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ABSTRACT

The linear Markov Decision Process (MDP) provides a principled basis for rein-
forcement learning (RL) but assumes that both transitions and rewards are linear
in the same feature space. This severely limits its applicability when rewards are
nonlinear or discrete. We introduce the Generalized Linear MDP (GLMDP), which
retains linear transitions while modeling rewards with generalized linear models un-
der potentially different feature maps. This separation is crucial: transitions may
admit rich representations learned from large unlabeled trajectories, while rewards
can be modeled with limited labeled data. We show that GLMDPs are Bellman
complete with respect to a new function class, enabling efficient value iteration.
Based on this, we develop algorithms with provable guarantees in both offline and
online settings. For offline RL, we design pessimistic and semi-supervised value
iteration methods that achieve policy suboptimality bounds and demonstrate sig-
nificant label-efficiency gains. For online RL, we propose an optimistic algorithm
with a near-optimal regret bound. Together, these results broaden the scope of
structured and sample-efficient RL to applications with complex reward structures,
such as healthcare and e-commerce.

1 INTRODUCTION

Reinforcement learning (RL) has achieved impressive success in domains such as gaming and robotics
(Silver et al.,[2016; [Berner et al., [2019), where abundant online interaction is feasible. However, real-
world applications from precision medicine to e-commerce often involve costly, ethically constrained,
or risky data collection. In such settings, algorithms must be both sample-efficient and capable of
learning from limited offline datasets (Levine et al.,|2020). Classical deep RL methods, which rely
on highly expressive neural networks, can overfit and fail under data scarcity, motivating the study of
structured RL frameworks.

Among these, the linear Markov Decision Processes (MDP) framework (Jin et al., [2020) provides
strong theoretical guarantees and tractable algorithms, and has been applied to healthcare and
recommendation systems (Cai et al., 2018} |Gao et al., 2024} [Trella et al., [2025). Yet linear MDPs
assume that both transition dynamics and reward functions are linear in the same feature space. This
assumption breaks down in practice: outcomes are often binary or count-valued (e.g., treatment
adherence, purchase events), while transitions may admit far more complex structure. Consequently,
linear MDPs cannot fully capture real-world settings where reward and transition require distinct
feature representations.

The GLMDP framework. We propose the Generalized Linear MDP (GLMDP), which relaxes
this assumption by allowing distinct feature maps for rewards and transitions. Formally, at each step
h € {1,..., H} in an episodic MDP, the reward and transition satisfy

E[rn(zh,an) | zn = 2, an = a] = g((¢r (7, a),03)), ey
Ph(@hsr | Th,an) = (bp(Tn, an), pn(Thir)), 2)

where g(-) is a known link function, ¢, € R% and Pp € R% are (possibly different) feature maps,
0; € R4 is an unknown parameter, and p, is a measure over next-state distributions. Unlike linear
MDPs, GLMDPs capture nonlinear or discrete reward structures while supporting complex transition
dynamics, and crucially allow transitions to be learned from large amounts of unlabeled data. When
g(z) = x and ¢, = ¢,, the GLMDP reduces to the standard linear MDP. At first glance, this
extension may appear simple—merely introducing a link function for rewards—yet ensuring that the
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resulting model class is Bellman complete is highly non-trivial. Many natural generalizations of linear
MDPs fail to admit any closed Bellman class, making value iteration intractable. Our key contribution
is to identify a function family under which GLMDPs are Bellman complete, and to design algorithms
that exploit the decoupling between reward and transition estimation. This structural separation is
particularly powerful in the semi-supervised setting, where abundant unlabeled trajectories improve
transition estimation while only a small fraction require costly reward labels.

Our algorithms and results. Building on this framework, we design algorithms for both offline
and online RL. In the offline setting, we introduce Generalized Pessimistic Value Iteration (GPEVI)
and a semi-supervised variant (SS-GPEVI) that leverages unlabeled trajectories to improve label
efficiency. We provide suboptimality bounds showing that SS-GPEVI can substantially outperform
fully supervised methods when the transition model is high-dimensional. In the online setting, we
propose an optimistic algorithm (GLSVI-UCB) and establish a near-optimal regret bound.

Contributions. Our main contributions are:

* We introduce the GLMDP framework, which generalizes linear MDPs by allowing GLM
rewards and distinct feature maps for rewards and transitions.

* We prove Bellman completeness for a new function class, ensuring tractability under
GLMDPs.

* We develop offline algorithms (GPEVI, SS-GPEVI) with suboptimality guarantees, showing
that unlabeled trajectories can provably accelerate learning when d,, > d,.

* We design an online algorithm (GLSVI-UCB) with a near-optimal regret bound, extending
optimistic exploration to the GLMDP setting.

These results broaden the scope of structured and provably efficient RL, making it applicable to
domains with complex reward structures and limited labels.

The remainder of our paper is structured as follows: We explain our GLMDP framework in Sec-
tion 2] followed by our proposed algorithms in Section[3} Section ] provides theoretical guarantees
that validate our approach’s effectiveness. We offer conclusions and future research directions in
Section[5} Additional materials are included in the appendices: a comprehensive literature review
(Appendix [A), algorithm pseudocode (Appendix [B), simulation studies (Appendix [C), simulation
environment studies (Appendix D)), discussion about unbounded reward function (Appendix [E) and

proofs (Appendices [F{M).

