.

3 Methodology

In this section, we describe the proposed frame-
work named GOSE in detail. As shown in Fig-
ure 2, our method consists of three main modules, a
Base module, a Relation Feature Generation (RFG)

module, and a Global Structure Knowledge Min-
ing (GSKM) module. In Section 3.1, we present
how the Base module can be combined with a pre-
trained VrDU model to generate initial key/value
features. In Section 3.2, we introduce the RFG
module to generate relation features. Then, in Sec-
tion 3.3, we elaborate on how the GSKM module
mines global structure knowledge in a local-global
way. We further provide a theoretical analysis to
better understand the efficient and effective features
of the GSKM module. Finally, we show how to ap-
ply our iterative learning strategy to mine accurate
global structure knowledge in Section 3.4.

3.1 Base Module
Given a visually rich document, the Base mod-
ule first generates preliminary key/value features,
which is same as most fine-tuning methods (Xu
et al., 2021; Gu et al., 2022; Wang et al., 2022a).
Specifically, we use a pre-trained VrDU model to
obtain semantic entity representations. Then entity
representation e is fed into two separated Feed-
Forward Networks (FFN) to generate the initial
key feature and value feature (denoted as H(0)

k and
H

(0)
v respectively), as written with Eq. (1):

H
(0)
k = Wkeye + bkey,

H(0)
v = Wvaluee + bvalue,

(1)

where Wkey/value ∈ R2dh×dh are trainable weights
and bkey/value ∈ Rdh are trainable biases.



3.2 Relation Feature Gneration (RFG)
Module

Taking key/value features as input, the RFG module
generates relation features for all entity pairs. We
denote key/value features at the t-th iteration as
H

(t)
k and H

(t)
v respectively, where H

(t)
k/v ∈ RN×dh .

At the t-th iteration, the RFG module concatenates
H

(t)
k and H

(t)
v as input and uses a bi-affine classifier

to compute the relation logits of each entity pairs
with Eq.(2):

l(t) = H
(t)
k W1H

(t)
v +H

(t)
k W2, (2)

where l(t) ∈ RN×N×2 denotes relation logits at the
t-th iteration. Then we employ a FFN block to
generate a unified relation feature map (denoted
as R(t) ∈ RN×N×dh), which contains relation fea-
tures of all entity pairs. the relation feature map is
calculated as follows:

R(t) = Wrl
(t) + br, (3)

where Wr ∈ R2×dh is trainable weight and br ∈
Rdh is trainable biases.

3.3 Global Structure Knowledge Mining
(GSKM) module

The GSKM module mines the global structure
knowledge on the relation feature map in a local-
global way. As illustrated in Figure 2, this mod-
ule consists of a spatial prefix-guided local self-
attention (SPLS) layer and a global interaction
layer. The SPLS layer first partitions the relation
feature map into multiple non-overlapping win-
dows and then performs spatial prefix-guided local
self-attention independently in each window. The
global interaction layer brings long-range depen-
dencies to the local self-attention with negligible
computation cost.

3.3.1 Spatial Prefix-guided Local
Self-attention (SPLS) Layer

To address the challenge of mining global structure
knowledge in a large computational space, we con-
sider the spatial layout information of entity pairs
in VrDs to guide self-attention computation. Most
of existing VrDU methods independently encode
the spatial information of each entity in the pre-
training phase (i.e., the coordinate information of
the bounding boxes in 2D space). However, it is
necessary to insert spatial layout information of
entity pairs explicitly in the fine-tuning phase (i.e.,

the spatial information of linking lines between
bounding boxes in 2D space). Therefore, inspired
by the success of prompt learning (He et al., 2022;
Li et al., 2023a) we propose a spatial prefix-guided
local self-attention (SPLS) layer to mine global
structure knowledge in a parameter-efficient man-
ner.
Spatial Prefix Construction. We calculate spatial
geometric features (denoted as S ∈ RN×N×dh)
of linking lines between each entity pair as the
spatial prefix. As shown in Figure 2(b), for an
entity pair (ei, ej), we calculate the direction and
Euclidean distance of the line linking from the ver-
tice (xi, yi) of the bounding box of ei to the same
vertice (xj , yj) of ej as follows:

gi,j = [Wθθ(i, j);Wdd(i, j)],

d(i, j) =
√
(xi − xj)2 + (yi − yj)2,

θ(i, j) = arctan
yj − yi
xj − xi

,

(4)

where Wθ/d ∈ R1× dh
6 are trainable weights. There-

fore the spatial geometric features Si,j of entity pair
(ei, ej) is calculated as follows:

