
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MATCHMAKER: SCHEMA MATCHING WITH SELF-
IMPROVING COMPOSITIONAL LLM PROGRAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Schema matching – the task of finding matches between attributes across disparate
data sources with different tables and hierarchies – is critical for creating interoper-
able machine learning (ML)-ready data. Addressing this fundamental data-centric
problem has wide implications, especially in domains like healthcare, finance and
e-commerce — but also has the potential to benefit ML models more generally, by
increasing the data available for ML model training. However, schema matching is
a challenging ML task due to structural/hierarchical and semantic heterogeneity
between different schemas. Previous ML approaches to automate schema matching
have either required significant labeled data for model training, which is often
unrealistic or suffer from poor zero-shot performance. To this end, we propose
Matchmaker - a compositional language model program for schema matching, com-
prised of candidate generation, refinement and confidence scoring. Matchmaker
also self-improves in a zero-shot manner without the need for labeled demonstra-
tions via a novel optimization approach, which constructs synthetic in-context
demonstrations to guide the language model’s reasoning process. Empirically, we
demonstrate on real-world medical schema matching benchmarks that Matchmaker
outperforms previous ML-based approaches, highlighting its potential to accelerate
data integration and interoperability of ML-ready data.

1 INTRODUCTION

The success of machine learning (ML) models hinges on a critical yet often overlooked challenge:
access to large, integrated and interoperable datasets (Jain et al., 2020; Gupta et al., 2021; Renggli
et al., 2021; Sambasivan et al., 2021). Although well-structured and uniform datasets like those on
Kaggle are commonly assumed as the norm, such data is a rare luxury in practice. In real-world
scenarios, tabular data often exists in heterogeneous and disparate databases with diverse formats,
schemas, and terminologies, requiring harmonization to make the data "ML-ready" and interoperable.
The heterogeneity of databases presents three critical issues for ML: (1) data harmonization and
integration is an arduous task. Hence, researchers often limit the features/covariates used for model
training to a smaller, often common, set of features (Avati et al., 2021; Si et al., 2021; Rajkomar et al.,
2018), thereby limiting the potential performance of their ML models; (2) even if all the features are
used, the lack of data interoperability means limited external validation of ML models (Balch et al.,
2023; Lehne et al., 2019; Williams et al., 2022; Tiwari et al., 2020; Colubri et al., 2019), which can
undermine the credibility and utility of the ML models; and (3) missed opportunities for insights
on larger harmonized datasets (e.g., larger patient populations), which may not be apparent when
analyzing data sources independently.

Schema matching is a critical first step in data harmonization, aiming to establish correspondences
between attributes (i.e., features/covariates) measured across different data sources. Once matched,
these correspondences can help harmonize data from disparate sources into a cohesive, ML-ready
format. To understand the concept of schema matching, let us unpack the components of a schema. A
schema defines how data is organized in a database, comprising different tables (collections of related
data entries) and columns (also known as "attributes" or "features") that represent specific data fields.
Importantly, schemas go beyond simple tabular data commonly found in CSV files, as they capture
the hierarchical structure and relationships between different tables and their attributes. For example,
in healthcare, schemas from different hospitals may have varying tables and attributes representing
patient information, lab measurements, diagnoses and treatments, with complex relationships and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Admissions-admittime

PERSON

OBSERVATION

VISIT_DETAIL

VISIT_OCCURENCE

PROVIDER

MEASUREMENT

…

patients-dod_hosp

visit_occurrence_id

person_id

visit_start_datetime

provider_id

visit_source_value

care_site_id

visit_start_date

Search challenge:
Information Mismatch
(No Match possible) Search challenge:

Table identification
(Database
heterogeneity)

Search challenge:
Attribute identification
(Structural & Semantic
heterogeneity)

?

…

Target SchemaSource Schema

25 Tables in Schema 37 Tables in Schema

Differences in schemas: Database & Structural heterogeneity

Figure 1: Example showing the complexity of schema matching due to the multi-faceted challenges: Database
heterogeneity (green arrows): Identifying the correct target table is the first step, as each schema has a
different number of tables, the corresponding information may be distributed differently across tables in each
schema. Structural heterogeneity (green arrows): Once the appropriate table is found, matching attributes is
complicated by differences in schema architectures, hierarchies, and granularity. Textual heterogeneity (green
arrows): Ambiguity in matching when attributes have the same names but different meanings, or different
names with the same meaning. Information mismatch (red arrows): Some attributes in one schema may lack
a corresponding match in the other schema, adding to the complexity of the matching process.

hierarchies connecting the tables. Consequently, schema matching involves analyzing the context of
attributes within the schema hierarchy to establish meaningful mappings that preserve the intended
semantics and relationships. It goes beyond simple one-to-one column matching, considering not
only the attribute itself but also the hierarchical structure and relationships between tables defined by
the schema. Notably, schema matching does not assume access to raw data, relying on only attribute
names, descriptions and metadata (e.g., in healthcare, patient data cannot be queried or accessed
directly due to privacy concerns or regulations (Zhang et al., 2021)).

The importance and value of schema matching cannot be overstated, as integrating data from various
data sources such as different regions, organizations or applications is vital in healthcare but also in
finance and e-commerce (Sheetrit et al., 2024; Zhang et al., 2021; El Haddadi et al., 2024). Schema
matching is also generally valuable to anyone working on ML, as a step toward increasing the training
and validation data available to the ML community for model training. e.g, in healthcare, integrating
data from multiple hospitals can lead to more comprehensive datasets to train more performant
ML prognostic models. Similarly, in e-commerce, combining diverse customer data from various
platforms can enable more accurate ML models built on customer data.

Unfortunately, prior ML approaches for "automated" schema matching often require extensive labeled
data (Li et al., 2020; Zhang et al., 2021), which is often costly and time consuming to acquire, making
these methods impractical for real-world use. Although LLM-based methods (Narayan et al., 2022;
Mirchandani et al., 2023) have attempted to address this, they have poor zero-shot performance
and poor scalability in terms of the number of LLM calls. These limitations have hindered the
adoption of ML for schema matching, meaning schema matching is still a largely manual and time-
consuming task. To highlight the need for automated and better performing ML schema matching, in
the healthcare domain, it took 500 hours for two experts to map the schemas between the MIMIC
database and the OMOP common data model (Paris et al., 2021), demonstrating the substantial and
non-trivial effort required.

Despite the need, schema matching is a challenging ML task, as shown in Fig. 1, as without access to
the raw data, schema matching methods must rely only on the attribute names and other metadata
to infer correspondences between attributes across schemas. This requires reasoning about various
challenges, namely: ▶ Semantic heterogeneity: ambiguous potential mappings, where attributes
across schemas might have the same name but different meanings, or different names but the same
meaning. ▶ Structural heterogeneity: schemas that have varied architectures, hierarchies, and
representational granularity. ▶ Database heterogeneity: differences in the number and organization
of tables across schemas. e.g. source schema table information may be represented across multiple
target schema tables. Hence, it is non-trivial to identify the appropriate table for an attribute. ▶
Information mismatch: Information may be contained in one schema, but not in another schema.
Hence, reasoning about "no possible match" is as important as reasoning about a possible match.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1 2 3 4 5
Top-k predictions

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy
@

k

Matchmaker (Ours)

Semantic matching

Figure 2: Example result shows se-
mantic similarity alone cannot solve
schema matching, with low accu-
racy@k, compared to Matchmaker.

These issues make schema matching a challenging task that can-
not be solved by simple methods such as semantic similarity
alone (see Fig. 2). To this end, we introduce Matchmaker, a self-
improving compositional language model program for schema
matching. Matchmaker leverages the reasoning capabilities of
large language models (LLMs) via a compositional language
model program with multi-stage LLM calls that comprise can-
didate generation, refinement, and confidence scoring (see Ap-
pendix C for examples of this process). Matchmaker also self-
improves without labeled data (zero-shot), via a novel optimiza-
tion process using synthetic in-context examples for the different
stages of the language model program. Matchmaker makes the following contributions:

Contributions: 1⃝ We address recent calls to develop ML methods for data harmonization/inter-
operability (Balagopalan et al., 2024; Gilbert et al., 2024). 2⃝ We introduce a novel formulation
of schema matching as information retrieval rather than binary classification. 3⃝ We propose
Matchmaker, a novel compositional language model program to address the complexities of schema
matching. 4⃝ We introduce a scoring mechanism allowing for human-in-the-loop deferral not possi-
ble with prior methods. 5⃝ We introduce a novel optimization mechanism allowing Matchmaker
to self-improve in a zero-shot manner via synthetic in-context examples that guide Matchmaker’s
reasoning process. 6⃝ We empirically demonstrate that Matchmaker outperforms different schema
matching baselines on real-world schema matching benchmarks, along with showing the value of
our self-improvement mechanism and how Matchmaker can be used with a human-in-the-loop.

2 RELATED WORK
This work engages with literature on schema matching (see Fig. 3) and contributes to data-centric AI.

Schema matching. Previous ML-based schema matching approaches have shown promise, but suffer
from limitations that hinder their practical applicability. Early works (Mudgal et al., 2018; Shraga
et al., 2020; Li et al., 2020) computed similarity scores between schemas (Do & Rahm, 2002; Gal,
2011), but focused on the simpler entity matching task (matching items within columns) rather than
the more complex schema matching problem. Recent methods like SMAT (Zhang et al., 2021)
applied deep learning (i.e. attention) to tackle full schema matching. However, they require extensive
labeled matches (over 50%), rendering them impractical for real-world environments where labeled
data is scarce or expensive to obtain, often requiring domain experts to annotate.

To reduce the need for labels, LLMs have been applied to schema matching (Zhang et al., 2023a;
Narayan et al., 2022; Zhang et al., 2023b). However, methods like LLM-DP using pre-trained
LLMs (Zhang et al., 2023a; Narayan et al., 2022) have demonstrated poor zero-shot performance
(see Sec. 5). Performance improvements were obtained with human-labeled examples of ±500
examples, from which in-context examples are selected. However, reliance on human labeling is often
unrealistic, limiting applicability. Interestingly, even LLMs such as Jellyfish (Zhang et al., 2023b),
which are fine-tuned for schema matching on task datasets, have shown poor matching performance.
Beyond matching performance, both LLM and supervised methods (e.g. SMAT (Zhang et al., 2021)),
formulate schema matching as a binary classification task over the full Cartesian product of source
and target schema attributes. e.g. for each pair of source-target attributes, the LLM is prompted to
provide a label of Yes/No for the match (i.e. Is attribute A related to Attribute B? yes/no). The result
is poor scalability which is computationally expensive for large schemas and costly due to the large
number of LLM calls, hindering real-world applicability. We compare LLM calls in Appendix D.1.

The closest work to ours is ReMatch (Sheetrit et al., 2024), which uses retrieval to find semantically
similar candidate matches, thus reducing the search space. It then prompts an LLM to match a
source schema attribute with retrieved target schema candidates. However, ReMatch relies solely
on semantic matching, which we empirically demonstrate in Sec. 5 does not suffice for real-world
schemas. Our approach Matchmaker diverges from ReMatch along three dimensions (see Table
1): (1) System: ReMatch uses a single LLM call, while Matchmaker decomposes the task into a
multi-stage compositional LLM program with iterative reasoning steps. (2) Candidate generation:
ReMatch relies solely on semantic retrieval, while Matchmaker incorporates diverse candidate gener-
ation sources, including retrieval for semantic candidates and an LLM-driven contextual reasoning
candidates. (3) Optimization: ReMatch has a fixed/static LLM prompt template, while Matchmaker
is an LLM program where we dynamically optimize the prompts via synthetic in-context examples.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Difference between Matchmaker & the closest work ReMatch along multiple dimensions.
Feature ReMatch Matchmaker (Ours)

System/Approach Single-step process
R : As ×At → {0, 1}

Multi-step compositional
LM program L = {l1, l2, . . . , ln} (Sec 4)

Candidate Generation Semantic retrieval only
Cs = g(Asi, At)

Semantic + Reasoning-based
C = CR ∪ Cs (Sec 4.2)

Reasoning Mechanism Limited to ranking stage Chain-of-Thought
prompting throughout

Ranking Single LLM call for binary decision
R(Asi, Atj) ∈ {0, 1}

LLM-based confidence scoring
with MCQ format: r : (As ×Ds)× (At ×Dt)→ R

allowing for uncertainty deferral (Sec 4.3)

Self-improvement/Optimization None Zero-shot with synthetic
examples: E : (ei, L(ei))→ R (Sec 4.4)

LLM Prompts Static Dynamic

Data-Centric AI. Data-centric AI is an area of growing importance in the ML community. It
aims to systematically improve data quality for ML (Zha et al., 2023; Whang et al., 2023) through
methods such as sample selection and valuation (Seedat et al., 2023; Jiang et al., 2023) of pre-existing
integrated datasets. This work addresses a fundamental upstream problem: schema matching which
enables the creation of harmonized datasets. Consequently, schema matching is a contribution to
data-centric AI literature by tackling a critical issue that precedes and supports existing approaches to
enhance data quality for ML.

3 SCHEMA MATCHING

3.1 PRELIMINARIES.

Consider the schema matching task, where the goal is to map attributes from a source schema (Ss)
to a target schema (St). Each schema S is defined as a collection of tables T = {T1, T2, . . . , Tm}.
Each table Ti contains a set of attributes Ai = {Ai1, Ai2, . . . , Aik}. Additionally, each table Ti is
associated with metadata mi describing the purpose and content of the table. Similarly, each attribute
Aij is associated with a description dij , which includes information describing the attribute, its data
type and relational context. These descriptions and data types offer key contextual information to aid
in the matching process.

The schema matching task, defined below, aims to find matches between attributes across different
schemas, accounting for their structural hierarchies, interrelationships and constraints.. Recall that
schema matching operates solely on schema-level information (attributes and metadata), without
having access to the raw data. This adds to the complexity, as matching must be performed without
the benefit of analyzing the actual data values.
Definition 1 (Schema Matching). The goal of schema matching is to find a mapping function
f : As → At ∪{∅} that correctly assigns each attribute of the source schema Ss to a corresponding
attribute in the target schema St or to the empty set ∅, indicating no possible match.

3.2 SCHEMA MATCHING AS INFORMATION RETRIEVAL.

As outlined in Sec. 2, schema matching is often formulated as a supervised binary classification
problem (match/no match) over the entire Cartesian product of source and target schema attributes.
Beyond the computational side, this formulation has several drawbacks: ▶ Labeling Cost: It requires
manual annotation of attribute pairs by domain experts, which is time-consuming and costly. ▶ Class
Imbalance: The prevalence of non-matching attribute pairs significantly outnumbers matching pairs,
resulting in severe class imbalance. ▶ Lack of Ranking: It does not yield a ranked list of candidate
matches, which is critical for human review if multiple possible matches exist.

