EXPLOR: **EXTRAPOLATORY PSEUDO-LABEL MATCHING FOR OOD UNCERTAINTY-BASED REJECTION**

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

023

025 026

027

029

031

033

034

037

040

041

042

043

044

046

047

048

049

050

051

052

Paper under double-blind review

ABSTRACT

EXPLOR is a novel framework that utilizes support-expanding, extrapolatory pseudo-labeling to improve prediction and uncertainty-based rejection on out-of-distribution (OOD) points. EXPLOR utilizes a diverse set of pseudo-labelers on an expansive augmented dataset to improve OOD performance through multiple MLP heads (one per pseudo-labeler) with shared embedding trained with a novel per-head matching loss. Unlike prior methods that rely on modality-specific augmentations or assume access to OOD data, EXPLOR introduces extrapolatory pseudo-labeling on latent-space augmentations, enabling robust OOD generalization with any real-valued vector data. In contrast to prior modality-agnostic methods with neural backbones, EXPLOR is model-agnostic, working effectively with methods from simple tree-based models to complex OOD generalization models. We demonstrate that EXPLOR achieves superior performance compared to state-of-the-art methods on diverse datasets in single-source domain generalization settings.

1 Introduction

It is well-known that the generalization capabilities of models can be severely limited when tested on out-of-distribution (OOD) data that deviates from the training-time distribution (Torralba and Efros, 2011; Liu et al., 2021; Freiesleben and Grote, 2023). This, in turn, affects many real-world applications where models may be evaluated on distribution-shifted data during deployment. For instance, these issues commonly arise in medical applications where patient distributions at inference time may deviate from the training data (Lee et al., 2023a). A potential strategy for the safe deployment of models in real-world applications is to employ novelty-based rejection (Dubuisson and Masson, 1993; Hendrickx et al., 2024), where predictions are rejected whenever the model is evaluated on an instance that deviates from the data distribution seen during training. While such approach is appropriate in certain scenarios (e.g., when a human can easily intervene upon rejection), this prevalent strategy is overly conservative as it foregoes any potential extrapolation by design. That is,

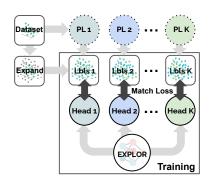


Figure 1: EXPLOR trains a multiheaded nnet with diverse pseudolabelers (PLs) on expanded data.

novelty-rejection forbids any form of extrapolation (predictions outside of the training data support), even when the model may be capable.

Motivation and Applications Virtual screening in drug discovery (Shoichet, 2004) provides a driving application for this work. Here, models predict whether candidate molecules have desirable properties (e.g., binding to therapeutic protein targets) to filter large libraries of synthesizable compounds for empirical testing. Several challenges arise. First, the most valuable discoveries come from structurally novel molecules that differ substantially from those in the training set (Hu et al., 2017). By definition, discovering new drugs requires extrapolation beyond known scaffolds, yet traditional novelty-based rejection methods explicitly forbid such extrapolation (Dubuisson and Masson, 1993), ensuring reliability but fundamentally limiting discovery.

¹We use the term extrapolation to encompass prediction outside of the training data distribution support.

Second, the utility of virtual screening diverges from the typical OOD generalization objective studied in machine learning (Yu et al., 2024). In practice, budgets only allow for a small fraction of candidates to be synthesized and tested, and the chemical space is so vast Hassen et al. (2025) that any training set covers only a tiny sliver. Thus, uniformly accurate predictions are neither realistic nor necessary. Instead, success depends on making high-confidence, high-precision predictions for the top-ranked candidates that will be selected for purchase. We quantify this via truncated precision/recall metrics eq. 1, reflecting the practical requirement of screening only the most promising molecules.

Single-Source Setting We target the single-source generalization setting (Qiao et al., 2020), which mirrors real-world workflows where only one labeled dataset—often from a narrow chemical space—is available for training. To address this, our Extrapolatory Pseudo-Label Matching for OOD Uncertainty-Based Rejection (EXPLOR) framework trains a diverse set of pseudo-labelers on different feature/instance subsets, exposing the shared embedding to multiple views of the data. This encourages extrapolation while producing reliable confidence estimates, enabling robust and cost-effective drug discovery in unseen chemical domains.

We focus on a model's ability to produce trustworthy high-confidence predictions on OOD points and reject unreliable predictions. To do so, we develop a general, modalityand model-agnostic end-to-end framework. To evaluate the model confidence, we propose a novel metric: area under precision/recall curve at recall less than τ (AUPRC@R $<\tau$). This metric specifically measures a model's ability to accurately predict positive examples in its most confident predictions (with relevance to chemoinformatic virtual screening). In contrast with prior work that depends heavily on modality-specific augmentations (e.g. for images (Yun et al., 2019), etc.) and/or the availability of multiple domains (Ding et al., 2022; Jang et al., 2023; Dou et al., 2019), our approach is fundamentally independent of data modality. Unlike prior modality-agnostic methods such as MODALS (Cheung and Yeung, 2021) that is modular or MAD (Qu et al., 2023) that is effective with complex neural architectures, EXPLOR is compatible with a broad spectrum of models and provides an end-to-end framework that not only

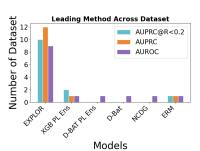


Figure 2: Tally of datasets where respective methods lead in metrics: AUPRC for recall < .2 (AUPRC@R< .2), AUPRC, & AUROC. (See further details in §4.)

generates extrapolated data but also effectively integrates them into training through diverse pseudo labeling via a novel per-head matching-based learning objective.

Contributions In this work, we propose a new method for single source domain generalization – EXPLOR, designed to extrapolate effectively and yield reliable predictions in high-confidence regions through a novel training scheme using a multi-headed network that matches to diverse pseudolabels generated with expanded data (see Fig. 2).

Our key contributions are: (1) We develop a straightforward but effective strategy that yields a strong, diverse set of pseudo-labelers for self-training. (2) We propose a novel training loss for training multiheaded neural network architectures with pseudolabels—composed of a per-head matching loss and a mean-matching regularization loss—to ensure both diversity (via per-pseudo-labeler supervision) and consistency (via ensemble agreement). (3) We systematically evaluate models based on AUPRC@R $<\tau$, the normalized area under the precision recall curve below a conservative threshold τ . While R denotes recall in the metric name, we define the formal expression using a recall variable r:

$$AUPRC@R < \tau = \frac{1}{\tau} \int_0^{\tau} Precision(r) dr.$$
 (1)

This novel metric measures a model's ability to predict the confidence of true positive examples in its most confident predictions (with relevance to virtual screening tasks). (4) We show state-of-the-art (SOTA) performance in prediction with a reject option based on estimated confidences, evaluated using AU{PR,RO}C-based metrics (see Fig. 1) in a single-source generalization setting (Qiao et al., 2020). (5) We conduct several ablations to better understand the keys to EXPLOR's success; moreover, by ablating the type of pseudolablers, we show EXPLOR's broad ability to improve over a model-agnostic set of experts.

2 RELATED WORK

Domain Generalization Domain generalization (DG) aims to learn a model that is able to generalize to multiple domains. A typical approach is to learn a domain invariant representation across multiple source domains. Domain invariant representation learning can be done by minimizing variations in feature distributions (Li et al., 2018; Ding et al., 2022) and imposing a regularizer to balance between predictive power and invariance (Arjovsky et al., 2019; Koyama and Yamaguchi, 2020). Another line of research incorporates data augmentation to improve generalizability. Basic transformations like rotation and translation, varying in magnitude, are commonly used on images to diversify the training data (Cubuk et al., 2019; Berthelot et al., 2020). More sophisticated augmentation techniques have recently surfaced: (Zhang et al., 2018) introduced mixup, which linearly combines two training samples; Yun et al. (2019) proposed CutMix, blending two images by replacing a cutout patch with a patch from another image; Zhong et al. (2022) adversarially augment images to prevent overfitting to source domains. We focus on augmentations that are general and applicable across modalities. Tian et al. (2023) introduced NCDG, which uses simple augmentations along with a loss function that maximizes neuron activity during training while minimizing standard classification loss. Their method minimizes the difference in the gradient of a coverage loss between standard training instances and augmented training instances. SAM (Foret et al., 2021) improves generalization by seeking parameters that lie in neighborhoods with uniformly low loss. UDIM (Shin et al., 2024) while finding flat loss parameters further enhances domain generalization by generating adversarial perturbations in latent space to expose and minimize inconsistencies between source domains and potential unseen target domains. While SAM and UDIM are modality-agnostic, our method EXPLOR is both model and modality-agnostic.

Self-Training Self-training uses an earlier model to pseudo-label unlabeled data, which is then added to the training set for subsequent model updates. Lee (2013) suggested a direct approach to retaining instances where the model has high prediction probabilities. Zou et al. (2018) proposed selecting a proportion of the most confident unlabeled points instead of using a fixed threshold. Later works combined pseudo-labeling with curriculum learning, adjusting class-wise thresholds over time to incorporate more informative samples (Cascante-Bonilla et al., 2020; Zhang et al., 2021). Another line of work improves pseudo-labeling robustness by promoting diversity in the labelers. Ghosh et al. (2021) used model ensembles as teachers, while Xie et al. (2019) added noise via Dropout (Srivastava et al., 2014) and data augmentation. FixMatch (Sohn et al., 2020) generates pseudo-labels from weakly augmented samples to supervise training on the corresponding strongly augmented samples. EXPLOR novelly leverages pseudo-labels by assigning each student head to a different expert, encouraging diversity, while aligns the ensemble prediction for consistency via a novel loss.

Selective Classification Reject option methods (or selective classification) aim to identify inputs where the model should abstain from predicting. Many approaches apply post hoc processing: after training, a rejection metric—such as the model's predicted probability—is computed, and predictions below a set threshold are rejected (Stefano et al., 2000; Fumera et al., 2000). Building upon these works, (Devries and Taylor, 2018) proposed to train a confidence branch alongside the prediction branch by incentivizing a neural network to produce a confidence measure during training; Geifman and El-Yaniv (2017) proposed a method for constructing a probability-calibrated selective classifier with guaranteed control over the true risk. Recently, methods adopting end-to-end training approaches have been proposed (Thulasidasan et al., 2019; Ziyin et al., 2019; Geifman and El-Yaniv, 2019). In these works, an extra class is added when predictions are made. If the extra class has the highest class probability for a sample, the sample is rejected. Most reject-option approaches are geared towards in-distribution rejection and utilize novelty-rejection when encountering any OOD points (Torralba and Efros, 2011; Liu et al., 2021; Freiesleben and Grote, 2023); instead, we propose to learn better conditional output probabilities on OOD data for more effective, capability-aware rejection.

Ensemble Modeling Ensembles utilize a diverse set of models jointly for better performance. Early methodologies for ensembles aggregate (bag) predictions from all models (Dietterich, 2007; Kussul et al., 2010) or a subset of the models in the ensemble (Jordan and Jacobs, 1993; Eigen et al., 2013). In the OOD setting, prior works addressed this problem by enforcing prediction diversity on OOD data (Pagliardini et al., 2023), ensembling moving average models (Arpit et al., 2022a), training an ensemble of domain specific classifiers (Yao et al., 2023), and training diverse model heads within a single network by maximizing disagreement on unlabeled OOD data (Lee et al., 2023b). EXPLOR adopts a multi-headed architecture that produces an ensemble to improve predictions on OOD data.

3 Method

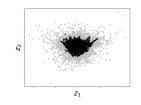
Our approach, EXPLOR, consists of: (1) obtaining a diverse set of pseudo-labelers; (2) generating extrapolatory samples via latent space augmentation; and (3) training a multi-headed network to match diverse pseudo labels on both in-distribution (ID) and expanded data (one head per pseudo-labeler). Throughout, we assume the 'single-source' generalization setting (Qiao et al., 2020), where we observe a single ID training dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$, and instances are drawn iid $(x_i, y_i) \sim \mathcal{P}_{in}$ without any accompanying environmental/domain/source information nor any labeled/unlabeled OOD instances. For simplicity, we write to the binary classification case, $y_i \in \{0, 1\}$, but our methodology is easily extendable to other supervised tasks. We design our method to work in general, non-modality specific² (e.g., image, text, audio) settings, i.e., $x_i \in \mathbb{R}^d$.