Si,j = [gtli,j ; g
ct
i,j ; g

br
i,j ], (5)

where gtl, gct, gbr indicate top-left, center, and
bottom-right points respectively. Then we treat S
as the spatial prefix and compute attention on the
hybrid keys and values.
Spatial Prefix-guided Attention. We first parti-
tion R(t) into non-overlapping windows and then
perform spatial prefix-guided local attention within
each local window. The variant formula of self-
attention with the spatial prefix as follows 1:

R
(t)
local = softmax

(
R(t)Wq[SW

s
k ;R

(t)Wk]
⊤) [ SW s

v

R(t)Wv

]
= softmax(Q(t)

R [Sk;K
(t)
R ]⊤)

[
Sv

V
(t)
R

]
= (1− λ(R(t)))Attn(Q(t)

R ,K
(t)
R ,V

(t)
R )︸ ︷︷ ︸

standard attention

+ λ(R(t))Attn((Q(t)
R , Sk, Sv)︸ ︷︷ ︸

spatial-prefix guided attention

,

(6)

λ(R(t)) =

∑
i exp(Q

(t)
R S⊤

k )i∑
i exp(Q

(t)
R S⊤

k )i +
∑

j exp(Q
(t)
R K

(t)⊤

R )j
,

(7)

1Without loss of generalization, we ignore the scaling fac-
tor

√
d of the softmax operation for the convenience of expla-

nation.



where R
(t)
local refers to the local attention output at

the t-th iteration, λ(R(t)) denotes the scalar for the
sum of normalized attention weights on the key and
value vectors from spatial prefix.

3.3.2 Global Interaction Layer (GIL)
After the SPLS layer effectively aggregates local
correlations with window priors, we introduce a
global interaction layer to bring long-range de-
pendencies to the local self-attention. As illus-
trated in Figure 2, we use learnable global tokens
T ∈ RM×dh to compute the global interaction at
the t-th iteration as follows:

T̂ (t) = Attn(Q(t)
T ,K

(t)
R ,V

(t)
R ),

R
(t)
global = Attn(Q(t)

R ,K
(t)

T̂
, V

(t)

T̂
),

(8)

where R
(t)
global refers to the global interaction at the

t-th iteration. T will be updated in the same way
as Hk/v throughout the iterative learning process.
Subsequently, we compute R(t+1) and employ the
mean pooling operation to obtain the context-aware
key and value features as:

R(t+1) = R
(t)
local +R

(t)
global,

Ĥ
(t+1)
k/v = mean-pooling(R(t+1)),

(9)

where Ĥ
(t+1)
k/v contain global structure information.

Analysis of GSKM. Here we give some analysis to
help better understand GSKM, especially effective
and efficient features.
Effectiveness. GSKM can effectively learn global
structure knowledge guided by spatial layout in-
formation in VrDs. As shown in Eq. 6, the first
term Attn(Q(t)

R ,K
(t)
R ,V

(t)
R ) is the standard atten-

tion in the content side, whereas the second term
represents the 2D spatial layout guidelines. In this
sense, our method implements 2D spatial layout
to guide the attention computation in a way simi-
lar to linear interpolation. Specifically, the GSKM
module down-weights the original content atten-
tion probabilities by a scalar factor (i.e., 1−λ) and
redistributes the remaining attention probability λ
to attend to spatial-prefix guided attention, which
likes the linear interpolation.
Efficiency. GSKM can reduce the computation
complexity N4 to N2 × S2, where S denotes win-
dow size. In the SPLS layer, with a relation fea-
ture map R(t) ∈ RN×N×dh as input, we parti-
tion R(t) into non-overlapping windows with shape
(NS × N

S , S × S, dh) to reduce the computation

complexity N4 of self-attention to (NS × N
S ) ×

(S × S)2 = N2 × S2, where S denotes window
size. Meanwhile, the computation complexity of
the global interaction layer (N2×M ) is negligible,
as the number of global tokens M is much smaller
than the window size S2 in our method.

