

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EXPLOR: EXTRAPOLATORY PSEUDO-LABEL MATCHING FOR OOD UNCERTAINTY-BASED REJECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

EXPLOR is a novel framework that utilizes support-expanding, extrapolatory pseudo-labeling to improve prediction and uncertainty-based rejection on out-of-distribution (OOD) points. EXPLOR utilizes a diverse set of pseudo-labelers on an expansive augmented dataset to improve OOD performance through multiple MLP heads (one per pseudo-labeler) with shared embedding trained with a novel per-head matching loss. Unlike prior methods that rely on modality-specific augmentations or assume access to OOD data, EXPLOR introduces extrapolatory pseudo-labeling on latent-space augmentations, enabling robust OOD generalization with any real-valued vector data. In contrast to prior modality-agnostic methods with neural backbones, EXPLOR is model-agnostic, working effectively with methods from simple tree-based models to complex OOD generalization models. We demonstrate that EXPLOR achieves superior performance compared to state-of-the-art methods on diverse datasets in single-source domain generalization settings.

1 INTRODUCTION

It is well-known that the generalization capabilities of models can be severely limited when tested on out-of-distribution (OOD) data that deviates from the training-time distribution (Torralba and Efros, 2011; Liu et al., 2021; Freiesleben and Grote, 2023). This, in turn, affects many real-world applications where models may be evaluated on distribution-shifted data during deployment. For instance, these issues commonly arise in medical applications where patient distributions at inference time may deviate from the training data (Lee et al., 2023a). A potential strategy for the safe deployment of models in real-world applications is to employ novelty-based rejection (Dubuisson and Masson, 1993; Hendrickx et al., 2024), where predictions are rejected whenever the model is evaluated on an instance that deviates from the data distribution seen during training. While such approach is appropriate in certain scenarios (e.g., when a human can easily intervene upon rejection), this prevalent strategy is overly conservative as it foregoes any potential extrapolation¹ by design. That is, novelty-rejection forbids any form of extrapolation (predictions outside of the training data support), even when the model may be capable.

Motivation and Applications Virtual screening in drug discovery (Shoichet, 2004) provides a driving application for this work. Here, models predict whether candidate molecules have desirable properties (e.g., binding to therapeutic protein targets) to filter large libraries of synthesizable compounds for empirical testing. Several challenges arise. First, the most valuable discoveries come from structurally novel molecules that differ substantially from those in the training set (Hu et al., 2017). Discovering the most innovative and novel drugs requires extrapolation beyond known scaffolds, yet traditional novelty-based rejection methods explicitly forbid such extrapolation (Dubuisson and Masson, 1993), ensuring reliability but fundamentally limiting discovery.

Figure 1: EXPLOR trains a multi-headed nnet with diverse pseudo-labelers (PLs) on expanded data.

¹We use the term extrapolation to encompass prediction outside of the training data distribution support.

Second, the utility of virtual screening diverges from the typical OOD generalization objective studied in machine learning (Yu et al., 2024). In practice, budgets only allow for a small fraction of candidates to be synthesized and tested, and the chemical space is so vast Hassen et al. (2025) that any training set covers only a tiny sliver. Thus, uniformly accurate predictions are neither realistic nor necessary. Instead, success depends on making high-confidence, high-precision predictions for the top-ranked candidates that will be selected for purchase. We quantify this via truncated precision/recall metrics eq. 1, reflecting the practical requirement of screening only the most promising molecules.

Single-Source Setting We target the single-source generalization setting (Qiao et al., 2020), which mirrors real-world workflows where only one labeled dataset—often from a narrow chemical space—is available for training. To address this, our **Extrapolatory Pseudo-Label Matching for OOD Uncertainty-Based Rejection (EXPLOR)** framework trains a diverse set of pseudo-labelers on different feature/instance subsets, exposing the shared embedding to multiple views of the data. This encourages extrapolation while producing reliable confidence estimates, enabling robust and cost-effective drug discovery in unseen chemical domains.

Goal We focus on a model’s ability to produce trustworthy high-confidence predictions on OOD points and reject unreliable predictions. To do so, we develop a *general*, modality- and model-agnostic end-to-end framework. To evaluate the model confidence, we propose a novel metric: area under precision/recall curve at recall less than τ (AUPRC@R< τ). This metric specifically measures a model’s ability to accurately predict positive examples in its most confident predictions (with relevance to chemoinformatic virtual screening). In contrast with prior work that depends heavily on modality-specific augmentations (e.g. for images (Yun et al., 2019), etc.) and/or the availability of multiple domains (Ding et al., 2022; Jang et al., 2023; Dou et al., 2019), our approach is fundamentally independent of data modality. Unlike prior modality-agnostic methods such as MODALS (Cheung and Yeung, 2021) that is modular or MAD (Qu et al., 2023) that is effective with complex neural architectures, EXPLOR is compatible with a broad spectrum of models and provides an end-to-end framework that not only generates extrapolated data but also effectively integrates them into training through diverse pseudo labeling via a novel per-head matching-based learning objective.

Contributions In this work, we propose a new method for single source domain generalization – EXPLOR, designed to extrapolate effectively and yield reliable predictions in high-confidence regions through a novel training scheme using a multi-headed network that matches to diverse pseudolabels generated with expanded data (see Fig. 2).

Our key contributions are: (1) We develop a straightforward but effective strategy that yields a strong, diverse set of pseudo-labelers for self-training. (2) We propose a novel training loss for training multiheaded neural network architectures with pseudolabels—composed of a per-head matching loss and a mean-matching regularization loss—to ensure both diversity (via per-pseudo-labeler supervision) and consistency (via ensemble agreement). (3) We systematically evaluate models based on AUPRC@R< τ , the normalized area under the precision recall curve below a conservative threshold τ . While R denotes recall in the metric name, we define the formal expression using a recall variable r :

$$\text{AUPRC@R} < \tau = \frac{1}{\tau} \int_0^\tau \text{Precision}(r) dr. \quad (1)$$

This novel metric measures a model’s ability to predict the confidence of true positive examples in its most confident predictions (with relevance to virtual screening tasks). (4) We show state-of-the-art (SOTA) performance in prediction with a reject option based on estimated confidences, evaluated using AU{PR,RO}C-based metrics (see Fig. 1) in a single-source generalization setting (Qiao et al., 2020). (5) We conduct several ablations to better understand the keys to EXPLOR’s success; moreover, by ablating the type of pseudolablers, we show EXPLOR’s broad ability to improve over a model-agnostic set of experts.

Figure 2: Tally of datasets where respective methods lead in metrics: AUPRC for recall $< .2$ (AUPRC@R< .2), AUPRC, & AUROC. (See further details in §4.)

108
109
110
2 RELATED WORK111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
Domain Generalization Domain generalization (DG) aims to learn a model that is able to generalize to multiple domains. A typical approach is to learn a domain invariant representation across multiple source domains. Domain invariant representation learning can be done by minimizing variations in feature distributions (Li et al., 2018; Ding et al., 2022) and imposing a regularizer to balance between predictive power and invariance (Arjovsky et al., 2019; Koyama and Yamaguchi, 2020). Another line of research incorporates data augmentation to improve generalizability. Basic transformations like rotation and translation, varying in magnitude, are commonly used on images to diversify the training data (Cubuk et al., 2019; Berthelot et al., 2020). More sophisticated augmentation techniques have recently surfaced: (Zhang et al., 2018) introduced mixup, which linearly combines two training samples; Yun et al. (2019) proposed CutMix, blending two images by replacing a cutout patch with a patch from another image; Zhong et al. (2022) adversarially augment images to prevent overfitting to source domains. We focus on augmentations that are general and applicable across modalities. Tian et al. (2023) introduced NCDG, which uses simple augmentations along with a loss function that maximizes neuron activity during training while minimizing standard classification loss. Their method minimizes the difference in the gradient of a coverage loss between standard training instances and augmented training instances. SAM (Foret et al., 2021) improves generalization by seeking parameters that lie in neighborhoods with uniformly low loss. UDIM (Shin et al., 2024) while finding flat loss parameters further enhances domain generalization by generating adversarial perturbations in latent space to expose and minimize inconsistencies between source domains and potential unseen target domains. While SAM and UDIM are modality-agnostic, our method EXPLOR is both model and modality-agnostic.130
131
132
133
134
135
136
137
138
139
140
141
Self-Training Self-training uses an earlier model to pseudo-label unlabeled data, which is then added to the training set for subsequent model updates. Lee (2013) suggested a direct approach to retaining instances where the model has high prediction probabilities. Zou et al. (2018) proposed selecting a proportion of the most confident unlabeled points instead of using a fixed threshold. Later works combined pseudo-labeling with curriculum learning, adjusting class-wise thresholds over time to incorporate more informative samples (Cascante-Bonilla et al., 2020; Zhang et al., 2021). Another line of work improves pseudo-labeling robustness by promoting diversity in the labelers. Ghosh et al. (2021) used model ensembles as teachers, while Xie et al. (2019) added noise via Dropout (Srivastava et al., 2014) and data augmentation. FixMatch (Sohn et al., 2020) generates pseudo-labels from weakly augmented samples to supervise training on the corresponding strongly augmented samples. EXPLOR novelly leverages pseudo-labels by assigning each student head to a different expert, encouraging diversity, while aligns the ensemble prediction for consistency via a novel loss.142
143
144
145
146
147
148
149
150
151
152
153
154
Selective Classification Reject option methods (or selective classification) aim to identify inputs where the model should abstain from predicting. Many approaches apply post hoc processing: after training, a rejection metric—such as the model’s predicted probability—is computed, and predictions below a set threshold are rejected (Stefano et al., 2000; Fumera et al., 2000). Building upon these works, (Devries and Taylor, 2018) proposed to train a confidence branch alongside the prediction branch by incentivizing a neural network to produce a confidence measure during training; Geifman and El-Yaniv (2017) proposed a method for constructing a probability-calibrated selective classifier with guaranteed control over the true risk. Recently, methods adopting end-to-end training approaches have been proposed (Thulasidasan et al., 2019; Ziyin et al., 2019; Geifman and El-Yaniv, 2019). In these works, an extra class is added when predictions are made. If the extra class has the highest class probability for a sample, the sample is rejected. Most reject-option approaches are geared towards in-distribution rejection and utilize novelty-rejection when encountering any OOD points (Torralba and Efros, 2011; Liu et al., 2021; Freiesleben and Grote, 2023); instead, we propose to learn better conditional output probabilities on OOD data for more effective, capability-aware rejection.155
156
157
158
159
160
161
Ensemble Modeling Ensembles utilize a diverse set of models jointly for better performance. Early methodologies for ensembles aggregate (bag) predictions from all models (Dietterich, 2007; Kussul et al., 2010) or a subset of the models in the ensemble (Jordan and Jacobs, 1993; Eigen et al., 2013). In the OOD setting, prior works addressed this problem by enforcing prediction diversity on OOD data (Pagliardini et al., 2023), ensembling moving average models (Arpit et al., 2022a), training an ensemble of domain specific classifiers (Yao et al., 2023), and training diverse model heads within a single network by maximizing disagreement on unlabeled OOD data (Lee et al., 2023b). EXPLOR adopts a multi-headed architecture that produces an ensemble to improve predictions on OOD data.