2 GENERALIZED LINEAR MDP FRAMEWORK

We begin by formally defining the Generalized Linear MDP (GLMDP) framework. In our framework,
we consider an episodic MDP with finite horizon length H. At each time step h € {1,2,..., H}, the
reward functions {7, }/L | and transition kernels {P, }/__, satisfy equation|l|and equation

Given any policy m = {7, }_,, we denote S as the state space and A as the action space and define
the state-value function V;" : S — R and the action-value function (Q-function) @ : & x A — Rat
time step h € [H] as follows:

H
Vi () = B[ S el ar) | an = 2], 3)
t=h
QZ(xaa):Ew[ZTt(%,at) \$h=l‘,ah:a]. 4)
t=h

In equation [3|and equation |4} the expectation E is computed over all possible trajectories generated
by policy 7. Specifically, at each time step ¢ € [H]|, we sample action a; ~ (- | ;) at state x;
and observe the subsequent state x;+1 ~ P:(- | z¢,a;). Here For a positive integer d, we define
[d] = {1,...,d}. Note that in equation [3| we condition on the initial state 2, = =, while in
equation 4} we condition on both the initial state and action (z,, aj) = (z,a) € S x A.
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We denote optimal policy, state value function, and Q function by 7* = {7} }HL |, V* = {V}}L |
and Q* = {Q; }L |, respectively. Specifically, the optimal state value function V;*() represents
the maximum possible expected return achievable from any state z at step h, defined as V" (z) =
sup, V;7 (). Similarly, the optimal action value function is defined as Q} (z, a) = sup, Q7 (z, a).
An optimal policy 7* is any policy that achieves these optimal values. This policy is greedy with
respect to the optimal Q function, meaning that it selects an action that maximizes the Q value at
each state: 7} (- | ) € arg maxq,ec 4 Qf (2, a).

The fundamental relationships from the Bellman equation are:
‘/hﬂ(l') = <Q;Lr(x’ ')v ﬂ-h(' ‘ I)>A7 QZ($7 a) = (B}L‘/}ZT+1)($7 a),
where (-, ) 4 denotes the inner product over the action space .A. In addition, B;, represents the
Bellman operator defined by:
(BrV)(z,a) = E[rh(xh,ah) +V(zpht1) | zp = x,an = a]
for any function V : S — R. The expectation E is taken over the randomness in both the reward
rr(xh, ap) and the next state 1, where zp 11 ~ Pr(Thi1 | Zh, an).

The strong structure assumed in Linear MDPs ensures the linear Q-value function class is complete
with respect to the Bellman operator, often referred to as Bellman completeness (Xie et al., [2021]).
Bellman completeness lies at the foundation of the value iteration algorithm over the linear class.
We show in Proposition [T] that our extension to the linear MDP retains the Bellman completeness
property over the function class F defined below

F={(z,a) = g ((¢r(z,a),0)) + (¢p(z,a),B) : 6 € R, B e R }. (5)
Proposition 1 (Bellman Completeness of GLMDP). The GLMDP framework satisfies Bellman
completeness with respect to the function class F defined in equation | That is, for all f € F, all
policies # = {m, }1_,, and all time steps h € [H), we have B} f € F where BT f(x, a) is defined as
B;{f(.]?, Cl) = E[Th(xa Cl) + f(xh-i-lvﬂ-(xh-i-l)) | Th = T,0p = a}.
Corollary 1. As a direct consequence of Bellman completeness, the optimal Q-value function satisfies
Qj, € F forall h € [H). Specifically:

Qn(z,a) = g ((¢r(2,a),03)) + (dp(2, a), By) , where B = LVJ+1(I’)Mh(I')dI'- ©)

This result connects to|Chang et al.|(2022)) on learning Bellman complete representations for offline
reinforcement learning, which is particularly crucial in the offline RL setting. Without this property,
error propagation can become uncontrollable with limited offline data. |Chang et al.[(2022)) demon-
strated that learning approximately linear Bellman complete representations with good data coverage
(i.e., /\min(% Z?:l o (z,a) ¢ (z, a)T) > 0, where Ay, is the minimum eigenvalue of the feature
covariance matrix.) is essential for sample-efficient offline policy evaluation. Similarly, for GLMDPs,
the Bellman completeness property enables provable sample efficiency in offline RL settings where
exploration is not possible.

3  ALGORITHMS

In this section, we present algorithmic solutions for the GLMDP framework under both offline and
online settings. The offline setting addresses scenarios with pre-collected datasets, while the online
setting handles real-time interaction with the environment.

3.1 OFFLINE REINFORCEMENT LEARNING

We consider a dataset D = {(z7,, a}, r;)}ﬁfz 1 comprising n trajectories with time horizon H. The

data is generated as follows: Within each trajectory 7 € [n] and at each time step h € [H], an agent
executes action aj € A from state z], € S according to policy 7y, (ap, | zr, = x},), obtains reward
rp = rh(xg, a,TL), where 7, : S X A — R is a random function, and transitions to the subsequent
state x}_, sampled from Py (-|z;, = x],a, = aj). The reward functions {rj,};_; and transition
kernels {P, }/__ | are specified in equation|l|and equation

We define the suboptimality of a policy 7 with an initial state = as
SubOpt (m;x) = Vi (z) — V{" ().
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3.1.1 SUPERVISED LEARNING ALGORITHM

While the GLMDP model enjoys the desirable property of Bellman completeness, a central question
remains: Can we design an efficient algorithm that provably learns an optimal policy under this
model? Motivated by this, we propose the GPEVI algorithm, adapted from the pessimism-based
approach in |Jin et al.| (2021), tailored to the GLMDP setting. For simplicity of presentation, we
assume that the random reward function is bounded 7, (x, a) € [0, 1]. The case where the random
reward function 7, (z, a) is unbounded is discussed in Appendix this generalization does not affect
our main result.