▶ 1. Candidate generation: For each source query attribute Asi ∈ As from the source schema Ss,
we generate a set of potential matches from the target schema St. Let Ci ⊆ At be the set of candidate
target matches for query attribute Asi. The candidate generation process is defined as a function
g : As ×At → P(At), where P(At) denotes the power set of At, such that Ci = g(Asi,At).

▶ 2. Ranking: We rank the candidates based on their relevance to the query attribute. We define
a ranking function r : (As × Ds) × (At × Dt) → R, where Ds and Dt represent the contextual
information associated with attributes in As and At, respectively. For each source attribute Asi ∈ As

and its associated contextual information dsi ∈ Ds, the ranking function r assigns a relevance score
to each candidate attribute Atj ∈ Ci ⊆ At and its associated contextual information dtj ∈ Dt:

r((Asi, dsi), (Atj , dtj)) > r((Asi, dsi), (Atk, dtk))⇔ Atj is more relevant to Asi than Atk.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Target
Attribute

Target
Description

Source
Description

Source
Attribute

Related
(1/0)

LLM
(Frozen/

Finetuned)

Prompt
Att Src: {name}, {desc}
Att Tgt: {name}, {desc}
Is Att Src and Att Tgt

related? Yes/No

LLM
(Frozen)

Prompt
Match source
attribute with

candidate target
attributes

Dense Vector
DB (Target)

Source Attribute
(Query)

Retrieve
Target
candidates

Matches
* Match 1
* Match 2

...
* Match n

(A) (B) (C)

(D) Matchmaker (Ours)

Source Attribute
(Query)

LLM Candidate
Reasoner
(Frozen)

Multi-Vector
DB (Target)

Retrieval

LLM Candidate
Refiner
(Frozen)

MCQ

(A) person-id

(B) age-id
(C) None of the above

LLM Confidence
scorer

(Frozen)

Refined candidates
(Likelihood)

Matches +
Confidence

(A) 100
(B) 0

(C) 30

Targets (All)

Language Model Program optimization with synthetic in-context
examples. Selection of input-output traces using an LLM Evaluator

Step 1:
Multi-vector Documents

Step 2:
Candidate Generation

Step 3:
Confidence Scoring

Target
documents Compositional Language Model (LM) Program (Steps 1-3)

Semantic
candidates

Reasoning-based
candidates

LLM
Evaluator

Figure 3: Conceptual comparison of different schema matching approaches. (A) Supervised Matching (Zhang
et al., 2021) employs a trained neural network (e.g., a transformer) to predict binary match/no-match labels
across all attribute pairs, scaling as O(n)2 and requiring labeled data, thus unsuitable for zero-shot. (B) LLM-
Prompting (Narayan et al., 2022; Zhang et al., 2023a) uses a frozen language model (e.g., GPT-4) for the same
task, with similar scalability. Alternatively, (Zhang et al., 2023b) fine-tunes the LLM, which requires labeled
data. (C) RAG-Based (Sheetrit et al., 2024) improves scalability by retrieving candidates from a vector database
and using a frozen LLM to select matches, but its effectiveness is limited to semantically similar options. (D)
Matchmaker (Ours) performs schema matching via a self-improving, compositional language model program
that enables enhanced reasoning. The program includes both retrieval and reasoning-based candidate generation
with refinement and confidence scoring, allowing for more accurate ranking. The program is optimized using
synthetic in-context examples in the LLM prompts.

The mapping function f can then be defined as follows:

f(Asi) =

{
argmaxAtj∈Ci

r((Asi, dsi), (Atj , dtj)), if maxAtj∈Ci
r((Asi, dsi), (Atj , dtj)) ≥ τ

∅, otherwise

where τ is a relevance threshold and f assigns the query attribute Asi to the candidate attribute Atj

with the highest relevance score. Conversely, we may assign ∅, indicating no match — accounting
for the fact that not all source attributes may have a possible match in the target schema. Further
details can be found in Appendix A.5

4 MATCHMAKER: LLM-BASED SCHEMA MATCHING

We propose Matchmaker, a self-improving compositional language model (LM) program for schema
matching (see Fig. 3), defined as a three-step LM program. For further details see Appendix A.2.

1. Multi-vector documents (Sec. 4.1): Creation of multi-vector documents from the target schema
to facilitate semantic candidate retrieval of potential target attribute matches.
2. Candidate generation (Sec. 4.2): Employing two types of candidate generation: semantic retrieval
and reasoning-based. The candidates are then refined into a smaller candidate set to evaluate.
3. Confidence scoring (Sec. 4.3): match confidence of a candidate target attribute to a query attribute.

 Steps 1-3 define the unoptimized Matchmaker program. Finally, a key aspect of Matchmaker is
our zero-shot optimization via synthetic in-context examples to improve performance (Sect. 4.4).

Why LLMs for schema matching? Large Language Models (LLMs) form the foundation of
Matchmaker, serving as key components within a compositional program comprised of multiple
language model calls. Specifically, LLMs exhibit several appealing properties and capabilities for
schema matching: ▶ Contextual understanding: LLMs have been pretrained on vast corpora of
information, equipping them with extensive prior knowledge spanning different contexts and settings
(Chowdhery et al., 2022; Singhal et al., 2023). This contextual understanding enables LLMs to
effectively reason about schema hierarchies and identify potential matches. ▶ Hypothesis proposers:
LLMs have been shown to be “phenomenal hypothesis proposers” (Qiu et al., 2023), making them
particularly useful for candidate generation tasks. ▶ Capable rankers: LLMs have been shown to
be highly capable at relevance ranking; assessing the suitability of candidates given a query and a set

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

of options (Zhuang et al., 2023; Hou et al., 2024), especially “when ranking candidates retrieved by
multiple candidate generators” (Hou et al., 2024).

Defining a compositional LM program. A compositional language model program, denoted as
L, is a multi-stage pipeline consisting of multiple LLM calls, i.e., L = {l1, l2, . . . , ln}, where
li : (s, ks) → Y represents a specific LLM call taking as input a prompt string s and in-context
examples ks (which could be ∅). In the following sections (Secs. 4.1-4.3), we define the different
components of L specific to Matchmaker. Finally, we describe our optimization process (Sec. 4.4).

4.1 MULTI-VECTOR DOCUMENTS (STEP 1)

To efficiently retrieve semantically similar candidates from the target schema, we build a vector
database that encodes target schema attributes. We begin by representing the target schema as a
collection of structured documents. Specifically, for each table T in the target schema St, we create a
document for each table consisting of the attribute names and append the attribute’s textual description
and data type, providing contextual information about each attribute. The metadata of each document
includes the description of the table itself.

Unlike conventional approaches that encode each document as a single high-dimensional vector,
Matchmaker utilizes multi-vector representations. Specifically, we use ColBERT-v2 (Santhanam
et al., 2022) to encode the document chunks, producing an embedding per token (i.e., token-level
dense vector), capturing token-level interactions — as it has been shown to provide improvements in
expressivity (Thakur et al., 2021; Lee et al., 2024) and out-of-domain performance (Santhanam et al.,
2022). The following section explains how semantically similar candidates are retrieved using this
multi-vector representation.

4.2 DIVERSE CANDIDATE GENERATION (STEP 2)

To narrow down the search space, Matchmaker identifies a subset of candidate attributes from the
target schema that are likely matches for a query attribute qi ∈ As from the source schema. We draw
inspiration from (Hou et al., 2024), which demonstrates that LLM ranking performance improves
“‘when ranking candidates are retrieved by multiple candidate generators.” Hence, while semantic
candidates are commonly used, Matchmaker goes beyond and employs two distinct types of candidate
generation: (i) Semantic retrieval candidates retrieved from the vector database, and (ii) Reasoning-
based candidates using a language model. This is then followed by a candidate refinement step. We
outline each type of candidate generation applicable to a given query attribute qi ∈ As.

(i) Semantic retrieval candidates. Given query qi, we encode it using ColBERT-V2, producing a
multi-vector query embedding. Matchmaker then uses this query embedding to retrieve the top-k
matching target schema attributes in the vector database. The top-k semantically similar candidates
are denoted as Cs. Similarity is computed using a late-interaction approach (Khattab & Zaharia,
2020), though a Maxsim operator which identifies the highest similarity scores for the query tokens,
and these scores are aggregated to generate a relevance score for that document. All documents are
then ranked based on their overall relevance scores. The top-k documents, which contain the most
semantically similar attributes to the query, are retrieved as matches.

(ii) Reasoning-based candidates. To complement semantic matches, Matchmaker generates
reasoning-based candidates using a candidate reasoner LLM denoted as lc : (qi,At)→ CR, where
qi is the i-th query, At is the set of all target attributes and CR is a reasoning-based candidate set.
Matchmaker employs Chain of Thought (CoT) prompting (Wei et al., 2022) to reason about the target
attributes At given the context of the schema hierarchy, descriptions and data types — generating the
most likely and relevant target schema candidate matches for each query qi. This metadata allows the
LLM to reason about the schema structure and relationships beyond just attribute names.

Refinement. At this stage, the set of candidates is C = CR ∪ Cs. Matchmaker then refines this set
by selecting the most relevant candidates for each query attribute, resulting in a smaller, prioritized
candidate set C∗ to score and rank. Candidate refinement is achieved with a refiner LLM using CoT,
denoted as lr : s→ C∗, where s = (C, qi) and qi is the i-th source query.

4.3 CONFIDENCE SCORING (STEP 3)

The refined set of candidates, C∗ remains unordered. Hence, this step aims to obtain confidence
scores to rank the candidates but also gauge the certainty of each match, recognizing that sometimes

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

no suitable source-to-target attribute match exists, which requires the system to abstain from making
a match. While language models may not be well-calibrated at the sequence level, recent research
has shown that they exhibit better calibration at the token level (Ren et al., 2023), a feature notably
beneficial in multiple-choice question (MCQ) tasks (Kadavath et al., 2022). Leveraging this insight,
Matchmaker structures the candidate scoring task as an MCQ format, labeling each candidate in C∗
for query qi as options (A), (B), (C), etc. Additionally, to account for none of the target candidates
being a good match or there might be no possible match in the target schema, Matchmaker includes
an abstain option by adding "NONE of the above" as a choice. This ensures that the LLM is not
forced to select a candidate when there is no suitable match (Ren et al., 2023; Ding et al., 2023).

Matchmaker finally performs candidate ranking, where it is common to evaluate each candidate
individually (Hu et al., 2024; Wang et al., 2023a; Zheng et al., 2023). Confidence scores are obtained
by prompting the LLM to reason about the relevance of each candidate ci ∈ C∗ to the given query qi.
Furthermore, prior work has shown that LLMs can provide good uncertainty at token-level (Kadavath
et al., 2022) like in our MCQ, which is achievable via prompting (Tian et al., 2023). Consequently,
Matchmaker elicits a confidence score by prompting the LLM to provide a value between 0 and 100,
indicating the relevance of a match. The confidence scores are used to rerank candidates or, if "None
of the above" receives the highest score, return an empty list (i.e. no suitable matches for the query).

4.4 SELF-IMPROVEMENT: ZERO-SHOT OPTIMIZATION W/ SYNTHETIC IN-CONTEXT EXAMPLES

Matchmaker optimizes the language model programL by leveraging the few-shot learning capabilities
of LLMs (Brown et al., 2020; Agarwal et al., 2024; Dong et al., 2022). This is achieved by selecting
input-output demonstrations (i.e. in-context examples). In Sec. 5, we contrast this with an alternative
self-improvement method via self-reflection. However, selecting in-context examples is non-trivial
for schema matching for two reasons.

(i) Lack of labeled demonstrations: We do not have access to labeled input-output demonstrations
from which to select in-context examples. To overcome this challenge, we use the unlabeled schemas
to create a "evaluation" set Deval = {e1, e2, . . . , em}, made up of different types of source queries.
Specifically, we identify "easy queries" where the top-n (n=5) target schema semantic matches have a
similarity score > 0.95, and "challenging queries" with the lowest semantic matches.

(ii) Lack of an evaluator: To assess Matchmaker’s capabilities on the evaluation set and guide the
optimization process, we need a validation metric. Since no validator is readily available, we propose
to use an evaluator LLM, E : (ei,L(ei))→ R, that employs chain of thought (Wei et al., 2022) to
score the relevance (from 0-5) of matches obtained from L when evaluated on examples from Deval.

Algorithm 1 Optimize LM program L
1: Input: Set of evaluation queries Deval = e1, e2, . . . , en
2: Output: Set of top n demonstrations Ddemo

3: for each input ei ∈ Deval do
4: ŷi, tracei ← L(ei) ▷ Teacher L predicts, storing outputs and intermediate traces
5: si ← E(ei, ŷi) ▷ Evaluation score
6: Ddemo ← Ddemo ∪ (ei, tracei, ŷi, si)
7: end for
8: Sort Ddemo by score
9: return Ddemo[0 : n] ▷ Select top n

Zero-shot optimization w/ synthetic in-context examples. To optimize our multi-stage language
model program, we aim to select in-context examples for each component in L. However, in-context
demonstrations for the intermediate stages are typically unavailable.

To address this, we simulate traces by running L on the evaluation examples ei ∈ Deval. A trace
captures the intermediate input-output pairs of each component in L during the execution of L on
a given example. The evaluator E then scores the final output, assessing Matchmaker’s (L) overall
performance on each example. We then adopt a bootstrapping process (Khattab et al., 2023) that
selects the intermediate input-output pairs from the traces that produced the highest evaluation scores
as synthetic in-context examples for each component of L. In other words, we use the input-output
pairs generated by Matchmaker itself (which resulted in good evaluation performance) as synthetic

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

in-context examples to guide the LLM reasoning. This allows us to improve the program in a zero-
shot manner, without relying on actual labeled data. Algorithm 3 provides an overview of the process.
We refer to L with the systematically selected in-context examples as Matchmaker (Optimized).

5 EXPERIMENTS

We now empirically investigate multiple aspects of Matchmaker. For qualitative examples that
illustrate Matchmaker’s application, refer to Appendix C.

Sec. Experiment Goal
5.1 Overall performance Performance of Matchmaker vs schema matching benchmarks
5.2 Self-improvement Performance of Matchmaker: optimized vs unoptimized vs random ICL vs self-reflection improvement
5.3 Source of gain Ablation to understand Matchmakers candidate generation
5.4 Matchmaker in practice Using Matchmaker with humans: uncertainty deferral and remedial action

Setup. We conduct experiments on the MIMIC-OMOP and Synthea-OMOP datasets, which are the
standard benchmark datasets used in prior schema matching works (Sheetrit et al., 2024; Zhang et al.,
2023b; Narayan et al., 2022; Zhang et al., 2023a; 2021). These datasets are real-world healthcare
schema matching datasets and have been widely adopted due to their complexity and their reflection
of real-world schema matching challenges. Additionally, complex, real-world schema matching
datasets are rare and difficult to obtain, as annotating them requires extensive domain expertise (e.g.,
500 hours for MIMIC-OMOP), making them invaluable test beds for schema matching algorithms.
An overview of the datasets is provided in Appendix B, along with further experimental details.