3.4 Iterative Learning

To alleviate the noisy mining process, we further
propose an iterative learning strategy to enable
global structure information and entity embeddings
mutually reinforce each other. Specifically, we in-
corporate global structure knowledge into entity
representations through a gating mechanism:

g = sigmoid(Wg[H
(t)
k/v; Ĥ

(t+1)
k/v ] + bg)

H
(t+1)
k/v = H

(t)
k/v + g · Ĥ(t+1)

k/v

(10)

Finally, these new key and value features are fed
back to the classifier for the next iteration. After
repeating this iterative process K times, we get
updated key and value features H(K)

k/v to compute

final logits l(K). Finally, we calculate Binary Cross
Entropy (BCE) loss based on l(K) as follows 2:

L =
N∑
i=1

N∑
j=1

ℓ(l
(K)
i,j , yi,j) (11)

where yi,j ∈ [0, 1] is binary ground truth of the
entity pair (ei, ej), ℓ(., .) is the cross-entropy loss.

4 Experiments

In this section, we perform detailed experiments
to demonstrate the effectiveness of our proposed
method GOSE among different settings. Besides
the standard setting of typical language-specific
fine-tuning (section 4.2), we further consider more
challenging settings to demonstrate the generaliz-
ability of GOSE such as cross-lingual zero-shot
transfer learning (section 4.3) and few-shot learn-
ing (section 4.4). Before discussing the results, we
provide the details of the experimental setup below.

4.1 Experimental Setup

4.1.1 Datasets
FUNSD (Jaume et al., 2019) is a scanned document
dataset for form understanding. It has 149 training
samples and 50 test samples with various layouts.

2To make a fair comparison with baselines, we use the
same binary classification training strategy.



Structure Information Model
FUNSD XFUND

Avg.
EN ZH JA ES FR IT DE PT

Text-only
XLM-RoBERTa 0.2659 0.5105 0.5800 0.5295 0.4965 0.5305 0.5041 0.3982 0.4769
InfoXLM 0.2920 0.5214 0.6000 0.5516 0.4913 0.5281 0.5262 0.4170 0.4910

Local
LayoutXLM 0.5483 0.7073 0.6963 0.6896 0.6353 0.6415 0.6551 0.5718 0.6432
XYLayoutLM - 0.7445 0.7059 0.7259 0.6521 0.6572 0.6703 0.5898 -
LiLT 0.6276 0.7297 0.7037 0.7195 0.6965 0.7043 0.6558 0.5874 0.6781

Global
GOSELayoutXLM 0.5926 0.8631 0.8258 0.8375 0.7729 0.8035 0.7780 0.7026 0.7720(+12.88%)

GOSELiLT 0.7697 0.8752 0.8096 0.8595 0.8646 0.8415 0.8023 0.7384 0.8201 (+14.20%)

Table 1: Language-specific fine-tuning F1 accuracy on FUNSD and XFUND (fine-tuning on X, testing on X)."Text-
only" denotes pre-trained textual models without structure information, "Local" denotes pre-trained VrDU models
with local features, and "Global" denotes using global structure information.