162 **3 METHOD**
 163

164 Our approach, EXPLOR, consists of: (1) obtaining a diverse set of pseudo-labelers; (2) generating
 165 extrapolatory samples via latent space augmentation; and (3) training a multi-headed network to
 166 match diverse pseudo labels on both in-distribution (ID) and expanded data (one head per pseudo-
 167 labeler). Throughout, we assume the ‘*single-source*’ generalization setting (Qiao et al., 2020), where
 168 we observe a single ID training dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$, and instances are drawn *iid* $(x_i, y_i) \sim \mathcal{P}_{\text{in}}$
 169 *without* any accompanying environmental/domain/source information *nor any labeled/unlabeled*
 170 *OOD instances*. For simplicity, we write to the binary classification case, $y_i \in \{0, 1\}$, but our
 171 methodology is easily extendable to other supervised tasks. We design our method to work in general,
 172 non-modality specific² (e.g., image, text, audio) settings, i.e., $x_i \in \mathbb{R}^d$.
 173

174 **3.1 DIVERSE PSUEDO-LABELERS**

175 EXPLOR leverages a set of diverse initial pseudo-labelers $\{g_k\}_{k=1}^K$, s.t. $g_k : \mathbb{R}^d \rightarrow \{0, 1\}$, to guide
 176 the training of a secondary model by providing pseudo-labels. There are many mixture of experts
 177 (Jordan and Jacobs, 1993; Eigen et al., 2013) and ensembling (Arpit et al., 2022a; Dietterich, 2007;
 178 Pagliardini et al., 2023; Yao et al., 2023) methods available, EXPLOR utilizes a collection of diverse
 179 pseudo-labelers by sub-selecting on both instance and feature subspace, specializing pseudo-labelers
 180 on distinct regions and views of the latent representation space.
 181

182 **3.2 EXPANSIVE AUGMENTATION OF TRAINING DATA**
 183

184 To train models capable of extrapolating to OOD samples, we need to
 185 expose them to data that lie outside the support of the training distribution.
 186 To reason about the support of the training data, and how to *expand* past
 187 it, we propose to leverage a latent factor space, $\varphi : \mathbb{R}^d \mapsto \mathbb{R}^s$. While
 188 learning semantically meaningful latent factor spaces remains an active
 189 area of research, we observed strong performance utilizing autoencoding
 190 techniques (see § 4), which carry a corresponding decoder $\gamma : \mathbb{R}^s \mapsto \mathbb{R}^d$.
 191 Without loss of generality, we consider centered latent spaces such that
 $\mathbb{E}[\varphi(X)] = 0$.
 192

193 We propose a novel, yet straightforward strategy to expand data outside of
 194 training distributional support: perturb instances to lie further away from
 195 the origin in latent space. In particular, if we have latent vector $z = \varphi(x)$,
 196 we propose to consider perturbations of the form $z' = (1 + |\epsilon|)z$ where
 197 $\epsilon \sim \mathcal{N}(0, \sigma^2)$, and one can utilize the decoder $x' = \gamma(z')$. I.e., we define
 198 our expansion operation on a set of points as:

$$\mathbf{Ex}(\{x_i\}_{i=1}^N) \equiv \{\gamma((1 + |\epsilon_i|)\varphi(x_i)) \mid \epsilon_i \sim \mathcal{N}(0, \sigma^2)\}_{i=1}^N. \quad (2)$$

199 **Ex** will be a *stochastic* mapping. As shown in Fig. 3, our expansion covers areas away from
 200 the training support, even covering areas of OOD data. However, unlike with small jitter-based
 201 perturbations, where one can retain an original instance label, it is less clear how to derive an
 202 accompanying training signal for expansive augmentations. Below, we propose to leverage a pseudo-
 203 labeling scheme where we derive K labels with the pseudo-labelers $(g_1(x'), \dots, g_K(x'))$ ³.
 204

205 **3.3 EXPLOR: EXTRAPOLATORY PSEUDO-LABEL MATCHING FOR OOD REJECTION**
 206

207 Once we generate extrapolated data via latent expansion, the key challenge becomes how to provide
 208 supervision on these OOD samples. Since true labels are unavailable, we leverage predictions
 209 from pseudo-labelers to pseudo label these points. To retain the diversity in the pseudo-labelers,
 210 we propose a multi-headed neural architecture trained via self-training. Specifically, the network
 211 consists of a shared multilayer perceptron (MLP), denoted as $\phi : \mathbb{R}^d \rightarrow \mathbb{R}^m$, which learns a common
 212 representation space, and K labeler-specific heads, h_1, \dots, h_K , where each head maps the shared
 213 representation to a prediction, e.g., $h_j : \mathbb{R}^m \rightarrow \mathbb{R}$ for logits in binary classification. Importantly,
 214

Figure 3: Expansion in latent space: points (black) are augmented (gray) and expand the distributional support.

²We avoid any modality or domain-specific augmentations.

³One may also train pseudo-labelers directly on the latent space, $(g_1(z'), \dots, g_K(z'))$, and avoid the decoder.

each head is trained to match the output of a different pseudo-labeler, enabling the model to align with multiple diverse supervisory signals. The training loss is defined as a sum of per-head losses on a pseudo-labeled set \mathcal{S} , where each h_j is optimized to match the corresponding pseudo-labeler's predictions. This encourages shared representation to support generalization across diverse pseudo-labeling sources. Our per head loss that matches pseudo labels provided by the experts to the MLP heads on a set \mathcal{S} is as follow:

$$\mathcal{L}_{\text{match}}(\phi, \{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathcal{S}) \equiv \frac{1}{|\mathcal{S}|K} \sum_{x \in \mathcal{S}} \sum_{j=1}^K \ell(h_j(\phi(x)), g_j(x)), \quad (3)$$

where $\ell(\hat{y}, y)$ is a supervised loss (e.g., the cross-entropy loss). Moreover, we will utilize a mean-matching L1 loss

$$\mathcal{L}_{\text{mean}}(\phi, \{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathcal{S}) \equiv \frac{1}{|\mathcal{S}|} \sum_{x \in \mathcal{S}} \left| \frac{1}{K} \sum_{j=1}^K \sigma(h_j(\phi(x))) - \frac{1}{K} \sum_{j=1}^K g_j(x) \right|, \quad (4)$$

where $\sigma(\cdot)$ is the sigmoid. Our full EXPLOR loss is then:

$$\mathcal{L}_{\text{EXPLOR}}(\phi, \{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathcal{D}) \equiv \mathcal{L}_{\text{mean}}(\phi, \{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathcal{D}) \quad (5)$$

$$+ \mathcal{L}_{\text{match}}(\phi, \{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathcal{D}) \quad (6)$$

$$+ \lambda \mathcal{L}_{\text{match}}(\phi, \{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathbf{Ex}(\mathcal{D})). \quad (7)$$

Note that we provide additional supervisory losses on non-augmented \mathcal{D} via $\mathcal{L}_{\text{mean}}$. Empirical results show (§ 4) that the network heads learn often learn comparably effective estimators to the pseudo-labelers, unlike with empirical risk minimization. However, we see more consistent improvements by not discarding the pseudo-labelers and bagging:

$$f_{\text{EXPLOR}}(x) \equiv \frac{1}{2K} \sum_{j=1}^K (g_j(x) + h_j(\phi(x))). \quad (8)$$

Motivation We expound on how EXPLOR may learn better estimates on OOD data through *diversity and multi-task learning*, and *variance reduction and regularization*.

Diversity and Multi-task Learning. In practice, we propose simple linear heads. At an intuitive level, this forces the MLP to learn a robust feature embedding that can 'mimic' the diverse views that the pseudo-labelers provide. That is, this will force the last hidden layer to featurize an embedding $\phi(x)$ that can, with simple linear projections, emulate a diverse set of labels. The per-head matching loss equation 3 may be formulated as a multi-task loss on a set \mathcal{S} of K *virtual* environments $\mathcal{E}_j(\mathcal{S}) = \{(x, g_j(x)) \mid x \in \mathcal{S}\}$: $\mathcal{L}_{\text{match}}(\phi, \{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathcal{S}) = \frac{1}{K} \sum_{j=1}^K \mathcal{L}(h_j(\phi(\cdot)), \mathcal{E}_j(\mathcal{S}))$, where $\mathcal{L}(h_j(\phi(\cdot)), \mathcal{E}_j(\mathcal{S}))$ is the supervised loss on instances/labels in environment $\mathcal{E}_j(\mathcal{S})$ with estimator $h_j(\phi(\cdot))$ on the shared embedding ϕ . Thus, when training on the expanded set of data-points, $\mathbf{Ex}(\mathcal{D})$, with pseudo-labels stemming from diverse labelers (e.g., trained on different subsets of features and instances), we see that our matching loss provides supervisory signals to learn: 1) on OOD data (through expansion); 2) robust embeddings that must generalize to diverse environments.

Variance Reduction and Regularization. Previous work has decomposed OOD generalization into bias/variance terms (Yang et al., 2020; Arpit et al., 2022b):

$$\mathbb{E}_{(x,y) \sim \mathcal{P}_{\text{out}}} \mathbb{E}_{\mathcal{D} \sim \mathcal{P}_{\text{in}}} [\text{CE}(y, f(x; \mathcal{D}))] = \mathbb{E}_{(x,y)} [\text{CE}(y, \bar{f}(x))] + \mathbb{E}_{x, \mathcal{D}} [\text{KL}(\bar{f}(x), f(x; \mathcal{D}))], \quad (9)$$

where CE is the cross-entropy loss, $f(x; \mathcal{T})$ is the model fit on dataset \mathcal{T} , $\bar{f}(x) = \mathbb{E}_{\mathcal{D}}[f(x; \mathcal{D})]$ is the expected prediction when averaging out draws on the (in-distribution) training dataset \mathcal{D} , and \mathcal{P}_{out} is the OOD data distribution at inference time. Letting $\bar{g}(x) \equiv \frac{1}{K} \sum_{j=1}^K g_j(x)$, we may view $\bar{g}(x)$ as a bootstrap-like estimate for $\bar{f}(x)$. One may then take $\mathbb{E}_{x, \mathcal{D}} [\text{KL}(\bar{g}(x), f(x; \mathcal{D}))]$ as an approximation for $\mathbb{E}_{x, \mathcal{D}} [\text{KL}(\bar{f}(x), f(x; \mathcal{D}))]$ and roughly consider

$$\mathbb{E}_{(x,y) \sim \mathcal{P}_{\text{out}}} \mathbb{E}_{\mathcal{D} \sim \mathcal{P}_{\text{in}}} [\text{CE}(y, f(x; \mathcal{D}))] \approx \mathbb{E}_{(x,y)} [\text{CE}(y, \bar{f}(x))] + \mathbb{E}_{x, \mathcal{D}} [\text{KL}(\bar{g}(x), f(x; \mathcal{D}))], \quad (10)$$

which connects to equation 7 when interpreting our expanded points as a proxy for the (unknown) OOD distribution \mathcal{P}_{out} and $\mathcal{L}_{\text{match}}(\phi, \{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathbf{Ex}(\mathcal{E}))$ as a proxy for $\mathbb{E}_{x, \mathcal{D}} [\text{KL}(\bar{g}(x), f(x; \mathcal{D}))]$.

270 4 EXPERIMENTS
271
272
273
274

We conduct experiments on a varied set of real-world datasets to test the OOD generalizability of EXPLOR. We considered the single source domain generalization setting (e.g., (Qiao et al., 2020)), where our model is trained solely on ID data without any (labeled or unlabeled) OOD data during training/validation (e.g., precluding typical semi-supervised approaches), and without any accompanying environmental/domain/source information from ID training instances. Moreover, we note that we avoided utilizing any modality-specific information in EXPLOR (e.g., we do not utilize any domain specific augmentations) for generality. We performed two sets of experiments using different pseudo-labelers: one using 1024 XGB Classifiers (Chen and Guestrin, 2016) fit to random subsets of data instances and features as the diverse set of pseudo-labelers, and another using a complementary neural model consisting of 64 D-BAT (Pagliardini et al., 2023) networks trained in the same way to provide diverse neural pseudo-labels. For a fair/realistic evaluation, we avoided any hyper-parameter (e.g. number of training iterations, λ in eq. 7) tuning on EXPLOR and utilized a fixed architecture of a 2-layer 512-ELU (Clevert et al., 2015) hidden-unit MLP with 1024 linear-output heads for the XGB pseudo-labelers and 64 heads for the D-BAT pseudo-labelers (please see other hyperparameters in Appx. B.1). For our latent space, we utilize PCA with 128 components as a linear analogue of an autoencoder. While OOD generalization is an active field of research (Freiesleben and Grote, 2023; Liu et al., 2021), methodology for general (non-modality specific) single source domain generalization is more limited. We provide context to our results through comparisons to a diverse set of existing strong domain generalization methods that approach the problem from various perspectives (and are applicable in the single-source setting).

Single-Source Baselines In our experiments, we include three baselines that utilize data augmentation: AdvStyle (Zhong et al., 2022), Mixup (Zhang et al., 2018), and NCDG (Tian et al., 2023), two baselines that employ ensemble methods: D-BAT (Pagliardini et al., 2023) and EoA (Arpit et al., 2022a), as well as two methods that optimize robustness directly looking at the loss function: SAM (Foret et al., 2021) and UDIM (Shin et al., 2024). Mixup linearly combines two ID samples, AdvStyle adversarially augments ID data, NCDG takes a simple augmentation and optimizes neuron coverage, D-BAT enforces prediction diversity on OOD data, and EoA ensembles moving average models. SAM improves generalization by finding parameters that are in neighborhoods with uniformly low loss. UDIM generates adversarial perturbations in the latent space and seeks flat minima in the loss to improve generalization.