Guided by the Bellman equation equation|[6]in Proposition[I} we approximate the optimal action-value
guncétion ()}, by estimating the parameters ¢;, and §;;, respectively. First, we can obtain the estimator
or 07 as

0), = arg i Ly (0) (7

where £;,(0) = 13" (=17 {¢n (2], a}).0) + G((¢r (2], a}),6))) and G(a) = [; g(u)du. The
loss function L (+) arises from the negative log-likelihood of a generalized lmear model (GLM) with
canonical link function (McCullagh and John, |1989).

To estimate the transition component, we define the empirical Bellman error for a value function
VS s Ras My(B | V) = X", (V(efa,) — (6p(af,af),8))” for h € [H]. Starting with
VHH(m) = 0, we then recursively compute 3, € R as

n

By = arg ;gﬂi@?p Mu(B | Vigr) + MBI = Z(Kh +ALy,) " (i, a7 Vi (@h40) s (8)

T=1
where A > 0 is some regularization parameter and Ay, = Y"_, ¢, (2], a} )¢, (], a])T. Here we
use ||v||2 = /(v,v) to denote the Euclidean norm of a vector v. An estimate of @} at time h is
(BrViy1)(z,a) = g(gzﬁr(x a)TQh) + ¢p(z, )" Bh. To obtain theoretical guarantees, we quantify
the deviation between B th+1 and the true Bellman operator B, Vh+1 on the same value function

Vh+1 using a pessimism-based uncertainty quantification technique (Jin et al.} 2021). The pessimism
technique deliberately underestimates value functions to ensure conservativeness in learning, which
provides robust theoretical guarantees in the presence of uncertainty.

We adopt the notion of a £&-Uncertainty Quantifier introduced by Jin et al.|(2021)).
Definition 1 (¢-Uncertainty Quantifier). We say {T)}2_, (T}, : S x A — R) is a &-uncertainty
quantifier of {By, Vi, 11}, if the event

& = {|(BnVi1)(x,a) — (ByViy1)(z,a)| < Th(z,a) forall (z,a) € S x A,h € [H]}  (9)

satisfies Pp(E) > 1 — &, where the probability is taken over the randomness in the generation of the
dataset D.

We then construct the uncertainty bound as:

fh(:c, a) = fnh(%a) + fp’h(:c, a), where (10)

Fon(@,) = @\ 3((60 (@,0),00))26, (2,0) S0 (F1) 61 (2, )

Byn(e,0) = apy/y(w,0) (R + Ma, )y, 0)
with two hyper-parameters «, and «, that control the confidence level and ¢ representing the
first-order derivative of g, and 5, (6,) = Y _'_; 9((¢r(aF,, ap), 00))p (2T, a7 ) (2T, aT)T. We will

show later that ', (z, ) is a £&-Uncertainty Quantifier for (Bj, Vj,41)(z, ) under some mild conditions
(Theorem[I)). We now define the pessimistically adjusted Q-function and the corresponding value
function:

Qn(x,a) = min{(BxVis1)(z,a) — Th(z,a), H — h + 1}+,
Vi(x) = (Qn(x, ), Tn(- | ©))a, where 7y (- | #) = argmax(Qp(z, ), 7a(- | )4

Th
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where min{z, y}* = max{min{z,y}, 0}. The procedure is summarized in Algorithm[B.1]

A key novelty of the proposed GPEVI algorithm is the decomposition of the total uncertainty Iy, (x,a)
into two interpretable components: the first part I',. 5, (z, a) captures uncertainty in reward estimation

and the second part I'y, 5, (z, a) captures uncertainty in transition dynamics. In contrast to prior
work such as PEVI (Jin et al.,[2021) for linear MDPs, which uses a single aggregated uncertainty
bound, our decomposed approach offers three advantages: (1) Interpretability: It provides a clearer
understanding of how reward and transition contribute to overall uncertainty; (2) Flexibility in semi-
supervised settings: Reward and transition models can be trained using datasets of different sizes or
sources; and (3) Adaptivity to GLMs: The reward uncertainty term explicitly includes g, reflecting
the local curvature of the link function and scaling uncertainty appropriately. This decomposition
is essential for extending pessimism-based methods beyond linear MDPs to the more expressive
GLMDP framework.

3.1.2 SEMI-SUPERVISED LEARNING ALGORITHM

In many practical applications, collecting fully labeled data can be costly and labor-intensive. Reward
annotations often require human expertise or specialized instrumentation, making them particularly
expensive to acquire. In contrast, state-action-next-state triplets (7, aj,, 2} ;) are often available
at much larger scales (Sonabend et al., [2020; [Konyushkova et al., [2020; [Hu et al., [2023)). This
observation motivates a semi-supervised learning approach that leverages both labeled data and more
readily available unlabeled data.

The modular structure of our GLMDP framework naturally supports such an approach. Since the
reward and transition models are parameterized independently, we can estimate the reward parameters
;. using the labeled dataset D, and estimate the transition parameter 3} using both the labeled dataset

D and an unlabeled dataset D,, = {(x7, a;)}:;ﬂlf T

Our proposed semi-supervised algorithm, SS-GPEVI, summarized in Algorithm [B.2] builds upon the
fully supervised GPEVI, but introduces key modifications to incorporate unlabeled data for improved
sample efficiency.