Metrics. We evaluate schema matching performance using accuracy@k used in (Sheetrit et al., 2024)
and is commonly used in information retrieval. Besides, ReMatch the other baselines treat schema
matching as a binary classification using F1-score as the metric. In our setting of m:1 matching (i.e.
one match for each query), accuracy@1 is equivalent to F1-score, precision and recall, if the label
is assigned via argmax. For details see Appendix A.8. Hence, we report accuracy@1 for all other
baselines for comparison to retrieval based approaches. Unless otherwise stated, metrics are averaged
over 5 seeds (with standard deviation).

5.1 SCHEMA MATCHING PERFORMANCE: DOES IT WORK?

Matchmaker’s performance is compared to diverse schema-matching baselines (refer to Sec. 2). These
include (i) LLM-based methods such as ReMatch and LLM-DP, (ii) the state-of-the-art non-LLM
supervised model, SMAT, and (iii) Jellyfish, an LLM specifically fine-tuned for data preprocessing
tasks, including schema matching. While Jellyfish is fine-tuned using the same MIMIC and Synthea
datasets, giving it an advantage, we include it as a baseline to highlight Matchmaker’s zero-shot
performance using a general-purpose LLM. This comparison spans general-purpose LLMs, traditional
supervised approaches, and task-specific fine-tuned models. All LLM baselines use GPT-4 (0613)
(OpenAI, 2023) as the backbone for fair comparison to the original works and to isolate the gains
of the system which aren’t tied to the LLM. Other LLM backbone results are found in Appendix D,
showing Matchmaker’s gain isn’t due to the LLM alone.

Table 2: Comparison of schema matching performance of different baselines.

Matchmaker ReMatch 1 JellyFish-13b Jellyfish-7b LLM-DP SMAT (20-80) SMAT (50-50)

M
IM

IC acc@1 62.20 ± 2.40 42.50 15.36 ± 5.00 14.25 ± 3.00 29.59 ± 2.00 6.05 ± 5.00 10.85 ± 6.00
acc@3 68.80 ± 2.00 63.80 N.A. N.A. N.A. N.A. N.A.
acc@5 71.10 ± 2.00 72.90 N.A. N.A. N.A. N.A. N.A.

Sy
nt

he
a acc@1 70.20 ± 1.70 50.50 35.17 ± 3.90 31.52 ± 1.70 41.44 ± 5.40 36.23 ± 3.30 44.88 ± 2.60

acc@3 78.60 ± 2.50 58.10 N.A. N.A. N.A. N.A. N.A.
acc@5 80.90 ± 1.10 74.30 N.A. N.A. N.A. N.A. N.A.

Matchmaker has the best overall performance. Matchmaker consistently outperforms baselines,
across all settings, as shown in Table 2. Importantly, we find the largest performance gains (+-20%)
for accuracy@1. This is a desirable property, as it suggests a better ranking of matches. Moreover, a
higher accuracy at low k values enables the use of smaller prediction sets, reducing the human effort
required to select the final best target attribute match for a given source attribute query.

1ReMatch code implementation not available, hence we report the best accuracy@k values with the retrieval
step as in (Sheetrit et al., 2024). Appendix D shows results for a re-implementation of ReMatch.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Formulation as information retrieval outperforms binary classification. A key insight from our
experiments is that information retrieval-based approaches (Matchmaker and ReMatch) perform
substantially better for accuracy@1 compared to the other binary classification-based approaches,
which evaluate the full Cartesian product of attributes. This performance gap can be attributed to the
smaller search space of the information retrieval formulation. Notably, Matchmaker and ReMatch
are evaluated on all mappings, including matches and nulls ("No possible match"), whereas binary
classification methods consider a simpler problem by only evaluating true matches.

5.2 MATCHMAKER SELF-IMPROVEMENT ANALYSIS

Matchmaker self-improves its language model program in a zero-shot manner (no labeled examples)
via an optimization process using synthetic in-context examples (Sec. 4.4). We evaluate the perfor-
mance of Matchmaker (Optimized) to three alternatives to disentangle the value of our in-context
example selection mechanism: (1) Matchmaker (Vanilla), which is the vanilla language model
program without in-context examples, (2) Matchmaker (Random): random selection of in-context
examples rather than our optimized/systematic selection of in-context examples and (3) Match-
maker (Self-Reflection), which employs a self-reflection or self-refinement mechanism (Pan et al.,
2023; Madaan et al., 2024) as an alternative self-improvement approach. i.e. the LLM iteratively
self-corrects through feedback and has been used for various LLM tasks to improve performance.

The results in Table 3 illustrate the following: ▶ Matchmaker (Optimized) achieves significant
performance gains compared to Matchmaker (Unoptimized), particularly at low k values (+-5%
improvement for acc@1). This finding highlights the value of the synthetic in-context examples and
the potential for zero-shot self-improvement, even in the absence of labeled data or well-defined
evaluation metrics. ▶ Matchmaker (Optimized) outperforms Matchmaker (Random), confirming that
our systematic selection of in-context samples is the key driver of performance gains, rather than
the mere inclusion of any in-context examples. ▶ Matchmaker (Optimized) which uses an LLM
evaluator to score demonstration examples directly, provides better performance gains compared to
the self-reflection approach, where an LLM simply self-refines along the pipeline. This underscores
the importance of input-output demonstrations for Matchmaker, especially considering the multi-stage
nature of the program, where the outputs of earlier components affect later components.

Table 3: Comparison of different Matchmaker self-improvement mechanisms, showing the value of our
systematic selection of in-context samples vs random selection, vanilla or improvement via self-reflection.

Matchmaker
(Systematic - Full)

Matchmaker
(Random)

Matchmaker
(Vanilla)

Matchmaker
(Self-reflection)

M
IM

IC acc@1 62.20 ± 2.40 55.36 ± 2.15 57.90 ± 1.20 57.10 ± 0.60
acc@3 68.80 ± 2.00 62.74 ± 4.50 66.40 ± 0.60 66.60 ± 1.00
acc@5 71.10 ± 2.00 65.00 ± 6.42 70.20 ± 0.70 70.60 ± 0.50

Sy
nt

he
a acc@1 70.20 ± 1.70 67.76 ± 1.38 65.40 ± 0.90 67.80 ± 1.40

acc@3 78.60 ± 2.50 76.19 ± 5.28 78.20 ± 0.60 75.90 ± 0.70
acc@5 80.90 ± 1.10 77.66 ± 5.07 83.20 ± 1.10 81.10 ± 1.90

5.3 SOURCE OF GAIN ABLATION: WHY DOES IT WORK?

Matchmaker’s performance relies on the generated candidate matches. Given its strong performance
compared to baselines, we investigate which candidate generation approach contributes most to Match-
maker’s success. To disentangle the role of each candidate generation method, we assess Matchmaker
with (1) reasoning-based candidates from the LLM only (Matchmaker_reasoning_only) and
(2) semantic candidates via retrieval only (Matchmaker_semantic_only).

The results in Table 4 show that reasoning-based candidates outperform semantic retrieval-based
candidates. This finding suggests that LLM reasoning over the database hierarchy and data types
produces better candidates than semantic matches that do not consider hierarchical relationships. In
some cases (e.g., Synthea acc@1), the inclusion of retrieval-based candidates harms performance.
However, the overall results indicate that Matchmaker benefits from both candidate generation
approaches, with reasoning-based candidates providing greater value. These results highlights the
value of diverse candidate generation mechanisms to enhance Matchmaker’s overall performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Understanding the impact of different candidate generation approaches on Matchmaker.
Matchmaker Matchmaker_reasoning_only Matchmaker_semantic_only

M
IM

IC acc@1 62.20 ± 2.50 61.60 ± 1.50 60.20 ± 2.20
acc@3 68.80 ± 2.00 68.70 ± 1.60 64.50 ± 2.80
acc@5 71.10 ± 2.00 70.40 ± 1.00 67.10 ± 3.10

Sy
nt

he
a acc@1 70.20 ± 1.70 73.00 ± 1.90 63.10 ± 0.70

acc@3 78.60 ± 2.50 78.50 ± 1.50 77.40 ± 0.90
acc@5 80.90 ± 1.10 79.40 ± 0.30 80.20 ± 0.40

5.4 MATCHMAKER IN PRACTICE: HUMAN-IN-THE-LOOP DEFERRAL AND REMEDIAL ACTION.

How might we use Matchmaker in practice for schema matching? Let us examine two cases.

(1) Matchmaker with human-in-the-loop deferral: We evaluate the effectiveness of integrating
Matchmaker with a human-in-the-loop approach by deferring uncertain matches to human experts (i.e.,
an oracle) for correction. High-uncertainty cases are identified using the entropy of Matchmaker’s
confidence scores, with the most challenging matches (those with the highest entropy) deferred to
the oracle. We evaluate different deferral percentages p ∈ {0, 10, 20, 30, 40, 50} and observe that
entropy-based deferral consistently yields greater performance gains compared to random deferral, as
shown in Fig. 4(a). This finding highlights the practical value of Matchmaker in real-world settings,
where based on entropy, one could strategically seek human oversight for challenging matches
and improve overall schema matching performance. The appropriate deferral percentage, however,
depends on context-specific factors such as human bandwidth and expert availability.

(2) Evaluating ease of remedial action based on the similarity between incorrect predictions
and true target attributes: Not all errors in source-target matching are equal; some might be
easier to rectify than others. We hypothesize that errors involving semantically similar attributes
are easier to correct compared to those involving completely dissimilar attributes. We analyze
the cosine similarity between incorrectly predicted attributes and their true target attributes using
Pubmed-Bert embeddings. To simulate post-hoc remedial action, we assess the performance gains
achieved by correcting erroneous predictions that exceed different similarity thresholds. Figure 4(b)
shows substantial improvements in accuracy@1 when "fixing" errors, with high semantic similarity
between the erroneous prediction and true attribute (e.g., cosine similarity ≥ 0.8). These results
suggest that Matchmaker’s incorrect predictions are often semantically close to the true attributes
(i.e. our errors are not far off), making them more amenable to post-hoc remedial actions. This
demonstrates the viability of post-hoc remedial actions to improve schema matching performance.
Further error analysis can be found in Appendix D.

Figure 4: Examples of using Matchmaker in practice. (a) Deferring uncertain samples to humans via entropy
deferral improves schema matching performance. (b) Performance gains are obtained when correcting errors
which are semantically similar to the true attribute.

6 DISCUSSION

Matchmaker introduces a novel approach to schema matching, using a self-improving composi-
tional program using LLMs. Matchmaker’s superior performance compared to existing ML-based
approaches, underlines its potential to accelerate data integration for ML-ready data. Matchmaker’s
zero-shot self-improvement mechanism, using synthetic in-context examples, showcases the potential
of using LLMs to handle complex reasoning tasks without relying on labeled data.

Limitations and opportunities. (1) Matchmaker, while effective in schema matching, represents
just one component of the broader data harmonization process and needs to be integrated with other
tasks to generate ML-ready data. (2) Despite its advantages over alternative ML-based approaches,
Matchmaker is not a panacea and does not achieve perfect automation. It is best used with a human-
in-the-loop (Sec. 5.4) to ensure reliability in real-world settings. (3)Future work should address
many-many schema matches or explore the viability of non-English schemas.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Stephanie Chan, Ankesh Anand, Zaheer
Abbas, Azade Nova, John D Co-Reyes, Eric Chu, et al. Many-shot in-context learning. arXiv
preprint arXiv:2404.11018, 2024.

Anand Avati, Martin Seneviratne, Yuan Xue, Zhen Xu, Balaji Lakshminarayanan, and Andrew M
Dai. Beds-bench: Behavior of ehr-models under distributional shift-a benchmark. In NeurIPS
2021 Workshop on Distribution Shifts: Connecting Methods and Applications, 2021.

Aparna Balagopalan, Ioana Baldini, Leo Anthony Celi, Judy Gichoya, Liam G McCoy, Tristan
Naumann, Uri Shalit, Mihaela van der Schaar, and Kiri L Wagstaff. Machine learning for
healthcare that matters: Reorienting from technical novelty to equitable impact. PLOS Digital
Health, 3(4):e0000474, 2024.

Jeremy A Balch, Matthew M Ruppert, Tyler J Loftus, Ziyuan Guan, Yuanfang Ren, Gilbert R
Upchurch, Tezcan Ozrazgat-Baslanti, Parisa Rashidi, and Azra Bihorac. Machine learning–enabled
clinical information systems using fast healthcare interoperability resources data standards: scoping
review. JMIR Medical Informatics, 11:e48297, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Wenhu Chen. Large language models are few (1)-shot table reasoners. In Findings of the Association
for Computational Linguistics: EACL 2023, pp. 1120–1130, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Andres Colubri, Mary-Anne Hartley, Matthew Siakor, Vanessa Wolfman, August Felix, Tom Sesay,
Jeffrey G Shaffer, Robert F Garry, Donald S Grant, Adam C Levine, et al. Machine-learning
prognostic models from the 2014–16 ebola outbreak: data-harmonization challenges, validation
strategies, and mhealth applications. EClinicalMedicine, 11:54–64, 2019.

Wenxuan Ding, Shangbin Feng, Yuhan Liu, Zhaoxuan Tan, Vidhisha Balachandran, Tianxing He,
and Yulia Tsvetkov. Knowledge crosswords: Geometric reasoning over structured knowledge with
large language models. arXiv preprint arXiv:2310.01290, 2023.

Hong Hai Do and Erhard Rahm. Coma - a system for flexible combination of schema match-
ing approaches. In Very Large Data Bases Conference, 2002. URL https://api.
semanticscholar.org/CorpusID:9318211.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Oumaima El Haddadi, Max Chevalier, Bernard Dousset, Ahmad El Allaoui, Anass El Haddadi, and
Olivier Teste. Overview on data ingestion and schema matching. Data and Metadata, 3:219–219,
2024.

Avigdor Gal. Uncertain schema matching: the power of not knowing. In International Conference on
Information and Knowledge Management, 2011. URL https://api.semanticscholar.
org/CorpusID:43482147.

Hamed Babaei Giglou, Jennifer D’Souza, and Sören Auer. Llms4om: Matching ontologies with large
language models. arXiv preprint arXiv:2404.10317, 2024.

Stephen Gilbert, Jakob Nikolas Kather, and Aidan Hogan. Augmented non-hallucinating large
language models as medical information curators. NPJ Digital Medicine, 7(1):100, 2024.