Structure Information Model
FUNSD XFUND

Avg.
EN ZH JA ES FR IT DE PT

Text-only
XLM-RoBERTa 0.2659 0.1601 0.2611 0.2440 0.2240 0.2374 0.2288 0.1996 0.2276
InfoXLM 0.2920 0.2405 0.2851 0.2481 0.2454 0.2193 0.2027 0.2049 0.2423

Local
LayoutXLM 0.5483 0.4494 0.4408 0.4708 0.4416 0.4090 0.3820 0.3685 0.4388
LiLT 0.6276 0.4764 0.5081 0.4968 0.5209 0.4697 0.4169 0.4272 0.4930

Global
GOSELayoutXLM 0.5926 0.5696 0.5556 0.5124 0.5295 0.4168 0.4325 0.4363 0.5056 (+6.68%)

GOSELiLT 0.7697 0.6930 0.6805 0.7072 0.7145 0.6355 0.5997 0.5830 0.6729 (+17.99%)

Table 2: Cross-lingual zero-shot transfer F1 accuracy on FUNSD and XFUND (fine-tuning on FUNSD, testing on
X).

XFUND (Xu et al., 2021) is a multilingual form
understanding benchmark. It includes 7 languages
with 1,393 fully annotated forms. Each language
includes 199 forms. where the training set includes
149 forms, and the test set includes 50 forms.

4.1.2 Baselines

We use the following baselines: (1) text-only
pre-trained models without structure information:
XLM-RoBERT (Conneau et al., 2020), InfoXLM
(Chi et al., 2021); (2) layout-aware pre-trained
VrDU models with local structure information:
LayoutXLM (Xu et al., 2021), XYLayoutLM (Gu
et al., 2022), LiLT (Wang et al., 2022a). All of
the experimental results of these baselines are from
their original papers directly, except for the results
on the few-shot learning task 3.

4.1.3 Experiment Implementation

We use the bi-affine classifier and binary classifi-
cation training loss over all datasets and settings
following (Wang et al., 2022a) for a fair compar-
ison. The entity representation is the first token
vector in each entity. For the few-shot learning
task, we randomly sample training samples over
each shot five times with different random seeds,

3We re-implement the results using the official code.

and report the average performance under five sam-
pling times for a fair comparison. More details
of the training hyper-parameters can be found in
Appendix A.

4.2 Language-specific Fine-tuning
We compare the performance of GOSE applied to
the language-specific fine-tuning task. The experi-
mental results are shown in Table 1. First, all VRE
methods with structure information outperform the
text-only models XLM-RoBERT and InfoXLM,
which indicates structure information plays an im-
portant role in the VrDU. Second, while pre-trained
VrDU models have achieved significant improve-
ment over text-only models, our method still outper-
forms them by a large margin. This phenomenon
denotes that incorporating global structure informa-
tion is generally helpful for VRE. Compared to the
SOTA method LiLT (Wang et al., 2022a), GOSE
achieves significant improvements on all language
datasets and has an increase of 14.20% F1 accuracy
on the average performance. Third, we further ob-
serve that our GOSE is model-agnostic, which can
consistently improves diverse pre-trained models’
relation extraction performance on all datasets. For
example, GOSE has an improvement of 12.88%
F1 accuracy on average performance compared to
LayoutXLM (Xu et al., 2021).
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Figure 3: Average performances of few-shot setting
on FUNSD dataset. We report the results of random
sampling five times over each shot.

4.3 Cross-lingual Transfer Learning

We evaluate GOSE on the cross-lingual zero-shot
transfer learning task. In this setting, the model is
only fine-tuned on the FUNSD dataset (in English)
and evaluated on each specific language dataset.
We present the evaluation results in Table 2. It
can be observed that GOSE significantly outper-
forms its competitors and consistently improve di-
verse backbone encoders’ relation extraction perfor-
mance on all datasets. This verifies that GOSE can
capture the common global structure information
invariance among different languages and transfer
it to other languages for VRE. We observe that the
performance improvement of GOSE(LayoutXLM)
is not as significant as GOSE(LiLT). This may be
attributed to that the architecture of LiLT decou-
pling the text and layout information makes it easier
to learn language-independent structural informa-
tion, which is consistent with the observation of
previous works (Wang et al., 2022a). We further
evaluate GOSE on the Multilingual learning task,
the results are shown in Appendix B.