Semi-Supervised Baselines We provide further context by comparing to semi-supervised methods for general tabular data, DivDis (Lee et al., 2023b) and FixMatch (Sohn et al., 2020). Note, these methods utilize more information than EXPLOR, and have access to unlabeled OOD data from the test-time distribution. That is, these approaches break from our single-source generalization setting and utilize additional information of the test-time distribution. DivDis is a two-stage framework that first trains diverse model heads using unlabeled target OOD data and then selects the best head with minimal supervision (i.e., using a single label from target OOD data). FixMatch generates filtered pseudo-labels using the model’s predictions on weakly-augmented OOD unlabeled samples. The model is then trained to predict the pseudo-label when provided with a strongly augmented version of the same sample. As DivDis and FixMatch utilize additional information from single-source methods, we separate their results and denote them with an asterisk*.

Metrics For prediction thresholding (rejection), we directly utilize the conditional probability $P(Y = 1 | X = x)$ generated by the models. Many real-world applications (e.g. drug virtual screening) utilize only high-confidence predictions. Thus, we paid close attention to high-confidence filtration and reported percent of AUPRC at conservative recall thresholds ‘AUPRC@R $<\tau$ ’ (see eq. 1 for formal definition and Fig. 4 for illustration). We also reported AUPRC, AUROC. We report both pseudo-labeler (‘PL ens’) and EXPLOR (eq. 8) performance. Our code will be open-sourced upon publication.

Figure 4: AUPRC at recall < 0.2 for EXPLOR and competitive baselines on hERG dataset.

324
325

4.1 CHEMICAL DATASETS

From ChEMBL(Gaulton et al., 2011) and Therapeutics Data Commons (TDC) (Huang et al., 2021), we collected the inhibition of human Ether-à-go-go-Related Gene (hERG), cytotoxicity of human A549 cells (A549_cells), agonists for Cytochrome P450 2D6 (cyp_2D6), and Ames mutagenicity (Ames) datasets. In these datasets, ID and OOD splits were determined based on the Murko scaffold of a molecule, a standard method to measure a model’s ability to generalize to novel chemotypes, closely matching the real challenge of discovering active compounds. Moreover, we considered the “core ec50,” “refined ec50,” and “core ic50” ligand-based affinity prediction datasets (lbap) from DrugOOD (Ji et al., 2023) (the three hardest OOD performance gap datasets). For these datasets ID and OOD splits were determined based on the number of atoms in a molecule, such that larger molecules are considered the OOD set and smaller molecules, the ID set. Datasets are organized by domain and subsequently divided into training, OOD validation, and OOD testing sets in sequential order, testing generalization across size-driven chemical space shifts. For all datasets, we represented molecules using extended-connectivity fingerprints (Rogers and Hahn, 2010) with radius 2 (ECFP4) and with dimensionality 1024. ECFP4 is a standard method for molecular representation and was chosen for its simplicity in calculation as well as its ability to perform comparably to learned representations, such as those generated by graph neural networks on relevant classification tasks (Zagidullin et al., 2021).

Results We assessed models on ChEMBL, TDC, and DrugOOD datasets; our results are shown in Tab. 1. Across the chemical datasets, EXPLOR consistently outperforms both supervised and semi-

Table 1: Experiment results on ChEMBL (Gaulton et al., 2011), Therapeutics Data Commons (Huang et al., 2021), and DrugOOD (Ji et al., 2023) datasets. We **bold** best scores based on the mean minus 1 standard error. We *italicize* best scores when they are achieved by a semi-supervised method (*), that uses additional unlabeled OOD data during training.

		hERG	A549_cells	cyp_2D6	Ames	refined ec50 val	refined ec50 test	core ic50 val	core ic50 test	core ec50 val	core ec50 test	
352	AUPRC@R > 0.2	DivDis*	85.65±2.37	89.45±1.16	79.98±1.10	95.80±0.34	96.02±0.19	86.51±0.28	97.80±0.07	89.72±0.06	93.86±0.42	80.18±0.92
353		FixMatch*	79.66±0.57	90.81±4.30	83.58±1.98	93.55±0.64	94.48±0.47	86.38±0.35	97.62±0.06	92.89±1.36	95.02±0.76	70.49±0.43
354		ERM	85.56±1.11	96.65±0.59	87.93±2.41	98.04±0.30	96.15±0.16	88.67±0.23	99.04±0.04	91.44±0.43	96.95±0.11	72.88±0.95
355		D-BAT	84.48±1.74	98.26±0.14	91.40±0.98	99.04±0.24	96.97±0.16	88.78±0.40	98.13±0.08	91.79±0.38	93.81±0.22	84.35±1.35
356		AdvStyle	88.21±0.77	97.77±0.28	84.83±0.93	99.05±0.17	95.13±0.13	88.21±0.37	97.04±0.17	89.05±0.22	94.84±0.31	84.51±2.36
357		EoA	63.80±0.42	61.31±0.31	61.77±0.41	78.74±0.43	85.03±0.06	78.79±0.14	88.56±0.05	77.03±0.13	81.85±0.24	71.84±0.45
358		Mixup	82.25±1.51	95.04±0.25	87.09±2.32	91.02±1.06	85.39±0.23	79.78±0.34	88.99±0.43	78.07±0.61	83.97±0.61	73.04±0.42
359		NCDG	78.25±2.60	90.33±0.95	79.31±2.44	87.86±1.41	93.92±0.62	84.46±0.67	97.83±0.08	87.82±0.26	93.40±0.78	80.09±1.94
360		SAM	84.37±1.00	95.70±0.75	85.02±0.69	96.66±0.38	96.79±0.17	87.50±0.23	98.78±0.09	89.40±0.40	95.02±0.37	71.92±1.71
361		UDIM	85.07±2.32	95.87±0.36	84.80±0.84	96.53±0.61	96.97±0.13	88.16±0.78	98.61±0.12	90.13±0.38	94.05±0.30	71.37±1.00
362		D-BAT PL Ens	84.86±0.82	97.45±0.32	92.56±0.81	99.47±0.14	96.67±0.06	88.11±0.04	98.74±0.07	94.05±0.08	97.51±0.21	69.93±0.04
363		XGB PL Ens	94.44±0.17	98.22±0.08	95.81±0.19	97.84±0.20	98.00±0.07	89.48±0.24	99.14±0.02	94.20±0.15	97.79±0.11	68.48±0.30
364		EXPLOR (D-BAT)	87.05±0.75	99.05±0.12	95.33±0.51	99.87±0.10	97.78±0.04	88.97±0.02	99.10±0.16	94.52±0.02	98.25±0.01	75.50±0.15
365		EXPLOR (XGB)	94.67±0.29	98.87±0.09	96.88±0.25	98.45±0.06	98.76±0.26	98.15±0.05	94.42±0.09	98.66±0.10	69.04±0.50	
366	AUPRC	DivDis*	67.70±0.25	76.45±0.63	65.76±0.45	82.37±0.27	89.62±0.12	80.92±0.06	93.34±0.10	81.48±0.30	83.85±0.41	75.09±0.38
367		FixMatch*	45.16±3.11	51.31±1.28	32.65±2.16	72.54±1.15	87.14±0.58	81.51±0.31	92.38±0.15	82.78±0.57	80.92±1.12	70.57±0.32
368		ERM	68.77±0.40	81.73±0.37	67.97±0.81	86.01±0.23	89.84±0.07	82.26±0.07	94.72±0.07	82.59±0.21	87.70±0.09	70.95±0.44
369		D-BAT	54.60±1.59	67.04±0.53	47.42±0.85	70.44±0.76	84.70±0.51	70.08±0.69	90.84±0.28	73.45±0.90	76.64±0.49	54.87±0.99
370		AdvStyle	51.54±0.93	65.02±0.72	44.41±0.96	74.98±0.49	83.01±0.90	69.48±2.16	88.54±1.44	72.11±1.49	81.17±1.72	58.40±2.18
371		EoA	43.30±0.51	44.95±0.24	37.37±0.95	59.43±0.18	69.66±0.47	57.71±0.79	79.12±0.09	56.52±0.42	64.16±0.51	36.50±1.48
372		Mixup	42.42±0.85	50.52±0.50	27.79±1.49	60.94±0.80	80.36±0.88	72.88±1.67	86.88±0.14	74.99±0.15	73.03±1.67	60.84±4.31
373		NCDG	65.03±0.75	79.50±0.79	65.31±1.00	76.48±0.30	89.27±0.22	80.54±0.21	94.17±0.08	81.19±0.11	87.72±0.37	74.99±0.74
374		SAM	66.89±0.28	79.88±0.34	67.37±0.31	82.50±0.39	89.86±0.07	81.93±0.20	94.16±0.10	81.03±0.23	86.66±0.20	70.92±0.40
375		UDIM	67.23±0.60	79.98±0.37	66.86±0.43	82.97±1.05	89.95±0.11	82.19±0.41	94.05±0.10	81.29±0.25	86.35±0.15	71.20±0.35
376		DBAT PL Ens	72.22±0.18	83.79±0.31	73.26±0.65	89.08±0.11	91.19±0.08	82.72±0.04	94.79±0.10	84.11±0.01	88.36±0.28	72.13±0.07
377		XGB PL Ens	72.19±0.07	84.10±0.01	72.93±0.13	87.43±0.02	91.21±0.02	82.61±0.05	94.91±0.03	84.13±0.06	88.44±0.05	71.80±0.07
378		EXPLOR (D-BAT)	72.73±0.33	84.80±0.11	73.64±0.45	89.38±0.06	90.56±0.03	89.5±0.06	94.87±0.13	84.11±0.01	88.44±0.02	73.13±0.02
379		EXPLOR (XGB)	73.26±0.08	84.60±0.08	73.59±0.15	88.50±0.10	91.59±0.03	83.06±0.10	95.38±0.01	84.77±0.02	89.52±0.05	71.41±0.11
380	AUROC	DivDis*	71.19±0.57	72.20±0.41	64.50±0.77	77.05±0.47	65.41±0.81	58.53±0.46	66.68±0.28	57.04±0.08	73.23±0.40	61.15±0.50
381		FixMatch*	68.41±0.84	61.16±1.31	80.85±0.40	70.32±0.59	70.32±0.59	52.69±0.69	66.37±0.50	58.37±0.58	74.38±0.16	62.05±0.55
382		ERM	73.58±0.23	76.58±0.30	65.26±0.55	82.02±0.26	67.73±0.18	59.15±0.23	77.41±0.24	62.68±0.31	72.24±0.09	52.32±0.59
383		D-BAT	76.58±0.45	78.16±0.23	67.54±0.47	83.82±0.15	75.26±0.28	58.21±0.26	72.09±0.19	60.32±0.25	80.31±0.08	64.82±0.18
384		AdvStyle	75.84±0.46	76.13±0.28	65.51±0.62	85.56±0.71	75.97±0.39	58.86±0.25	70.78±0.35	59.62±0.30	78.36±0.23	64.14±0.27
385		EoA	68.02±0.34	68.33±0.24	60.50±0.48	74.77±0.25	64.91±0.34	52.71±0.44	59.27±0.20	54.63±0.24	62.99±0.16	55.83±0.18
386		Mixup	73.96±0.25	76.57±0.42	67.53±0.90	78.43±0.49	68.20±0.66	56.33±0.45	60.39±0.40	56.50±0.37	64.24±1.23	57.75±0.80
387		NCDG	70.76±0.20	76.45±0.65	63.60±0.62	73.39±0.68	73.66±0.53	57.70±0.81	67.20±0.33	57.18±0.18	76.48±0.22	61.44±0.13
388		SAM	72.17±0.41	74.67±0.49	64.45±0.53	78.51±0.47	67.33±0.22	58.97±0.40	75.63±0.35	60.07±0.35	71.06±0.27	52.50±0.36
389		UDIM	73.17±0.38	74.64±0.38	64.09±0.66	78.63±1.30	67.50±0.29	59.30±0.63	75.38±0.34	60.29±0.39	71.37±0.18	53.43±0.43
390		DBAT PL Ens	76.51±0.07	78.34±0.35	70.80±0.36	84.37±0.08	69.40±0.06	60.04±0.31	77.83±0.40	64.66±0.04	74.51±0.48	56.39±0.20
391		XGB PL Ens	74.74±0.06	79.17±0.02	70.33±0.07	81.87±0.04	70.73±0.07	56.48±0.06	70.17±0.04	59.77±0.02	77.78±0.09	64.89±0.06
392		EXPLOR (D-BAT)	76.84±0.10	79.27±0.14	70.11±0.33	85.18±0.04	70.64±0.04	59.90±0.03	78.52±0.37	64.67±0.01	75.34±0.07	56.32±0.03
393		EXPLOR (XGB)	75.97±0.08	79.53±0.06	70.54±0.42	83.78±0.12	75.47±0.09	55.40±0.20	71.28±0.10	60.63±0.17	80.01±0.03	66.14±0.05

supervised baselines and consistently shows gains over its pseudo-labeler methods (see results using other pseudo-labelers in Appx.C.5). Note further, that EXPLOR’s performance gain is especially significant at conservative recalls (AUPRC@R<0.2, e.g., see Fig. 4), which indicates that EXPLOR outperforms other models in virtual screening tasks to filter drug candidates (where false positives would lead to wasted resources). Please see below (§ 5), for further analysis on the improved performance of EXPLOR w.r.t. increased confidence (Fig. 5) and pseudo-labeler diversity (Fig. 7). We examine the mean variance (reflecting greater heterogeneity) of fingerprint features for selected OOD instances with predicted confidence>0.9 on the 3 ChEMBL sets: EXPLOR (**0.39**), D-BAT (0.33), EoA (0.30), AdvStyle (0.34), Mixup (0.37), and NCDG (0.23). Thus, EXPLOR is confidently selecting structurally diverse compounds rather than to a narrow subset of the chemical space.