Specifically, we estimate 3} using both labeled and unlabeled datasets:

n+N
~ ~ . N
Bn = (A + A1a,) ™" > dp(ah, ap) Vi (27,41), (1)
T=1
where A, = EZ;“{V o(27, a7 )¢, (27, al) T includes contributions from both datasets. Similarly,
we construct the uncertainty quantifier using information from both datasets:

fh(x, a) = f,.JL(a:, a) + fpyh(x, a), where (12)

~

Byn(@,0) = ap\/ép(w, @) T (Rn + Ay, )~y (w,a).

3.2 ONLINE REINFORCEMENT LEARNING

While the offline setting is valuable for scenarios with pre-collected data, many applications require
real-time learning through environment interaction. In the online setting, the agent sequentially
interacts with the GLMDP environment over 1" episodes where the length of each episode is H,
aiming to maximize cumulative reward while learning the optimal policy.

3.2.1 PROBLEM FORMULATION

In the online RL setting, at episode ¢ € [T], the agent interacts with the episodic MDP as follows:
starting from a fixed initial state 21, € S, at step h € [H] the agent follows policy m; = {m ¢ }L
to select action ay, ¢, receives reward 7, ¢, and transitions to the next state 5,41 ¢. This interaction
continues until the terminal step H is reached.

We measure the performance of a T-episode online algorithm with initial state x by its cumulative
regret: R(x) =TV (z) — E [Zthl Zthl rh’t} where the expectation is taken over all randomness

in the algorithm and environment.
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3.2.2 GENERALIZED LEAST-SQUARES VALUE ITERATION WITH UCB

For the online setting, we propose the Generalized Least-Squares Value Iteration with Upper Confi-
dence Bound (GLSVI-UCB) algorithm. Unlike the offline pessimistic approach, the online algorithm
employs optimistic exploration through upper confidence bounds to encourage exploration of poten-
tially rewarding state-action pairs.

The key insight is to adapt the principle of optimism in the face of uncertainty to the GLMDP
framework. At each episode ¢, we maintain estimates of both reward parameters 6}, ; and transition
parameters [35, ;, along with confidence sets that guide exploration.

For reward estimation, we solve the regularized GLM problem:
¢

~ . 1
eh,t = arg HHIHI;?JW ; Z (_Th,7'<¢’l‘(xh,7'7 ah,T)a 9) + G(<¢T (xhﬂ'a ah,7)7 9>)) (13)

—
where M > 0 is a bound on ||¢:||2 and G is the primitive function of the link function g.

For transition estimation, we use least-squares regression:
t
—~ . _
Bht = E Ay i bp(Thryan,r) max Qnt1,t(Thi1,r,a) (14)
’ a

T=1
t . .. . .
where Ap ¢ =Y, dp(@h 7, ah_,T)Tgi)p(xh_,T, an,r) + 1g, is the empirical covariance matrix.

The algorithm maintains optimistic Q-function estimates:

Qu(w,0) = win { H = h+1,9(60(2,0) ) + 6p(2,@) B + Tl @) + Tpa(w,a)
(15)

where the confidence bounds are: T, j(x,a) = 'yr||(/>r(x,a)|\,\,;1 and Tppi(z,a) =

ol 6@,y With A, = 3 60 (@, @1,r) 6 (@h. 7. anr) + L, and appropriate confi-
dence parameters ., Yp.

3.2.3 ONLINE ALGORITHM

The GLSVI-UCB algorithm, detailed in Algorithm[B.3] seamlessly integrates the structural properties
of GLMDPs with the optimistic exploration principle. Its key innovation lies in the decomposed
confidence bounds, I';. 5, , and ", , , which separately account for uncertainty in reward and transition
estimation. Unlike the pessimistic orientation of our offline algorithms, this approach adds an
uncertainty bonus to the estimated Q-values, embodying the principle of "optimism in the face of
uncertainty."

This optimistic construction encourages the agent to systematically explore state-action pairs for
which its model is uncertain, as these hold the greatest potential for learning. The magnitude of
this exploration is dynamically controlled: as more data is gathered through interaction with the
environment, as captured by the covariance matrices Ay ; and A}, ;, the confidence bounds shrink.
This mechanism ensures an efficient and adaptive transition from an initial, broad exploration to a
more focused exploitation of learned high-value actions over time.

4 THEORETICAL ANALYSIS

In this section, we establish theoretical performance guarantees for our proposed algorithms under
both offline and online settings. Our analysis reveals the fundamental trade-offs between sample
complexity, model expressiveness, and algorithmic design choices.

4.1 OFFLINE REINFORCEMENT LEARNING: THEORETICAL ANALYSIS

We begin by analyzing the performance of our offline algorithms under a set of regularity assumptions
that ensure the well-posedness of the GLMDP framework.
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Assumption 1. The link function g(-) has bounded first- and second-order derivatives, denoted
g and §, respectively. In particular, there exists a constant L > 0 such that for all u,v € R,
|g(u) — g(v)| < L|u — v|. Furthermore, the inequality |G| < ¢ holds everywhere.

Assumption |l| imposes smoothness and pseudo self-concordance properties on the link function,
which are crucial for controlling approximation errors in GLMs (see, e.g., |(Ostrovskii and Bach
(2021))). Common link functions such as the identity and logistic functions satisfy this assumption.
We further define the following matrices:

Sh(0n) = Ex [§((r(Th, an), 0n))br (xh, an)pr(zh, an)'] and Ap = Ex [¢p(an, an)dp(an, an)'].
Assumption 2. We have Ay, (Eh(G;‘L)) > p > 0 for some constant p.