Nitin Gupta, Hima Patel, Shazia Afzal, Naveen Panwar, Ruhi Sharma Mittal, Shanmukha Guttula,
Abhinav Jain, Lokesh Nagalapatti, Sameep Mehta, Sandeep Hans, et al. Data quality toolkit:
Automatic assessment of data quality and remediation for machine learning datasets. arXiv
preprint arXiv:2108.05935, 2021.

11

https://api.semanticscholar.org/CorpusID:9318211
https://api.semanticscholar.org/CorpusID:9318211
https://api.semanticscholar.org/CorpusID:43482147
https://api.semanticscholar.org/CorpusID:43482147

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sven Hertling and Heiko Paulheim. Olala: Ontology matching with large language models. In
Proceedings of the 12th Knowledge Capture Conference 2023, pp. 131–139, 2023.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin
Zhao. Large language models are zero-shot rankers for recommender systems. In European
Conference on Information Retrieval, pp. 364–381. Springer, 2024.

Chi Hu, Yuan Ge, Xiangnan Ma, Hang Cao, Qiang Li, Yonghua Yang, Tong Xiao, and Jingbo Zhu.
Rankprompt: Step-by-step comparisons make language models better reasoners. arXiv preprint
arXiv:2403.12373, 2024.

Abhinav Jain, Hima Patel, Lokesh Nagalapatti, Nitin Gupta, Sameep Mehta, Shanmukha Guttula,
Shashank Mujumdar, Shazia Afzal, Ruhi Sharma Mittal, and Vitobha Munigala. Overview and
importance of data quality for machine learning tasks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 3561–3562, 2020.

Kevin Jiang, Weixin Liang, James Y Zou, and Yongchan Kwon. Opendataval: a unified benchmark
for data valuation. Advances in Neural Information Processing Systems, 36, 2023.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a
freely accessible critical care database. Scientific data, 3(1):1–9, 2016.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly)
know what they know. arXiv preprint arXiv:2207.05221, 2022.

Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd International ACM SIGIR conference on
research and development in Information Retrieval, pp. 39–48, 2020.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Saiful
Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, Heather Miller, et al. Dspy: Compiling
declarative language model calls into state-of-the-art pipelines. In The Twelfth International
Conference on Learning Representations, 2023.

Kezhi Kong, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Chuan Lei, Christos
Faloutsos, Huzefa Rangwala, and George Karypis. Opentab: Advancing large language models as
open-domain table reasoners. In The Twelfth International Conference on Learning Representations,
2023.

Jinhyuk Lee, Zhuyun Dai, Sai Meher Karthik Duddu, Tao Lei, Iftekhar Naim, Ming-Wei Chang, and
Vincent Zhao. Rethinking the role of token retrieval in multi-vector retrieval. Advances in Neural
Information Processing Systems, 36, 2024.

M Lehne, J Sass, A Essenwanger, J Schepers, and S Thun. Why digital medicine depends on
interoperability. NPJ Digital Medicine, 2:79–79, 2019.

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang Chiew Tan. Deep entity matching
with pre-trained language models. Proceedings of the VLDB Endowment, 14:50 – 60, 2020. URL
https://api.semanticscholar.org/CorpusID:214743579.

Weizheng Lu, Jiaming Zhang, Jing Zhang, and Yueguo Chen. Large language model for table
processing: A survey. arXiv preprint arXiv:2402.05121, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Suvir Mirchandani, F. Xia, Peter R. Florence, Brian Ichter, Danny Driess, Montse Gonzalez Arenas,
Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines.
ArXiv, abs/2307.04721, 2023. URL https://api.semanticscholar.org/CorpusID:
259501163.

12

https://api.semanticscholar.org/CorpusID:214743579
https://api.semanticscholar.org/CorpusID:259501163
https://api.semanticscholar.org/CorpusID:259501163

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park, Ganesh Krishnan,
Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. Deep learning for entity matching: A design
space exploration. Proceedings of the 2018 International Conference on Management of Data,
2018. URL https://api.semanticscholar.org/CorpusID:44063437.

Md Mahadi Hasan Nahid and Davood Rafiei. Tabsqlify: Enhancing reasoning capabilities of llms
through table decomposition. arXiv preprint arXiv:2404.10150, 2024.

Avanika Narayan, Ines Chami, Laurel J. Orr, and Christopher R’e. Can foundation models wrangle
your data? Proc. VLDB Endow., 16:738–746, 2022. URL https://api.semanticscholar.
org/CorpusID:248965029.

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5), 2023.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
Automatically correcting large language models: Surveying the landscape of diverse self-correction
strategies. arXiv preprint arXiv:2308.03188, 2023.

Nicolas Paris, Antoine Lamer, and Adrien Parrot. Transformation and evaluation of the mimic
database in the omop common data model: Development and usability study. JMIR Med-
ical Informatics, 9, 2021. URL https://api.semanticscholar.org/CorpusID:
244194789.

Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula,
Bailin Wang, Yoon Kim, Yejin Choi, Nouha Dziri, et al. Phenomenal yet puzzling: Testing
inductive reasoning capabilities of language models with hypothesis refinement. arXiv preprint
arXiv:2310.08559, 2023.

Erhard Rahm and Philip A Bernstein. A survey of approaches to automatic schema matching. the
VLDB Journal, 10:334–350, 2001.

Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M Dai, Nissan Hajaj, Michaela Hardt, Peter J Liu,
Xiaobing Liu, Jake Marcus, Mimi Sun, et al. Scalable and accurate deep learning with electronic
health records. NPJ digital medicine, 1(1):1–10, 2018.

Jie Ren, Yao Zhao, Tu Vu, Peter J Liu, and Balaji Lakshminarayanan. Self-evaluation improves
selective generation in large language models. arXiv preprint arXiv:2312.09300, 2023.

Cedric Renggli, Luka Rimanic, Nezihe Merve Gürel, Bojan Karlas, Wentao Wu, and Ce Zhang. A
data quality-driven view of mlops. IEEE Data Engineering Bulletin, 2021.

Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen Paritosh, and Lora M
Aroyo. “everyone wants to do the model work, not the data work”: Data cascades in high-stakes ai.
In proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–15,
2021.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. Colbertv2:
Effective and efficient retrieval via lightweight late interaction. In Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 3715–3734, 2022.

Nabeel Seedat, Fergus Imrie, and Mihaela van der Schaar. Dissecting sample hardness: Fine-
grained analysis of hardness characterization methods. In The Twelfth International Conference on
Learning Representations, 2023.

Eitam Sheetrit, Menachem Brief, Moshik Mishaeli, and Oren Elisha. Rematch: Retrieval enhanced
schema matching with llms. arXiv preprint arXiv:2403.01567, 2024.

Roee Shraga, Avigdor Gal, and Haggai Roitman. Adnev: Cross-domain schema matching using deep
similarity matrix adjustment and evaluation. Proc. VLDB Endow., 13:1401–1415, 2020. URL
https://api.semanticscholar.org/CorpusID:214588544.

13

https://api.semanticscholar.org/CorpusID:44063437
https://api.semanticscholar.org/CorpusID:248965029
https://api.semanticscholar.org/CorpusID:248965029
https://api.semanticscholar.org/CorpusID:244194789
https://api.semanticscholar.org/CorpusID:244194789
https://api.semanticscholar.org/CorpusID:214588544

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yuqi Si, Jingcheng Du, Zhao Li, Xiaoqian Jiang, Timothy Miller, Fei Wang, W Jim Zheng, and
Kirk Roberts. Deep representation learning of patient data from electronic health records (ehr): A
systematic review. Journal of biomedical informatics, 115:103671, 2021.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
clinical knowledge. Nature, pp. 1–9, 2023.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. Beir: A
heterogeneous benchmark for zero-shot evaluation of information retrieval models. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2),
2021.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea
Finn, and Christopher D Manning. Just ask for calibration: Strategies for eliciting calibrated
confidence scores from language models fine-tuned with human feedback. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 5433–5442, 2023.

Premanand Tiwari, Kathryn L Colborn, Derek E Smith, Fuyong Xing, Debashis Ghosh, and Michael A
Rosenberg. Assessment of a machine learning model applied to harmonized electronic health record
data for the prediction of incident atrial fibrillation. JAMA network open, 3(1):e1919396–e1919396,
2020.

Jason Walonoski, Mark Kramer, Joseph Nichols, Andre Quina, Chris Moesel, Dylan Hall, Carlton
Duffett, Kudakwashe Dube, Thomas Gallagher, and Scott McLachlan. Synthea: An approach,
method, and software mechanism for generating synthetic patients and the synthetic electronic
health care record. Journal of the American Medical Informatics Association, 25(3):230–238,
2018.

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. Large language models are not fair evaluators. arXiv preprint arXiv:2305.17926,
2023a.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng Wang,
Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, et al. Chain-of-table: Evolving
tables in the reasoning chain for table understanding. In The Twelfth International Conference on
Learning Representations, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. Data collection and quality
challenges in deep learning: A data-centric ai perspective. The VLDB Journal, 32(4):791–813,
2023.

Ross D Williams, Jenna M Reps, Jan A Kors, Patrick B Ryan, Ewout Steyerberg, Katia M Verhamme,
and Peter R Rijnbeek. Using iterative pairwise external validation to contextualize prediction
model performance: a use case predicting 1-year heart failure risk in patients with diabetes across
five data sources. Drug Safety, 45(5):563–570, 2022.

Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang, Shaochen Zhong, and
Xia Hu. Data-centric artificial intelligence: A survey. arXiv preprint arXiv:2303.10158, 2023.

Haochen Zhang, Yuyang Dong, Chuan Xiao, and M. Oyamada. Large language models as data
preprocessors. ArXiv, abs/2308.16361, 2023a. URL https://api.semanticscholar.
org/CorpusID:261397017.

Haochen Zhang, Yuyang Dong, Chuan Xiao, and Masafumi Oyamada. Jellyfish: A large language
model for data preprocessing. arXiv preprint arXiv:2312.01678, 2023b.

14

https://api.semanticscholar.org/CorpusID:261397017
https://api.semanticscholar.org/CorpusID:261397017

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jing Zhang, Bonggun Shin, Jinho D. Choi, and Joyce Ho. Smat: An attention-based deep learning
solution to the automation of schema matching. Advances in databases and information systems.
ADBIS, 12843:260–274, 2021. URL https://api.semanticscholar.org/CorpusID:
237207055.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2023.

Honglei Zhuang, Zhen Qin, Kai Hui, Junru Wu, Le Yan, Xuanhui Wang, and Michael Berdersky.
Beyond yes and no: Improving zero-shot llm rankers via scoring fine-grained relevance labels.
arXiv preprint arXiv:2310.14122, 2023.

15

https://api.semanticscholar.org/CorpusID:237207055
https://api.semanticscholar.org/CorpusID:237207055

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Appendix - Matchmaker: Schema Matching
with self-improving compositional LLM
programs

Table of Contents
A Matchmaker additional details 17

A.1 Matchmaker within the context of LLM table reasoning. 17
A.2 Matchmaker algorithm . 18
A.3 Schema matching challenges. 19
A.4 Complexity of the MIMIC-OMOP task . 20
A.5 Further details on schema matching formalism 21
A.6 Detailed explanation of self-improvement . 21
A.7 Extended related work . 22
A.8 Metrics: accuracy, precision, recall, F1-Score 23

B Experimental details: Benchmarks & datasets 25
B.1 Benchmarks . 25

B.1.1 Matchmaker . 25
B.1.2 ReMatch . 25
B.1.3 Jellyfish . 25
B.1.4 LLM-DP . 25
B.1.5 SMAT . 26

B.2 Datasets . 26

C Examples using Matchmaker (with prompts) 27
C.1 Matchmaker prompt examples . 27

C.1.1 Example 1. 27
C.1.2 Example 2 . 32

C.2 LLM Evaluator . 35

D Additional experiments 37
D.1 Number of LLM calls . 37
D.2 Matchmaker with other LLMs . 37
D.3 Further performance results: ReMatch reimplementation 38
D.4 Improving performance: Use of Existing Mappings to remedy errors 38
D.5 Comparison of Matchmaker on ontology matching tasks 39
D.6 Detailed error analysis . 40
D.7 Ranking ablation . 40

E Broader Impact 41

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A MATCHMAKER ADDITIONAL DETAILS

A.1 MATCHMAKER WITHIN THE CONTEXT OF LLM TABLE REASONING.

There has recently been works on LLMs for table reasoning. We contrast them to Matchmaker along
a variety of dimensions below.

Task/Goal: The table reasoning papers tackle a variety of tasks centered around understanding
and interacting with tabular data. Some examples include: TabSQLify (Nahid & Rafiei, 2024) and
OPENTAB (Kong et al., 2023) focus on table question answering and fact verification, aiming to
extract relevant information from tables to answer questions or verify statements. Chain-of-Table
(Wang et al., 2023b) and "Large Language Models are Few-Shot Table Reasoners" (Chen, 2023)
explore LLMs’ capabilities in reasoning over tables for question answering and fact verification
tasks. The survey paper "Large Language Model for Table Processing" (Lu et al., 2024) covers a
broader range of tasks, including table manipulation, table augmentation, and text-to-SQL conversion,
showcasing LLMs’ potential in interpreting and manipulating tabular data. In contrast, Matchmaker
addresses the task of schema matching, which aims to find correspondences between attributes across
different schemas or tables. The goal is to enable data integration by mapping attributes from a source
schema to a target schema, considering the structural and semantic differences between them. This
task is crucial for creating ML-ready datasets by harmonizing data from diverse sources.

Approach: Table reasoning approaches span prompting LLMs for direct answers (Chen, 2023),
program synthesis to generate SQL/code (Nahid & Rafiei, 2024; Kong et al., 2023), iterative table
transformation (Wang et al., 2023b), instruction tuning (Lu et al., 2024), and agent-based methods (Lu
et al., 2024). Matchmaker proposes a novel self-improving compositional language model program. It
leverages LLM reasoning via a pipeline with multiple LLM calls for candidate generation, refinement
and confidence scoring. It also self-improves without labeled data via synthetic in-context examples.

Inputs: The table reasoning papers mostly focus on single tables as input along with a question/query.
Matchmaker takes as input two tables/schemas (source and target) that need to be matched. It operates
solely on schema-level information (attribute names, metadata) without access to raw data in the
tables. This is also a key difference compared to the table reasoning papers, which often rely on the
actual data values for answering questions or verifying facts.

Outputs: Table reasoning papers aim to output answers to questions, binary fact verification labels,
updated tables after manipulation, generated SQL/code, etc. In contrast, Matchmaker outputs a
mapping between the source and target schema attributes, or indicates no match is possible for certain
attributes. The set of attribute pairs representing the schema matching results, can be used to guide
data integration processes.