4.2 OTHER REAL WORLD DATASETS

Next, we further evaluate our method in non-chemical domains across a diverse range of real-world OOD scenarios using the Tableshift datasets (Gardner et al., 2023). We selected a diverse collection of Tableshift datasets, based on unrestricted availability and in/out-of-domain performance discrepancy, coverings areas including: finance, education, and healthcare. Each dataset has an associated real-world shift and a related prediction target (see Gardner et al. (2023) for further details). Results on the Tableshift are shown in Tab. 7. As before, we consider the same single-source domain generalization setting. We can see that even over diverse applications, our EXPLOR method is able to perform well and often outperforms competitive baselines. Moreover, even though DivDis and FixMatch use additional unlabeled OOD data, EXPLOR outperforms both on the majority of datasets, highlighting EXPLOR’s ability for generalization on completely *unforeseen* OOD instances (without any knowledge of test time distribution).

Table 2: Experiment results on Tableshift (Gardner et al., 2023) datasets. We **bold** best scores based on the mean minus 1 standard error.

		Childhood Lead	FICO HELOC	Hospital Readmission	Sepsis
AUPRC@ R<0.2	DivDis*	89.77±2.51	85.50±2.65	83.22±2.57	60.66±1.57
	FixMatch*	81.75±3.69	77.76±1.94	67.84±1.95	17.28±0.58
	ERM	43.66±0.00	85.74±0.78	84.35±0.28	15.30±0.53
	D-BAT	62.82±0.00	91.20±0.24	78.84±0.12	75.37±0.38
	AdvStyle	64.96±0.01	88.71±0.65	72.91±0.58	59.83±0.63
	EoA	77.43±0.97	59.53±2.24	51.83±1.66	41.10±1.56
	Mixup	50.00±0.00	91.16±2.10	69.19±3.95	66.09±1.15
	NCDG	42.49±1.31	87.93±2.35	68.88±1.15	15.22±0.38
	SAM	95.00±0.00	91.42±0.69	74.13±0.49	65.34±0.73
	UDIM	94.11±0.90	92.58±0.67	73.65±0.67	65.09±0.28
	DBAT PL Ens	93.81±0.03	92.87±0.05	73.52±0.37	72.74±0.13
	XGB PL Ens	97.39±0.06	90.07±0.32	58.30±0.09	78.62±1.57
	EXPLOR (D-BAT)	94.69±0.02	93.33±0.02	77.20±0.23	73.89±0.08
	EXPLOR (XGB)	97.92±0.20	91.72±0.62	67.57±0.12	76.95±1.45
AUPRC	DivDis*	76.33±0.86	82.47±1.05	65.95±2.15	58.85±1.21
	FixMatch*	75.39±0.58	72.22±4.46	56.54±1.21	18.24±0.66
	ERM	23.60±0.11	77.38±0.27	67.56±0.13	11.12±0.12
	D-BAT	71.85±0.01	80.91±0.17	63.29±0.08	58.17±0.21
	AdvStyle	48.37±2.77	79.63±1.65	38.13±3.80	54.34±0.27
	EoA	49.48±0.19	59.53±2.24	29.45±4.95	11.21±2.21
	Mixup	50.00±0.00	80.95±0.63	14.15±1.06	56.80±0.40
	NCDG	23.08±0.24	79.05±1.21	58.95±0.23	11.96±0.32
	SAM	75.00±0.00	81.61±0.43	61.12±0.28	57.90±0.22
	UDIM	73.70±1.38	82.10±0.44	60.95±0.33	57.97±0.17
	DBAT PL Ens	82.72±0.01	81.35±0.03	62.34±0.14	59.97±0.10
	XGB PL Ens	86.39±0.19	83.80±0.07	62.83±0.03	64.01±0.94
	EXPLOR (D-BAT)	82.76±0.02	81.37±0.04	63.30±0.14	50.97±0.05
	EXPLOR (XGB)	86.70±0.28	84.02±0.09	63.62±0.08	62.21±0.52
AUROC	DivDis*	77.74±1.90	83.55±1.06	65.28±0.59	62.33±0.61
	FixMatch*	79.87±0.29	74.29±1.69	55.78±0.98	49.50±1.01
	ERM	78.41±0.14	73.71±0.17	67.06±0.10	62.79±0.14
	D-BAT	79.13±0.02	76.13±0.03	63.22±0.03	57.95±0.04
	AdvStyle	74.45±0.04	77.23±1.69	61.32±0.34	55.31±0.34
	EoA	72.62±0.32	54.67±2.55	51.65±1.70	49.14±2.60
	Mixup	50.00±0.00	78.74±0.17	63.37±0.25	56.82±0.26
	NCDG	76.91±0.13	75.09±0.79	58.67±0.16	63.41±0.93
	SAM	50.00±0.00	79.70±1.64	61.14±0.32	58.71±0.23
	UDIM	54.50±4.18	79.41±1.07	61.05±0.32	58.87±0.24
	DBAT PL Ens	84.89±0.05	76.32±0.03	63.16±0.10	59.23±0.04
	XGB PL Ens	84.88±0.19	83.53±0.03	63.18±0.03	62.53±0.82
	EXPLOR (D-BAT)	84.36±0.23	76.27±0.01	63.51±0.16	59.01±0.07
	EXPLOR (XGB)	87.95±0.25	83.11±0.04	63.65±0.07	61.42±0.35

4.3 ABLATION STUDIES

Per-head Matching Ablation Next, we perform ablation on the per-head matching loss scheme (eq. 7) used in EXPLOR with a simpler alternative: mean-only matching (MM) (eq. 5) on the expanded points. This ablation tests whether the diversity induced by per-head supervision aids performance. Here we utilized single headed (SH) and multi-headed (MH) MLPs with mean matching, where EXPLOR uses multi-headed MLP with per head loss that matches network heads to diverse pseudo-labels (see Appx. C.6 for details on the alternative losses). EXPLOR achieves the highest AUPRC improvements (Δ) over pseudo-labelers (+1.11 at $R < .2$, +1.03 at $R < 1$) compared to SH+MM (+0.59, +0.45) and MH+MM (+0.25, +0.55), showing evidence for the effectiveness of training our embedding through the diverse multi-task loss induced by per-head matching (§ 3).

Bottleneck Ablation We motivated EXPLOR’s performance in terms of a multi-task scheme, which encourages the bottlenecks (the last hidden layer) to learn an embedding that can generalize to mimic predictions on a diverse set of pseudo-labels (§ 3). We test this motivation by comparing the original architecture (Full: 2×512 hidden layer) with a stronger bottleneck still, a small architecture (Tiny: 2×32 hidden layer). (See Appx. C.7 for more details and results.) The performance gap is marginal between the ‘Full’ and ‘Tiny’ model (a 0.86% difference) when using our proposed loss. In contrast, when using empirical risk minimization, we observe a 4.95% performance drop. This suggests that the bottlenecking properties of our method are key to EXPLOR’s performance, and show promise for EXPLOR in resource-constrained settings.

Figure 5: *Predicted probabilities from EXPLOR network and pseudo-labeler.* We highlight example instances where the base experts initially make incorrect predictions but are corrected when we average the predicted probabilities from EXPLOR network and EXPLOR pseudo-labeler.

Figure 6: Example predicted probabilities an OOD data instance for ChEMBL datasets. Predictions are shown for a most variant instance, under empirical risk minimization (ERM), for each dataset over the 30 trials. EXPLOR (eq. 8), EXPLOR multi-headed neural network, and ERM were trained were on 30 subsamples of ID Data. We can see that not only do EXPLOR models reduce the variance for these challenging instances, but they are able to produce the correct label prediction (unlike ERM).

Variance Reduction Across Bootstrapped Models To empirically validate the variance reduction effect discussed in § 3.3, we trained 30 bootstrap-type trials using an ERM and EXPLOR model loss (each using a random subsamples of size 1,000 of the ID training data) and evaluated the variance of predicted probabilities on the same OOD held-out points.

Table 3: Predictive variance across 30 bootstrap-trained models on OOD Data. Lower values indicate more stable predictions under distribution shift.

Tab. 3 reports the mean predictive variance across OOD samples for ChEMBL datasets. The ERM trained neural network exhibits high instability over predictions for the OOD data, whereas EXPLOR-NN, our multi-headed architecture trained using eq. 7 yields a substantial reduction in variance (Fig.6). Full EXPLOR model (also ensembling with the original pseudolabler) further decreases variance across all datasets, achieving 6–8 times lower variance

Method	hERG	A549 Cells	cyp2D6
ERM	0.117	0.119	0.156
EXPLOR NN	0.023	0.028	0.025
EXPLOR	0.015	0.019	0.016

486 than ERM. These results provide direct empirical evidence that EXPLOR produces markedly more
 487 stable and reliable predictions on unseen chemical scaffolds, supporting the variance-reduction
 488 motivation introduced in § 3.3.
 489

490 5 CONCLUSION

492 EXPLOR addresses the challenging single source
 493 OOD generalization problem for real-valued vector data, outperforming baselines, including those
 494 that leverage unlabeled OOD data. Across all metrics/datasets, EXPLOR achieves a leading tally of 31,
 495 far exceeding the pseudo-labeler methods and other
 496 baselines as shown in Fig. 1. Despite its performance,
 497 EXPLOR does not incur an out-sized computational
 498 cost; the training of pseudo-labelers may be done
 499 in parallel, and the cost of expanding data in the la-
 500 tent space is negligible (see Appx. B.3 for additional
 501 timing details).

504 In summary, EXPLOR presents a simple yet pow-
 505 erful model and data-modality agnostic approach
 506 to OOD generalization under single-source setting
 507 via pseudo-labels and head-specific matching. Each
 508 pseudo-labeler is paired with a dedicated prediction
 509 head in the neural network, and the training objective
 510 explicitly aligns each head with the pseudo-labels it
 511 receives. EXPLOR’s architecture yields robust embeddings and demonstrates superior performance
 512 in regions characterized by high-confidence OOD predictions. We believe this work opens promising
 513 directions for general-purpose, modality- and model- agnostic OOD learning, particularly in high-
 514 stakes applications like drug discovery, where confident extrapolation is critical and labeled data is
 515 scarce.

516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 Figure 7: Experts correlations between EX-
 541 PLOR pseudo-labelers and EXPLOR net-
 542 work heads on “Ames” dataset. (a) EXPLOR
 543 experts have a high correlation with EX-
 544 PLOR pseudo-labelers on sample the pseudo-
 545 labelers make correct predictions. (b) EX-
 546 PLOR experts show low correlations with EX-
 547 PLOR pseudo-labelers on samples where the
 548 pseudo-labelers make incorrect predictions.

540 REFERENCES
541

542 Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. *CVPR 2011*, pages 1521–1528,
543 2011. URL <https://api.semanticscholar.org/CorpusID:2777306>.