Assumption [2] guarantees sufficient variability in the feature representations by ensuring that
the covariance matrix X, (0;) is well-conditioned. For technical simplicity, we assume that

maxc{[|r (z, )3, ¢, (z,0)[3} < 1 for all (z,a) S| < /. where we de-

fine || wn(S) || = Js H () ||2dx. These regularity assumptions are common in the literature and
can be satisfied with suitable normalization.

Theorem 1 (Suboptimality for GPEVI). Under Assumptions[l2] we set A\ = 1, a, = ¢,\/d, log HJ,
ap = ¢y (dp + dy) Hy/C, where ¢ = log (2 (d +d,) Hn/€), ¢, ¢, > 0 are absolute constants and
£€(0,1)is the conﬁdence parameter. Then Fh in equation|10|is a &-uncertainty quantifier of IB%h

w.r.t. value function Vh+1 For any x € S and n large enough, @ = {ﬂ'h}h L in Algorlthm
satisfies

H
SubOpt (7; z) < 2 ZE”* {fh(:ma) | 21 = :c}
with probability at least 1 — {. Here B« is taken with respect to the trajectory induced by 7" in the
underlying MDP given the fixed Ay, and 31, (6},).

This theorem establishes a probabilistic upper bound on the suboptimality of the policy 7 produced

by the GPEVI algorithm. The bound is expressed in terms of the confidence bounds I'y,(z, a),
which quantify the uncertainty in our value function estimates. The suboptimality bound scales with
the horizon length H, reflecting the compounding effect of errors across time steps in sequential
decision-making problems.

Corollary 2. Under the assumptions of Theorem if Amin(Ar) > 0, we have for n large enough,

SubOpt (7;2) < O ( W) L0 (\/(dp +d,)2H*log ((d, + dT)Hn/g))

n

with probability at least 1 — £. Besides,

~ d,log(H
max || — 052 < dy log(HJ/€)
he[H] n

holds with probability at least 1 — & for some constant ¢ > 0.

The bound decreases at a rate of O(1/+/n) with respect to the number of labeled samples n, which is
optimal in the parametric setting under standard assumptions. The dependence on the dimensions d,.
and d,, illustrates the curse of dimensionality inherent in reinforcement learning problems.

Comparison with existing work. Our theoretical bound naturally specializes to the standard linear
MDP setting, enabling direct comparison with PEVI (Jin et al.,|2021)) while maintaining the same
suboptimality rate. Here, PEVI operates under the assumption that d,, = d,, with g being the identity
mapping. Furthermore, while existing literature explores more general models (Xie et al., 2021}
Zanette et al, [2021)) that are similar to our GLMDP framework, their proposed algorithms often
suffer from either computational intractability or reliance on substantially stronger assumptions. For
instance, [Xie et al|(2021)) proposes an algorithm with detailed theoretical analysis for cases like
linear function approximation, but it lacks computational feasibility, whereas |Zanette et al.| (2021)
imposes the restrictive requirement that the Q-function must admit a linear structure.



Under review as a conference paper at ICLR 2026

Theorem 2 (Suboptimality for SS-GPEVI). Under Assumptions we set A = 1, a, =
cr\/drlog H/E, oy, = ¢ (dp + dy) Hy/C, where ¢ = log (2 (dy + d,) Hn/€), ¢, ¢, > 0 are abso-
lute constants and § € (0, 1) is the confidence parameter. Then fh in equationis a &-uncertainty
quantifier of By, wrt. value function YA/;H_l. For any x € S and n large enough, @ = {7 }/_ | in
Algorithm[B.2) satisfies,

H

H
SubOpt(7; x) Z [ rh(Th, ap) +2Fh(:1ch,ah) | 21 = x} + ZE; [Arr | 71 = 2]
et h=1

3/4

with probability at least 1 — &, where A,,, = 0 ( o 4) represents the additional error arising from
the mismatch between the reward uncertainty quantifiers in the semi-supervised setting.

Corollary 3. Under the assumptions of Theorem 2} if Apin(Ar) > p, then we have for n large
enough,

SubOpt(7;z) < O ( dTHQI‘;g(H/ﬁ)> 10 \/(dp +d,)? H*log (z (JcrlT]\;L dy) H(n+ N)/£)

with probability at least 1 — &, which is strictly better than the bound for the supervised approach
when N > 0.

Corollary [3]characterizes the performance guarantees of our SS-GPEVI algorithm. The bound consists
of two primary components: the first term, scaling as 0] (\/dTH 2/ n), captures the uncertainty in
reward estimation and depends solely on the size of the labeled dataset n. The second term, scaling

as O \/ (dp + d,)? H*/(n + N) |, reflects the uncertainty in transition dynamics estimation and
crucially benefits from both labeled and unlabeled data.

A key advantage of our semi-supervised approach arises when N > n. In particular, when d), > d,
and N > nH?dZ/d,, SS-GPEVI achieves a rate of 0] (w/ d.H?/ n) , which significantly outper-

forms the rate of a purely supervised approach, O ( (dp + dT)2 H4/ n) This result rigorously

demonstrates the benefits of incorporating unlabeled data in RL, especially in scenarios where labeled
data are scarce or costly to obtain.