Use of the LLM: Table reasoning employs LLMs for direct answer generation (Chen, 2023), program
synthesis (Nahid & Rafiei, 2024; Kong et al., 2023), iterative prompting (Wang et al., 2023b), or as
part of an agent system (Lu et al., 2024). Matchmaker uses LLMs for reasoning within a compositional
program, generating candidates, refining them, and scoring confidence.

Optimization/Training: Table reasoning works explore fine-tuning (Nahid & Rafiei, 2024), instruc-
tion tuning (Lu et al., 2024), and in-context few-shot learning (Chen, 2023). Matchmaker introduces
a novel optimization process to select synthetic in-context examples for self-improvement without
labeled data or fine-tuning.

Key differences: In summary, while the table reasoning papers focus on tasks like question answering,
fact verification, and table manipulation on single tables, Matchmaker addresses the distinct task of
schema matching across table pairs. Its novel approach of a self-improving compositional language
model program operating on schema-level information contrasts with general table reasoning which
mostly use LLMs for direct table QA or program synthesis.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.2 MATCHMAKER ALGORITHM

Below we provide a high-level overview algorithm of Matchmakers compositional language model
program for schema matching.

Algorithm 2 Matchmaker: Schema Matching with Self-Improving Compositional Language Model
Programs

Require: Source schema Ss, Target schema St

Ensure: Schema matches M
1: Stage 1: Multi-Vector Document Creation
2: for each table T ∈ St do
3: Create document DT with attribute names and descriptions
4: Append table metadata to DT

5: Encode DT using ColBERT-v2 to obtain multi-vector representation VT

6: Add VT to vector database V
7: end for
8: Stage 2: Candidate Generation
9: for each source attribute qi ∈ Ss do

10: Encode qi using ColBERT-v2 to obtain query embedding Eqi
11: Retrieve top-k semantic candidates Cs from V using Eqi
12: Generate reasoning-based candidates CR using LLM lc(qi, St)
13: Refine candidate set C∗ ← lr(Cs ∪ CR, qi)
14: end for
15: Stage 3: Confidence Scoring
16: for each source attribute qi ∈ Ss do
17: Format candidate set C as multiple-choice question Qi

18: for each candidate cj ∈ C do
19: Compute confidence score sj ← ls(Qi, cj)
20: end for
21: mi ← argmaxcj∈Csj ▷ Select match with highest confidence
22: Add (qi,mi) to schema matches M
23: end for
24: Self-Improvement Optimization (Over all steps)
25: Generate evaluation set Deval from unlabeled schemas
26: for each example ei ∈ Deval do
27: (ŷi, tracei)←Matchmaker(ei) ▷ Run Matchmaker to get output and traces
28: si ← El(ei, ŷi) ▷ Compute evaluation score using LLM El

29: Add (ei, tracei, ŷi, si) to Ddemo

30: end for
31: Sort Ddemo by score si
32: Select top-n examples from Ddemo as synthetic in-context examples
33: Update Matchmaker components with selected in-context examples
34: return Final output: Schema matches M

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.3 SCHEMA MATCHING CHALLENGES.

• Database Heterogeneity: The number of tables in each schema may differ, i.e., |Ts| ≠ |Tt|,
making it challenging to establish correspondences between attributes across schemas.

• Structural Heterogeneity: Schemas may have different architectures, hierarchies, and
representational granularity. If we define a hierarchy function h(Ti) that describes the level
of nesting within tables, differences in h(Tsj) and h(Ttk) for any j, k can lead to significant
challenges in aligning attributes Asj and Atk.

• Semantic Heterogeneity: Attributes in different schemas may have the same name but
different meanings, or different names but the same meaning. Let Ni = {nij |Aij ∈ Ai}
be the set of attribute names for schema Si. Semantic heterogeneity occurs when ∃Asj ∈
As, Atk ∈ At : f(Asj) = Atk ∧ nsj ̸= ntk or when ∃Asj ∈ As, Atk ∈ At : f(Asj) ̸=
Atk ∧ nsj = ntk.

• Data Type Heterogeneity: Attributes in different schemas may have different data types,
even if they refer to the same concept. Let dij be the data type of attribute Aij . Data type
heterogeneity occurs when ∃Asj ∈ As, Atk ∈ At : f(Asj) = Atk ∧ dsj ̸= dtk.

• Information Mismatch: Some attributes in one schema may lack a corresponding match in
the other schema. This necessitates reasoning about "no possible match" cases, which is as
important as reasoning about possible matches.

• Unsupervised Nature: Schema matching is unsupervised, where no labeled data pairs
(Asj , Atk) are available to train or validate the mappings. This necessitates reliance on the
intrinsic structure and semantic information encoded in Ai, making the development of an
effective mapping function f challenging without external supervision.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.4 COMPLEXITY OF THE MIMIC-OMOP TASK

MIMIC-OMOP is a real-world healthcare schema matching task, which is reflective of complex
structures, interlinking and hierarchies that can be expected in real-world schema matching tasks.
Hence, Matchmakers ability to empirically outperform baselines on these tasks highlights its ability
to handle complex schemas.

To illustrate the complexity of the schemas that Matchmaker can handle, Figure 5 illustrates the
complex schema structure and multiple tables.

So
ur

ce
 S

ch
em

a
(M

IM
IC

)
Ta

rg
et

 S
ch

em
a

(O
M

O
P)

Figure 5: Illustration of the MIMIC-OMOP schema matching task showing the complexity and
schema hierarchies.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.5 FURTHER DETAILS ON SCHEMA MATCHING FORMALISM

In this appendix, we provide further details on the formulation of schema matching. We look at
properties that a schema matching algorithm or function should possess, as well as, detailing how
Matchmaker satisfies these properties.

Properties necessary. In practice, correctness in schema matching is evaluated against expert-
validated ground truth mappings between the datasets (e.g. MIMIC to OMOP and Synthea to OMOP).
However, this begs the question what properties would be useful ti improve emprical performance.

These lie along the following dimensions:

• Semantic Equivalence/Consistency: f(AS) = At implies A and At represent the same
real-world concept (i.e. the mapped attributes serve equivalent purposes)

• Type Compatibility: Mapped attributes must have compatible data types

• Structural Consistency: Mappings must respect schema hierarchies

• Coverage: f identifies all valid matches while avoiding incorrect mappings through absten-
tion. i.e. coverage is maximized by improved accuracy@k

We can then practically assess if a function f (such as Matchmaker) satisfies these criteria based on
its performance against expert-validated ground truth mappings in real-world benchmark datasets as
has been done in the paper.

How does Matchmaker satisfy these properties?

While we have empirically shown Matchmaker satisfies the properties needed of a schema matching
function f , based on its strong performance on real-world schema matching tasks where it signifi-
cantly outperforms existing approaches on standard benchmarks. In particular, the strong empirical
performance outperforming the baselines implies that Matchmaker better satisfies the properties
compared to the baseline schema matching algorithms.

However, let us analyze how Matchmaker also has specific design aspects within its compositional
LLM structure that promotes addressing the properties.

• Semantic equivalence/consistency: Matchmaker employs multiple mechanisms: multi-
vector document representation captures semantic nuances beyond simple name matching,
while dual candidate generation combines both semantic retrieval and LLM reasoning to
identify conceptually equivalent attributes.

• Type compatibility: enforced through inclusion of data type information in our multi-vector
documents (Section 4.1) and LLM reasoning during candidate generation and refinement
(Section 4.2), with examples in Appendix C showing explicit consideration of type compati-
bility (e.g., string->varchar, integer->bigint).

• Structural consistency is maintained by incorporating table metadata and hierarchical infor-
mation in document creation (Section 4.1), using reasoning-based candidate generation that
considers schema structure (Section 4.2), and including table context in confidence scoring.

• Coverage is optimized through our MCQ format with a "None of the above" option enabling
abstention when no good match exists, while confidence scoring helps identify and rank
high-quality matches. Our empirical results validate that these properties translate to superior
performance in practice.

A.6 DETAILED EXPLANATION OF SELF-IMPROVEMENT

The self-improvement mechanism of Matchmaker is a pivotal component. We provide the Algorithm
below.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 3 Optimize LM program L
1: Input: Set of evaluation queries Deval = e1, e2, . . . , en
2: Output: Set of top n demonstrations Ddemo

3: for each input ei ∈ Deval do
4: ŷi, tracei ← L(ei) ▷ Teacher L predicts, storing outputs and intermediate traces
5: si ← E(ei, ŷi) ▷ Evaluation score
6: Ddemo ← Ddemo ∪ (ei, tracei, ŷi, si)
7: end for
8: Sort Ddemo by score
9: return Ddemo[0 : n] ▷ Select top n

In particular, we clarify that the self-improvement approach aims to address the issue of in-context
learning for multi-stage LLM programs like Matchmaker. However, in doing so we need to address
two fundamental challenges in our setting (C1 and C2):

(C1) Lack of labeled demonstrations: We do not have access to labeled input-output demonstrations
from which to select in-context examples.

(C2) Lack of an evaluator for selection: To assess Matchmaker’s capabilities and guide selection of
examples, we need an evaluator.

We address each as follows:

• Addressing (C1): The process begins by creating an evaluation dataset Deval from unlabeled
schemas with two properties: "easy queries" where top-n semantic matches have similarity
scores > 0.95, and "challenging queries" with the lowest semantic match scores. This ensures
diverse coverage of different matching scenarios. The complete Matchmaker compositional
program L is then run on each evaluation example ei ∈ Deval. We capture full execution
traces including intermediate reasoning steps, candidate generation and refinement decisions,
and final confidence scores and matches. The synthetic in-context examples refer to the
intermediate input-output pairs generated by the LLM for the intermediate steps of the
compositional LLM program. This deals with the challenge of a lack of labeled examples
(i.e. zero-shot).

• Addressing (C2): To handle the lack of an evaluator (validation metric), we use an evaluator
LLM E (i.e. an LLM-as-a-judge) to assess match quality through chain-of-thought reasoning,
producing scores from 0-5 based on match relevance. Finally, the top-n traces are selected
based on these evaluation scores. This systematic approach, detailed in Algorithm 1, enables
principled selection of in-context examples based on traces that lead to good performance.
We then use these as in-context examples for the different parts of the LLM program (as they
led to good performance) — in order to guide the reasoning. As shown in the main paper
our novel approach to self-improve outperforms random selection of in-context examples
and self-reflection confirming that our systematic selection of in-context samples is the key
driver of performance gains, rather than the mere inclusion of any in-context examples.

A.7 EXTENDED RELATED WORK

Classical Schema Matching approaches. Classical approaches to schema matching, as thoroughly
reviewed by Rahm & Bernstein (2001), use a range of strategies, including heuristic-driven linguistic
matching, constraint-based methods, and structural analysis. These methods have historically focused
on simple relational schemas, matching elements between individual tables or flat structures. In
particular, the primary focus is matching between individual tables or simple schemas (such as
purchase orders).

Key Weaknesses of Classical Approaches and How Matchmaker Addresses Them:

• Single-Table and Flat Structure Focus: Classical methods typically perform schema matching
at the element level, treating tables as isolated entities and matching attributes based on
direct comparisons of names, data types, or simple structural cues. In particular, often a
focus was simple relational schemas, where the goal was to map elements between single

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

tables. However, this approach fails to handle the complexity of modern data systems, where
schemas are often multi-table, hierarchical, or require cross-table reasoning. Contrast:
Matchmaker, in contrast, uses LLM-based reasoning to connect attributes across multi-table
and hierarchical schemas, understanding how data relationships span multiple tables. This
makes our approach significantly more capable of handling complex and interrelated schema
structures.

• Dependency on Heuristics and Limited Semantic Understanding: Classical methods rely
on heuristic-driven matching based on linguistic similarities (e.g., name matching using
synonyms, hypernyms, or edit distance) and structural constraints like key relationships.
While these heuristics work in well-defined contexts, they are insufficient for domains
where semantic meaning is implicit, such as in healthcare and as we show in Fig 1 — only
semantic matching is in fact insufficient. Contrast: Matchmaker employs chain-of-thought
prompting and advanced LLMs to perform reasoning, allowing it to capture relationships
that are not explicitly defined in the schema structure or names. This enables Matchmaker
to handle complex mappings that classical methods cannot infer.

• Manual Effort and Lack of Adaptability: Classical techniques require significant manual
effort for tuning and adaptation, making them less suitable for rapidly evolving or heteroge-
neous environments. Constraint-based approaches, in particular, are difficult to scale across
different domains without manual intervention. Alternatively, they might also rely on labeled
data for effective matching. This makes these classical approaches impractical in real-world
environments. Contrast: Matchmaker’s zero-shot and self-optimization capabilities mean it
can adapt autonomously to new schemas using synthetic in-context examples, significantly
reducing the need for manual tuning and making it more practical for dynamic, real-world
data integration tasks.

Key Weaknesses of SMAT and how Matchmaker improves: We also compared Matchmaker to
state-of-the-art (SOTA) methods like SMAT Zhang et al. (2021), which applies attention mechanisms
for schema matching. While SMAT represents an important advancement over classical methods, it
has several limitations that Matchmaker overcomes:

• High Dependency on Labeled Data: SMAT requires extensive labeled data (over 50%
labeled matches) for training, which is often impractical in real-world schema matching.
Contrast: Matchmaker’s zero-shot matching capability allows it to perform well without
any labeled training data, using LLMs to generate and refine matches autonomously.

• Binary formulation: SMAT formulates the problem as binary classification task over the
full Cartesian product of source and target schema attributes. e.g. for each pair of source-
target attributes. This leads to a large amount of comparisons. Contrast: Matchmakers
formulation as information retrieval reduces the number of comparisons and leads to greater
efficiency — in addition to the better performance.

A.8 METRICS: ACCURACY, PRECISION, RECALL, F1-SCORE

In our m:1 schema matching setup, accuracy@1, precision, recall, and F1-score are equivalent due to
the specific constraints of the task and the prediction mechanism employed. Below, we provide a
detailed explanation of this equivalence:

2. Task Constraints: The schema matching task is constrained such that each source attribute can
match to at most one target attribute (m:1 constraint). This ensures that the number of predictions
equals the number of source attributes.