4.4 Few-shot Learning

Previous experiments illustrate that our method
achieves improvements using full training sam-
ples. We further explore whether GOSE could mine
global structure information in the low-resource set-
ting. Thus, we compare with the previous SOTA
model LiLT on few-shot settings. The experimen-
tal results in Figure 3 indicate that the average per-
formance of GOSE still outperforms the SOTA
model LiLT. Notably, our GOSE achieves a com-
parable average performance (67.82%) on FUNSD
dataset using only 64 training samples than LiLT
does (62.76%) using full training samples, which
further proves that our proposed method can more
efficiently leverage training samples. This success
may be attributed to the incorporation of global

Method
Components F1 Accuracy↑

GIL Spatial-Prefix GSKM EN ZH

GOSE ! ! ! 0.7697 0.8752

1 w/o GIL % ! ! 0.7384 0.8643
2 w/o Spatial-Prefix ! % ! 0.7029 0.8161
3 w/o GSKM % % % 0.6902 0.8037

Table 3: Ablation study of our model using LiLT as the
backbone on the FUNSD and XUND (ZH). The symbol
EN denotes FUNSD and ZH means chinese language.

structure knowledge can improve the generaliza-
tion of the model.

4.5 Ablation Study

Effectiveness of individual components. We fur-
ther investigate the effectiveness of different mod-
ules in our method. we compare our model with
the following variants in Table 3.

(1) w/o GIL. In this variant, we remove the global
interaction layer from GSKM. This change means
that the GSKM module only performs local self-
attention. The results shown in Table 3 suggest that
our GIL can encourage the GSKM module to better
exploit dependencies of entity pairs.

(2) w/o Spatial-Prefix. In this variant, we remove
the spatial prefix-guided interaction. This change
causes a significant performance decay. This sug-
gests the injection of additional spatial layout infor-
mation can guide the attention mechanism attend-
ing to entity pairs with similar spatial structure and
thus help the model learn global structural knowl-
edge.

(3) w/o GSKM. In this variant, we remove the
GSKM module from GOSE. This change means
the model only obtains context-aware relation fea-
tures through a mean-pooling operation. The re-
sults shown in Table 3 indicate that although the
mean-pooling operation can achieve a performance
improvement, the GSKM module can mine more
useful global structure information.
Ablation of Iteration Rounds. The highlight of
our GOSE is mining global structure knowledge
and refining entity embeddings iteratively. We ar-
gue that these two parts can mutually reinforce each
other: the integration of global structure knowledge
can help refine entity embeddings. On the contrary,
better entity embeddings can help mine more accu-
rate global structure knowledge. Thus, we evaluate
the influence of the iteration rounds. The results
are shown in 5(a), which indicates GOSE usually
achieves the best results within small number of
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Figure 4: The visualization of examples in FUNSD and XFUND(ZH). The left of each example is LiLT and the
right is GOSE(LiLT). The arrows in blue, red and orange denote true positive, false positive and false negative
(missed) relations respectively. Best viewed by zooming up.
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Figure 5: F1 performances of our model using LiLT as
the backbone. The symbol EN denotes FUNSD dataset
and ZH means XFUND(in chinese). (a) Ablation of
iteration rounds. (b) Ablation of global tokens.

iteration rounds. In addition, we investigate the per-
formance of different information under multiple
iterations in Appendix C.
Ablation of Global Tokens. We further investigate
the effect of the number of global tokens in the GIL
on our model. The results are shown in Figure 5
(b), which denotes GOSE can achieve optimal re-
sults within a small number of global tokens, while
keeping efficiency.

4.6 Further Analysis
Case Study. To better illustrate the effectiveness
of global structure knowledge, we conduct the spe-
cific case analysis on the VRE task as shown in
Figure 4. Through the visualization of examples,
we can notice: (1) as shown in Figure 4(a), GOSE
can greatly mitigate the prediction of conflicted
links which reveals that our method can capture
global structure knowledge to detect conflicted in-
teractions between entity pairs. (2) as shown in
Figure 4(b), GOSE can learn long-range relations
by analogy with the linking pattern of entity pairs,
while keeping a good recall. Notably, it is also
difficult for GOSE to predict long-range relations
where is not sufficient global structure knowledge.
For example, GOSE does not predict well relations

of the entity "Section A", due to there are few top-
to-bottom and one-to-many linking patterns.
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Figure 6: The attention weight visualization between
the entity pair (TO:, Sam Zolot) and other spatial prefix
of entity pairs.