4.2 ONLINE REINFORCEMENT LEARNING: THEORETICAL ANALYSIS

We now turn to the theoretical analysis of our online algorithm, GLSVI-UCB. The online setting
presents additional challenges due to the need to balance exploration and exploitation while learning
from sequential interactions.

Assumption 3. There exist constants 0 < k < K < oo such that k < g(u) < K forallu € R.
Assumption 4. For any h € [H], we have ||6}||2 < M for some known constant M > 0, and

[1n(S)|| < v/dp-

Assumption [3|ensures that the link function derivative is bounded away from zero and infinity, which
is essential for the stability of the GLM estimation. Assumption ff] provides a known bound on the
reward parameters, which is typical in online learning settings to ensure proper regularization.

Theorem 3 (Regret Bound for GLSVI-UCB). Under Assumptions and Sor any fixed pg € (0,1),
if we set

3+ 16[d, In(2MT) + In(3TH/po)]
k

Yp = cpdypH\/In(3d,TH/po) (17)

=K -\/4M?2 + (16)
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where c, > 0 is a sufficiently large absolute constant, then for any fixed initial state x € S, the regret
of Algorithm[B.3] satisfies

R(z) < HVT (fy,.\/Qd,. In(1+4 T/d,) + vpy/2d, In(1 + T/dp)> ++/21In(6/po)TH3
= O (d, +/TH"a3)

with probability at least 1 — pg.

This theorem establishes a regret bound for our online algorithm that scales with O (dr +/TH*d3).

The dependence on d,. appears only logarithmically (hidden in the 9] notation), while the dependence
on d,, is more substantial. This reflects the fundamental difference in complexity between reward and
transition estimation in the GLMDP framework.

Comparison with existing online RL results. Our regret bound is comparable to existing results

for structured MDPs. For linear MDPs, Jin et al.| (2020) achieve O(Vd3®H*T) regret where d
is the common feature dimension. Our bound shows that the GLMDP framework, while more
expressive, maintains similar regret scaling with respect to the transition feature dimension d,,, with
only logarithmic dependence on the reward feature dimension d,.. This suggests that the additional
expressiveness of GLMDPs comes at minimal cost in terms of online learning performance.

The key insight from our theoretical analysis is that the modular structure of GLMDPs—separating
reward and transition modeling—enables both improved sample efficiency (especially in semi-
supervised settings) and maintains favorable regret properties in online learning. This demonstrates
the practical value of our framework across different learning paradigms.

5 DISCUSSION AND CONCLUSION

This work introduces the GLMDP framework, which extends classical linear MDPs by incorporating
nonlinear link functions into the reward model. This enhancement enables the modeling of a broad
class of reward structures, including binary and count-value rewards, thereby addressing a critical
limitation of prior linear MDP approaches. Importantly, the GLMDP framework retains the theoretical
tractability of linear models while significantly broadening their applicability to real-world domains
such as healthcare, recommendation systems, and finance.

A central feature of our approach is the use of separate feature maps for rewards and transitions,
which increases modeling flexibility and enables an efficient semi-supervised learning strategy. Cru-
cially, our method avoids the need to impute missing rewards—a major challenge in semi-supervised
reinforcement learning—by estimating the transition model from both labeled and unlabeled data
while using only labeled data for reward learning. Our theoretical analysis establishes that the
proposed SS-GPEVI algorithm can achieve performance comparable to fully supervised methods,
even when labeled data is limited.

While Assumption [2| provides cleaner theoretical bounds as shown in Theorem |1} we emphasize
that analogous results can be established even in its absence. This relaxation, however, necessitates
a modified estimation procedure for §; —specifically, the introduction of a {5-penalty term. We
formalize this extension in Theorem M.3 in Appendix M, where we derive a suboptimality upper
bound that depends on the regularization parameter, which is looser than the bound stated in Theorem
[T}—this represents the trade-off for relaxing this assumption.

The GLMDP framework provides an extensible foundation for generalizing a broad class of linear
MDP algorithms, such as model-based (Yang and Wang, [2020), online, or offline methods (Du et al.|
2019; Xiong et al.l 2022), to accommodate complex reward structures while retaining computational
efficiency. A key feature is its support for temporally heterogeneous rewards via step-dependent link
functions. This allows for more realistic modeling in domains like clinical decision-making, where
outcomes may shift from continuous vital signs to binary survival events.
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A RELATED WORKS

The linear MDP model has gained substantial attention in RL due to its interpretability and favorable
theoretical properties. By employing linear function approximation, this model enables generalization
across large state-action spaces under the assumption of linearity in both the transition dynamics and
reward functions, as defined via predefined feature maps. This structural simplicity has enabled the
development of provably efficient algorithms with sublinear sample complexity (Yang and Wang]
2019} Jin et al., [2020; Duan et al., [2020; Jin et al.| 2021} e.g.). Moreover, the framework has been
successfully extended to multitask RL (Lu et al.} 2021) and federated learning settings (Zhou et al.,
2024). A key advantage of linear MDPs lies in their preservation of Q-function linearity under
arbitrary policies which facilitates tractable analysis and efficient computation.

Despite these strengths, the expressive power of linear MDPs remains limited, particularly in rep-
resenting non-continuous rewards, such as binary and count-like outcomes, that frequently arise in
real-world applications, including healthcare, recommendation systems, and autonomous driving
(Gottesman et al., 20195 |Chen et al., 2019; Kendall et al., 2019). To address these limitations, recent
studies have sought to enhance the flexibility of linear MDPs while retaining their theoretical benefits.