3.1 DIVERSE PSUEDO-LABELERS

EXPLOR leverages a set of diverse initial pseudo-labelers $\{g_k\}_{k=1}^K$, s.t. $g_k: \mathbb{R}^d \to \{0,1\}$, to guide the training of a secondary model by providing pseudo-labels. There are many mixture of experts (Jordan and Jacobs, 1993; Eigen et al., 2013) and ensembling (Arpit et al., 2022a; Dietterich, 2007; Pagliardini et al., 2023; Yao et al., 2023) methods available, EXPLOR utilizes a collection of diverse pseudo-labelers by sub-selecting on both instance and feature subspace, specializing pseudo-labelers on distinct regions and views of the latent representation space.

3.2 Expansive Augmentation of Training Data

To train models capable of extrapolating to OOD samples, we need to expose them to data that lie outside the support of the training distribution. To reason about the support of the training data, and how to *expand* past it, we propose to leverage a latent factor space, $\varphi: \mathbb{R}^d \mapsto \mathbb{R}^s$. While learning semantically meaningful latent factor spaces remains an active area of research, we observed strong performance utilizing autoencoding techniques (see § 4), which carry a corresponding decoder $\gamma: \mathbb{R}^s \mapsto \mathbb{R}^d$. Without loss of generality, we consider centered latent spaces such that $\mathbb{E}[\varphi(X)] = 0$.



We propose a novel, yet straightforward strategy to expand data outside of training distributional support: perturb instances to lie further away from the origin in latent space. In particular, if we have latent vector $z=\varphi(x)$, we propose to consider perturbations of the form $z'=(1+|\epsilon|)z$ where $\epsilon \sim \mathcal{N}(0,\sigma^2)$, and one can utilize the decoder $x'=\gamma(z')$. I.e., we define our expansion operation on a set of points as:

Figure 3: Expansion in latent space: points (black) are augmented (gray) and expand the distributional support.

$$\mathbf{Ex}(\{x_i\}_{i=1}^N) \equiv \left\{ \gamma \left((1 + |\epsilon_i|) \varphi(x_i) \right) \mid \epsilon_i \sim \mathcal{N}(0, \sigma^2) \right\}_{i=1}^N. \tag{2}$$

Ex will be a *stochastic* mapping. As shown in Fig. 3, our expansion covers areas away from the training support, even covering areas of OOD data. However, unlike with small jitter-based perturbations, where one can retain an original instance label, it is less clear how to derive an accompanying training signal for expansive augmentations. Below, we propose to leverage a pseudo-labeling scheme where we derive K labels with the pseudo-labelers $(g_1(x'), \ldots, g_K(x'))^3$.

3.3 EXPLOR: EXTRAPOLATORY PSEUDO-LABEL MATCHING FOR OOD REJECTION

Once we generate extrapolated data via latent expansion, the key challenge becomes how to provide supervision on these OOD samples. Since true labels are unavailable, we leverage predictions from pseudo-labelers to pseudo label these points. To retain the diversity in the pseudo-labelers, we propose a multi-headed neural architecture trained via self-training. Specifically, the network consists of a shared multilayer perceptron (MLP), denoted as $\phi: \mathbb{R}^d \to \mathbb{R}^m$, which learns a common representation space, and K labeler-specific heads, h_1,\ldots,h_K , where each head maps the shared representation to a prediction, e.g., $h_j: \mathbb{R}^m \to \mathbb{R}$ for logits in binary classification. Importantly,

²We avoid any modality or domain-specific augmentations.

³One may also train pseudo-labelers directly on the latent space, $(g_1(z'), \ldots, g_K(z'))$, and avoid the decoder.

each head is trained to match the output of a different pseudo-labeler, enabling the model to align with multiple diverse supervisory signals. The training loss is defined as a sum of per-head losses on a pseudo-labeled set \mathcal{S} , where each h_j is optimized to match the corresponding pseudo-labeler's predictions. This encourages shared representation to support generalization across diverse pseudo-labeling sources. Our per head loss that matches pseudo labels provided by the experts to the MLP heads on a set \mathcal{S} is as follow:

$$\mathcal{L}_{\text{match}}(\phi, \{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathcal{S}) \equiv \frac{1}{|\mathcal{S}|K} \sum_{x \in S} \sum_{j=1}^K \ell(h_j(\phi(x)), g_j(x)), \tag{3}$$

where $\ell(\hat{y}, y)$ is a supervised loss (e.g., the cross-entropy loss). Moreover, we will utilize a mean-matching L1 loss

$$\mathcal{L}_{\text{mean}}(\phi, \{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathcal{S}) \equiv \frac{1}{|\mathcal{S}|} \sum_{x \in S} \left| \frac{1}{K} \sum_{j=1}^K \sigma(h_j(\phi(x))) - \frac{1}{K} \sum_{j=1}^K g_j(x)) \right|, \tag{4}$$

where $\sigma(\cdot)$ is the sigmoid. Our full EXPLOR loss is then:

$$\mathcal{L}_{\text{EXPLOR}}(\phi, \{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathcal{D}) \equiv \mathcal{L}_{\text{mean}}(\phi, \{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathcal{D})$$
 (5)

+
$$\mathcal{L}_{\text{match}}(\phi, \{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathcal{D})$$
 (6)

+
$$\lambda \mathcal{L}_{\text{match}}(\phi, \{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathbf{Ex}(\mathcal{D})).$$
 (7)

Note that we provide additional supervisory losses on non-augmented \mathcal{D} via $\mathcal{L}_{\mathrm{mean}}$. Empirical results show (§ 4) that the network heads learn often learn a better estimator than the pseudo-labelers. However, we see more consistent improvements by not discarding the pseudo-labelers and bagging:

$$f_{\text{EXPLOR}}(x) \equiv \frac{1}{2K} \sum_{j=1}^{K} g_j(x) + h_j(\phi(x)). \tag{8}$$

Motivation We expound on how EXPLOR may learn better estimates on OOD data through diversity and multi-task learning, and variance reduction and regularization.

Diversity and Multi-task Learning. In practice, we propose simple linear heads. At an intuitive level, this forces the MLP to learn a robust feature embedding that can 'mimic' the diverse views that the pseudo-labelers provide. That is, this will force the last hidden layer to featurize an embedding $\phi(x)$ that can, with simple linear projections, emulate a diverse set of labels. The per-head matching loss equation 3 may be formulated as a multi-task loss on a set a of K virtual environments $\mathcal{E}_j(\mathcal{S}) = \{(x,g_j(x)) \mid x \in \mathcal{S}\}$: $\mathcal{L}_{\mathrm{match}}(\phi,\{h_j\}_{j=1}^K,\{g_j\}_{j=1}^K;\mathcal{S}) = \frac{1}{K}\sum_{j=1}^K \mathcal{L}(h_j(\phi(\cdot)),\mathcal{E}_j(\mathcal{S}))$, where $\mathcal{L}(h_j(\phi(\cdot)),\mathcal{E}_j(\mathcal{S}))$ is the supervised loss on instances/labels in environment $\mathcal{E}_j(\mathcal{S})$ with estimator $h_j(\phi(\cdot))$ on the shared embedding ϕ . Thus, when training on the expanded set of data-points, $\mathbf{Ex}(\mathcal{D})$, with pseudo-labels stemming from diverse labelers (e.g., trained on different subsets of features and instances), we see that our matching loss provides supervisory signals to learn: 1) on OOD data (through expansion); 2) robust embeddings that must generalize to diverse environments.

Variance Reduction and Regularization. Previous work has decomposed OOD generalization into bias/variance terms (Yang et al., 2020; Arpit et al., 2022b):

$$\mathbb{E}_{(x,y)\sim\mathcal{P}_{\text{out}}}\mathbb{E}_{\mathcal{D}\sim\mathcal{P}_{\text{in}}}[\text{CE}(y,f(x;\mathcal{D}))] = \mathbb{E}_{(x,y)}[\text{CE}(y,\bar{f}(x))] + \mathbb{E}_{x,\mathcal{D}}[\text{KL}(\bar{f}(x),f(x;\mathcal{D}))], \quad (9)$$

where CE is the cross-entropy loss, $f(x;\mathcal{T})$ is the model fit on dataset \mathcal{T} , $\bar{f}(x) = \mathbb{E}_{\mathcal{D}}[f(x;\mathcal{D})]$ is the expected prediction when averaging out draws on the (in-distribution) training dataset \mathcal{D} , and \mathcal{P}_{out} is the OOD data distribution at inference time. Letting $\bar{g}(x) \equiv \frac{1}{K} \sum_{j=1}^{K} g_j(x)$, we may view $\bar{g}(x)$ as a bootstrap-like estimate for $\bar{f}(x)$. One may then take $\mathbb{E}_{x,\mathcal{D}}[\mathrm{KL}(\bar{g}(x),f(x;\mathcal{D}))]$ as an approximation for $\mathbb{E}_{x,\mathcal{D}}[\mathrm{KL}(\bar{f}(x),f(x;\mathcal{D}))]$ and roughly consider

$$\mathbb{E}_{(x,y) \sim \mathcal{P}_{\text{out}}} \mathbb{E}_{\mathcal{D} \sim \mathcal{P}_{\text{in}}} [\text{CE}(y, f(x; \mathcal{D}))] \approx \mathbb{E}_{(x,y)} [\text{CE}(y, \bar{f}(x))] + \mathbb{E}_{x, \mathcal{D}} [\text{KL}(\bar{g}(x), f(x; \mathcal{D}))], \quad (10)$$

which connects to equation 7 when interpreting our expanded points as a proxy for the (unknown) OOD distribution \mathcal{P}_{out} and $\mathcal{L}_{\text{match}}(\phi, \{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathbf{Ex}(\mathcal{E}))$ as a proxy for $\mathbb{E}_{x,\mathcal{D}}[\text{KL}(\bar{g}(x), f(x; \mathcal{D}))].$

4 EXPERIMENTS

We conduct experiments on a varied set of real-world datasets to test the OOD generalizability of EXPLOR. We considered the single source domain generalization setting (e.g., (Qiao et al., 2020)), where our model is trained solely on ID data without any (labeled or unlabeled) OOD data during training/validation (e.g., precluding typical semi-supervised approaches), and without any accompanying environmental/domain/source information from ID training instances. Moreover, we note that we avoided utilizing any modality-specific information in EXPLOR (e.g., we do not utilize any domain specific augmentations) for generality. We performed two sets of experiments using different pseudo-labelers: one using 1024 XGB Classifiers (Chen and Guestrin, 2016) fit to random subsets of data instances and features as the diverse set of pseudo-labelers, and another using a complementary neural model consisting of 64 D-BAT (Pagliardini et al., 2023) networks trained in the same way to provide diverse neural pseudo-labels. For a fair/realistic evaluation, we avoided any hyper-parameter (e.g. number of training iterations, λ in eq. 7) tuning on EXPLOR and utilized a fixed architecture of a 2-layer 512-ELU (Clevert et al., 2015) hidden-unit MLP with 1024 linear-output heads for the XGB pseudo-labelers and 64 heads for the D-BAT pseudo-labelers (please see other hyperparameters in Appx. B.1). For our latent space, we utilize PCA with 128 components as a linear analogue of an autoencoder. While OOD generalization is an active field of research (Freiesleben and Grote, 2023; Liu et al., 2021), methodology for general (non-modality specific) single source domain generalization is more limited. We provide context to our results through comparisons to a diverse set of existing strong domain generalization methods that approach the problem from various perspectives (and are applicable in the single-source setting).