544 Jiashuo Liu, Zheyan Shen, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards
545 out-of-distribution generalization: A survey. *arXiv preprint arXiv:2108.13624*, 2021.

546 Timo Freiesleben and Thomas Grote. Beyond generalization: a theory of robustness in machine
547 learning. *Synthese*, 202(4):109, 2023.

548 Seungyeon Lee, Changchang Yin, and Ping Zhang. Stable clinical risk prediction against
549 distribution shift in electronic health records. *Patterns*, 4, 2023a. URL <https://api.semanticscholar.org/CorpusID:261165136>.

550 Bernard Dubuisson and Mylène Masson. A statistical decision rule with incomplete knowledge about
551 classes. *Pattern Recognit.*, 26:155–165, 1993. URL <https://api.semanticscholar.org/CorpusID:5710992>.

552 Kilian Hendrickx, Lorenzo Perini, Dries Van der Plas, Wannes Meert, and Jesse Davis. Machine
553 learning with a reject option: A survey. *Machine Learning*, pages 1–38, 2024.

554 Brian K. Shoichet. Virtual screening of chemical libraries. *Nature*, 432:862–865, 2004. URL
555 <https://api.semanticscholar.org/CorpusID:27666128>.

556 Ye Hu, Dagmar Stumpfe, and Jurgen Bajorath. Recent advances in scaffold hopping: miniperspective.
557 *Journal of medicinal chemistry*, 60(4):1238–1246, 2017.

558 Han Yu, Jiashuo Liu, Xingxuan Zhang, Jiayun Wu, and Peng Cui. A survey on evaluation of
559 out-of-distribution generalization. *arXiv preprint arXiv:2403.01874*, 2024.

560 Alan Kai Hassen, Martin ícho, Yorick J. van Aalst, Mirjam C W Huizenga, Darcy N. R. Reynolds,
561 Sohvi Luukkonen, Andrius Bernatavicius, Djork-Arné Clevert, Antonius P. A. Janssen, Gerard J. P.
562 van Westen, and Mike Preuss. Generate what you can make: achieving in-house synthesizability
563 with readily available resources in de novo drug design. *Journal of Cheminformatics*, 17, 2025.
564 URL <https://api.semanticscholar.org/CorpusID:277433781>.

565 Fengchun Qiao, Long Zhao, and Xi Peng. Learning to learn single domain generalization. *2020
566 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 12553–12562,
567 2020. URL <https://api.semanticscholar.org/CorpusID:214713888>.

568 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Young Joon
569 Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. *2019
570 IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 6022–6031, 2019. URL
571 <https://api.semanticscholar.org/CorpusID:152282661>.

572 Yuzhu Ding, Lei Wang, Binxin Liang, Shuming Liang, Yang Wang, and Fangxiao Chen. Domain
573 generalization by learning and removing domain-specific features. *ArXiv*, abs/2212.07101, 2022.
574 URL <https://api.semanticscholar.org/CorpusID:254636222>.

575 Huiwon Jang, Jihoon Tack, Daewon Choi, Jongheon Jeong, and Jinwoo Shin. Modality-agnostic
576 self-supervised learning with meta-learned masked auto-encoder. *ArXiv*, abs/2310.16318, 2023.
577 URL <https://api.semanticscholar.org/CorpusID:264487231>.

578 Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain generalization
579 via model-agnostic learning of semantic features. In *Neural Information Processing Systems*, 2019.
580 URL <https://api.semanticscholar.org/CorpusID:202768984>.

581 Tsz-Him Cheung and Dit-Yan Yeung. Modals: Modality-agnostic automated data augmentation
582 in the latent space. In *International Conference on Learning Representations*, 2021. URL
583 <https://api.semanticscholar.org/CorpusID:235613605>.

594 Sanqing Qu, Yingwei Pan, Guang-Sheng Chen, Ting Yao, Changjun Jiang, and Tao Mei. Modality-
 595 agnostic debiasing for single domain generalization. *2023 IEEE/CVF Conference on Computer*
 596 *Vision and Pattern Recognition (CVPR)*, pages 24142–24151, 2023. URL <https://api.semanticscholar.org/CorpusID:257496131>.

598 Ya Li, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. Domain generalization via
 599 conditional invariant representations. In *AAAI Conference on Artificial Intelligence*, 2018. URL
 600 <https://api.semanticscholar.org/CorpusID:19158057>.

601

602 Martín Arjovsky, Léon Bottou, Ishaaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
 603 *ArXiv*, abs/1907.02893, 2019. URL <https://api.semanticscholar.org/CorpusID:195820364>.

604

605 Masanori Koyama and Shoichiro Yamaguchi. Out-of-distribution generalization with maximal
 606 invariant predictor. *ArXiv*, abs/2008.01883, 2020. URL <https://api.semanticscholar.org/CorpusID:220968862>.

607

608 Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical
 609 automated data augmentation with a reduced search space. *2020 IEEE/CVF Conference on*
 610 *Computer Vision and Pattern Recognition Workshops (CVPRW)*, pages 3008–3017, 2019. URL
 611 <https://api.semanticscholar.org/CorpusID:208006202>.

612

613 David Berthelot, Nicholas Carlini, Ekin Dogus Cubuk, Alexey Kurakin, Kihyuk Sohn, Han Zhang, and
 614 Colin Raffel. Remixmatch: Semi-supervised learning with distribution matching and augmentation
 615 anchoring. In *International Conference on Learning Representations*, 2020. URL <https://api.semanticscholar.org/CorpusID:213757781>.

616

617 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
 618 risk minimization. In *International Conference on Learning Representations*, 2018.

619

620 Zhun Zhong, Yuyang Zhao, Gim Hee Lee, and Nicu Sebe. Adversarial style augmentation for domain
 621 generalized urban-scene segmentation. *Advances in Neural Information Processing Systems*, 35:
 622 338–350, 2022.

623

624 Chris Xing Tian, Haoliang Li, Xiaofei Xie, Yang Liu, and Shiqi Wang. Neuron Coverage-Guided
 625 Domain Generalization . *IEEE Transactions on Pattern Analysis & Machine Intelligence*, 45
 626 (01):1302–1311, January 2023. ISSN 1939-3539. doi: 10.1109/TPAMI.2022.3157441. URL
 627 <https://doi.ieee.org/10.1109/TPAMI.2022.3157441>.

628

629 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
 630 for efficiently improving generalization. In *International Conference on Learning Representations*,
 631 2021. URL <https://openreview.net/forum?id=6Tm1mposlrM>.

632

633 Seungjae Shin, HeeSun Bae, Byeonghu Na, Yoon-Yeong Kim, and Il chul Moon. Unknown domain
 634 inconsistency minimization for domain generalization. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=eNoiRal5xi>.

635

636 Dong-Hyun Lee. Pseudo-label : The simple and efficient semi-supervised learning method for
 637 deep neural networks. 2013. URL <https://api.semanticscholar.org/CorpusID:18507866>.

638

639 Yang Zou, Zhiding Yu, B. V. K. Vijaya Kumar, and Jinsong Wang. Unsupervised domain adaptation
 640 for semantic segmentation via class-balanced self-training. In *European Conference on Computer*
 641 *Vision*, 2018. URL <https://api.semanticscholar.org/CorpusID:52954862>.

642

643 Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, and Vicente Ordonez. Curriculum labeling: Revisit-
 644 ing pseudo-labeling for semi-supervised learning. In *AAAI Conference on Artificial Intelligence*,
 645 2020. URL <https://api.semanticscholar.org/CorpusID:228096598>.

646

647 Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and Takahiro
 648 Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. In
 649 *Neural Information Processing Systems*, 2021. URL <https://api.semanticscholar.org/CorpusID:239016453>.

648 Soumyadeep Ghosh, Sanjay Kumar, Janu Verma, and Awanish Kumar. Self training with ensemble
 649 of teacher models. *ArXiv*, abs/2107.08211, 2021. URL <https://api.semanticscholar.org/CorpusID:236087412>.
 650

651 Qizhe Xie, Eduard H. Hovy, Minh-Thang Luong, and Quoc V. Le. Self-training with noisy student
 652 improves imagenet classification. *2020 IEEE/CVF Conference on Computer Vision and Pattern*
 653 *Recognition (CVPR)*, pages 10684–10695, 2019. URL <https://api.semanticscholar.org/CorpusID:207853355>.
 654

655 Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 656 Dropout: a simple way to prevent neural networks from overfitting. *J. Mach. Learn. Res.*, 15:
 657 1929–1958, 2014. URL <https://api.semanticscholar.org/CorpusID:6844431>.
 658

659 Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Do-
 660 gus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning
 661 with consistency and confidence. *Advances in neural information processing systems*, 33:596–608,
 662 2020.
 663

664 Claudio De Stefano, Carlo Sansone, and Mario Vento. To reject or not to reject: that is the question-an
 665 answer in case of neural classifiers. *IEEE Trans. Syst. Man Cybern. Part C*, 30:84–94, 2000. URL
 666 <https://api.semanticscholar.org/CorpusID:7594035>.
 667

668 Giorgio Fumera, Fabio Roli, and Giorgio Giacinto. Reject option with multiple thresholds.
 669 *Pattern Recognit.*, 33:2099–2101, 2000. URL <https://api.semanticscholar.org/CorpusID:9209281>.
 670

671 Terrance Devries and Graham W. Taylor. Learning confidence for out-of-distribution detection in
 672 neural networks. *ArXiv*, abs/1802.04865, 2018. URL <https://api.semanticscholar.org/CorpusID:3271220>.
 673

674 Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks.
 675 *ArXiv*, abs/1705.08500, 2017. URL <https://api.semanticscholar.org/CorpusID:491127>.
 676

677 Sunil Thulasidasan, Tanmoy Bhattacharya, Jeff A. Bilmes, Gopinath Chennupati, and Jamaludin
 678 Mohd-Yusof. Combating label noise in deep learning using abstention. In *International Conference*
 679 *on Machine Learning*, 2019. URL <https://api.semanticscholar.org/CorpusID:166227922>.
 680

681 Liu Ziyin, Zhikang T. Wang, Paul Pu Liang, Ruslan Salakhutdinov, Louis-Philippe Morency, and
 682 Masahito Ueda. Deep gamblers: Learning to abstain with portfolio theory. In *Neural Information*
 683 *Processing Systems*, 2019. URL <https://api.semanticscholar.org/CorpusID:195767452>.
 684

685 Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an integrated
 686 reject option. In *International Conference on Machine Learning*, 2019. URL <https://api.semanticscholar.org/CorpusID:59316904>.
 687

688 Thomas G. Dietterich. Ensemble methods in machine learning. 2007. URL <https://api.semanticscholar.org/CorpusID:10765854>.
 689

690 Ernst M. Kussul, Oleksandr Makeyev, Tatiana Baidyk, and Daniel Calderon Reyes. Neural network
 691 with ensembles. *The 2010 International Joint Conference on Neural Networks (IJCNN)*, pages
 692 1–7, 2010. URL <https://api.semanticscholar.org/CorpusID:993561>.
 693

694 Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the em algorithm.
 695 *Neural Computation*, 6:181–214, 1993. URL <https://api.semanticscholar.org/CorpusID:67000854>.
 696

697 David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep
 698 mixture of experts. *CorR*, abs/1312.4314, 2013. URL <https://api.semanticscholar.org/CorpusID:11492613>.
 699

702 Matteo Pagliardini, Martin Jaggi, François Fleuret, and Sai Praneeth Karimireddy. Agree to disagree:
 703 Diversity through disagreement for better transferability. In *The Eleventh International Conference*
 704 *on Learning Representations*, 2023.

705 Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Improving
 706 model selection and boosting performance in domain generalization. In *Advances in Neural*
 707 *Information Processing Systems*, 2022a.

708 Huaxiu Yao, Xinyu Yang, Xinyi Pan, Shengchao Liu, Pang Wei Koh, and Chelsea Finn. Improving do-
 709 main generalization with domain relations. 2023. URL <https://api.semanticscholar.org/CorpusID:256615216>.

710 Yoonho Lee, Huaxiu Yao, and Chelsea Finn. Diversify and disambiguate: Out-of-distribution
 711 robustness via disagreement. *The Eleventh International Conference on Learning Representations*,
 712 2023b. URL <https://openreview.net/forum?id=RVTOp3MwT3n>.

713 Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma. Rethinking bias-variance
 714 trade-off for generalization of neural networks. In *International Conference on Machine Learning*,
 715 pages 10767–10777. PMLR, 2020.