Equivalence of Metrics Given the above setup, the following equivalences hold:

Precision:
Precision =

True Positives (TP)
True Positives (TP) + False Positives (FP)

In our setup, every prediction corresponds to exactly one target attribute, and there are no extraneous
or unassigned predictions. Therefore:

Precision =
Correct Matches
Total Predictions

= Accuracy@1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Recall:
Recall =

True Positives (TP)
True Positives (TP) + False Negatives (FN)

Since every source attribute must be matched to a target attribute, there are no unassigned predictions
in our setup. However, incorrect matches can occur, leading to both false positives (FP) and false
negatives (FN). In our m:1 schema matching setup, a prediction is either correct (a true positive,
TP) or incorrect. An incorrect match to the wrong target attribute results in a false positive (FP)
for the predicted target and a corresponding false negative (FN) for the true target. Consequently,
the number of FP and FN are always equal, as they reflect the same prediction errors. In this setup,
precision, recall, and accuracy@1 are equivalent because they all measure the proportion of correct
matches (TPs) relative to the total predictions, with incorrect matches impacting all metrics identically.
This equivalence holds when correctness is measured against the ground truth annotations from the
benchmark datasets. Thus:

Recall =
Correct Matches
Total Predictions

= Accuracy@1.

F1-Score:
F1-Score = 2 · Precision · Recall

Precision + Recall
As both precision and recall are equal to accuracy@1 in this setup, the F1-score simplifies to:

F1-Score = Accuracy@1.

In summary, due to the constraints of our m:1 schema matching task and the argmax prediction
mechanism, accuracy@1, precision, recall, and F1-score are mathematically equivalent. We report
accuracy@1 in the main results, but the corresponding precision, recall, and F1-scores are identical
and can be directly interpreted from the accuracy@1 values. We note this equivalence does not hold
for one-to-many mappings

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS: BENCHMARKS & DATASETS

All experiments are run on a single Nvidia A4000 GPU with 20 GB of vram. We invoke GPT-4 via
the Azure OpenAI API.

B.1 BENCHMARKS

B.1.1 MATCHMAKER

Matchmaker is a compositional language model program for schema matching made up of multiple
component modules — formulated in the context of information retrieval.

GPT-4 Hyper-parameters. The model version used as the LLM was GPT-4-1106, with the fol-
lowing settings: {’temperature’: 0.5, ’max_tokens’: 1024, ’top_p’: 1, ’frequency_penalty’: 0,
’presence_penalty’: 0, ’n’: 1, }

Embedding model and documents. We use Colbert-V2 (Santhanam et al., 2022) as the embedding
model and follow the document creation process as outlined in Sec. 4.1. We use the implementation
of Colbert-v2 from RAGatouille (https://github.com/bclavie/RAGatouille/).

Candidates. For both semantic and reasoning-based candidates, we set k=5.

Optimization. As described in the main paper, we generate synthetic in-context samples to address
the unique challenges of a lack of labeled data and no demonstrations. As described, to achieve this
we follow a boostrapping process like in DSPy (Khattab et al., 2023). For our experiments we select
at maximum 4 synthetic in-context examples

Prompts: We show examples with the prompts for each component of Matchmaker in Appendix C.

B.1.2 REMATCH

In the main text we report the numbers directly from the ReMatch paper, as there is no open-source
implementation.

How we selected the numbers to report: The ReMatch paper does an exploration of the number of
documents retrieved. Hence, we use the following two criteria.
(i) At least 1 document must be retrieved. i.e. the retrieval step cannot be skipped.

(ii) We then select the result that satisfies (i), with the highest accuracy@5.

Our implementation of ReMatch follows the original paper (Sheetrit et al., 2024). We use OpenAI
Ada embeddings for the embedding model and GPT-4 as the LLM.

We following the document creation procedure and use the prompt template as provided.

GPT-4 Hyper-parameters. The model version used for generation was GPT-4-1106, with the fol-
lowing settings from the ReMatch paper: {seed=42, temperature=0.5, max_tokens=4096, top_p=0.9,
frequency_penalty=0, presence_penalty=0}

B.1.3 JELLYFISH

Jellyfish (Zhang et al., 2023b) is a fine-tuned language model tailored for data preprocessing tasks
including schema matching. The 7B and 13B models are fine tuned upon the OpenOrca-Platypus2
model.

Implementation (7b): https://huggingface.co/NECOUDBFM/Jellyfish-7B

Implementation (13b): https://huggingface.co/NECOUDBFM/Jellyfish-13B

B.1.4 LLM-DP

LLM-DP (Narayan et al., 2022; Zhang et al., 2023a) refer to works which have used pre-trained
LLMs like GPT-3.5 or GPT-4 for data processing tasks like schema matching via prompting. Since
the papers in the few-shot case use labeled examples we do not use those — given its unrealistic in
practice. Hence, for these baselines they operate in a zero shot manner.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Implementation: https://github.com/HazyResearch/fm_data_tasks

B.1.5 SMAT

SMAT is a supervised learning approach which performs schema matching via an attention mecha-
nism. Of course, the model needs labeled data to train on. In our experiments, we assess two variants
given that labeled training data for schema matching is hard to access: (i) 20-80: 20% train and 80%
test and (ii) 50-50: 50% train and 50% test.

We use the default hyper-parameters: {Learning Rate: 0.8, Batch Size: 64, Epochs: 30}

Implementation: https://github.com/JZCS2018/SMAT

B.2 DATASETS

We outline the two real-world schema matching benchmarks used in this paper — MIMIC and
Synthea. These datasets mapping different clinical/healthcare schemas were chosen as they are
the standard datasets used in schema matching literature and consequently, used by prior works
providing fair assessment. They are also considered the most reflective of real-world schema matching
complexity and challenges. We note that the scarcity of complex and challenging real-world datasets,
underscores the challenges in collecting and annotating real-world schema matching data. For
instance, as noted in Sec 1, annotating MIMIC-OMOP alone required 500 hours from two medical
experts.

Table 5 provides a summary of the table properties.

Note there is no specific train-test sets used as in supervised learning. As we perform the schema
matching task in a zero-shot manner.

Table 5: Summary of the table properties of our two schema matching datasets.

Dataset Source Tables Target Tables
MIMIC-OMOP 26 14

SYNTHEA-OMOP 12 21

MIMIC Dataset: The dataset contains a schema mapping between the MIMIC-III electronic health
record (Source schema) (Johnson et al., 2016) and The Observational Medical Outcomes Partnership
Common Data Model (OMOP schema) (Target schema).

This dataset is currently the largest publicly available schema matching dataset (Sheetrit et al., 2024)
and is the cloest to a real-world schema matching use case, wherein a proprietary database created
for a specific purpose (a source schema) is mapped to a given industry standard (a target schema) for
further uses. In this case the proprietary database schema is MIMIC and the industry standard is the
OMOP common data model.

Open-source data: https://github.com/meniData1/MIMIC_2_OMOP

Synthea Dataset: The Synthea dataset is part of the OMAP benchmark (Zhang et al., 2021) and
is a partial mapping of the Synthea (Walonoski et al., 2018) (Source Schema) which is a synthetic
healthcare dataset of a Massachusetts health records and attempts to map it to a subset of the
OMOP CDM (Target Schema). The dataset has widely been used in previous schema matching
papers (Sheetrit et al., 2024; Narayan et al., 2022; Zhang et al., 2021) as a realistic and challenging
real-world schema matching benchmark.

Open-source data: https://github.com/JZCS2018/SMAT/tree/main/datasets/omap/

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

C EXAMPLES USING MATCHMAKER (WITH PROMPTS)

C.1 MATCHMAKER PROMPT EXAMPLES

We show two end-to-end schema matching examples with Matchmaker, where other methods fail. (1)
Example 1: case with No possible target schema match for the source schema query, (2) Example 2:
challenging reasoning case, where there is a match possible between source and target schema.
▶ In each component, we can show the "Optimized" In-context examples.

C.1.1 EXAMPLE 1.

Source schema query: admissions-marital_status(string): Table admissions details-the admissions
table gives information regarding a patient’s admission to the hospital., Attribute marital_status details
-describe patient demographics.

Target scheme match: None possible.

Matchmaker: None of the above.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 6: EXAMPLE 1: Candidate generation.

Candidate generation

You are an OMOP Schema expert. Your goal is to take the OMOP schema and based on the input,
refine the schema to include only 5 most likely matches to the input query.
—
Follow the following format.
Input Schema: Input OMOP schema values Input Query: input query Refined Schema: Five most
likely matches to input query. Include most likely matches to the input query. Respond with a single
JSON object. JSON Schema: {"defs": {"Extractor": {"properties": {"related": {"description":
"related matches", "title": "Related", "type": "string"}}, "required": ["related"], "title": "Extractor",
"type": "object"}}, "properties": {"value": {"items": {"ref": "/defs/Extractor"}, "title": "Value",
"type": "array"}}, "required": ["value"], "title": "Output", "type": "object"}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, ... ’procedure_occurrence-provider_id(bigint)’, ’visit_detail-
visit_detail_source_value(varchar(50))’]
Input Query: procedureevents_mv-itemid
Refined Schema: "value": ["related": "procedure_occurrence-person_id(bigint)", "re-
lated": "procedure_occurrence-visit_occurrence_id(bigint)", "related": "procedure_occurrence-
procedure_date(date)", "related": "procedure_occurrence-procedure_source_value(varchar(50))",
"related": "procedure_occurrence-procedure_concept_id(integer)"]
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, ... ’procedure_occurrence-provider_id(bigint)’, ’visit_detail-
visit_detail_source_value(varchar(50))’]
Input Query: noteevents-text
Refined Schema: "value": ["related": "note-note_text(varchar(max))", "related": "note-
note_title(varchar(250))", "related": "note-note_source_value(varchar(50))", "related": "note-
note_date(date)", "related": "note-note_datetime(datetime)"]
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, ... ’procedure_occurrence-provider_id(bigint)’, ’visit_detail-
visit_detail_source_value(varchar(50))’]
Input Query: admissions-marital_status(string): Table admissions details-the admissions table
gives information regarding a patient’s admission to the hospital., Attribute marital_status details
-describe patient demographics.
Refined Schema:
—————————————————————–
LLM Response
—————————————————————-
{"value": [{"related": "person-person_id(bigint)"}, {"related": "person-
gender_source_value(varchar(50))"}, {"related": "person-birth_datetime(datetime)"},
{"related": "person-death_datetime(datetime)"}, {"related": "visit_occurrence-
admitted_from_source_value(varchar(50))"}]}

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 7: EXAMPLE 1: Candidate refinement.

Candidate refiner

You are an expert OMOP matching ranker. Your task is to take the OMOP candidates and based
on the input, refine the candidates to select the 5 most likely matches to the input query. Return
ONLY the keys.
—
Follow the following format.
Input Schema: List of key: value pairs
Input Query: input query
Reasoning: Let’s think step by step in order to {produce the refined_string_list}. We ...
Refined String List: Five most likely matches to input query. Include maximum of the 5 most
likely matches to the input query. Return ONLY the keys
—
Input Schema: [’person-person_id(bigint): Table person details-this table serves as the central
identity management for all persons in the database. it contains records that uniquely identify
each person or patient, and some demographic information., Attribute person_id details -it is
assumed that every person with a different unique identifier is in fact a different person and should
be treated independently.’, ... ’measurement-measurement_concept_id(integer): the measure-
ment_concept_id field is recommended for primary use in analyses, and must be used for network
studies’]
Input Query: procedureevents_mv-itemid
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for a
match to ’procedureevents_mv-itemid’, which seems to relate to a procedure event and its item
identifier. The ’procedureevents_mv’ part suggests we’re looking at a procedure occurrence, and
the ’itemid’ part suggests we’re looking for an identifier or id field. Given that, we should look for
keys in the ’procedure_occurrence’ table that represent identifiers.
Refined String List: ’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_concept_id(integer)’,
’procedure_occurrence-visit_detail_id(bigint)’, ’procedure_occurrence-provider_id (big-
int)’
—
Input Schema: [’person-person_id(bigint): Table person details-this table serves as the central
identity management for all persons in the database. it contains records that uniquely identify
each person or patient, and some demographic information., Attribute person_id details -it is
assumed that every person with a different unique identifier is in fact a different person and should
be treated independently.’, ... ’measurement-measurement_concept_id(integer): the measure-
ment_concept_id field is recommended for primary use in analyses, and must be used for network
studies’]
Input Query: noteevents-text
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for
matches to "noteevents-text" in the input schema. The term "noteevents" matches with "note" in
the input schema, and "text" matches with "note_text". So, we should consider those keys that
contain both "note" and "text".
Refined String List: [’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’, ’note-
note_source_value(varchar(50))’, ’note-note_text(varchar(max))’]
—
Input Schema: [’person-person_id(bigint): Table person details-this table serves as the central
identity management for all persons in the database. it contains records that uniquely identify
each person or patient, and some demographic information., Attribute person_id details -it is
assumed that every person with a different unique identifier is in fact a different person and should
be treated independently.’, ... ’measurement-measurement_concept_id(integer): the measure-
ment_concept_id field is recommended for primary use in analyses, and must be used for network
studies’]
Input Query: admissions-marital_status(string): Table admissions details-the admissions table
gives information regarding a patient’s admission to the hospital., Attribute marital_status details
-describe patient demographics.
Reasoning: Let’s think step by step in order to
—————————————————————–
LLM Response
—————————————————————-
"produce the refined string list. We are looking for a match to ’admissions-marital_status’, which
seems to relate to a hospital admission and the marital status of the patient. The ’admissions’ part
suggests we’re looking at a visit occurrence or visit detail, and the ’marital_status’ part suggests
we’re looking for demographic information, which is usually found in the ’person’ table. Given
that, we should look for keys in the ’visit_occurrence’, ’visit_detail’, and ’person’ tables.String List:
’visit_occurrence-person_id(bigint)’, ’visit_occurrence-visit_occurrence_id(bigint)’, ’visit_detail-
person_id(bigint)’, ’visit_detail-visit_occurrence_id(bigint",

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 8: EXAMPLE 1: MCQ Formatter.

MCQ Formatter

You are an expert MCQ formatter. Your task is to take a list of schema values and convert them
into a multiple choice question format with (letter)Schema value, where the schema values should
be key(description).
—
Follow the following format.
Input: input list of schema values Mcq: MCQ format of schema values e.g (A)Schema value,
(B)Schema value. Do not include additional options, only the schema values as options. where the
schema values should be key(description). Add a No Match option.
—
Input: ["’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_concept_id(integer)’,
’procedure_occurrence-visit_detail_id(bigint)’, ’procedure_occurrence-provider_id (big-
int)’"] Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_concept_id(integer)’,
(D)’procedure_occurrence-visit_detail_id(bigint)’, (E)’procedure_occurrence-provider_id
(bigint)’, (F)No Match
—
Input: ["[’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’,
’note-note_source_value(varchar(50))’, ’note-note_text(varchar(max))’]"] Mcq:
(A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-
note_source_value(varchar(50)), (D)note-note_text(varchar(max)), (E)No Match
—
Input: ["’visit_occurrence-person_id(bigint)’, ’visit_occurrence-visit_occurrence_id(bigint)’,
’visit_detail-person_id(bigint)’, ’visit_detail-visit_occurrence_id(bigint"] Mcq:
—————————————————————–
LLM Response
—————————————————————-
"(A)’visit_occurrence-person_id(bigint)’, (B)’visit_occurrence-visit_occurrence_id(bigint)’,
(C)’visit_detail-person_id(bigint)’, (D)’visit_detail-visit_occurrence_id(bigint)’, (E)No Match",

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 9: EXAMPLE 1: Confidence scoring.