Single-Source Baselines In our experiments, we include three baselines that utilize data augmentation: AdvStyle (Zhong et al., 2022), Mixup (Zhang et al., 2018), and NCDG (Tian et al., 2023), two baselines that employ ensemble methods: D-BAT (Pagliardini et al., 2023) and EoA (Arpit et al., 2022a), as well as two methods that optimize robustness directly looking at the loss function: SAM (Foret et al., 2021) and UDIM (Shin et al., 2024). Mixup linearly combines two ID samples, AdvStyle adversarially augments ID data, NCDG takes a simple augmentation and optimizes neuron coverage, D-BAT enforces prediction diversity on OOD data, and EoA ensembles moving average models. SAM improves generalization by finding parameters that are in neighborhoods with uniformly low loss. UDIM generates adversarial perturbations in the latent space and seeks flat minima in the loss to improve generalization.

Semi-Supervised Baselines We provide further context by comparing to semi-supervised methods for general tabular data, DivDis (Lee et al., 2023b) and FixMatch (Sohn et al., 2020). Note, these methods utilize more information than EXPLOR, and have access to unlabeled OOD data from the test-time distribution. That is, these approaches break from our single-source generalization setting and utilize additional information of the test-time distribution. DivDis is a two-stage framework that first trains diverse model heads using unlabeled target OOD data and then selects the best head with minimal supervision (i.e., using a single label from target OOD data). FixMatch generates filtered pseudo-labels using the model's predictions on weakly-augmented OOD unlabeled samples. The model is then trained to predict the pseudo-label when provided with

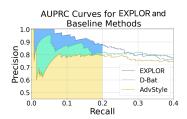


Figure 4: AUPRC at recall < 0.2 for EXPLOR and competitive baselines on hERG dataset.

a strongly augmented version of the same sample. As DivDis and FixMatch utilize additional information from single-source methods, we separate their results and denote them with an asterisk*.

Metrics For prediction thresholding (rejection), we directly utilize the conditional probability $P(Y=1\mid X=x)$ generated by the models. Many real-world applications (e.g. drug virtual screening) utilize only high-confidence predictions. Thus, we paid close attention to high-confidence filtration and reported percent of AUPRC at conservative recall thresholds 'AURPC@R< τ ' (see eq. 1 for formal definition and Fig. 4 for illustration). We also reported AUPRC, AUROC. We report both pseudo-labeler ('PL ens') and EXPLOR (eq. 8) performance. Our code will be open-sourced upon publication.

4.1 CHEMICAL DATASETS

From ChEMBL(Gaulton et al., 2011) and Therapeutics Data Commons (TDC) (Huang et al., 2021), we collected the inhibition of human Ether-à-go-go-Related Gene (hERG), cytotoxicity of human A549 cells (A549_cells), agonists for Cytochrome P450 2D6 (cyp_2D6), and Ames mutagenicity (Ames) datasets. In these datasets, ID and OOD splits were determined based on the Murko scaffold of a molecule, a standard method to measure a model's ability to generalize to novel chemotypes, closely matching the real challenge of discovering active compounds. Moreover, we considered the "core ec50," "refined ec50," and "core ic50" ligand-based affinity prediction datasets (lbap) from DrugOOD (Ji et al., 2023) (the three hardest OOD performance gap datasets). For these datasets ID and OOD splits were determined based on the number of atoms in a molecule, such that larger molecules are considered the OOD set and smaller molecules, the ID set. Datasets are organized by domain and subsequently divided into training, OOD validation, and OOD testing sets in sequential order, testing generalization across size-driven chemical space shifts. For all datasets, we represented molecules using extended-connectivity fingerprints (Rogers and Hahn, 2010) with radius 2 (ECFP4) and with dimensionality 1024. ECFP4 is a standard method for molecular representation and was chosen for its simplicity in calculation as well as its ability to perform comparably to learned representations, such as those generated by graph neural networks on relevant classification tasks (Zagidullin et al., 2021).

Results We assessed models on ChEMBL, TDC, and DrugOOD datasets; our results are shown in Tab. 1. Across the chemical datasets, EXPLOR consistently outperforms both supervised and semi-

Table 1: Experiment results on ChEMBL (Gaulton et al., 2011), Therapeutics Data Commons (Huang et al., 2021), and DrugOOD (Ji et al., 2023) datasets. We **bold** best scores based on the mean minus 1 standard error. We *italicize* best scores when they are achieved by a semi-supervised method (*), that uses additional unlabeled OOD data during training.

		hERG	A549_cells	cyp_2D6	Ames	refined	refined	core	core	core	core
				• •		ec50 val	ec50 test	ic50 val	ic50 test	ec50 val	ec50 test
- 7	DivDis*	85.65±2.37	89.45±1.16	79.98±1.10	95.80±0.34	96.02±0.19	86.51±0.28	97.80±0.07	89.72±0.06	93.86±0.42	80.18±0.92
	FixMatch*	85.65±2.57 79.66±0.57	89.45±1.16 90.81±4.30	79.98±1.10 83.58±1.98	93.55±0.64	96.02±0.19 94.48±0.47	86.38±0.35	97.80±0.07 97.62±0.06	92.89±1.36	95.86±0.42 95.02±0.76	70.49±0.43
	ERM	85.56±1.11	96.65±0.59	87.93±2.41	98.04±0.30		88.67±0.23	99.04±0.04	91.44±0.43	96.95±0.11	72.88±0.95
@	D-BAT	85.56±1.11 84.48±1.74	96.65±0.59 98.26±0.14	87.93±2.41 91.40±0.98	98.04±0.30 99.04±0.24	96.15±0.16 96.97±0.16	88.67±0.23 88.78±0.40	99.04±0.04 98.13±0.08	91.44±0.43 91.79±0.38	96.95±0.11 93.81±0.22	72.88±0.95 84.35±1.35
AUPRC@R	AdvStyle	88.21±0.77	98.20±0.14 97.77±0.28	84.83±0.93	99.04±0.24 99.05±0.17	95.13±0.13	88.21±0.37	98.13±0.08 97.04±0.17	89.05±0.22	93.81±0.22 94.84±0.31	84.51±2.36
5	EoA	63.80±0.42	61.31±0.28	61.77±0.41	78.74±0.43	95.13±0.15 85.03±0.06	78.79±0.14	88.56±0.05	77.03±0.22	94.84±0.31 81.85±0.24	71.84±0.45
	Mixup	82.25±1.51	95.04±0.25	87.09±2.32	91.02±1.06	85.39±0.00	79.78±0.14	88.99±0.43	78.07±0.13	83.97±0.61	73.04±0.43
	NCDG	78.25±2.60	90.33±0.95	79.31±2.44	87.86±1.41	93.92±0.62	84.46±0.67	97.83±0.08	87.82±0.26	93.40±0.01	80.09±1.94
	SAM	84.37±1.06	95.70±0.75	85.02±0.69	96.66±0.38	96.79±0.02	87.50±0.23	98.78±0.09	89.40±0.40	95.02±0.78	71.92±1.71
	UDIM	85.07±2.32	95.87±0.36	84.80±0.84	96.53±0.61	96.97±0.17	88.16±0.78	98.61±0.12	90.13±0.38	94.05±0.30	71.37±1.00
	D-BAT PL Ens	84.86±0.82	97.45±0.32	92.56±0.81	99.47±0.14	96.67±0.06	88.11±0.04	98.74±0.07	94.05±0.08	97.51±0.21	69.93±0.04
	XGB PL Ens	94.44±0.17	98.22±0.08	95.51±0.19	97.84±0.14	98.00±0.07	89.48±0.24	99.14±0.07	94.03±0.08 94.20±0.15	97.79±0.21	68.48±0.30
	EXPLOR (D-BAT)	87.05±0.75	99.05±0.12	95.33±0.51	99.87±0.26	97.78±0.04	88.97±0.02	99.10±0.16	94.52±0.13	98.25±0.01	75.50±0.15
	EXPLOR (XGB)	94.67±0.29	98.87±0.09	96.88±0.25	98.45±0.19	98.45±0.06	89.76±0.26	99.15±0.05	94.42±0.09	98.66±0.10	69.04±0.50
	DivDis*	67.70±0.25	76.45±0.63	65.76±0.45	82.37±0.27	89.62±0.12	80.92±0.06	93.34±0.10	81.48±0.30	83.85±0.41	75.09±0.38
<u>B</u> -	FixMatch*	45.16±3.11	51.31±1.28	32.65±2.16	72.54±1.15	87.14±0.58	81.51±0.31	92.38±0.15	82.78±0.57	80.92±1.12	70.57±0.32
	ERM	68.77±0.40	81.73±0.37	67.97±0.81	86.01±0.23	89.84±0.07	82.26±0.07	94.72±0.07	82.59±0.21	87.70±0.09	70.95±0.44
	D-BAT	54.60±1.59	67.04±0.53	47.42±0.85	70.44±0.76	84.70±0.51	70.08±0.69	90.84±0.28	73.45±0.90	76.64±0.49	54.87±0.99
	AdvStyle	51.54±0.93	65.02±0.72	44.41±0.96	74.98±0.49	83.01±0.90	69.48±2.16	88.54±1.44	72.11±1.49	81.17±1.72	58.40±2.18
	EoA	43.30±0.51	44.95±0.24	37.37±0.95	59.43±0.18	69.66±0.47	57.71±0.79	79.12±0.09	56.52±0.42	64.16±0.51	36.50±1.48
	Mixup	42.42±0.85	50.52±0.50	27.79±1.49	60.94±0.80	80.36±0.88	72.88±1.67	86.88±0.14	74.99±0.15	73.03±1.67	60.84±4.31
	NCDG	65.03±0.75	79.50±0.79	65.31±1.00	76.48±0.30	89.27±0.22	80.54±0.21	94.17±0.08	81.19±0.11	87.72±0.37	74.99±0.74
	SAM	66.89±0.28	79.88±0.34	67.37±0.31	82.50±0.39	89.86±0.09	81.93±0.20	94.16±0.10	81.03±0.23	86.66±0.20	70.92±0.40
	UDIM	67.23±0.60	79.98±0.37	66.86±0.43	82.97±1.05	89.95±0.11	82.19±0.41	94.05±0.10	81.29±0.25	86.35±0.15	71.20±0.35
	DBAT PL Ens	72.22±0.18	83.79±0.31	73.26±0.65	89.08±0.11	91.19±0.08	82.72±0.04	94.79±0.10	84.11±0.01	88.36±0.28	72.13±0.07
	XGB PL Ens	72.19±0.07	84.10±0.01	72.93±0.13	87.43±0.02	91.21±0.02	82.61±0.05	94.91±0.03	84.13±0.06	88.44±0.05	71.80±0.07
	EXPLOR (D-BAT) EXPLOR (XGB)	72.73±0.33 73.26±0.08	84.80±0.11 84.60±0.08	73.64±0.45 73.59±0.15	89.38±0.06 88.50±0.10	90.56±0.03 91.59±0.03	82.95±0.06 83.06±0.10	94.87±0.13 95.38±0.01	84.11±0.01 84.77±0.02	88.44±0.02 89.52±0.05	73.13±0.02 71.41±0.11
		73.20±0.00	84.00±0.08	73.37±0.13	88.30±0.10	91.39±0.03	03.00±0.10	93.36±0.01	04.77±0.02	09.32±0.03	/1.41±0.11
	DivDis*	71.19±0.57	72.20±0.41	64.50±0.77	77.05±0.47	65.41±0.81	58.53±0.46	66.68±0.28	57.04±0.08	73.23±0.40	61.15±0.50
28	FixMatch*	68.41±0.84	61.16±1.31	80.85±0.40	70.32±0.59	70.32±0.59	52.69±0.69	66.37±0.50	58.37±0.58	74.38±0.16	62.05±0.55
	ERM	73.58±0.23	76.58±0.30	65.26±0.55	82.02±0.26	67.73±0.18	59.15±0.23	77.41±0.24	62.68±0.31	72.24±0.09	52.32±0.59
	D-BAT	76.58±0.45	78.16±0.23	67.54±0.47	83.82±0.15	75.26±0.28	58.21±0.26	72.09±0.19	60.32±0.25	80.31±0.08	64.82±0.18
	AdvStyle	75.84±0.46	76.13±0.28	65.51±0.62	85.56±0.71	75.97±0.39	58.86±0.25	70.78±0.35	59.62±0.30	78.36±0.23	64.14±0.27
	EoA	68.02±0.34	68.33±0.24	60.50±0.48	74.77±0.25	64.91±0.34	52.71±0.44	59.27±0.20	54.63±0.24	62.99±0.16	55.83±0.18
	Mixup	73.96±0.25	76.57±0.42	67.53±0.90	78.43±0.49	68.20±0.66	56.33±0.45	60.39±0.40	56.50±0.37	64.24±1.23	57.75±0.80
	NCDG	70.76±0.20	76.45±0.65	63.60±0.62	73.39±0.68	73.66±0.53	57.70±0.81	67.20±0.33	57.18±0.18	76.48±0.22	61.44±0.13
	SAM	72.17±0.41	74.67±0.49	64.45±0.53	78.51±0.47	67.33±0.22	58.97±0.40	75.63±0.35	60.07±0.35	71.06±0.27	52.50±0.36
	UDIM	73.17±0.38	74.64±0.38	64.09±0.66	78.63±1.30	67.50±0.29	59.30±0.63	75.38±0.34	60.29±0.39	71.37±0.18	53.43±0.43
	DBAT PL Ens	76.51±0.07	78.34±0.35	70.80±0.36	84.37±0.08	69.40±0.06	60.04±0.31	77.83±0.40	64.66±0.04	74.51±0.48	56.39±0.20
	XGB PL Ens	74.74±0.06	79.17±0.02	70.33±0.07	81.87±0.04	73.70±0.07	56.48±0.06	70.17±0.04	59.77±0.02	77.78±0.09	64.89±0.06
	EXPLOR (D-BAT) EXPLOR (XGB)	76.84±0.10 75.97±0.08	79.27±0.14 79.53±0.06	70.11±0.33 70.54±0.42	85.18±0.04	70.64±0.04 75.47±0.09	59.90±0.03 55.40±0.20	78.52±0.37 71.28±0.10	64.67±0.01 60.63±0.17	75.34±0.07 80.01±0.03	56.32±0.03 66.14±0.05