Visualization of Attention over Spatial Infor-
mation. To illustrate the effect of our proposed
spatial prefix-guided local self-attention. We cal-
culate the attention scores over the spatial infor-
mation for the document in Figure 5(a), i.e., the
spatial-prefix guided attention weights using Equa-
tion (6). As shown in Figure 6, the entity pair (TO:,
Sam Zolot) pays more attention towards the entity
pair (FROM:, D.J.Landro) and (DATE:, 2-DEC-
97). This phenomenon indicates that the injection
of additional spatial layout information of entity
pairs can guide the attention mechanism attending
to entity pairs with similar spatial structure, thereby
enhancing the capacity of the model to discern pre-
cise dependencies between entity pairs.

5 Related Works

5.1 Visual Relation Extraction

Visual relation extraction (VRE) aims at identifying
relations between semantic entities from visually-
rich documents. Early methods based on graph
neural networks (Zhang et al., 2021b; Tang et al.,
2021; Li et al., 2021b, 2022b, 2023c) learned node
features by treating semantic entities as nodes in



a graph. Recently, most studies (Li et al., 2020;
Wang et al., 2022a; Gu et al., 2022; Huang et al.,
2022b), used the self-supervised pre-training and
fine-tuning techniques to boost the performance
on document understanding. Although they have
achieved significant improvement on VIE tasks, es-
pecially on the semantic entity recognition (SER)
task (Peng et al., 2022). VRE remains largely un-
derexplored and is also a challenging task. In this
paper, we focus on mining global structure knowl-
edge to guide relation extraction. To the best of our
knowledge, our work is the first attempt to exploit
dependencies of entity pairs for this task.

5.2 Efficient Transformers

Efficient transformers (Dong et al., 2019; Li et al.,
2019; Tay et al., 2020; Beltagy et al., 2020; Ryoo
et al., 2021; Zhang et al., 2021a; Li et al., 2022c)
are a class of methods designed to address the
quadratic time and memory complexity problems
of vanilla self-attention. More similar to us are
methods that leverage down-sampling to reduce the
resolution of the sequence, such as window-based
vision transformers (Liu et al., 2021; Yang et al.,
2021; Huang et al., 2022a; Wang et al., 2022b).
Different from existing methods, we propose the
spatial prefix-guided attention mechanism, which
leverages spatial layout properties of VrDs to guide
GOSE to mine global structure knowledge.

6 Discussion

Recently, The Multimodal Large Language Model
(MLLM) (Li et al., 2022a; Yin et al., 2023) has
emerged as a pioneering approach. MLLMs lever-
age powerful Large Language Models (LLMs) as
a brain to perform multimodal tasks. The sur-
prising emergent capabilities of MLLM, such as
following zero-shot demonstrative instructions (Li
et al., 2023b) and OCR-free math reasoning (Zhu
et al., 2023; Dai et al., 2023), are rare in tradi-
tional methods. Several studies (Xu et al., 2023;
Liu et al., 2023) have conducted comprehensive
evaluations of publicly available large multimodal
models. These investigations reveal that MLLMs
still struggle with the VIE task. In this paper, we
introduce and empirically validate that global struc-
tural knowledge is useful for visually-rich docu-
ment information extraction. Our insights have
the potential to shape the advancement of large
model technology in the domain of visually-rich
documents.