Confidence scoring

You are a schema matching expert. Your task is given the input and the MCQ format of the schema,
predict the likelihood or relation score from 0-100 of the input query being related to each option.
Your scores will be calibrated. If there is no good match score No Match as 100
—
Follow the following format.
Input Mcq: Input MCQ format of schema values
Input Query: input query
Relation: Relation score of input query being related to the option as value. Assess each indepen-
dently including No Match, returning a score from 0-100 for each. Return with key as MCQ letter
e.g (A) and score=value as JSON
—
Input Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_concept_id(integer)’,
(D)’procedure_occurrence-visit_detail_id(bigint)’, (E)’procedure_occurrence-provider_id
(bigint)’, (F)No Match
Input Query: procedureevents_mv-itemid
Relation: {"(A)": 0, "(B)": 0, "(C)": 0, "(D)": 0, "(E)": 0, "(F)": 100}
—
Input Mcq: (A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-
note_source_value(varchar(50)), (D)note-note_text(varchar(max)), (E)No Match
Input Query: noteevents-text
Relation: {"A": 90, "B": 0, "C": 0, "D": 90, "E": 10}
—
Input Mcq: (A)’visit_occurrence-person_id(bigint)’, (B)’visit_occurrence-
visit_occurrence_id(bigint)’, (C)’visit_detail-person_id(bigint)’, (D)’visit_detail-
visit_occurrence_id(bigint’, (E)No Match Input Query: admissions-marital_status(string):
Table admissions details-the admissions table gives information regarding a patient’s admission to
the hospital., Attribute marital_status details -describe patient demographics.
Relation:
—————————————————————–
LLM Response
—————————————————————-
"{(̈A):̈ 0, (̈B):̈ 0, (̈C):̈ 0, (̈D):̈ 0, (̈E):̈ 100}"

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

C.1.2 EXAMPLE 2

Source schema query: admissions-marital_status(string): Table admissions details-the admissions
table gives information regarding a patient’s admission to the hospital., Attribute marital_status
details -describe patient demographics.

Target scheme match: ’procedure_occurrence- quantity

Matchmaker: ’procedure_occurrence- quantity

Figure 10: Candidate generation.

EXAMPLE 2: Candidate generation.

You are an OMOP Schema expert. Your goal is to take the OMOP schema and based on the input,
refine the schema to include only 5 most likely matches to the input query.
—
Follow the following format.
Input Schema: Input OMOP schema values Input Query: input query Refined Schema: Five
most likely matches to input query. Include maximum of the 10 most likely matches to the input
query. Respond with a single JSON object. JSON Schema: {"defs": {"Extractor": {"properties":
{"related": {"description": "related matches", "title": "Related", "type": "string"}}, "required":
["related"], "title": "Extractor", "type": "object"}}, "properties": {"value": {"items": {"ref":
"/defs/Extractor"}, "title": "Value", "type": "array"}}, "required": ["value"], "title": "Output",
"type": "object"}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, ’visit_detail-visit_detail_source_value(varchar(50))’]
Input Query: procedureevents_mv-itemid Refined Schema: {"value": [{"related":
"procedure_occurrence-person_id(bigint)"}, {"related": "procedure_occurrence-
visit_occurrence_id(bigint)"}, {"related": "procedure_occurrence-procedure_date(date)"},
{"related": "procedure_occurrence-procedure_source_value(varchar(50))"}, {"related":
"procedure_occurrence-procedure_concept_id(integer)"}]}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, ’visit_detail-visit_detail_source_value(varchar(50))’] Input
Query: noteevents-text Refined Schema: {"value": [{"related": "note-note_text(varchar(max))"},
{"related": "note-note_title(varchar(250))"}, {"related": "note-note_source_value(varchar(50))"},
{"related": "note-note_date(date)"}, {"related": "note-note_datetime(datetime)"}]}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, ’visit_detail-visit_detail_source_value(varchar(50))’] Input
Query: procedures_icd-seq_num(integer): Table procedures_icd details-contains icd procedures
for patients, most notably icd-9 procedures, Attribute seq_num details -provides the order in which
the procedures were performed Refined Schema:
"{v̈alue:̈ [{r̈elated:̈ p̈rocedure_occurrence-person_id(bigint)}̈, {r̈elated:̈ p̈rocedure_occurrence-
visit_occurrence_id(bigint)}̈, {r̈elated:̈ p̈rocedure_occurrence-procedure_date(date)}̈, {r̈elated:̈
p̈rocedure_occurrence-procedure_concept_id(integer)}̈, {r̈elated:̈ p̈rocedure_occurrence-
quantity(integer)}̈]}"

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 11: EXAMPLE 2: Candidate Refinement.

Candidate refinement

You are an expert OMOP matching ranker. Your task is to take the OMOP candidates and based
on the input, refine the candidates to select the 5 most likely matches to the input query. Return
ONLY the keys.
—
Follow the following format.
Input Schema: List of key: value pairs
Input Query: input query
Reasoning: Let’s think step by step in order to {produce the refined_string_list}. We ...
Refined String List: Five most likely matches to input query. Include maximum of the 5 most
likely matches to the input query. Return ONLY the keys
—
Input Schema: [’procedure_occurrence-person_id(bigint): Table procedure_occurrence details-this
table contains records of activities or processes ordered by, or carried out by, a healthcare provider
on the patient with a diagnostic or therapeutic purpose., Attribute person_id details -the person_id
of the person for whom the procedure is recorded. this may be a system generated code.’
’visit_detail-care_site_id(bigint): this field provides information about the care site where the visit
detail took place’]
Input Query: procedureevents_mv-itemid
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for a
match to ’procedureevents_mv-itemid’, which seems to relate to a procedure event and its item
identifier. The ’procedureevents_mv’ part suggests we’re looking at a procedure occurrence, and
the ’itemid’ part suggests we’re looking for an identifier or id field. Given that, we should look for
keys in the ’procedure_occurrence’ table that represent identifiers.
Refined String List: ’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_concept_id(integer)’,
’procedure_occurrence-visit_detail_id(bigint)’, ’procedure_occurrence-provider_id (big-
int)’
—
Input Schema: [’procedure_occurrence-person_id(bigint): Table procedure_occurrence details-this
table contains records of activities or processes ordered by, or carried out by, a healthcare provider
on the patient with a diagnostic or therapeutic purpose., Attribute person_id details -the person_id
of the person for whom the procedure is recorded. this may be a system generated code.’
’visit_detail-care_site_id(bigint): this field provides information about the care site where the visit
detail took place’]
Input Query: noteevents-text
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for
matches to "noteevents-text" in the input schema. The term "noteevents" matches with "note" in
the input schema, and "text" matches with "note_text". So, we should consider those keys that
contain both "note" and "text".
Refined String List: [’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’, ’note-
note_source_value(varchar(50))’, ’note-note_text(varchar(max))’]
—
Input Schema: [’procedure_occurrence-person_id(bigint): Table procedure_occurrence details-this
table contains records of activities or processes ordered by, or carried out by, a healthcare provider
on the patient with a diagnostic or therapeutic purpose., Attribute person_id details -the person_id
of the person for whom the procedure is recorded. this may be a system generated code.’
’visit_detail-care_site_id(bigint): this field provides information about the care site where the visit
detail took place’]
Input Query: procedures_icd-seq_num(integer): Table procedures_icd details-contains icd proce-
dures for patients, most notably icd-9 procedures, Attribute seq_num details -provides the order in
which the procedures were performed
Reasoning: Let’s think step by step in order to
"produce the refined string list. We are looking for a match to ’procedures_icd-seq_num’, which
seems to relate to a procedure occurrence and its sequence number. The ’procedures_icd’ part sug-
gests we’re looking at a procedure occurrence, and the ’seq_num’ part suggests we’re looking for a
sequential number or order field. Given that, we should look for keys in the ’procedure_occurrence’
table that represent order or sequence.
Refined String List: ’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_date(date)’,
’procedure_occurrence-procedure_concept_id(integer)’, ’procedure_occurrence-
quantity(integer)’"

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 12: EXAMPLE 2: MCQ Formatter.

MCQ Formatter

You are an expert MCQ formatter. Your task is to take a list of schema values and convert them
into a multiple choice question format with (letter)Schema value, where the schema values should
be key(description).
—
Follow the following format.
Input: input list of schema values Mcq: MCQ format of schema values e.g (A)Schema value,
(B)Schema value. Do not include additional options, only the schema values as options. where the
schema values should be key(description). Add a No Match option.
—
Input: ["’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_concept_id(integer)’,
’procedure_occurrence-visit_detail_id(bigint)’, ’procedure_occurrence-provider_id (big-
int)’"] Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_concept_id(integer)’,
(D)’procedure_occurrence-visit_detail_id(bigint)’, (E)’procedure_occurrence-provider_id
(bigint)’, (F)No Match
—
Input: ["[’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’,
’note-note_source_value(varchar(50))’, ’note-note_text(varchar(max))’]"] Mcq:
(A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-
note_source_value(varchar(50)), (D)note-note_text(varchar(max)), (E)No Match
—
Input: ["’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_date(date)’,
’procedure_occurrence-procedure_concept_id(integer)’, ’procedure_occurrence-
quantity(integer)’"] Mcq:
"(A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_date(date)’,
(D)’procedure_occurrence-procedure_concept_id(integer)’, (E)’procedure_occurrence-
quantity(integer)’, (F)No Match",

Figure 13: EXAMPLE 2: Confidence scoring.

Confidence scoring

You are a schema matching expert. Your task is given the input and the MCQ format of the schema,
predict the likelihood or relation score from 0-100 of the input query being related to each option.
Your scores will be calibrated. If there is no good match score No Match as 100
—
Follow the following format.
Input Mcq: Input MCQ format of schema values Input Query: input query Relation: Relation
score of input query being related to the option as value. Assess each independently including
No Match, returning a score from 0-100 for each. Return with key as MCQ letter e.g (A) and
score=value as JSON
—
Input Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_concept_id(integer)’,
(D)’procedure_occurrence-visit_detail_id(bigint)’, (E)’procedure_occurrence-provider_id
(bigint)’, (F)No Match Input Query: procedureevents_mv-itemid Relation: {"(A)": 0, "(B)": 0,
"(C)": 0, "(D)": 0, "(E)": 0, "(F)": 100}
—
Input Mcq: (A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-
note_source_value(varchar(50)), (D)note-note_text(varchar(max)), (E)No Match Input Query:
noteevents-text Relation: {"A": 90, "B": 0, "C": 0, "D": 90, "E": 10}
—
Input Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_date(date)’,
(D)’procedure_occurrence-procedure_concept_id(integer)’, (E)’procedure_occurrence-
quantity(integer)’, (F)No Match Input Query: procedures_icd-seq_num(integer): Table
procedures_icd details-contains icd procedures for patients, most notably icd-9 procedures,
Attribute seq_num details -provides the order in which the procedures were performed Relation:
"{(̈A):̈ 0, (̈B):̈ 0, (̈C):̈ 0, (̈D):̈ 0, (̈E):̈ 90, (̈F):̈ 10}",

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

C.2 LLM EVALUATOR

We provide examples of the LLM evaluator, showing demonstrations achieving high and low scores.

LLM Evaluator Example: High Score

You are a schema matching expert, your task is to rate if any of the suggested matches are potential
good matches for the query. Be lenient and rate a match as good (4 or 5) if it is relevant to the
query. Rate the matches from 1-5. If none of the matches are good, rate 0.
—
Follow the following format.
Query: The query.
Answers: possible matches
Reasoning: Let’s think step by step in order to {produce the rating}. We ...
Rating: Rate if any of the suggested matches are good for the query from 1-5. Only output the
rating and nothing else.
—
Query: noteevents-chartdate
Answers: ["’note-note_date(date)’, ’note-note_datetime(datetime)’,
’note-visit_occurrence_id(bigint)’, ’note-provider_id(bigint)’, ’note-person_id(bigint)’"]
Reasoning: Let’s think step by step in order to
—————————————————————–
LLM Response
—————————————————————-
produce the rating. We can see that the query is looking for a match related to the date of
a note event in a chart. The first two suggested matches, ’note-note_date(date)’ and ’note-
note_datetime(datetime)’, are both related to dates and notes, making them potentially good
matches for the query. The other three suggestions are not directly related to dates or note events,
so they are not as good matches.
Rating: 4

Figure 14: LLM evaluator example, rated with a high score.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

LLM Evaluator Example: Low Score

You are a schema matching expert, your task is to rate if any of the suggested matches are potential
good matches for the query. Be lenient and rate a match as good (4 or 5) if it is relevant to the
query. Rate the matches from 1-5. If none of the matches are good, rate 0.
—
Follow the following format.
Query: The query.
Answers: possible matches
Reasoning: Let’s think step by step in order to {produce the rating}. We ...
Rating: Rate if any of the suggested matches are good for the query from 1-5. Only output the
rating and nothing else.
—
Query: cptevents-subsectionheader
Answers: [’visit_occurrence-visit_type_concept_id(int)’,
’visit_detail-visit_detail_concept_id(int)’, ’procedure_occurrence-procedure_concept_id(int)’,
’procedure_occurrence-visit_detail_id(int)’, ’condition_occurrence-visit_occurrence_id(int)’]
Reasoning: Let’s think step by step in order to
—————————————————————–
LLM Response
—————————————————————-
"produce the rating. We can see that the query is looking for a match related to ’cptevents-
subsectionheader’. However, none of the suggested matches seem to directly relate to this
query. They all refer to different concepts such as ’visit_occurrence’, ’visit_detail’, ’proce-
dure_occurrence’, and ’condition_occurrence’. Therefore, none of the matches seem to be a good
fit for the query.
Rating: 0

Figure 15: LLM evaluator example, rated with a low score.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTS

D.1 NUMBER OF LLM CALLS

Goal. To compare the number of LLM calls required by Matchmaker and other baseline methods for
schema matching on the MIMIC-OMOP and SYNTHEA-OMOP datasets.

Experiment. We count the number of LLM calls made by each method during the schema matching
process on both the MIMIC-OMOP and SYNTHEA-OMOP datasets. For methods that do not rely
on LLMs (e.g., SMAT), we consider the number of forward passes through the neural network as
equivalent to an LLM call for comparison purposes.

Results. Table 6 presents the number of LLM calls required by each method on the two datasets.