supervised baselines and consistently shows gains over its pseudo-labeler methods (see results using other pseudo-labelers in Appx.C.5). Note further, that EXPLOR's performance gain is especially significant at conservative recalls (AUPRC@R<0.2, e.g., see Fig. 4), which indicates that EXPLOR outperforms other models in virtual screening tasks to filter drug candidates (where false positives would lead to wasted resources). Please see below (§ 5), for further analysis on the improved performance of EXPLOR w.r.t. increased confidence (Fig. 5) and pseudo-labeler diversity (Fig. 6). We examine the mean variance (reflecting greater heterogeneity) of fingerprint features for selected OOD instances with predicted confidence>0.9 on the 3 ChEMBL sets: EXPLOR (0.39), D-BAT (0.33), EoA (0.30), AdvStyle (0.34), Mixup (0.37), and NCDG (0.23). Thus, EXPLOR is confidently selecting structurally diverse compounds rather than to a narrow subset of the chemical space.

4.2 OTHER REAL WORLD DATASETS

 Next, we further evaluate our method in non-chemical domains across a diverse range of real-world OOD scenarios using the Tableshift datasets (Gardner et al., 2023). We selected a diverse collection of Tableshift datasets, based on unrestricted availability and in/out-of-domain performance discrepancy, coverings areas including: finance, education, and healthcare. Each dataset has an associated real-world shift and a related prediction target (see Gardner et al. (2023) for further details). Results on the Tableshift are shown in Tab. 6. As before, we consider the same single-source domain generalization setting. We can see that even over diverse applications, our EXPLOR method is able to perform well and often outperforms competitive baselines. Moreover, eventhough DivDis and FixMatch use additional unlabeled OOD data, EXPLOR outperforms both on the majority of datasets, highlighting EXPLOR's ability for generalization on completely *unforeseen* OOD instances (without any knowledge of test time distribution).

Table 2: Experiment results on Tableshift (Gardner et al., 2023) datasets. We **bold** best scores based on the mean minus 1 standard error.

		Childhood Lead	FICO HELOC	Hospital Readmission	Sepsis
AUPRC@	DivDis*	89.77±2.51	85.50±2.65	83.22±2.57	60.66±1.57
R<0.2	FixMatch*	81.75±3.69	77.76±1.94	67.84±1.95	17.28±0.58
,	ERM	43.66±0.00	85.74±0.78	84.35±0.28	15.30±0.53
	D-BAT	62.82±0.00	91.20±0.24	78.84±0.12	75.37±0.38
	AdvStyle	64.96±0.01	88.71±0.65	72.91±0.58	59.83±0.63
	EoA	77.43±0.97	59.53±2.24	51.83±1.66	41.10±1.56
	Mixup	50.00±0.00	91.16±2.10	69.19±3.95	66.09±1.15
	NCDG	42.49±1.31	87.93±2.35	68.88±1.15	15.22±0.38
	SAM	95.00±0.00	91.42±0.69	74.13±0.49	65.34±0.73
	UDIM	94.11±0.90	92.58±0.67	73.65±0.67	65.09±0.28
	DBAT PL Ens	93.81±0.03	92.87±0.05	73.52±0.37	72.74±0.13
	XGB PL Ens	97.39±0.06	90.07±0.32	58.30±0.09	78.62±1.57
	EXPLOR (D-BAT)	94.69±0.02	93.33±0.02	77.20±0.23	73.89±0.08
	EXPLOR (XGB)	97.92±0.20	91.72±0.62	67.57±0.12	76.95±1.45
AUPRC	DivDis*	76.33±0.86	82.47±1.05	65.95±2.15	58.85±1.21
	FixMatch*	75.39±0.58	72.22±4.46	56.54±1.21	18.24±0.66
	ERM	23.60±0.11	77.38±0.27	67.56±0.13	11.12±0.12
	D-BAT	71.85±0.01	80.91±0.17	63.29±0.08	58.17±0.21
	AdvStyle	48.37±2.77	79.63±1.65	38.13±3.80	54.34±0.27
	EoA	49.48±0.19	59.53±2.24	29.45±4.95	11.21±2.21
	Mixup	50.00±0.00	80.95±0.63	14.15±1.06	56.80±0.40
	NCDG	23.08±0.24	79.05±1.21	58.95±0.23	11.96±0.32
	SAM	75.00±0.00	81.61±0.43	61.12±0.28	57.90±0.22
	UDIM	73.70±1.38	82.10±0.44	60.95±0.33	57.97±0.17
	DBAT PL Ens	82.72±0.01	81.35±0.03	62.34±0.14	59.97±0.10
	XGB PL Ens	86.39±0.19	83.80±0.07	62.83±0.03	64.01±0.94
	EXPLOR (D-BAT)	82.76±0.02	81.37±0.04	63.30±0.14	50.97±0.05
	EXPLOR (XGB)	86.70±0.28	84.02±0.09	63.62±0.08	62.21±0.52
AUROC	DivDis*	77.74±1.90	83.55±1.06	65.28±0.59	62.33±0.61
	FixMatch*	79.87±0.29	74.29±1.69	55.78±0.98	49.50±1.01
	ERM	78.41±0.14	73.71±0.17	67.06±0.10	62.79±0.14
	D-BAT	79.13±0.02	76.13±0.03	63.22±0.03	57.95±0.04
	AdvStyle	74.45±0.04	77.23±1.69	61.32±0.34	55.31±0.34
	EoA	72.62±0.32	54.67±2.55	51.65±1.70	49.14±2.60
	Mixup	50.00±0.00	78.74±0.17	63.37±0.25	56.82±0.26
	NCDG	76.91±0.13	75.09±0.79	58.67±0.16	63.41±0.93
	SAM	50.00±0.00	79.70±1.64	61.14±0.32	58.71±0.23
	UDIM	54.50±4.18	79.41±1.07	61.05±0.32	58.87±0.24
	DBAT PL Ens	84.89±0.05	76.32±0.03	63.16±0.10	59.23±0.04
	XGB PL Ens	84.88±0.19	83.53±0.03	63.18±0.03	62.53±0.82
	EXPLOR (D-BAT)	84.36±0.23	76.27±0.01	63.51±0.16	59.01±0.07
	EXPLOR (XGB)	87.95±0.25	83.11±0.04	63.65±0.07	61.42±0.35

4.3 ABLATION STUDIES

 Per-head Matching Ablation Next, we perform ablation on the per-head matching loss scheme (eq. 7) used in EXPLOR with a simpler alternative: mean-only matching (MM) (eq. 5) on the

expanded points. This ablation tests whether the diversity induced by per-head supervision aids performance. Here we utilized single headed (SH) and multi-headed (MH) MLPs with mean matching, where EXPLOR uses multi-headed MLP with per head loss that matches network heads to diverse pseudo-labels (see Appx. C.6 for details on the alternative losses). EXPLOR achieves the highest AUPRC improvements (Δ) over pseudo-labelers (+1.11 at R<.2, +1.03 at R<1) compared to SH+MM (+0.59, +0.45) and MH+MM (+0.25, +0.55), showing evidence for the effectiveness of training our embedding through the diverse multi-task loss induced by per-head matching (§ 3).

Bottleneck Ablation We motivated EXPLOR's performance in terms of a multi-task scheme, which encourages the bottlenecks (the last hidden layer) to learn an embedding that can generalize to mimic predictions on a diverse set of pseudo-labels (§ 3). We test this motivation by comparing the original architecture (Full: 2×512 hidden layer) with a stronger bottleneck still, a small architecture (Tiny: 2×32 hidden layer). (See Appx. C.7 for more details and results.) The performance gap is marginal between the 'Full' and 'Tiny' model (a 0.86% difference) when using our proposed loss. In contrast, when using empirical risk minimization, we observe a 4.95% performance drop. This suggests that the bottlenecking properties of our method are key to EXPLOR's performance, and show promise for EXPLOR in resource-constrained settings.

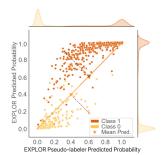


Figure 5: Predicted probabilities from EXPLOR network and pseudo-labeler. We highlight example instances where the base experts initially makes incorrect predictions but are corrected when we average the predicted probabilities from EXPLOR network and EXPLOR pseudo-labeler.

5 CONCLUSION

EXPLOR addresses the challenging single source OOD generalization problem for real-valued vector data, outperforming baselines, including those that leverage unlabeled OOD data. Across all metrics/datasets, EXPLOR achieves a leading tally of 31, far exceeding the pseudo-labeler methods and other baselines as shown in Fig. 1. Despite its performance, EXPLOR does not incur an out-sized computational cost; the training of pseudo-labelers may be done in parallel, and the cost of expanding data in the latent space is negligible (see Appx. B.3 for additional timing details).

In summary, EXPLOR presents a simple yet powerful model and data-modality agnostic approach to OOD generalization under single-source setting via pseudo-labels and head-specific matching. Each pseudo-labeler is paired with a dedicated prediction head in the neural network, and the training objective explicitly aligns each head with the pseudo-labels it

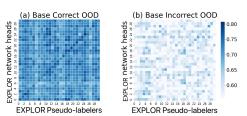


Figure 6: Experts correlations between EX-PLOR pseudo-labelers and EXPLOR network heads on "Ames" dataset. (a) EXPLOR experts have a high correlation with EX-PLOR pseudo-labelers on sample the pseudo-labelers make correct predictions. (b) EX-PLOR experts show low correlations with EX-PLOR pseudo-labelers on samples where the pseudo-labelers make incorrect predictions.

receives. EXPLOR's architecture yields robust embeddings and demonstrates superior performance in regions characterized by high-confidence OOD predictions. We believe this work opens promising directions for general-purpose, modality- and model- agnostic OOD learning, particularly in high-stakes applications like drug discovery, where confident extrapolation is critical and labeled data is scarce.