For example, |[Wang et al.[| (2019) proposed a Q-learning algorithm using GLMs to approximate
the Bellman operator such that E [y, (zp,an) +V (xp) | 2n = z,ap = a] = f ((¢(x, a),0)) for
any value function V, where f is a known link function and ¢ is a feature map. Their approach
approximates the optimal Q-function using a link function applied to linearly combined state-
action features, and maintains optimistic value estimates to encourage exploration. Under a new
expressivity assumption called ‘optimistic closure’, they prove their algorithm achieves a regret

bound of O(H?v/d3T') where d is the dimension of ¢ and 7 is the number of episodes, and H is the
length of an episode. Furthermore, Wang et al.| (2020) proposed a provably efficient algorithm with
a general value function via bounded Eluder dimension which could extend linear MDP to general
function classes. However the regret bound demonstrated in this paper is less tight than |Jin et al.
(2020) and Wang et al.| (2019), where the function class is respectively restricted to linear functions
and generalized linear functions.

In a complementary direction, Modi and Tewar1|(2019) extended GLMs to model transition probabili-
ties while maintaining linearity for rewards, further illustrating the growing interest in structured yet
expressive models. These works collectively motivate the development of new frameworks that better
balance expressiveness and sample efficiency.

In parallel, deep neural networks have significantly advanced offline RL by capturing complex,
non-linear relationships without reliance on hand-crafted features (Shakya et al., [ 2023). Conservative
Q-Learning (CQL) (Kumar et al.,2020) mitigates distributional shift by conservatively estimating
out-of-distribution (OOD) Q-values. Subsequent variants, such as Mildly Conservative Q-Learning
(MCQ) (Lyu et al.l 2022), refine this approach to better balance conservatism and generalization.

However, a critical distinction lies in the sample complexity: while linear methods enjoy explicit
theoretical guarantees, including finite-sample performance bounds (Jin et al., [2021)), deep networks
generally require significantly more data to avoid overfitting, often scaling exponentially with model
depth in worst-case scenarios. This contrast has important practical implications. In data-constrained
environments, linear models may outperform deep counterparts; conversely, in data-rich scenarios,
deep networks can capitalize on their greater representational power.

Hybrid approaches have emerged to bridge this gap through semi-supervised learning. Notably,
Konyushkova et al.[(2020) introduced one of the first semi-supervised frameworks for reward learning
with limited annotations, achieving performance comparable to fully supervised methods. Building
on this, |Zheng et al.|(2023)) developed an offline RL method for action-free trajectories, using inverse
dynamics models to generate proxy rewards and achieving competitive performance on standard
benchmarks with as little as 10% labeled data.

Theoretical support for these methods has been provided by [Hu et al.| (2023), who established
performance guarantees for semi-supervised RL under reduced labeling regimes. Unlike approaches
reliant on inverse dynamics or pseudo-labeling (Zhang et al., 2022), our framework decouples the
reward and transition models, thereby eliminating the need for reward imputation in unlabeled
trajectories.
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This design aligns with the minimalist principle advocated by Fujimoto and Gu| (2021]), which
emphasizes that simple modifications to standard RL pipelines can rival complex offline methods.
We extend this perspective by integrating the pessimistic value iteration strategy (Jin et al., 2021}
Xie and Jiang| 2021)) with a semi-supervised learning paradigm, offering a unified solution that is
practical, statistically efficient, and algorithmically simple.

B ALGORITHM PSEUDOCODE

This section provides the detailed pseudocode for the algorithms discussed in Section 3]

Algorithm B.1 Generalized PEssimistic Value Iteration (GPEVI)

H
1: Input: Dataset D = {({L};, aj,, rﬁ)}ihzl; hyperparameters A, o, ap, §.

2: Initialization: set Vi1 (z) < 0.
3: for steph=H,H—1,...,1do

4: Obtain §h from equatio and Eh from equation
5: Set I'j,(-,-) as equation

6 Set @h(x, a) < min {g((br(os, a)Tgh) + ¢p(z, a)TEh — fh(x, a), H—h+ 1}+.
7 Set %;h( ‘ ) <_~arg maXsg, <@h('7 ')aﬂ—h(' ‘ )>A

8 Set Vh() < <Qh('; ')»%h(‘ | )>A

9

: Output: 7 = {7, }L,.

Algorithm B.2 Semi-Supervised Generalized PEssimistic Value Iteration (SS-GPEVI)
1: Input: Labeled dataset D, unlabeled dataset D,,; hyperparameters A, a., o, &.

2: Initialization: set V1 (z) < 0.

3: for steph=H,H—1,...,1do

4: Obtain 6, from equation|7|using D.

Obtain Eh from equation|11|using both D and D,,.

Set 'y, (-, -) as equation

Set @h(:r, a) < min {g(gﬁr(:c,a)Tgh) + d)p(m,a)TB\h - fh(x,a), H—-h+ 1}+.
Set 74 (- | -) « argmaxy, (Qn(),mn(- | ) .

9:  Set V() = (Qu(, ), 7n(- | )

10: Output: 7 = {7, }HL ;.

i A

Algorithm B.3 Generalized Least Square Value Iteration with UCB (GLSVI-UCB).

1: Input: hyperparameter v, .