716 Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Improv-
 717 ing model selection and boosting performance in domain generalization. *Advances in Neural*
 718 *Information Processing Systems*, 35:8265–8277, 2022b.

719 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. *Proceedings of the*
 720 *22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, 2016.
 721 URL <https://api.semanticscholar.org/CorpusID:4650265>.

722 Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
 723 learning by exponential linear units (elus). *arXiv: Learning*, 2015. URL <https://api.semanticscholar.org/CorpusID:5273326>.

724 Anna Gaulton, Louisa J. Bellis, A. Patrícia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
 725 Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, and John P. Overington.
 726 Chembl: a large-scale bioactivity database for drug discovery. *Nucleic Acids Research*, 40:D1100–
 727 D1107, 2011. URL <https://api.semanticscholar.org/CorpusID:16681789>.

728 Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W. Coley,
 729 Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: Machine learning
 730 datasets and tasks for drug discovery and development, 2021.

731 Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Lanqing Li, Long-Kai Huang, Tingyang Xu,
 732 Yu Rong, Jie Ren, Ding Xue, et al. Drugood: Out-of-distribution dataset curator and benchmark
 733 for ai-aided drug discovery—a focus on affinity prediction problems with noise annotations. In
 734 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pages 8023–8031, 2023.

735 David Rogers and Mathew Hahn. Extended-connectivity fingerprints. *Journal of Chemical*
 736 *Information and Modeling*, 50(5):742–754, 2010. doi: 10.1021/ci100050t. URL <https://doi.org/10.1021/ci100050t>. PMID: 20426451.

737 B Zagidullin, Z Wang, Y Guan, E Pitkänen, and J Tang. Comparative analysis of molecular
 738 fingerprints in prediction of drug combination effects. *Briefings in Bioinformatics*, 22(6):bbab291,
 739 08 2021. ISSN 1477-4054. doi: 10.1093/bib/bbab291. URL <https://doi.org/10.1093/bib/bbab291>.

740 Josh Gardner, Zoran Popovic, and Ludwig Schmidt. Benchmarking distribution shift in tabular data
 741 with tableshift. *Advances in Neural Information Processing Systems*, 2023.

742 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
 743 *CoRR*, abs/1412.6980, 2014. URL <https://api.semanticscholar.org/CorpusID:6628106>.

744 Andrew L. Maas. Rectifier nonlinearities improve neural network acoustic models. 2013. URL
 745 <https://api.semanticscholar.org/CorpusID:16489696>.

756 APPENDIX
757758 A USAGE OF LLMs STATEMENT
759760 In this submission, LLMs were used only as a general editing tool. Part of the text were drafted by
761 authors and fed into LLMs for grammar check and help polish the text.
762764 B ADDITIONAL EXPERIMENT DETAILS
765766 B.1 EXPLOR TRAINING DETAILS
767768 In all of our experiments we used the Adam (Kingma and Ba, 2014) optimizer and mini-batches
769 of size 256. One Nvidia A100 GPU with 40GB GPU memory was used to run our experiments,
770 and duration for model training is approximately 0.5 hours. $\lambda = 0.5$ was used for the $\mathcal{L}_{\text{match}}$ for the
771 expanded points. As noted in Sec. 3.2 we trained the EXPLOR models directly in the latent space to
772 avoid the need for the decoder (and also allowed baselines to do this if it aided their performance).
773 In the experiments on hERG, A549_cells, CYP_2D6, Ames, core ec50, refined ec50, EXPLOR was
774 trained for 10000 iterations. Arithmetic mean between EXPLOR and pseudo-labeler ensemble was
775 reported. We performed 5 trials on each of the datasets for EXPLOR.
776777 B.2 BASELINE SETUP
778779 We implemented all baselines we are comparing against EXPLOR following the implementation
780 details in their paper and/or using Github implementations (if available). Since the fingerprints
781 representation of chemicals are quite sparse, we preformed dimension reduction using PCA with 128
782 components on all chemical datasets. For D-BAT (Pagliardini et al., 2023) with existing implementa-
783 tions designed for tabular data, we utilized their original model architectures. For the other baseline
784 methods without implementation specifically for tabular data, we adopted a structure comprising two
785 512 ELU(Clevert et al., 2015) layers to closely mimic the EXPLOR network architecture. The Adam
786 (Kingma and Ba, 2014) optimizer was used for training baseline models.
787788 **ERM** We implement a multiheaded ERM baseline that follows the EXPLOR neural network archi-
789 tecture. The architecture uses the same shared feature extractor followed by a 1024-dimensional
790 output layer, where each output corresponds to an independent binary classifier. We train for 10,000
791 iterations with a learning rate of 0.0005 and maintain a moving average model updated every 2,500
792 iterations.
793794 **D-BAT** In our experiments, the D-Bat(Pagliardini et al., 2023) models used MLP architecture with one
795 128 LeakyRelu(Maas, 2013) layer following the architecture in their Github. Their paper (Pagliardini
796 et al., 2023) discussed two settings, and we focused on the scenario where perturbation data differs
797 from the distribution of test data, adhering to the single-source domain generalization setting. We
798 trained an ensemble of five models sequentially for the D-bat baseline models and the predictions
799 from the 5 models were averaged to obtain the final prediction.
800801 **EoA** We trained an ensemble of 5 simple moving average model following the method described in
802 (Arpit et al., 2022a). We start calculating the moving average at iteration 50 and trained the models
803 for 200 iterations. The predictions from the 5 models were averaged to obtain the final prediction for
804 EoA.
805806 For **AdvStyle** (Zhong et al., 2022) and **Mixup** (Zhang et al., 2018), the methodologies were straight-
807 forward. We experimented with training using various numbers of iterations and reported the
808 most promising results. Note that we used alpha=0.7 when combining the 2 samples for Mixup.
809 We executed all baseline experiments five times on each dataset to ensure a precise estimation of
810 performance.
811812 **DivDis** We utilized all unlabeled target OOD data for training and a single label from this data for
813 supervision. An ensemble of 5 models was trained for 100 iterations with early stopping, and each
814 model has 2 classification heads. Across all datasets, we set $\lambda_1 = 10$ (encouraging disagreement
815 among model heads), while λ_2 (an optional hyperparameter prevents degenerate solutions) was set to
816

810
811
812 Table 4: Training Time for EXPLOR and baseline methods.
813
814
815
816
817
818
819

	wall clock (m)
EXPLOR	4.2
SAM	1.13
UDIM	2.07
Dbat	3.5
EoA	67.9
Advstyle	4.8
Mixup	1.2
NCDG	2.7
ERM	0.9

820
821 0 for DrugOOD and ChEMBL and to 10 for TableShift. The final prediction is the average of the 5
822 models' predictions.
823824 **FixMatch** Originally, Fixmatch (Sohn et al., 2020) was designed for image data, so the sense of weak
825 and strong augmentations were image based. To adapt the method to our modality agnostic setting
826 we used $x * (1 + \alpha)$ as the weak augmentation, $x * (1 + 2 * \alpha)$ as strong augmentation, where α is a
827 small noise drawn from the standard normal distribution.
828829 For **NCDG** Tian et al. (2023), we adapt the method to use the EXPLOR architecture (rather than a
830 ResNet model) and the EXPLOR augmentation method. We set $t=0.005$ (the threshold for neuron
831 activation in coverage computation), $\lambda = 0.1$ (the weight coefficient for neuron coverage loss), and
832 $\beta = 0.01$ (the weight for gradient similarity regularization loss). Five trials were run on each dataset
833 and averaged to obtain the final results.
834835 **SAM** We train the MLP with 2 hidden layers of size 512 (same hidden layer as EXPLOR) using the
836 SAM (Foret et al., 2021) objective. We used a $\rho = 0.05$ (radius for evaluating the loss sharpness) and
837 $\epsilon = 1e^{-5}$ (perturbation weight). The model was trained for 100 epochs with a learning rate of 0.001.
838839 **UDIM** We train the MLP with 2 hidden layers of size 512 (same hidden layer as EXPLOR) using the
840 UDIM (Shin et al., 2024) framework. We used a $\rho = 0.05$ (radius for evaluating the loss sharpness),
841 $\rho_x = 0.5$ (radius for adversarial perturbations), and $\lambda = 0.5$ (domain inconsistency regularizer
842 weight). The model was trained for 100 epochs with a learning rate of 0.001.
843844 **B.3 EXPLOR TRAINING TIME**
845846 In Tab. 4, we report the training time for EXPLOR and baseline models we are considering. Note that
847 the pseudo-labelers can be training in parallel with enough computational resources (and are each
848 quick to train at < 1s).
849850 **C ADDITIONAL EXPERIMENT AND ABLATION RESULTS**
851852 **C.1 FULL EXPERIMENT RESULTS ON CHEMBL AND THERAPEUTICS DATA COMMONS**
853854 In Tab. 6, we report the full results on hERG, A549_cells, cyp_2D6, and Ames.
855856 **C.2 FULL EXPERIMENT RESULTS ON DRUGOOD**
857858 In Tab. 5, we report the full results on core ec50, refined ec 50, and core ic50 from DrugOOD (Ji
859 et al., 2023).
860861 **C.3 DIVERSITY OF PREDICTIONS**
862863 In drug discovery applications, models should predict on structurally diverse compounds. To assess
864 the diversity of model behavior in high confidence out-of-distribution (OOD) predictions, we examine
865 the average variance of fingerprint features for instances with predicted confidence greater than 0.9
866 on the 3 ChEMBL datasets (var@p>0.9). Higher variance reflects greater heterogeneity among
867 the selected molecules. We observe the following var@p>0.9 on ChEMBL datasets: EXPLOR
868 (**0.391**), D-BAT (0.337), EoA (0.301), AdvStyle (0.349), Mixup (0.370), and NCDG (0.239). That is,
869

864 Table 5: Full experiment results on DrugOOD datasets. We **bold** best scores based on the mean
 865 minus 1 standard deviation. Note that * refers to a semi-supervised method.