REFERENCES

- Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. *CVPR* 2011, pages 1521–1528, 2011. URL https://api.semanticscholar.org/CorpusID:2777306.
- Jiashuo Liu, Zheyan Shen, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards out-of-distribution generalization: A survey. *arXiv preprint arXiv:2108.13624*, 2021.
- Timo Freiesleben and Thomas Grote. Beyond generalization: a theory of robustness in machine learning. *Synthese*, 202(4):109, 2023.
- Seungyeon Lee, Changchang Yin, and Ping Zhang. Stable clinical risk prediction against distribution shift in electronic health records. *Patterns*, 4, 2023a. URL https://api.semanticscholar.org/CorpusID:261165136.
- Bernard Dubuisson and Mylène Masson. A statistical decision rule with incomplete knowledge about classes. *Pattern Recognit.*, 26:155–165, 1993. URL https://api.semanticscholar.org/CorpusID:5710992.
- Kilian Hendrickx, Lorenzo Perini, Dries Van der Plas, Wannes Meert, and Jesse Davis. Machine learning with a reject option: A survey. *Machine Learning*, pages 1–38, 2024.
- Brian K. Shoichet. Virtual screening of chemical libraries. *Nature*, 432:862–865, 2004. URL https://api.semanticscholar.org/CorpusID:27666128.
- Ye Hu, Dagmar Stumpfe, and Jurgen Bajorath. Recent advances in scaffold hopping: miniperspective. *Journal of medicinal chemistry*, 60(4):1238–1246, 2017.
- Han Yu, Jiashuo Liu, Xingxuan Zhang, Jiayun Wu, and Peng Cui. A survey on evaluation of out-of-distribution generalization. *arXiv preprint arXiv:2403.01874*, 2024.
- Alan Kai Hassen, Martin ícho, Yorick J. van Aalst, Mirjam C W Huizenga, Darcy N. R. Reynolds, Sohvi Luukkonen, Andrius Bernatavicius, Djork-Arné Clevert, Antonius P. A. Janssen, Gerard J. P. van Westen, and Mike Preuss. Generate what you can make: achieving in-house synthesizability with readily available resources in de novo drug design. *Journal of Cheminformatics*, 17, 2025. URL https://api.semanticscholar.org/CorpusID:277433781.
- Fengchun Qiao, Long Zhao, and Xi Peng. Learning to learn single domain generalization. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 12553–12562, 2020. URL https://api.semanticscholar.org/CorpusID:214713888.
- Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Young Joon Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 6022–6031, 2019. URL https://api.semanticscholar.org/CorpusID:152282661.
- Yuzhu Ding, Lei Wang, Binxin Liang, Shuming Liang, Yang Wang, and Fangxiao Chen. Domain generalization by learning and removing domain-specific features. *ArXiv*, abs/2212.07101, 2022. URL https://api.semanticscholar.org/CorpusID:254636222.
- Huiwon Jang, Jihoon Tack, Daewon Choi, Jongheon Jeong, and Jinwoo Shin. Modality-agnostic self-supervised learning with meta-learned masked auto-encoder. *ArXiv*, abs/2310.16318, 2023. URL https://api.semanticscholar.org/CorpusID:264487231.
- Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain generalization via model-agnostic learning of semantic features. In *Neural Information Processing Systems*, 2019. URL https://api.semanticscholar.org/CorpusID:202768984.
- Tsz-Him Cheung and Dit-Yan Yeung. Modals: Modality-agnostic automated data augmentation in the latent space. In *International Conference on Learning Representations*, 2021. URL https://api.semanticscholar.org/CorpusID:235613605.

- Sanqing Qu, Yingwei Pan, Guang-Sheng Chen, Ting Yao, Changjun Jiang, and Tao Mei. Modalityagnostic debiasing for single domain generalization. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 24142—24151, 2023. URL https://api. semanticscholar.org/CorpusID:257496131.
 - Ya Li, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. Domain generalization via conditional invariant representations. In *AAAI Conference on Artificial Intelligence*, 2018. URL https://api.semanticscholar.org/CorpusID:19158057.
 - Martín Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. ArXiv, abs/1907.02893, 2019. URL https://api.semanticscholar.org/CorpusID: 195820364.
 - Masanori Koyama and Shoichiro Yamaguchi. Out-of-distribution generalization with maximal invariant predictor. *ArXiv*, abs/2008.01883, 2020. URL https://api.semanticscholar.org/CorpusID:220968862.
 - Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical automated data augmentation with a reduced search space. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 3008–3017, 2019. URL https://api.semanticscholar.org/CorpusID:208006202.
 - David Berthelot, Nicholas Carlini, Ekin Dogus Cubuk, Alexey Kurakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remixmatch: Semi-supervised learning with distribution matching and augmentation anchoring. In *International Conference on Learning Representations*, 2020. URL https://api.semanticscholar.org/CorpusID:213757781.
 - Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. In *International Conference on Learning Representations*, 2018.
 - Zhun Zhong, Yuyang Zhao, Gim Hee Lee, and Nicu Sebe. Adversarial style augmentation for domain generalized urban-scene segmentation. *Advances in Neural Information Processing Systems*, 35: 338–350, 2022.
 - Chris Xing Tian, Haoliang Li, Xiaofei Xie, Yang Liu, and Shiqi Wang. Neuron Coverage-Guided Domain Generalization. *IEEE Transactions on Pattern Analysis & Machine Intelligence*, 45 (01):1302–1311, January 2023. ISSN 1939-3539. doi: 10.1109/TPAMI.2022.3157441. URL https://doi.ieeecomputersociety.org/10.1109/TPAMI.2022.3157441.
 - Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for efficiently improving generalization. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=6TmlmposlrM.
 - Seungjae Shin, HeeSun Bae, Byeonghu Na, Yoon-Yeong Kim, and Il chul Moon. Unknown domain inconsistency minimization for domain generalization. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=eNoiRal5xi.
 - Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. 2013. URL https://api.semanticscholar.org/CorpusID: 18507866.
 - Yang Zou, Zhiding Yu, B. V. K. Vijaya Kumar, and Jinsong Wang. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In *European Conference on Computer Vision*, 2018. URL https://api.semanticscholar.org/CorpusID:52954862.
 - Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, and Vicente Ordonez. Curriculum labeling: Revisiting pseudo-labeling for semi-supervised learning. In *AAAI Conference on Artificial Intelligence*, 2020. URL https://api.semanticscholar.org/CorpusID:228096598.
 - Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. In *Neural Information Processing Systems*, 2021. URL https://api.semanticscholar.org/CorpusID:239016453.

- Soumyadeep Ghosh, Sanjay Kumar, Janu Verma, and Awanish Kumar. Self training with ensemble of teacher models. *ArXiv*, abs/2107.08211, 2021. URL https://api.semanticscholar.org/CorpusID:236087412.
 - Qizhe Xie, Eduard H. Hovy, Minh-Thang Luong, and Quoc V. Le. Self-training with noisy student improves imagenet classification. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 10684–10695, 2019. URL https://api.semanticscholar.org/CorpusID:207853355.
 - Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. *J. Mach. Learn. Res.*, 15: 1929–1958, 2014. URL https://api.semanticscholar.org/CorpusID:6844431.
 - Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. *Advances in neural information processing systems*, 33:596–608, 2020.
 - Claudio De Stefano, Carlo Sansone, and Mario Vento. To reject or not to reject: that is the question-an answer in case of neural classifiers. *IEEE Trans. Syst. Man Cybern. Part C*, 30:84–94, 2000. URL https://api.semanticscholar.org/CorpusID:7594035.
 - Giorgio Fumera, Fabio Roli, and Giorgio Giacinto. Reject option with multiple thresholds. *Pattern Recognit.*, 33:2099–2101, 2000. URL https://api.semanticscholar.org/CorpusID:9209281.
 - Terrance Devries and Graham W. Taylor. Learning confidence for out-of-distribution detection in neural networks. *ArXiv*, abs/1802.04865, 2018. URL https://api.semanticscholar.org/CorpusID:3271220.
 - Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. *ArXiv*, abs/1705.08500, 2017. URL https://api.semanticscholar.org/CorpusID: 491127.
 - Sunil Thulasidasan, Tanmoy Bhattacharya, Jeff A. Bilmes, Gopinath Chennupati, and Jamaludin Mohd-Yusof. Combating label noise in deep learning using abstention. In *International Conference on Machine Learning*, 2019. URL https://api.semanticscholar.org/CorpusID: 166227922.
 - Liu Ziyin, Zhikang T. Wang, Paul Pu Liang, Ruslan Salakhutdinov, Louis-Philippe Morency, and Masahito Ueda. Deep gamblers: Learning to abstain with portfolio theory. In *Neural Information Processing Systems*, 2019. URL https://api.semanticscholar.org/CorpusID: 195767452.
 - Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an integrated reject option. In *International Conference on Machine Learning*, 2019. URL https://api.semanticscholar.org/CorpusID:59316904.
 - Thomas G. Dietterich. Ensemble methods in machine learning. 2007. URL https://api.semanticscholar.org/CorpusID:10765854.
 - Ernst M. Kussul, Oleksandr Makeyev, Tatiana Baidyk, and Daniel Calderon Reyes. Neural network with ensembles. *The 2010 International Joint Conference on Neural Networks (IJCNN)*, pages 1–7, 2010. URL https://api.semanticscholar.org/CorpusID:993561.
 - Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the em algorithm. *Neural Computation*, 6:181–214, 1993. URL https://api.semanticscholar.org/CorpusID:67000854.
 - David Eigen, Marc'Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep mixture of experts. *CoRR*, abs/1312.4314, 2013. URL https://api.semanticscholar.org/CorpusID:11492613.

- Matteo Pagliardini, Martin Jaggi, François Fleuret, and Sai Praneeth Karimireddy. Agree to disagree: Diversity through disagreement for better transferability. In *The Eleventh International Conference on Learning Representations*, 2023.
 - Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Improving model selection and boosting performance in domain generalization. In *Advances in Neural Information Processing Systems*, 2022a.
 - Huaxiu Yao, Xinyu Yang, Xinyi Pan, Shengchao Liu, Pang Wei Koh, and Chelsea Finn. Improving domain generalization with domain relations. 2023. URL https://api.semanticscholar.org/CorpusID:256615216.
 - Yoonho Lee, Huaxiu Yao, and Chelsea Finn. Diversify and disambiguate: Out-of-distribution robustness via disagreement. *The Eleventh International Conference on Learning Representations*, 2023b. URL https://openreview.net/forum?id=RVTOp3MwT3n.
 - Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma. Rethinking bias-variance trade-off for generalization of neural networks. In *International Conference on Machine Learning*, pages 10767–10777. PMLR, 2020.
 - Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Improving model selection and boosting performance in domain generalization. *Advances in Neural Information Processing Systems*, 35:8265–8277, 2022b.
 - Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, 2016. URL https://api.semanticscholar.org/CorpusID:4650265.
 - Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by exponential linear units (elus). *arXiv: Learning*, 2015. URL https://api.semanticscholar.org/CorpusID:5273326.
 - Anna Gaulton, Louisa J. Bellis, A. Patrícia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, and John P. Overington. Chembl: a large-scale bioactivity database for drug discovery. *Nucleic Acids Research*, 40:D1100 D1107, 2011. URL https://api.semanticscholar.org/CorpusID:16681789.
 - Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W. Coley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: Machine learning datasets and tasks for drug discovery and development, 2021.
 - Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Lanqing Li, Long-Kai Huang, Tingyang Xu, Yu Rong, Jie Ren, Ding Xue, et al. Drugood: Out-of-distribution dataset curator and benchmark for ai-aided drug discovery—a focus on affinity prediction problems with noise annotations. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pages 8023–8031, 2023.
 - David Rogers and Mathew Hahn. Extended-connectivity fingerprints. *Journal of Chemical Information and Modeling*, 50(5):742–754, 2010. doi: 10.1021/ci100050t. URL https://doi.org/10.1021/ci100050t. PMID: 20426451.
 - B Zagidullin, Z Wang, Y Guan, E Pitkänen, and J Tang. Comparative analysis of molecular fingerprints in prediction of drug combination effects. *Briefings in Bioinformatics*, 22(6):bbab291, 08 2021. ISSN 1477-4054. doi: 10.1093/bib/bbab291. URL https://doi.org/10.1093/bib/bbab291.
 - Josh Gardner, Zoran Popovic, and Ludwig Schmidt. Benchmarking distribution shift in tabular data with tableshift. *Advances in Neural Information Processing Systems*, 2023.
 - Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *CoRR*, abs/1412.6980, 2014. URL https://api.semanticscholar.org/CorpusID: 6628106.
 - Andrew L. Maas. Rectifier nonlinearities improve neural network acoustic models. 2013. URL https://api.semanticscholar.org/CorpusID:16489696.