Table 6: Number of LLM calls

Method MIMIC-OMOP SYNTHEA-OMOP
Matchmaker 1340 890
ReMatch 268 178
Jellyfish-13b 24771 29637
Jellyfish-7b 24771 29637
LLM-DP 24771 29637
SMAT 24771 29637

Discussion. The results in Table 6 highlight the efficiency of Matchmaker and ReMatch in terms of
the number of LLM calls required for schema matching.

Both Matchmaker and ReMatch formulate schema matching as an information retrieval problem,
which significantly reduces the search space compared to the binary classification formulation used
by Jellyfish-13b, Jellyfish-7b, LLM-DP, and SMAT.

The high number of LLM calls required by Jellyfish-13b, Jellyfish-7b, LLM-DP, and SMAT can
be attributed to their formulation of schema matching as a binary classification problem over the
Cartesian product of source and target attributes. In this formulation, the LLM is prompted to provide
a label of Yes/No for each pair of source-target attributes, resulting in a large number of LLM calls
that scales (O(n2)). Consequently, these methods are computationally expensive and less scalable
compared to Matchmaker and ReMatch, which employ a more efficient approach.

The fewer number of LLM calls used by Matchmaker and ReMatch has practical implications in terms
of computational cost and runtime efficiency. By reducing the number of LLM calls, these methods
can perform schema matching more quickly and with lower computational overhead compared to
methods that rely on a large number of calls. This is particularly important when dealing with
large-scale schemas or when schema matching needs to be performed frequently in real-world
applications.

D.2 MATCHMAKER WITH OTHER LLMS

Goal. To understand the performance of Matchmaker when using a less powerful LLM backbone
compared to GPT-4, and contrast it with the ReMatch baseline using GPT-4.

Experiment. We evaluate the performance of Matchmaker using GPT-3.5 as the backbone LLM for
all components, instead of GPT-4 which was used in the main experiments. We compare this to the
performance of Matchmaker with GPT-4 and ReMatch with GPT-4. All other aspects of the setup
remain the same as in the main text.

Results. Table 7 shows the schema matching accuracy@k for the different methods. We observe
that Matchmaker with GPT-3.5 performs worse than Matchmaker with GPT-4, which is expected
given GPT-3.5 is a less powerful LLM. Interestingly, Matchmaker with GPT-3.5 achieves comparable
performance to ReMatch with GPT-4, despite GPT-3.5 being a much weaker LLM than GPT-4. On
MIMIC, Matchmaker with GPT-3.5 slightly outperforms ReMatch with GPT-4 for accuracy@1 and
is competitive at higher k. On Synthea, performance is similar for accuracy@1 but Matchmaker with
GPT-3.5 outperforms ReMatch with GPT-4 for accuracy@3 and accuracy@5.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 7: Comparison of schema matching performance of different baselines.

Matchmaker (GPT-4) Matchmaker (GPT-3.5) ReMatch (GPT-4)

M
IM

IC acc@1 62.20 ± 2.40 ↑ 48.30± 2.80 ↑ 42.50
acc@3 68.80 ± 2.00 62.00 ± 4.20 63.80
acc@5 71.10 ± 2.00 70.00 ± 4.20 72.90

Sy
nt

he
a acc@1 70.20 ± 1.70 47.80 ± 3.20 50.50

acc@3 78.60 ± 2.50 63.30 ± 4.30 ↑ 58.10
acc@5 80.90 ± 1.10 77.10 ± 0.70 ↑ 74.30

Discussion. These results demonstrate that the Matchmaker approach of using a compositional
LLM program is quite robust and can provide good schema matching performance even with weaker
LLM backbones. The fact that Matchmaker with GPT-3.5 is competitive with ReMatch using GPT-4
highlights the strength of the multi-stage Matchmaker approach over ReMatch’s single-stage LLM
usage. However, using a more powerful LLM like GPT-4 still provides significant gains, underlining
the importance of using an LLM with powerful reasoning capabilities for this complex task.

D.3 FURTHER PERFORMANCE RESULTS: REMATCH REIMPLEMENTATION

Goal. To compare the performance of Matchmaker against the ReMatch baseline, using both the
original reported results from the ReMatch paper and the re-implementation of ReMatch.

Experiment. In the main paper, we report the performance of the ReMatch baseline using the results
directly from the paper, as code is not available for ReMatch. However, for completeness, we also
re-implement the ReMatch approach based on the details provided in the ReMatch paper.

Our re-implementation uses the OpenAI Ada-002 text embeddings for the retrieval step, following
the same procedure as ReMatch for chunking and creating documents. We then use the same prompts
as described in the ReMatch paper for the schema matching task. We compare the performance of
our re-implemented ReMatch with the original reported results and Matchmaker.

Results. Table 8 presents the schema matching accuracy@k for Matchmaker, the original ReMatch
results, and our re-implemented ReMatch. We observe that Matchmaker consistently outperforms
both the original ReMatch results and our re-implementation across all metrics and datasets. We also
find the re-implemented ReMatch achieves lower performance compared to the original reported
results.

Table 8: Comparison of schema matching performance of different baselines.

Matchmaker ReMatch (Original) ReMatch (Reimplemented)

M
IM

IC acc@1 62.20 ± 2.40 42.50 41.99 ± 0.61
acc@3 68.80 ± 2.00 63.80 46.63 ± 1.99
acc@5 71.10 ± 2.00 72.90 46.63 ± 1.99

Sy
nt

he
a acc@1 70.20 ± 1.70 50.50 29.10 ± 0.80

acc@3 78.60 ± 2.50 58.10 32.71 ± 0.35
acc@5 80.90 ± 1.10 74.30 33.46 ± 0.63

Discussion. These results further confirm the superiority of Matchmaker over the ReMatch baseline,
even when considering our re-implementation of the method. The lower performance of the re-
implemented ReMatch compared to the original reported results could be due to differences in
implementation details, such as the choice of text embeddings or variations not accounted for.
However, it is important to note that even with these differences, Matchmaker consistently outperforms
ReMatch (original) by a significant margin. The fact that Matchmaker achieves strong performance
gains over both the original ReMatch and our re-implementation underscores the value of the novel
techniques introduced in Matchmaker, such as the multi-stage language model program, the use
of diverse candidate generators and the self-improvement mechanism through synthetic in-context
examples.

D.4 IMPROVING PERFORMANCE: USE OF EXISTING MAPPINGS TO REMEDY ERRORS

Goal. To investigate the potential performance improvement in Matchmaker when leveraging readily
available mappings to rectify errors between directly mapped attributes.

Experiment. In schema matching, certain attributes like source_value and concept_id have a direct
mapping (e.g. in OMOP). If Matchmaker incorrectly maps the source attribute to the wrong target

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

attribute (e.g., mapping to source_value instead of concept_id or vice versa), these errors can be
easily rectified by leveraging the existing relationship.

To simulate this error correction, we implement a post-processing step where we adjust Matchmaker’s
predictions if the predicted target attribute has a direct mapping to the true target attribute. We apply
this correction for all values of k and measure the resulting performance improvement.

Results. Figure 16 shows the accuracy gains across different values of k when applying the mapping
correction. We observe consistent performance improvements across all k values. These results
indicate that leveraging knowledge can indeed help rectify some of the errors made by Matchmaker.

1 2 3 4 5

K

0.60

0.62

0.64

0.66

0.68

0.70

0.72

A
cc

u
ra

cy

Matchmaker

w/ Schema domain knowledge

Figure 16: Performance improvement in Matchmaker when leveraging readily available mappings to
correct errors between directly mapped attributes like source_value and concept_id.

Discussion. While the results demonstrate the potential benefit of using existing mappings for error
correction, it is important to note that the performance gains are relatively modest compared to other
strategies like human-in-the-loop deferral based on Matchmaker’s confidence scores (as shown in the
main text).

Moreover, the mapping correction relies on the availability of direct mappings between attributes,
which may not always exist in practice. Therefore, while this approach can serve as a useful post-
processing step, it should be seen as a complementary technique to be used alongside other strategies
like human-in-the-loop for improving schema matching performance.

D.5 COMPARISON OF MATCHMAKER ON ONTOLOGY MATCHING TASKS

While Schema matching and ontology matching are seemingly related, in reality they are completely
different tasks. Specifically, schema and ontology matching fundamentally differ in their task and
available information. Ontology matching leverages richer contextual info, including properties,
axioms, rules, concept hierarchies and additional annotations. In contrast, schemas are sparser, with
only attribute names, data types, descriptions and links.

Despite the difference for completeness we evaluate recent LLM ontology match methods using GPT-
4 backbones to mirror Matchmaker namely: OLaLa (Hertling & Paulheim, 2023) and LLMs4OM
(Giglou et al., 2024).

As shown in Table 9, Matchmaker outperforms these methods on both datasets.

Table 9: Accuracy@1: Matchmaker vs two LLM-based Ontology matching methods.

Method MIMIC Synthea
Olala 33.58± 0.47 31.53± 3.37
LLMs4OM 44.78± 0.41 64.50± 2.02
Matchmaker (Ours) 62.20± 2.40 70.20 ±1.70

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

D.6 DETAILED ERROR ANALYSIS

Goal. We wish to understand different dimensions of Matchmaker’s errors.

Discussion. We analyze the errors made by Matchmaker and find two categories of errors.

• 17% of Matchmaker’s errors occur when attempting to find matches for source attributes
that have no corresponding target attribute.

• The remaining 83% involve selecting incorrect but semantically related attributes. For these
incorrect matches, we find a mean semantic similarity of 0.862 between the erroneous
predicted attribute and the true target attribute. This confirms that Matchmaker typically
selects attributes semantically close to the correct match rather than completely unrelated
attributes.

These results further provide an understanding of Matchmaker’s errors, as well as, showing how they
can be addressed both via uncertainty deferral and remediation being easy to identify and correct.

D.7 RANKING ABLATION

Goal. Assess the importance of ranking to Matchmakers performance.

Results. Below we ablate the ranking step. The results shown highlight the importance of the
re-ranking step towards achieving better accuracy@1.

Table 10: Comparison of Matchmaker models with and without ranking on MIMIC and Synthea
datasets.

Matchmaker (with ranking) Matchmaker (No ranking)
MIMIC Acc@1 62.20 57.00

Acc@3 68.80 66.90
Acc@5 71.10 71.10

Synthea Acc@1 70.20 62.40
Acc@3 78.60 77.20
Acc@5 80.90 80.90

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

E BROADER IMPACT

Schema matching is a critical step in data integration, enabling the creation of large, harmonized
datasets that can be used to train machine learning models. The proposed Matchmaker approach,
with its self-improving compositional language model program, has the potential to significantly
accelerate and automate the schema matching process, thus facilitating the development of more
accurate and robust ML models across various domains.

The importance and value of schema matching cannot be overstated, as integrating data from various
sources such as different regions, organizations or applications is vital in many fields, including
healthcare, finance, and e-commerce. By enabling the integration of data from disparate sources,
schema matching plays a critical role in creating comprehensive, harmonized datasets that can provide
a more complete picture of the domain under study. For example, in healthcare, integrating data
from multiple hospitals can lead to more representative and diverse datasets, allowing researchers to
identify patterns and insights that may not be apparent when analyzing data from a single institution.

Moreover, schema matching is not only valuable for specific domains but also for the machine
learning community as a whole. By increasing the pool of available data (larger and more diverse) for
training and validation, schema matching can contribute to the development of more accurate, robust,
and generalizable ML models. Furthermore, having access to a larger pool of data can enable more
rigorous validation and testing of ML models, allowing researchers to assess their performance across
different subpopulations, time periods, and data sources. This, in turn, can lead to more reliable and
trustworthy ML models that can be confidently applied in real-world settings.

Below we describe some positive implications that could be unlocked as schema matching approaches
such as Matchmaker are used in practice. We also show some drawbacks with mitigation strategies.

Positive Impacts:

• Improved data integration: Matchmaker can help overcome the challenges of integrating
data from heterogeneous sources, leading to the creation of larger, more comprehensive
datasets. This can enable the development of more powerful and generalizable ML models.

• Accelerated research and discovery: By reducing the time and effort required for data
integration, Matchmaker can accelerate research and discovery in fields, where data often
resides in disparate databases with diverse schemas.

• Enhanced decision-making: The ability to train ML models on larger, more diverse datasets
enabled by Matchmaker can lead to more accurate and reliable predictions, supporting better
decision-making in various applications.

Potential Drawbacks and Mitigation Strategies:

• Overreliance on automated schema matching: While Matchmaker can significantly auto-
mate the schema matching process, it is not perfect and may make errors. Overreliance
on automated methods without human oversight could lead to incorrect data integration.
Mitigation: Matchmaker should be used as a tool to assist human experts in the schema
matching process, rather than as a complete replacement. The paper demonstrates how
Matchmaker can be effectively used with a human-in-the-loop approach, leveraging the
strengths of both human expertise and automated methods.

• Propagation of errors: If Matchmaker introduces errors during the schema matching process,
these errors can propagate downstream and affect the quality of the resulting integrated
datasets and ML models. Mitigation: It is essential to implement rigorous validation and
quality control measures to detect and correct errors introduced by Matchmaker. This
can include manual spot-checks, automated consistency checks, and the use of domain-
specific validation rules. Establishing a feedback loop to continuously monitor and improve
Matchmaker’s performance based on real-world usage can also help mitigate the propagation
of errors.

41

	Introduction
	Related Work
	Schema Matching
	Preliminaries.
	Schema matching as information retrieval.

	Matchmaker: LLM-based Schema Matching
	Multi-vector documents (Step 1)
	Diverse candidate generation (Step 2)
	Confidence scoring (Step 3)
	Self-improvement: Zero-shot optimization w/ synthetic in-context examples

	Experiments
	Schema Matching performance: Does it work?
	Matchmaker self-improvement analysis
	Source of gain ablation: Why does it work?
	Matchmaker in practice: Human-in-the-loop deferral and remedial action.

	Discussion
	 Appendix - Matchmaker: Schema Matching with self-improving compositional LLM programs
	Matchmaker additional details
	Matchmaker within the context of LLM table reasoning.
	Matchmaker algorithm
	Schema matching challenges.
	Complexity of the MIMIC-OMOP task
	Further details on schema matching formalism
	Detailed explanation of self-improvement
	Extended related work
	Metrics: accuracy, precision, recall, F1-Score

	Experimental details: Benchmarks & datasets
	Benchmarks
	Matchmaker
	ReMatch
	Jellyfish
	LLM-DP
	SMAT

	Datasets

	Examples using Matchmaker (with prompts)
	Matchmaker prompt examples
	Example 1.
	Example 2

	LLM Evaluator

	Additional experiments
	Number of LLM calls
	Matchmaker with other LLMs
	Further performance results: ReMatch reimplementation
	Improving performance: Use of Existing Mappings to remedy errors
	Comparison of Matchmaker on ontology matching tasks
	Detailed error analysis
	Ranking ablation

	Broader Impact