		refined ec50 val	refined ec50 test	core ic50 test	core ic50 test	core ec50 val	core ec50 test
866	AUPRC@ R<0.1	DivDis* 96.63±0.54	88.87±0.58	98.41±0.26	91.72±1.47	98.48±0.06	75.02±1.11
867		FixMatch* 94.78±0.63	86.53±0.25	97.70±0.05	95.89±1.46	96.42±1.06	69.80±0.25
868		ERM 97.76±0.14	90.40±0.27	99.38±0.05	93.81±0.55	96.21±1.02	82.45±2.93
869		D-BAT 97.19±0.19	88.93±0.48	98.25±0.09	91.89±0.39	94.04±0.25	86.59±1.42
870		AdvStyle 96.37±0.32	88.69±0.43	98.10±0.17	89.39±0.33	95.79±0.20	84.56±2.36
871		EoA 85.03±0.06	78.79±0.14	88.56±0.05	77.03±0.13	81.85±0.24	71.84±0.45
872		Mixup 85.39±0.23	79.78±0.34	88.99±0.43	78.07±0.61	83.97±0.61	73.03±0.42
873		NCDG 96.33±0.07	89.94±0.12	97.36±0.08	89.68±0.05	91.95±0.28	80.38±0.47
874		SAM 98.27±0.15	88.84±0.32	99.37±0.06	91.65±0.41	97.29±0.19	73.03±2.53
875		UDIM 98.39±0.09	89.67±0.95	99.19±0.10	92.15±0.41	96.69±0.25	71.10±1.19
876		D-BAT PL Ens 98.67±0.02	89.48±0.08	99.23±0.05	96.39±0.07	99.01±0.24	66.69±0.13
877		XGB PL Ens 98.73±0.14	65.40±0.52	99.00±0.04	92.67±0.33	99.57±0.01	96.93±0.09
878		EXPLOR D-BAT 98.50±0.01	89.94±0.02	99.46±0.04	96.70±0.01	99.93±0.02	77.26±0.27
879		EXPLOR 99.06±0.14	64.71±0.29	99.22±0.05	91.31±0.41	99.36±0.06	96.42±0.10
880	AUPRC@ R<0.2	DivDis* 96.02±0.19	86.51±0.28	97.80±0.07	89.72±0.06	93.86±0.42	80.18±0.92
881		FixMatch* 94.48±0.47	86.38±0.35	97.62±0.06	92.89±1.36	95.02±0.76	70.49±0.43
882		ERM 96.15±0.16	88.67±0.23	99.04±0.04	91.44±0.43	96.95±0.11	72.88±0.95
883		D-BAT 96.97±0.16	88.78±0.40	98.13±0.08	91.79±0.38	93.81±0.22	84.35±1.35
884		AdvStyle 95.13±0.13	88.21±0.37	97.04±0.17	89.05±0.22	94.84±0.31	84.51±2.36
885		EoA 85.03±0.06	78.79±0.14	88.56±0.05	77.03±0.13	81.85±0.24	71.84±0.45
886		Mixup 85.39±0.23	79.78±0.34	88.99±0.43	78.07±0.61	83.97±0.61	73.04±0.42
887		NCDG 93.92±0.62	84.46±0.67	97.83±0.08	87.82±0.26	93.40±0.78	80.09±1.94
888		SAM 96.79±0.17	87.50±0.23	98.78±0.09	89.40±0.40	95.02±0.37	71.92±1.71
889		UDIM 96.97±0.13	88.16±0.78	98.61±0.12	90.13±0.38	94.05±0.30	71.37±1.00
890		DBAT PL Ens 96.67±0.06	88.11±0.04	98.74±0.07	94.05±0.08	97.51±0.21	69.93±0.04
891		XGB PL Ens 98.00±0.07	89.48±0.24	99.14±0.02	94.20±0.15	97.79±0.11	68.48±0.30
892		EXPLOR DBAT 97.78±0.04	88.97±0.02	99.10±0.16	94.52±0.02	98.25±0.01	75.50±0.15
893		EXPLOR XGB 98.45±0.06	89.76±0.26	99.15±0.05	94.42±0.09	98.66±0.10	69.04±0.50
894	AUPRC@ R<0.3	DivDis* 95.19±0.37	85.12±0.49	97.33±0.16	88.06±1.14	91.89±0.95	78.97±1.66
895		FixMatch* 87.14±0.64	85.74±0.42	97.59±0.07	91.02±1.24	93.76±1.11	70.61±0.47
896		ERM 95.06±0.11	87.42±0.13	98.69±0.05	89.86±0.39	95.58±0.15	71.98±0.84
897		D-BAT 96.89±0.15	87.77±0.32	98.08±0.08	90.71±0.52	93.73±0.21	81.40±0.89
898		AdvStyle 94.71±0.13	88.05±0.36	96.69±0.21	88.93±0.19	94.52±0.37	83.57±2.08
899		EoA 85.03±0.06	78.79±0.14	88.56±0.05	77.03±0.13	81.85±0.24	71.84±0.45
900		Mixup 85.39±0.23	79.78±0.34	88.99±0.43	78.07±0.61	83.97±0.61	73.06±0.43
901		NCDG 95.17±0.04	86.07±0.08	95.89±0.05	86.53±0.03	88.73±0.19	76.05±0.35
902		SAM 95.62±0.13	86.48±0.27	98.23±0.09	87.84±0.37	93.58±0.39	71.63±1.27
903		UDIM 95.72±0.15	87.08±0.77	98.10±0.11	88.48±0.40	92.46±0.35	71.53±0.86
904		D-BAT PL Ens 96.10±0.06	87.35±0.04	98.36±0.10	92.44±0.05	95.86±0.25	71.17±0.03
905		XGB PL Ens 96.73±0.10	69.94±0.20	97.17±0.06	87.99±0.18	98.71±0.03	92.32±0.23
906		EXPLOR D-BAT 97.01±0.01	87.87±0.02	98.61±0.07	92.78±0.02	96.27±0.01	74.76±0.10
907		EXPLOR XGB 97.91±0.07	69.74±0.21	97.76±0.05	88.66±0.21	98.89±0.02	93.11±0.13
908	AUPRC	DivDis* 89.62±0.12	80.92±0.06	93.34±0.10	81.48±0.30	83.85±0.41	75.09±0.38
909		FixMatch* 87.14±0.58	81.51±0.31	92.38±0.15	82.78±0.57	80.92±1.12	70.57±0.32
910		ERM 89.84±0.07	82.26±0.07	94.72±0.07	82.59±0.21	87.70±0.09	70.95±0.44
911		D-BAT 84.70±0.51	70.08±0.69	90.84±0.28	73.45±0.90	76.64±0.49	54.87±0.99
912		AdvStyle 83.01±0.90	69.48±2.16	88.54±1.44	72.11±1.49	81.17±1.72	58.40±2.18
913		EoA 69.66±0.47	57.71±0.79	79.12±0.09	56.52±0.42	64.16±0.51	36.50±1.48
914		Mixup 80.36±0.88	72.88±1.67	86.88±0.14	74.99±0.15	73.03±1.67	60.84±4.31
915		NCDG 89.27±0.22	80.54±0.21	94.17±0.08	81.19±0.11	87.72±0.37	74.99±0.74
916		SAM 89.86±0.09	81.93±0.20	94.16±0.10	81.03±0.23	86.66±0.20	70.92±0.40
917		UDIM 89.95±0.11	82.19±0.41	94.05±0.10	81.29±0.25	86.35±0.15	71.20±0.35
918		DBAT PL Ens 91.19±0.08	82.72±0.04	94.79±0.10	84.11±0.01	88.36±0.28	72.13±0.07
919		XGB PL Ens 91.21±0.02	82.61±0.05	94.91±0.03	84.13±0.06	88.44±0.05	71.80±0.07
920		EXPLOR D-BAT 90.56±0.03	82.95±0.06	94.87±0.13	84.11±0.01	88.44±0.02	73.13±0.02
921		EXPLOR XGB 91.59±0.03	83.06±0.10	95.38±0.01	84.77±0.02	89.52±0.05	71.41±0.11
922	AUROC	DivDis* 65.41±0.81	58.53±0.46	66.68±0.28	57.04±0.08	73.23±0.40	61.15±0.50
923		FixMatch* 70.32±0.59	52.69±0.69	66.37±0.50	58.37±0.58	74.38±0.16	62.05±0.55
924		ERM 67.73±0.18	59.15±0.23	77.41±0.24	62.68±0.31	72.24±0.09	52.32±0.59
925		D-BAT 75.26±0.28	58.21±0.26	72.09±0.19	60.32±0.25	80.31±0.08	64.82±0.18
926		AdvStyle 75.97±0.39	58.86±0.25	70.78±0.35	59.62±0.30	78.36±0.23	64.14±0.27
927		EoA 64.91±0.34	52.71±0.44	59.27±0.20	54.63±0.24	62.99±0.16	55.83±0.18
928		Mixup 68.20±0.66	56.33±0.45	60.39±0.40	56.50±0.37	64.24±1.23	57.75±0.80
929		NCDG 73.66±0.53	57.70±0.81	67.20±0.33	57.18±0.18	76.48±0.22	61.44±0.13
930		SAM 67.33±0.22	58.97±0.40	75.63±0.35	60.07±0.35	71.06±0.27	52.50±0.36
931		UDIM 67.50±0.29	59.30±0.63	75.38±0.34	60.29±0.39	71.37±0.18	53.43±0.43
932		DBAT PL Ens 69.40±0.06	60.04±0.31	77.83±0.40	64.66±0.04	74.51±0.48	56.39±0.20
933		XGB PL Ens 73.70±0.07	56.48±0.06	70.17±0.04	59.77±0.02	77.78±0.09	64.89±0.06
934		EXPLOR D-BAT 70.64±0.04	59.90±0.03	78.52±0.37	64.67±0.01	75.34±0.07	56.32±0.03
935		EXPLOR XGB 75.47±0.09	55.40±0.20	71.28±0.10	60.63±0.17	80.01±0.03	66.14±0.05

EXPLOR is assigning confident predictions to structurally diverse compounds rather than overfitting to a narrow subset of the chemical space.

918
 919 Table 6: Full experiment results on ChEMBL (Gaulton et al., 2011) and Therapeutics Data Commons
 920 (Huang et al., 2021) datasets. We **bold** best scores based on the mean minus 1 standard deviation.
 921 Note that * refers to a semi-supervised method.

		hERG	A549_cells	cyp_2D6	Ames
922	AUPRC	DivDis*	86.92±8.44	89.01±3.53	83.65±6.17
923	R<0.1	FixMatch*	84.77±1.81	92.93±3.00	92.71±1.98
924		ERM	91.95±0.85	97.37±0.81	92.89±2.93
925		D-BAT	88.55±1.68	98.57±0.16	95.71±0.89
926		AdvStyle	93.27±0.56	96.89±0.30	84.21±2.07
927		EoA	63.80±0.42	61.31±0.31	61.77±0.41
928		Mixup	82.80±1.56	95.04±0.25	87.39±3.09
929		NCDG	72.96±1.31	78.79±2.35	61.77±1.15
930		SAM	90.69±1.67	97.22±0.63	90.20±0.46
931		UDIM	91.03±2.36	97.39±0.42	88.30±1.14
932		D-BAT PL Ens	86.29±1.00	98.38±0.23	96.66±0.63
933		XGB PL Ens	96.65±0.22	99.74±0.05	99.81±0.11
934		EXPLOR D-BAT	90.01±0.86	98.92±0.12	98.51±0.63
935		EXPLOR XGB	98.10±0.34	99.76±0.03	99.48±0.17
936	AUPRC@	DivDis*	85.65±2.37	89.45±1.16	79.98±1.10
937	R<0.2	FixMatch*	79.66±0.57	90.81±4.30	83.58±2.55
938		ERM	85.58±1.10	96.65±0.59	87.93±2.41
939		D-BAT	84.48±1.74	98.26±0.14	91.40±0.98
940		AdvStyle	88.21±0.77	97.77±0.28	84.83±0.93
941		EoA	63.80±0.42	61.31±0.31	61.77±0.41
942		Mixup	82.25±1.51	95.04±0.25	87.09±2.32
943		NCDG	70.25±1.03	78.22±2.13	61.48±0.98
944		SAM	84.37±1.06	95.70±0.75	85.02±0.69
945		UDIM	85.07±2.32	95.87±0.36	84.80±0.84
946		DBAT PL Ens	84.86±0.82	97.45±0.32	92.56±0.81
947		XGB PL Ens	94.44±0.17	98.22±0.08	95.51±0.19
948		EXPLOR DBAT	87.05±0.75	99.05±0.12	95.33±0.51
949		EXPLOR XGB	94.67±0.29	98.87±0.09	96.88±0.25
950	AUPRC@	DivDis*	83.69±3.39	88.83±2.50	77.55±1.02
951	R<0.3	FixMatch*	76.16±1.04	89.12±5.07	77.70.58±2.05
952		ERM	82.29±1.10	95.92±0.58	83.76±2.02
953		D-BAT	82.44±1.59	97.37±0.24	87.65±0.58
954		AdvStyle	85.05±0.86	96.47±0.29	82.76±0.95
955		EoA	63.80±0.42	61.31±0.31	61.77±0.41
956		Mixup	81.51±1.35	94.95±0.25	84.53±2.89
957		NCDG	69.59±0.97	77.88±1.93	60.93±0.86
958		SAM	80.55±0.72	94.18±0.61	82.66±0.68
959		UDIM	80.87±1.85	94.67±0.46	82.03±0.38
960		DBAT PL Ens	84.13±0.59	96.97±0.14	89.06±1.24
961		XGB PL Ens	90.46±0.06	97.35±0.05	92.34±0.24
962		EXPLOR DBAT	85.66±0.72	98.70±0.02	91.40±0.44
963		EXPLOR XGB	90.88±0.34	97.96±0.1	93.06±0.27
964	AUPRC	DivDis*	67.70±0.25	76.45±0.63	65.76±0.45
965		FixMatch*	45.16±3.11	51.31±1.28	32.65±2.16
966		ERM	68.77±0.40	81.73±0.37	67.97±0.81
967		D-BAT	54.60±1.59	67.04±0.53	47.42±0.85
968		AdvStyle	51.54±0.93	65.02±0.72	44.41±0.96
969		EoA	43.30±0.51	44.95±0.24	37.37±0.95
970		Mixup	42.42±0.85	50.52±0.50	27.79±1.49
971		NCDG	42.69±0.24	49.13±0.79	31.08±0.16
972		SAM	66.89±0.28	79.88±0.34	67.37±0.31
973		UDIM	67.23±0.60	79.98±0.37	66.86±0.43
974		DBAT PL Ens	72.22±0.18	83.79±0.31	73.26±0.65
975		XGB PL Ens	72.19±0.07	84.10±0.01	72.93±0.13
976		EXPLOR DBAT	72.73±0.33	84.80±0.11	73.64±0.45
977		EXPLOR XGB	73.26±0.08	84.60±0.08	73.59±0.15
978	AUROC	DivDis*	71.19±0.57	72.20±0.41	64.50±0.77
979		FixMatch*	68.41±0.84	61.16±1.31	80.85±0.40
980		ERM	73.58±0.23	76.58±0.30	65.25±0.55
981		D-BAT	76.58±0.45	78.16±0.23	67.54±0.47
982		AdvStyle	75.84±0.46	76.13±0.28	65.51±0.62
983		EoA	68.02±0.34	68.33±0.24	60.50±0.48
984		Mixup	73.96±0.26	76.57±0.42	67.53±0.90
985		NCDG	70.42±0.13	72.50±0.79	62.01±0.16
986		SAM	72.17±0.41	74.67±0.49	64.45±0.53
987		UDIM	73.17±0.38	74.64±0.38	64.09±0.66
988		DBAT PL Ens	76.51±0.07	78.34±0.35	70.80±0.36
989		XGB PL Ens	74.74±0.06	79.17±0.02	70.33±0.07
990		EXPLOR DBAT	76.84±0.10	79.27±0.14	70.11±0.33
991		EXPLOR XGB	75.97±0.08	79.53±0.06	70.54±0.42
992					83.78±0.12

972
973
974
975
976Table 7: Full experiment results on Tablesift (Gardner et al., 2023) datasets. We **bold** best scores based on the mean minus 1 standard error. Note that * refers to a semi-supervised method that uses additional unlabeled OOD data during training.