APPENDIX

A USAGE OF LLMS STATEMENT

In this submission, LLMs were used only as a general editing tool. Part of the text were drafted by authors and fed into LLMs for grammar check and help polish the text.

B ADDTIONAL EXPERIMENT DETAILS

B.1 EXPLOR TRAINING DETAILS

In all of our experiments we used the Adam (Kingma and Ba, 2014) optimizer and mini-batches of size 256. One Nvidia A100 GPU with 40GB GPU memory was used to run our experiments, and duration for model training is approximately 0.5 hours. λ = 0.5 was used for the $\mathcal{L}_{\rm match}$ for the expanded points. As noted in Sec. 3.2 we trained the EXPLOR models directly in the latent space to avoid the need for the decoder (and also allowed baselines to do this if it aided their performance). In the experiments on hERG, A549_cells, CYP_2D6, Ames, core ec50, refined ec50, EXPLOR was trained for 10000 iterations. Arithmetic mean between EXPLOR and pseudo-labeler ensemble was reported. We performed 5 trails on each of the datasets for EXPLOR.

B.2 BASELINE SETUP

We implemented all baselines we are comparing against EXPLOR following the implementation details in their paper and/or using Github implementations (if available). Since the fingerprints representation of chemicals are quite sparse, we preformed dimension reduction using PCA with 128 components on all chemical datasets. For D-BAT (Pagliardini et al., 2023) with existing implementations designed for tabular data, we utilized their original model architectures. For the other baseline methods without implementation specifically for tabular data, we adopted a structure comprising two 512 ELU(Clevert et al., 2015) layers to closely mimic the EXPLOR network architecture. The Adam (Kingma and Ba, 2014) optimizer was used for training baseline models.

ERM We implement a multiheaded ERM baseline that follows the EXPLOR neural network architecture. The architecture uses the same shared feature extractor followed by a 1024-dimensional output layer, where each output corresponds to an independent binary classifier. We train for 10,000 iterations with a learning rate of 0.0005 and maintain a moving average model updated every 2,500 iterations.

D-BAT In our experiments, the D-Bat(Pagliardini et al., 2023) models used MLP architecture with one 128 LeakyRelu(Maas, 2013) layer following the architecture in their Github. Their paper (Pagliardini et al., 2023) discussed two settings, and we focused on the scenario where perturbation data differs from the distribution of test data, adhering to the single-source domain generalization setting. We trained an ensemble of five models sequentially for the D-bat baseline models and the predictions from the 5 models were averaged to obtain the final prediction.

EoA We trained an ensemble of 5 simple moving average model following the method described in (Arpit et al., 2022a). We start calculating the moving average at iteration 50 and trained the models for 200 iterations. The predictions from the 5 models were averaged to obtain the final prediction for EoA.

For **AdvStyle** (Zhong et al., 2022) and **Mixup** (Zhang et al., 2018), the methodologies were straightforward. We experimented with training using various numbers of iterations and reported the most promising results. Note that we used alpha=0.7 when combining the 2 samples for Mixup. We executed all baseline experiments five times on each dataset to ensure a precise estimation of performance.

DivDis We utilized all unlabeled target OOD data for training and a single label from this data for supervision. An ensemble of 5 models was trained for 100 iterations with early stopping, and each model has 2 classification heads. Across all datasets, we set $\lambda_1 = 10$ (encouraging disagreement among model heads), while λ_2 (an optional hyperparameter prevents degenerate solutions) was set to

Table 3: Training Time for EXPLOR and baseline methods.

	wall clock (m)
EXPLOR	4.2
SAM	1.13
UDIM	2.07
Dbat	3.5
EoA	67.9
Advstyle	4.8
Mixup	1.2
NCDG	2.7
ERM	0.9

0 for DrugOOD and ChEMBL and to 10 for TableShift. The final prediction is the average of the 5 models' predictions.

FixMatch Originally, Fixmatch (Sohn et al., 2020) was designed for image data, so the sense of weak and strong augmentations were image based. To adapt the method to our modality agnostic setting we used $x*(1+\alpha)$ as the weak augmentation, $x*(1+2*\alpha)$ as strong augmentation, where α is a small noise drawn from the standard normal distribution.

For NCDG Tian et al. (2023), we adapt the method to use the EXPLOR architecture (rather than a ResNet model) and the EXPLOR augmentation method. We set t=0.005 (the threshold for neuron activation in coverage computation), $\lambda=0.1$ (the weight coefficient for neuron coverage loss), and $\beta=0.01$ (the weight for gradient similarity regularization loss). Five trials were run on each dataset and averaged to obtain the final results.

SAM We train the MLP with 2 hidden layers of size 512 (same hidden layer as EXPLOR) using the SAM (Foret et al., 2021) objective. We used a $\rho=0.05$ (radius for evaluating the loss sharpness) and $\epsilon-1e^{-5}$ (perturbation weight). The model was trained for 100 epochs with a learning rate of 0.001.

UDIM We train the MLP with 2 hidden layers of size 512 (same hidden layer as EXPLOR) using the UDIM (Shin et al., 2024) framework. We used a $\rho=0.05$ (radius for evaluating the loss sharpness), $\rho_x=0.5$ (radius for adversarial perturbations), and $\lambda=0.5$ (domain inconsistency regularizer weight). The model was trained for 100 epochs with a learning rate of 0.001.

B.3 EXPLOR TRAINING TIME

In Tab. 3, we report the training time for EXPLOR and baseline models we are considering. Note that the pseudo-labelers can be training in parallel with enough computational resources (and are each quick to train at < 1s).

C ADDITIONAL EXPERIMENT AND ABLATION RESULTS

C.1 FULL EXPERIMENT RESULTS ON CHEMBL AND THERAPEUTICS DATA COMMONS

In Tab. 5, we report the full results on hERG, A549_cells, cyp_2D6. and Ames.

C.2 FULL EXPERIMENT RESULTS ON DRUGOOD

In Tab. 4, we report the full results on core ec50, refined ec 50, and core ic50 from DrugOOD (Ji et al., 2023).

C.3 DIVERSITY OF PREDICTIONS

In drug discovery applications, models should predict on structurally diverse compounds. To assess the diversity of model behavior in high confidence out-of-distribution (OOD) predictions, we examine the average variance of fingerprint features for instances with predicted confidence greater than 0.9 on the 3 ChEMBL datasets (var@p>0.9). Higher variance reflects greater heterogeneity among the selected molecules. We observe the following var@p>0.9 on ChEMBL datasets: EXPLOR (0.391), D-BAT (0.337), EoA (0.301), AdvStyle (0.349), Mixup (0.370), and NCDG (0.239). That is,

Table 4: Full experiment results on DrugOOD datasets. We **bold** best scores based on the mean minus 1 standard deviation. Note that * refers to a semi-supervised method.

		refined ec50 val	refined ec50 test	core ic50 test	core ic 50 test	core ec50 val	core ec50 te
AUPRC@	DivDis*	96.63±0.54	88.87±0.58	98.41±0.26	91.72±1.47	98.48±0.06	75.02±1.11
R < 0.1	FixMatch*	94.78±0.63	86.53±0.25	97.70±0.05	95.89±1.46	96.42±1.06	69.80±0.25
	ERM	97.76±0.14	90.40±0.27	99.38±0.05	93.81±0.55	96.21±1.02	82.45±2.93
	D-BAT	97.19±0.19	88.93±0.48	98.25±0.09	91.89±0.39	94.04±0.25	86.59±1.42
	AdvStyle	96.37±0.32	88.69±0.43	98.10±0.17	89.39±0.33	95.79±0.20	84.56±2.36
	EoA	85.03±0.06	78.79±0.14	88.56±0.05	77.03±0.13	81.85±0.24	71.84±0.45
	Mixup	85.39±0.23	79.78±0.34	88.99±0.43	78.07±0.61	83.97±0.61	73.03±0.42
	NCDG	96.33±0.07	89.94±0.12	97.36±0.08	89.68±0.05	91.95±0.28	80.38±0.47
	SAM	98.27±0.15	88.84±0.32	99.37±0.06	91.65±0.41	97.29±0.19	73.03±2.53
	UDIM	98.39±0.09	89.67±0.95	99.19±0.10	92.15±0.41	96.69±0.25	71.10±1.19
	D-BAT PL Ens	98.67±0.02	89.48±0.08	99.23±0.05	96.39±0.07	99.01±0.24	66.69±0.13
	XGB PL Ens	98.73±0.14	65.40±0.52	99.00±0.04	92.67±0.33	99.57±0.01	96.93±0.09
	EXPLOR D-BAT	98.50±0.01	89.94±0.02	99.46±0.04	96.70±0.01	99.93±0.02	77.26±0.27
	EXPLOR	99.06±0.14	64.71±0.29	99.22±0.05	91.31±0.41	99.36±0.06	96.42±0.10
AUPRC@	DivDis*	96.02±0.19	86.51±0.28	97.80±0.07	89.72±0.06	93.86±0.42	80.18±0.92
R<0.2	FixMatch*	94.48±0.47	86.38±0.35	97.62±0.06	92.89±1.36	95.02±0.76	70.49±0.43
	ERM	96.15±0.16	88.67±0.23	99.04±0.04	91.44±0.43	96.95±0.11	72.88±0.95
	D-BAT	96.97±0.16	88.78±0.40	98.13±0.08	91.79±0.38	93.81±0.22	84.35±1.35
	AdvStyle	95.13±0.13	88.21±0.37	97.04±0.17	89.05±0.22	94.84±0.31	84.51±2.36
	EoA	85.03±0.06	78.79±0.14	88.56±0.05	77.03±0.13	81.85±0.24	71.84±0.45
	Mixup	85.39±0.23	79.78±0.34	88.99±0.43	78.07±0.61	83.97±0.61	73.04±0.42
	NCDG	93.92±0.62	84.46±0.67	97.83±0.08	87.82±0.26	93.40±0.78	80.09±1.94
	SAM	96.79±0.17	87.50±0.23	98.78±0.09	89.40±0.40	95.02±0.37	71.92±1.71
	UDIM	96.97±0.13	88.16±0.78	98.61±0.12	90.13±0.38	94.05±0.30	71.37±1.00
	DBAT PL Ens	96.67±0.06	88.11±0.04	98.74±0.07	94.05±0.08	97.51±0.21	69.93±0.04
	XGB PL Ens	98.00±0.07	89.48±0.24	99.14±0.07	94.20±0.15	97.79±0.11	68.48±0.30
	EXPLOR DBAT	97.78±0.04	88.97±0.02	99.10±0.16	94.52±0.02	98.25±0.01	75.50±0.15
	EXPLOR XGB	98.45±0.04	89.76±0.02	99.15±0.05	94.42±0.09		69.04±0.50
		70.43±0.00	89.70±0.20	99.13±0.03	74.42±0.07	98.66±0.10	05.04±0.30
AUPRC@	DivDis*	95.19±0.37	85.12±0.49	97.33±0.16	88.06±1.14	91.89±0.95	78.97±1.66
R < 0.3	FixMatch*	87.14±0.64	85.74±0.42	97.59±0.07	91.02±1.24	93.76±1.11	70.61±0.47
	ERM	95.06±0.11	87.42±0.13	98.69±0.05	89.86±0.39	95.58±0.15	71.98±0.84
	D-BAT	96.89±0.15	87.77±0.32	98.08±0.08	90.71±0.52	93.73±0.21	81.40±0.89
	AdvStyle	94.71±0.13	88.05±0.36	96.69±0.21	88.93±0.19	94.52±0.37	83.57±2.08
	EoA	85.03±0.06	78.79±0.14	88.56±0.05	77.03±0.13	81.85±0.24	71.84±0.45
	Mixup	85.39±0.23	79.78±0.34	88.99±0.43	78.07±0.61	83.97±0.61	73.06±0.43
	NCDG	95.17±0.04	86.07±0.08	95.89±0.05	86.53±0.03	88.73±0.19	76.05±0.35
	SAM	95.62±0.13	86.48±0.27	98.23±0.09	87.84±0.37	93.58±0.39	71.63±1.27
	UDIM	95.72±0.15	87.08±0.77	98.10±0.11	88.48±0.40	92.46±0.35	71.53±0.86
	D-BAT PL Ens	96.10±0.06	87.35±0.04	98.36±0.10	92.44±0.05	95.86±0.25	71.17±0.03
	XGB PL Ens	96.73±0.10	69.94±0.20	97.17±0.06	87.99±0.18	98.71±0.03	92.32±0.23
	EXPLOR D-BAT	97.01±0.01	87.87±0.02	98.61±0.07	92.78±0.02	96.27±0.01	74.76±0.10
	EXPLOR XGB	97.91±0.07	69.74±0.21	97.76±0.05	88.66±0.21	98.89±0.02	93.11±0.13
AUPRC	DivDis*	89.62±0.12	80.92±0.06	93.34±0.10	81.48±0.30	83.85±0.41	75.09±0.38
	FixMatch*	87.14±0.58	81.51±0.31	92.38±0.15	82.78±0.57	80.92±1.12	70.57±0.32
	ERM	89.84±0.07	82.26±0.07	94.72±0.07	82.59±0.21	87.70±0.09	70.95±0.44
	D-BAT	84.70±0.51	70.08±0.69	90.84±0.28	73.45±0.90	76.64±0.49	54.87±0.99
	AdvStyle	83.01±0.90	69.48±2.16	88.54±1.44	72.11±1.49	81.17±1.72	58.40±2.18
	EoA	69.66±0.47	57.71±0.79	79.12±0.09	56.52±0.42	64.16±0.51	36.50±1.48
	Mixup	80.36±0.88	72.88±1.67	86.88±0.14	74.99±0.15	73.03±1.67	60.84±4.31
	NCDG	89.27±0.22	80.54±0.21	94.17±0.08	81.19±0.11	87.72±0.37	74.99±0.74
	SAM	89.86±0.09	81.93±0.20	94.16±0.10	81.03±0.23	86.66±0.20	70.92±0.40
	UDIM	89.95±0.11	82.19±0.41	94.05±0.10	81.29±0.25	86.35±0.15	71.20±0.35
	DBAT PL Ens	91.19±0.08	82.72±0.04	94.79±0.10	84.11±0.01	88.36±0.28	72.13±0.07
	XGB PL Ens	91.21±0.02	82.61±0.05	94.91±0.03	84.13±0.06	88.44±0.05	71.80±0.07
	EXPLOR D-BAT	90.56±0.03	82.95±0.06	94.87±0.13	84.11±0.01	88.44±0.02	73.13±0.02
	EXPLOR XGB	91.59±0.03	83.06±0.10	95.38±0.01	84.77±0.02	89.52±0.05	71.41±0.11
AUROC	DivDis*	65 41±0 91	58.53±0.46	66 68+0 29	57 04±0 09	73.23±0.40	61 15±0 50
MURUC	FixMatch*	65.41±0.81 70.32±0.59	58.53±0.46 52.69±0.69	66.68±0.28 66.37±0.50	57.04±0.08 58.37±0.58	73.23±0.40 74.38±0.16	61.15±0.50 62.05±0.55
	ERM	67.73±0.18				74.38±0.10 72.24±0.09	
		75.26±0.28	59.15±0.23 58.21±0.26	77.41±0.24	62.68±0.31		52.32±0.59
	D-BAT AdvStyle		58.21±0.26 58.86±0.25	72.09±0.19	60.32±0.25 59.62±0.30	80.31±0.08	64.82±0.18
		75.97±0.39		70.78±0.35		78.36±0.23	64.14±0.27
	EoA	64.91±0.34	52.71±0.44	59.27±0.20	54.63±0.24	62.99±0.16	55.83±0.18
	Mixup	68.20±0.66	56.33±0.45	60.39±0.40	56.50±0.37	64.24±1.23	57.75±0.80
	NCDG	73.66±0.53	57.70±0.81	67.20±0.33	57.18±0.18	76.48±0.22	61.44±0.13
	SAM	67.33±0.22	58.97±0.40	75.63±0.35	60.07±0.35	71.06±0.27	52.50±0.36
	UDIM	67.50±0.29	59.30±0.63	75.38±0.34	60.29±0.39	71.37±0.18	53.43±0.43
	DBAT PL Ens	69.40±0.06	60.04±0.31	77.83±0.40	64.66±0.04	74.51±0.48	56.39±0.20
					50 55 . 0 00		C 1 00 . 0 0C
	XGB PL Ens	73.70±0.07	56.48±0.06	70.17±0.04	59.77±0.02	77.78±0.09	64.89±0.06
		73.70±0.07 70.64±0.04	56.48±0.06 59.90±0.03	70.17±0.04 78.52±0.37	59.77±0.02 64.67±0.01	77.78±0.09 75.34±0.07	56.32±0.06