7 Conclusion

In this paper, we present a general global struc-
ture knowledge-guided relation extraction method
for visually-rich documents, which jointly and it-
eratively learns entity representations and mines
global dependencies of entity pairs. To the best
of our knowledge, GOSE is the first work lever-
aging global structure knowledge to guide visual
relation extraction. Concretely, we first use a base
module that combines with a pre-trained model to
obtain initial relation predictions. Then, we further
design a relation feature generation module that
generates relation features and a global structure
knowledge mining module. These two modules
perform the "generate-capture-incorporate” pro-
cess multiple times to mine and integrate accurate
global structure knowledge. Extensive experimen-
tal results on three different settings (e.g., standard
fine-tuning, cross-lingual learning, low-resource
setting) over eight datasets demonstrate the effec-
tiveness and superiority of our GOSE.
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Limitations

The proposed work still contains several limitations
to address in future work, as follows:
Method. One limitation of our method is that it
cannot capture global structure information from
informative visual clues. The visual features in
visually-rich documents such as font size and color
may provide diverse structure information. For
example, section titles in resumes and job ads are
often in fonts different from the content. We leave
this for future work.
Task. We only evaluate the visual relation extrac-
tion task covering diverse settings. Due to the lim-
ited budget and computation resources, we cannot



afford evaluation on more tasks related to visually-
rich documents. We will plan to evaluate the pro-
posed approach on more visual information extrac-
tion tasks such as semantic entity recognition.
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A Hyperparameters

All of our experiments are performed on one
NVIDIA 3090 GPU with the PyTorch (Paszke
et al., 2019) framework. We use a mini-batch
AdamW (Loshchilov and Hutter, 2018) optimizer
with a weight decay of 0.1. The model is trained
with a batch size of 2. The window size is fixed to
64. In the Language-Specific Fine-tuning experi-
ments for all languages, the learning rate, steps are
set to 6.25×10−6,2×104 accordingly on LiLT en-
coder, while 2.5× 10−5,4× 104 on the Layoutxlm
encoder. In the multilingual learning experiments,
we use the full language-specific data for train-
ing, with total steps 1.6× 105. In the cross-lingual
zero-shot transfer learning experiments, we directly
evaluate the model, which was trained in the previ-
ous language-specific experiments, on the XFUND
dataset.

B Multilingual Learning

We evaluate GOSE on the multilingual learning set-
ting. In this setting, the model is fine-tuned with all
8 languages simultaneously and evaluated on each
specific language. From the experimental results
shown in Table 4, we can find that although this
setting further improves the baseline model per-
formance compared to the language-specific fine-
tuning, our method GOSE once again outperforms
its counterparts by a large margin. We hold that
the superior performance of our method GOSE can
be attributed to the fact that the previous method
still does not learn sufficient global structure infor-
mation in multilingual learning. This finding also
demonstrates that mining global structure informa-
tion is beneficial for the VRE task.

Model FUNSD XFUND (Avg.)

Text-only
XLM-RoBERTa 0.3638 0.6727
InfoXLM 0.3699 0.6495

Local
LayoutXLM 0.6671 0.7988
LiLT 0.7407 0.8228

Global
GOSELayoutXLM 0.7755 0.8656
GOSELiLT 0.9003 0.8994

Table 4: Multilingual fine-tuning F1 accuracy on
FUNSD and XFUND (fine-tuning on 8 languages all,
testing on X).

C Effect of Different Information

We show the performance of our GOSE (LiLT) un-
der multiple iterations in Figure 7. We can observe
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Figure 7: F1 performances of different information of
our GOSE (LiLT) under multiple iterations on FUNSD
dataset.

that (1) when the iterative learning process begins,
both global structural features and entity representa-
tions progressively enhance and mutually reinforce
each other. (2) In scenarios where the number of
iteration rounds stands at zero, i.e., without itera-
tive learning. The performance of global structure
information is poor. This may be because the initial
entity representations obtained from the pre-trained
model are not strong, thus the mined structural in-
formation without iterative optimization is noisy.
(3) As the number of iteration rounds increases to
a certain point, the performance of the model de-
creases. This phenomenon can be attributed to too
many iteration rounds that can cause mined global
structural information to become over-smoothing
thus affecting the final performance of our model.