		Childhood Lead	FICO HELOC	Hospital Readmission	Sepsis
977	AUPRC@ R<0.1	DivDis* FixMatch*	91.67±3.03 86.68±3.32	84.88±3.80 83.99±2.27	88.99±3.36 73.97±2.64
978		ERM D-BAT AdvStyle EoA Mixup NCDG SAM UDIM	54.24±0.00 52.67±0.00 63.63±0.00 75.73±0.83 50.00±0.00 83.30±0.20 97.50±0.00 97.06±0.45	85.84±0.88 92.97±0.59 90.10±1.03 63.42±2.13 92.79±0.03 91.70±0.33 94.42±1.07 95.07±0.92	90.52±0.36 83.73±0.12 77.29±0.74 52.03±1.78 85.71±0.35 70.42±0.17 80.13±0.57 79.59±1.32
979		D-BAT PL Ens XGB PL Ens EXPLOR D-BAT EXPLOR XGB	98.72±0.42 98.69±0.03 98.36±0.05 99.72±0.10	96±0.05 92.18±0.58 96.99±0.06 93.93±0.87	76.47±0.05 51.31±0.16 81.84±0.34 66.65±0.17
980	AUPRC@ R<0.2	DivDis* FixMatch*	89.77±2.51 81.75±3.69	85.50±2.65 77.76±1.94	83.22±2.57 67.84±1.95
981		ERM D-BAT AdvStyle EoA Mixup NCDG SAM UDIM	43.66±0.00 62.82±0.00 64.96±0.01 77.43±0.97 50.00±0.00 82.49±0.18 95.00±0.00 94.11±0.90	85.74±0.78 91.20±0.24 88.71±0.65 59.53±2.24 91.16±2.10 90.93±0.31 91.42±0.69 92.58±0.67	84.35±0.28 78.84±0.12 72.91±0.58 51.83±1.66 69.19±3.95 68.88±0.15 74.13±0.49 73.65±0.67
982		DBAT PL Ens XGB PL Ens EXPLOR (D-BAT) EXPLOR (XGB)	93.81±0.03 79.39±0.06 94.69±0.02 97.92±0.20	92.87±0.05 90.07±0.32 93.33±0.02 91.72±0.62	73.52±0.37 58.30±0.09 77.20±0.23 67.57±0.12
983	AUPRC@ R<0.3	DivDis* FixMatch*	87.90±2.20 81.61±3.09	85.77±2.73 76.48±4.13	79.82±2.42 64.47±1.70
984		ERM D-BAT AdvStyle EoA Mixup NCDG SAM UDIM	38.83±0.00 68.11±0.00 68.67±0.08 79.88±1.03 50.00±0.00 82.10±0.15 92.50±0.00 91.17±1.36	85.25±0.60 90.11±0.13 87.33±1.21 56.52±2.34 90.01±0.02 88.76±0.29 89.90±0.61 91.06±0.44	80.54±0.25 75.26±0.10 70.27±0.49 51.34±1.27 47.18±3.54 67.52±0.13 71.03±0.44 70.66±0.60
985		D-BAT PL Ens XGB PL Ens EXPLOR (D-BAT) EXPLOR (XGB)	91.71±0.04 96.08±0.08 92.60±0.03 96.58±0.22	91.52±0.01 89.73±0.23 91.72±0.07 91.10±0.41	71.78±0.27 60.86±0.04 72.69±0.18 67.36±0.06
986	AUPRC	DivDis* FixMatch*	76.33±0.86 75.39±0.58	82.47±1.05 72.22±4.46	65.95±2.15 56.54±1.21
987		ERM D-BAT AdvStyle EoA Mixup NCDG SAM UDIM	23.60±0.11 71.85±0.01 48.37±2.77 49.48±0.19 50.00±0.00 73.08±0.14 75.00±0.00 73.70±1.38	77.37±0.27 80.91±0.17 79.63±1.65 59.53±2.24 80.95±0.63 79.05±0.21 81.61±0.43 82.10±0.44	67.56±0.13 63.29±0.08 38.13±3.80 29.45±4.95 14.15±1.06 58.95±0.10 61.12±0.28 60.95±0.33
988		DBAT PL Ens XGB PL Ens EXPLOR (D-BAT) EXPLOR (XGB)	82.72±0.01 86.39±0.19 82.76±0.02 86.70±0.28	81.35±0.03 83.80±0.07 81.37±0.04 84.02±0.09	62.34±0.14 62.83±0.03 63.30±0.14 63.62±0.08
989	AUROC	DivDis* FixMatch*	77.74±1.90 79.87±0.29	83.55±1.06 74.29±1.69	65.28±0.59 55.78±0.98
990		ERM D-BAT AdvStyle EoA Mixup NCDG SAM UDIM	78.41±0.14 79.13±0.02 74.45±0.04 72.62±0.32 50.00±0.00 78.74±0.17 76.91±0.13 54.50±4.18	73.71±0.17 76.13±0.03 77.23±1.69 54.67±2.55 63.37±0.25 75.09±0.79 79.41±1.07	67.06±0.10 63.22±0.03 61.32±0.34 51.65±1.70 63.37±0.25 58.67±0.16 63.41±0.93 61.05±0.32
991		DBAT PL Ens XGB PL Ens EXPLOR (D-BAT) EXPLOR (XGB)	84.89±0.05 84.88±0.19 84.36±0.23 87.95±0.25	76.32±0.03 83.53±0.03 76.27±0.01 83.11±0.04	63.16±0.10 63.18±0.03 63.51±0.16 63.65±0.07
992					59.23±0.04 62.53±0.82 59.01±0.07 61.42±0.35
993					
994					
995					
996					
997					
998					
999					
1000					
1001					
1002					
1003					
1004					
1005					
1006					
1007					
1008					
1009					
1010					
1011					
1012					
1013					
1014					
1015					
1016					
1017					
1018					
1019					
1020					
1021					
1022					
1023					
1024					
1025					

1026 Table 8: ChEMBL Datasets’ Mean AUPRC Ablating Type of pseudo-labelers.
1027

	AUPRC@R<0.2	XGBoost	Random Forest	Decision Tree
PL_Ens	95.87	95.72	92.18	
EXPLOR	96.64	96.15	94.15	

1031
1032 C.4 FULL EXPERIMENT RESULTS ON TABLESHIFT
10331034 In Table 7, we report the full results on full results on Tableshift (Gardner et al., 2023) datasets.
10351036 C.5 PSEUDO-LABELERS ABLATIONS
10371038 In this section, We ablate the kind of pseudo-labelers as EXPLOR relies on pseudo-labels during
1039 training. reports the mean AUPRC@R<0.2 across ChEMBL datasets when using XGBoost, Random
1040 Forest (with 100 estimators), and Decision Tree as pseudo-labelers. Performance was comparable
1041 between XGBoost and Random Forest, indicating robustness to the choice of strong ensemble models.
1042 In contrast, using a weaker pseudo-labelers such as a single Decision Tree led to a performance drop.
1043 Nevertheless, EXPLOR consistently outperformed its respective pseudo-labelers, demonstrating its
1044 ability to enhance predictions regardless of pseudo-labeler strength (Tab. 8).
10451046 C.6 PER-HEAD MATCHING ABLATION DETAILS
10471048 In this section we provide details on the per-head matching ablations where we ablate the matching
1049 loss scheme on pseudo-labelers and explore a mean-only matching approach on expanded points as an
1050 alternative. First, we consider utilizing a single-headed (SH) MLP, $f(x)$ ($512 \rightarrow 512 \rightarrow 1$), which is
1051 trained via a mean matching loss $\mathcal{L}_{\text{MM}}(f, \{g_j\}_{j=1}^K; \mathcal{S}) \equiv \frac{1}{|\mathcal{S}|} \sum_{x \in \mathcal{S}} \ell(f(x), \frac{1}{K} \sum_{j=1}^K g_j(x))$, rather
1052 than the per-expert matching loss, $\mathcal{L}_{\text{match}}$ equation 3 We also explored the effect of training our
1053 multi-headed (MH) architecture ($512 \rightarrow 512 \rightarrow 1024$) using only mean-matching (without per-head
1054 matching), $\mathcal{L}'_{\text{MM}}(\{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathcal{S}) \equiv \frac{1}{|\mathcal{S}|} \sum_{x \in \mathcal{S}} \ell(\frac{1}{K} \sum_{j=1}^K \sigma(h_j(x)), \frac{1}{K} \sum_{j=1}^K g_j(x))$.
10551056 C.7 BOTTLENECK ABLATIONS DETAILS
10571058 Table 9: ChEMBL datasets’ mean AUPRC ablating hidden layer and output sizes.
1059

	@R<.2	@R<1
Full	97.12	77.28
Full (ML)	96.94	77.25
Full (ERM)	92.65	72.61
Tiny	96.29	76.63
Tiny (ML)	96.33	76.17
Tiny (ERM)	88.28	70.87

1060 In this section, we provide the details and results for the bottleneck ablations. Results are shown
1061 in Tab. 9, here ‘Full’ denotes our original 2×512 hidden layer architecture, where ‘tiny’ denotes
1062 a 2×32 hidden layer architecture (a $\times 16$ decrease in parameters). Moreover, we also consider
1063 mean logits ‘ML,’ a final averaging over the multi-head logits that produces a single output unit
1064 (i.e., averaging the output weights/bias after training to construct the mean logits network). The
1065 performance gap is marginal between the ‘Full’ and ‘Tiny’ model (a 0.85% difference) when using
1066 our proposed loss. In contrast, when using empirical risk minimization, we see a 4.87 times bigger
1067 drop in performance between ‘Full’ and ‘Tiny’ models. This suggests that the bottlenecking properties
1068 of our method are key to EXPLOR’s performance. Moreover, the results show promise for EXPLOR
1069 in resource-constrained settings (such as in IoT applications).
10701071 D ADDITIONAL FIGURES
10721073 Predicted probabilities from EXPLOR network and pseudo-labelers. We highlight example instances
1074 where the pseudo-labelers initially makes incorrect predictions but are corrected when we average
1075 the predicted probabilities from EXPLOR network and EXPLOR base.
1076

1080 E LIMITATIONS
10811082 While EXPLOR consistently outperforms its pseudo-labelers across diverse model types (e.g., XG-
1083 Boost, Random Forest, Decision Tree, D-BAT), its effectiveness can be influenced by the quality of
1084 the pseudo-labeler and the learned latent space. However, our results show that EXPLOR remains
1085 robust even with simpler pseudo-label models and standard latent representations, suggesting room for
1086 further gains with more sophisticated choices. To maintain broad applicability, our experiments were
1087 constrained to real-valued vector data with general augmentations. In domain-specific applications,
1088 incorporating modality-aware augmentations could further enhance performance. Future work may
1089 explore this direction to extend EXPLOR’s effectiveness.1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133