EXPLOR is assigning confident predictions to structurally diverse compounds rather than overfitting to a narrow subset of the chemical space.

Table 5: Full experiment results on ChEMBL (Gaulton et al., 2011) and Therapeutics Data Commons (Huang et al., 2021) datasets. We **bold** best scores based on the mean minus 1 standard deviation. Note that * refers to a semi-supervised method.

		hERG	A549_cells	cyp_2D6	Ames
AUPRC	DivDis*	86.92±8.44	89.01±3.53	83.65±6.17	97.47±1.6
R < 0.1	FixMatch*	84.77±1.81	92.93±3.00	92.71±1.98	96.26±1.0
	EDM	01.05.0.05	07.27.0.01	02.00.2.02	00.02+0.1
	ERM D-BAT	91.95±0.85 88.55±1.68	97.37±0.81 98.57±0.16	92.89±2.93	99.02±0.1 99.07±0.2
	AdvStyle	93.27±0.56	96.89±0.30	95.71±0.89 84.21±2.07	99.07±0.2 99.52±0.1
	•	63.80±0.42	61.31±0.31		78.74±0.4
	EoA Mixup	82.80±0.42	95.04±0.25	61.77±0.41 87.39±3.09	91.02±1.0
	NCDG	72.96±1.31	78.79±2.35	61.77±1.15	89.68±0.3
	SAM	90.69±1.67	97.22±0.63	90.20±0.46	98.29±0.1
	UDIM	91.03±2.36	97.39±0.42	88.30±1.14	97.99±0.4
	D-BAT PL Ens	86.29±1.00	98.38±0.23	96.66±0.63	1.00±0.00
	XGB PL Ens	96.65±0.22	99.74±0.05	99.81±0.11	98.73±0.2
	EXPLOR D-BAT	90.01±0.86	98.92±0.12	98.51±0.63	1.00±0.00
	EXPLOR XGB	98.10±0.34	99.76±0.03	99.48±0.17	99.66±0.2
AUPRC@	DivDis*	85.65±2.37	89.45±1.16	79.98±1.10	95.80±0.3
R<0.2	FixMatch*	79.66±0.57	90.81±4.30	83.58±2.55	93.55±0.5
• • • • • • • • • • • • • • • • • • • •					
	ERM	85.58±1.10	96.65±0.59	87.93±2.41	98.04±0.3
	D-BAT	84.48±1.74	98.26±0.14	91.40±0.98	99.04±0.2
	AdvStyle	88.21±0.77	97.77±0.28	84.83±0.93	99.05±0.1
	EoA	63.80±0.42	61.31±0.31	61.77±0.41	78.74±0.4
	Mixup	82.25±1.51	95.04±0.25	87.09±2.32	91.02±1.0
	NCDG	70.25±1.03	78.22±2.13	61.48±0.98	86.29±0.4
	SAM	84.37±1.06	95.70±0.75	85.02±0.69	96.66±0.3
	UDIM	85.07±2.32	95.87±0.36	84.80±0.84	96.53±0.6
	DBAT PL Ens	84.86±0.82	97.45±0.32	92.56±0.81	99.47±0.1
	XGB PL Ens	94.44±0.17	98.22±0.08	95.51±0.19	97.84±0.2
	EXPLOR DBAT	87.05±0.75	99.05±0.12	95.33±0.51	99.87±0.1
	EXPLOR XGB	94.67±0.29	98.87±0.09	96.88±0.25	98.45±0.1
AUPRC@	DivDis*	83.69±3.39	88.83±2.50	77.55±1.02	94.87±0.7
R < 0.3	FixMatch*	76.16±1.04	89.12±5.07	77.70.58±2.05	92.72±0.5
	ERM	82.29±1.10	95.92±0.58	83.76±2.02	97.23±0.3
	D-BAT	82.44±1.59	97.37±0.24	87.65±0.58	98.61±0.2
	AdvStyle	85.05±0.86	96.47±0.29	82.76±0.95	98.71±0.2
	EoA	63.80±0.42	61.31±0.31	61.77±0.41	78.74±0.4
	Mixup	81.51±1.35	94.95±0.25	84.53±2.89	90.88±1.0
	NCDG	69.59±0.97	77.88±1.93	60.93±0.86	85.41±0.3
	SAM	80.55±0.72	94.18±0.61	82.66±0.68	95.24±0.3
	UDIM	80.87±1.85	94.67±0.46	82.03±0.38	95.36±0.7
	D-BAT PL Ens	84.13±0.59	96.97±0.14	89.06±1.24	98.77±0.1
	XGB PL Ens	90.46±0.06	97.35±0.05	92.34±0.24	97.83±0.1
	EXPLOR D-BAT	85.66±0.72	98.70±0.02	91.40±0.44	99.24±0.0
	EXPLOR XGB	90.88±0.34	97.96±0.1	93.06±0.27	98.18±0.1
AUPRC	DivDis*	67.70±0.25	76.45±0.63	65.76±0.45	82.37±0.2
101110	FixMatch*	45.16±3.11	51.31±1.28	32.65±2.16	72.54±1.1
	ERM	68.77±0.40	81.73±0.37	67.97±0.81	86.01±0.2
	D-BAT	54.60±1.59	67.04±0.53	47.42±0.85	70.44±0.7
	AdvStyle	51.54±0.93	65.02±0.72	44.41±0.96	74.98±0.7
	EoA	43.30±0.51	44.95±0.24	37.37±0.95	59.43±0.1
	Mixup	42.42±0.85	50.52±0.50	27.79±1.49	60.94±0.8
	NCDG	42.69±0.24	49.13±0.79	31.08±0.16	67.79±0.9
	SAM	66.89±0.28	79.88±0.34	67.37±0.31	82.50±0.3
	UDIM	67.23±0.60	79.98±0.37	66.86±0.43	82.97±1.0
	DBAT PL Ens	72.22±0.00	83.79±0.31	73.26±0.65	89.08±0.1
	XGB PL Ens	72.22±0.18 72.19±0.07	83.79±0.31 84.10±0.01	73.26±0.65 72.93±0.13	89.08±0.1 87.43±0.0
	EXPLOR DBAT	72.73±0.07	84.80±0.01	72.93±0.13 73.64±0.45	87.43±0.0 89.38±0.0
	EXPLOR XGB	73.26±0.08	84.60±0.11	73.59±0.15	88.50±0.0
AUROC	DivDis*	71.19±0.57	72.20±0.41	64.50±0.77	77.05±0.4
	FixMatch*	68.41±0.84	61.16±1.31	80.85±0.40	70.32±0.5
	ERM	73.58±0.23	76.58±0.30	65.25±0.55	82.02±0.2
	D-BAT	76.58±0.45	78.16±0.23	67.54±0.47	83.82±0.1
	AdvStyle	75.84±0.46	76.13±0.28	65.51±0.62	85.56±0.7
	EoA	68.02±0.34	68.33±0.24	60.50±0.48	74.77±0.2
	Mixup	73.96±0.26	76.57±0.42	67.53±0.90	78.43±0.4
	NCDG	70.42±0.13	72.50±0.79	62.01±0.16	73.42±0.9
	SAM	72.17±0.41	74.67±0.49	64.45±0.53	78.51±0.4
	UDIM	73.17±0.38	74.64±0.38	64.09±0.66	78.63±1.3
	DDAT DL E	76.51±0.07	78.34±0.35	70.80±0.36	84.37±0.0
	DBAT PL Ens	70.51±0.07			
	XGB PL Ens	74.74±0.06	79.17±0.02	70.33±0.07	81.87±0.0
				70.33±0.07 70.11±0.33	81.87±0.0 85.18±0.0

Table 6: Full experiment results on Tableshift (Gardner et al., 2023) datasets. We **bold** best scores based on the mean minus 1 standard error. Note that * refers to a semi-supervised method that uses additional unlabeled OOD data during training.

		Childhood Lead	FICO HELOC	Hospital Readmission	Sepsis
AUPRC@	DivDis*	91.67±3.03	84.88±3.80	88.99±3.36	59.50±1.55
R < 0.1	FixMatch*	86.68±3.32	83.99±2.27	73.97±2.64	17.84±1.87
	ERM	54.24±0.00	85.84±0.88	90.52±0.36	17.35±0.94
	D-BAT	52.67±0.00	92.97±0.59	83.73±0.12	81.99±0.33
	AdvStyle	63.63±0.00	90.10±1.03	77.29±0.74	60.79±0.72
	EoA Mixup	75.73±0.83 50.00±0.00	63.42±2.13 92.79±0.03	52.03±1.78 85.71±0.35	43.76±1.14 68.21±1.28
	NCDG	83.30±0.20	91.70±0.03	70.42±0.17	72.40±0.04
	SAM	97.50±0.00	94.42±1.07	80.13±0.57	66.42±1.20
	UDIM	97.06±0.45	95.07±0.92	79.59±1.32	65.62±0.53
	D-BAT PL Ens	98.72±0.42	96±0.05	76.47±0.05	75.32±0.01
	XGB PL Ens	98.69±0.03	92.18±0.58 96.99±0.06	51.31±0.16	82.85±1.53
	EXPLOR D-BAT EXPLOR XGB	98.36±0.05 99.72±0.10	93.93±0.00	81.84±0.34 66.65±0.17	77.25±0.17 80.74±1.77
AUPRC@	DivDis*	89.77±2.51	85.50±2.65	83.22±2.57	60.66±1.57
R<0.2	FixMatch*	81.75±3.69	77.76±1.94	67.84±1.95	17.28±0.58
	ERM	43.66±0.00	85.74±0.78	84.35±0.28	15.31±0.53
	D-BAT	62.82±0.00	91.20±0.24	78.84±0.12	75.37±0.38
	AdvStyle	64.96±0.01 77.43±0.97	88.71±0.65 59.53±2.24	72.91±0.58 51.83±1.66	59.83±0.63 41.10±1.56
	EoA Mixup	50.00±0.00	91.16±2.10	69.19±3.95	66.09±1.15
	NCDG	82.49±0.18	90.93±0.31	68.88±0.15	70.22±0.03
	SAM	95.00±0.00	91.42±0.69	74.13±0.49	65.34±0.73
	UDIM	94.11±0.90	92.58±0.67	73.65±0.67	65.09±0.28
	DBAT PL Ens	93.81±0.03	92.87±0.05	73.52±0.37	72.74±0.13
	XGB PL Ens	97.39±0.06	90.07±0.32	58.30±0.09	78.62±1.57
	EXPLOR (D-BAT) EXPLOR (XGB)	94.69±0.02 97.92±0.20	93.33±0.02 91.72±0.62	77.20±0.23 67.57±0.12	73.89±0.08 76.95±1.45
AUPRC@	DivDis*	87.90±2.20	85.77±2.73	79.82±2.42	61.55±1.55
R<0.3	FixMatch*	81.61±3.09	76.48±4.13	64.47±1.70	18.45±0.46
	ERM	38.83±0.00	85.25±0.60	80.54±0.25	14.41±0.35
	D-BAT	68.11±0.00	90.11±0.13	75.26±0.10	70.92±0.44
	AdvStyle	68.67±0.08	87.33±1.21	70.27±0.49	59.02±0.57 40.09±1.05
	EoA Mixup	79.88±1.03 50.00±0.00	56.52±2.34 90.01±0.02	51.34±1.27 47.18±3.54	64.41±0.95
	NCDG	82.10±0.15	88.76±0.29	67.52±0.13	69.48±0.03
	SAM	92.50±0.00	89.90±0.61	71.03±0.44	64.28±0.57
	UDIM	91.17±1.36	91.06±0.44	70.66±0.60	64.24±0.23
	D-BAT PL Ens	91.71±0.04	91.52±0.01	71.78±0.27	70.33±0.16
	XGB PL Ens EXPLOR D-BAT	96.08±0.08	89.73±0.23	60.86±0.04	75.84±1.55
	EXPLOR XGB	92.60±0.03 96.58±0.22	91.72±0.07 91.10±0.41	72.69±0.18 67.36±0.06	70.92±0.06 74.02±1.20
AUPRC	DivDis*	76.33±0.86	82.47±1.05	65.95±2.15	58.85±1.21
	FixMatch*	75.39±0.58	72.22±4.46	56.54±1.21	18.24±0.66
	ERM	23.60±0.11	77.37±0.27	67.56±0.13	11.12±0.12
	D-BAT	71.85±0.01	80.91±0.17	63.29±0.08	58.17±0.21
	AdvStyle EoA	48.37±2.77 49.48±0.19	79.63±1.65 59.53±2.24	38.13±3.80 29.45±4.95	54.34±0.27 11.21±2.21
	Mixup	50.00±0.00	80.95±0.63	14.15±1.06	56.80±0.40
	NCDG	73.08±0.14	79.05±0.21	58.95±0.10	61.96±0.02
	SAM	75.00±0.00	81.61±0.43	61.12±0.28	57.90±0.22
	UDIM	73.70±1.38	82.10±0.44	60.95±0.33	57.97±0.17
	DBAT PL Ens	82.72±0.01	81.35±0.03	62.34±0.14	59.97±0.10
	XGB PL Ens	86.39±0.19	83.80±0.07	62.83±0.03	64.01±0.94
	EXPLOR (D-BAT) EXPLOR (XGB)	82.76±0.02 86.70±0.28	81.37±0.04 84.02±0.09	63.30±0.14 63.62±0.08	50.97±0.05 62.21±0.52
AUROC	DivDis*	77.74±1.90	83.55±1.06	65.28±0.59	62.33±0.61
	FixMatch*	79.87±0.29	74.29±1.69	55.78±0.98	49.50±1.01
	ERM	78.41±0.14	73.71±0.17	67.06±0.10	62.79±0.14
	D-BAT	79.13±0.02	76.13±0.03	63.22±0.03	57.95±0.04
	AdvStyle	74.45±0.04	77.23±1.69	61.32±0.34	55.31±0.34
	EoA Mixup	72.62±0.32	54.67±2.55	51.65±1.70	49.14±2.60
	Mixup NCDG	50.00±0.00 76.91±0.13	78.74±0.17 75.09±0.79	63.37±0.25 58.67±0.16	56.82±0.26 63.41±0.93
	SAM	50.00±0.00	79.70±1.64	61.14±0.32	58.71±0.23
	UDIM	54.50±4.18	79.41±1.07	61.05±0.32	58.87±0.24
	DBAT PL Ens	84.89±0.05	76.32±0.03	63.16±0.10	59.23±0.04
			02.52.0.02	(2.10.0.02	(2.52.0.92
	XGB PL Ens	84.88±0.19	83.53±0.03	63.18±0.03	62.53±0.82
	XGB PL Ens EXPLOR (D-BAT) EXPLOR (XGB)	84.88±0.19 84.36±0.23 87.95±0.25	83.53±0.03 76.27±0.01 83.11±0.04	63.51±0.16 63.65±0.07	59.01±0.07 61.42±0.35

Table 7: ChEMBL Datasets' Mean AUPRC Ablating Type of pseudo-labelers.

AUPRC@R<0.2	XGBoost	Random Forest	Decision Tree
PL Ens	95.87	95.72	92.18
EXPLOR	96.64	96.15	94.15

C.4 FULL EXPERIMENT RESULTS ON TABLESHIFT

In Table 6, we report the full results on full results on Tableshift (Gardner et al., 2023) datasets.

C.5 PSEUDO-LABELERS ABLATIONS

In this section, We ablate the kind of pseudo-labelers as EXPLOR relies on pseudo-labels during training. reports the mean AUPRC@R<0.2 across ChEMBL datasets when using XGBoost, Random Forest (with 100 estimators), and Decision Tree as pseudo-labelers. Performance was comparable between XGBoost and Random Forest, indicating robustness to the choice of strong ensemble models. In contrast, using a weaker pseudo-labelers such as a single Decision Tree led to a performance drop. Nevertheless, EXPLOR consistently outperformed its respective pseudo-labelers, demonstrating its ability to enhance predictions regardless of pseudo-labeler strength (Tab. 7.

C.6 Per-head Matching Ablation Details

In this section we provide details on the per-head matching ablations where we ablate the matching loss scheme on pseudo-labelers and explore a mean-only matching approach on expanded points as an alternative. First, we consider utilizing a single-headed (SH) MLP, f(x) (512 \rightarrow 512 \rightarrow 1), which is trained via a mean matching loss $\mathcal{L}_{\text{MM}}(f,\{g_j\}_{j=1}^K;\mathcal{S}) \equiv \frac{1}{|\mathcal{S}|} \sum_{x \in \mathcal{S}} \ell(f(x), \frac{1}{K} \sum_{j=1}^K g_j(x))$, rather than the per-expert matching loss, $\mathcal{L}_{\text{match}}$ equation 3 We also explored the effect of training our multi-headed (MH) architecture (512 \rightarrow 512 \rightarrow 1024) using only mean-matching (without per-head matching), $\mathcal{L}'_{\text{MM}}(\{h_j\}_{j=1}^K, \{g_j\}_{j=1}^K; \mathcal{S}) \equiv \frac{1}{|\mathcal{S}|} \sum_{x \in \mathcal{S}} \ell(\frac{1}{K} \sum_{j=1}^K \sigma(h_j(x)), \frac{1}{K} \sum_{j=1}^K g_j(x))$.

C.7 BOTTLENECK ABLATIONS DETAILS

Table 8: ChEMBL datasets' mean AUPRC ablating hidden layer and output sizes.

	@R<.2	@R<1
Full	97.12	77.28
Full (ML) Full (ERM)	96.94 92.65	77.25 72.61
Tiny Tiny (ML)	96.29 96.33	76.63 76.17
Tiny (ERM)	88.28	70.87

In this section, we provide the details and results for the bottleneck ablations. Results are shown in Tab. 8, here 'Full' denotes our original 2×512 hidden layer architecture, where 'tiny' denotes a 2×32 hidden layer architecture (a $\times16$ decrease in parameters). Moreover, we also consider mean logits 'ML,' a final averaging over the multi-head logits that produces a single output unit (i.e., averaging the output weights/bias after training to construct the mean logits network). The performance gap is marginal between the 'Full' and 'Tiny' model (a 0.85% difference) when using our proposed loss. In contrast, when using empirical risk minimization, we see a 4.87 times bigger drop in performance between 'Full' and 'Tiny' models. This suggests that the bottlenecking properties of our method are key to EXPLOR's performance. Moreover, the results show promise for EXPLOR in resource-constrained settings (such as in IoT applications).

D Additional Figures

Predicted probabilities from EXPLOR network and pseudo-labelers. We highlight example instances where the pseudo-labelers initially makes incorrect predictions but are corrected when we average the predicted probabilities from EXPLOR network and EXPLOR base.

E LIMITATIONS

While EXPLOR consistently outperforms its pseudo-labelers across diverse model types (e.g., XG-Boost, Random Forest, Decision Tree, D-BAT), its effectiveness can be influenced by the quality of the pseudo-labeler and the learned latent space. However, our results show that EXPLOR remains robust even with simpler pseudo-label models and standard latent representations, suggesting room for further gains with more sophisticated choices. To maintain broad applicability, our experiments were constrained to real-valued vector data with general augmentations. In domain-specific applications, incorporating modality-aware augmentations could further enhance performance. Future work may explore this direction to extend EXPLOR's effectiveness.