2: Initialize estimates Q_hp = H forall h < H and QH+1,t =0foralll <t<T;

3: fort=1,2,---,T do

4 Commit to policy 7 () = arg maxae 4 Qn.¢—1(7, a);

5 Use policy 7. ; to collect one trajectory {(xp, ¢, an,t, rh,t)}le where we start with the initial
state x whent = 1;

6 forh=H, H—-1,---,1do

7: Set é\h,t as equation

g -

9

Set @L,t as equation
Set Qn.+(z,a) as equation
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Figure 1: Experimental results for fully labeled data across different parameter configurations

C SIMULATION STUDIES

C.1 FULL LABELED DATA

We conduct comprehensive experimental evaluations to assess the performance of our proposed
methods across varying dimensions, action space cardinalities, and episode counts. Our experiments
focus on two fundamental tasks: logistic regression and beta regression.

Logistic regression and beta regression experiments utilize the logit link function and generate
simulation data using a consistent Markov Decision Process framework. For each timestep h €
[H], we sample random parameter vectors 6, € R? from an element-wise Uniform(—0.5,0.5)
distribution. We generate rewards using two distinct probability distributions: a binomial distribution

rp, ~ Binomial(1, 51gm01d (;5 h, ah ) for logistic regression tasks and a beta distribution
ry, ~ Beta(sigmoid(p(xp, apn)* 0y),1 — s1gm01d(q§(xh, an)?0y)) for beta regression tasks, where
o(xp, ap) represents our feature mappmg function that incorporates state-action interactions and
normalizes state vectors.

Throughout our simulations, we maintain consistency by using identical mapping functions ¢ for
both reward (¢,.) and transition probability (¢,) modeling, as well as uniform state dimensions
(dr = dp, = d). Our feature mapping pipeline first normalizes states by their L2 norm, then constructs
a sparse representation where only elements corresponding to the selected action are non-zero,
yielding a feature vector of size d - |4, where d denotes the state dimension and |.4] represents the
cardinality of the action space.

For state transitions, we employ a rejection sampling methodology where candidate next states are
sampled from Uniform(—0.5,0.5)? and accepted with probability:

o (xp - (ap + 1) +ap/d, exp($h+1)>>
a = min <1, S 2nir - (an + 1) + an (C.1)

where 1z, represents the current state, ay, denotes the selected action, > 241 indicates the scalar
value obtained by summing all components of the state vector zj 1, and x4 represents the proposed
next state.

Our experimental design spans multiple parameter configurations: action space cardinalities |A| €
{2, 3,4}, dimensionalities d € {8, 10, 12}, and episode counts n € {1000, 1500, 2000, 2500}.
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We implement and compare the following methods to validate our Algorithm [B.T} (1) GPEVI (our
proposed method), (2) LPEVI (Linear PEssimistic Value Iteration), (3) single Q-learning, and (4)
global Q-learning. The LPEVI method approximates the value function using linear regression
following Jin et al.| (2021)), employing ordinary least squares to estimate Q-functions that are linear in
¢(x,a). Single Q-learning utilizes a single Q-function across all timesteps, while global Q-learning
trains a unified Q-function using trajectory data from all timesteps.

Based on our theoretical analysis in Section 4] we set the regularization parameter A = 1. The
parameter £, which defines the probability bounds for suboptimality guarantees, is set to £ = 0.01.
For simplicity, we use identical values for the hyperparameters ¢, and c, in both Algorithm B.T]and
Algorithm [B.2] We employ 5-fold cross-validation to determine the optimal hyperparameter ¢ from
the set {0.005,0.001,0.0005,0.0001} using the training dataset and the step-importance sampling
estimator (Gottesman et al., 2018} [Thomas and Brunskill| 2016).

For data generation, we adopt a combined policy approach where actions are selected optimally with
70% probability and randomly with 30% probability, ensuring balanced exploration and exploitation
in the training data. For evaluation, we use a test dataset of size 250. Each simulation is repeated 100
times to ensure statistical significance.

Figure [T| presents our comprehensive experimental results for logistic and beta regression. Across
all parameter configurations—varying |.A|, d, and n—GPEVI consistently demonstrates superior
performance in terms of mean value compared to baseline methods.

== GPEVI —@— SS-GPEVI GPEVI Labeled —#— LPEVI Labeled == Single Q-learning Labeled Global Q-learning Labeled
— —+ | 45| +
44 ./r/’/. //
4.4
——
c
o043
= 4.3
c
>
w
042 4.2 /
=
2
4.1 4.1
4.0 4.0
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Labeled Data Ratio Labeled Data Ratio
(a) (d,n+N,|A|,H)=(12,1000, 4, 8) (b) (d,n+N,|A|, H)=(12,1500, 4, 8)
Logistic Regression Beta Regression

Figure 2: Experimental results for semi-supervised learning across different labeled data ratios

C.2 SEMI-SUPERVISED LEARNING

To evaluate the effectiveness of our proposed Algorithm [B.2] we conduct experiments in semi-
supervised learning settings. We compare the following methods: (1) GPEVI with the full dataset of
n + N samples treated as if all were labeled, (2) SS-GPEVI that properly differentiates between the
n labeled and N unlabeled samples, (3) GPEVI trained using only the n labeled samples, (4) LPEVI
trained using only the n labeled samples, (5) single Q-learning trained using only the n labeled
samples, and (6) global Q-learning trained using only the n labeled samples.

Our experimental configuration for logistic regression sets d = 12, total dataset size n + N = 1000,
action space cardinality |.4| = 4, and horizon H = 8. For beta regression tasks, we use d = 12,
n+ N = 1500, | A| = 4, and H = 8. The labeled data ratio is defined as MLN, where n represents
the number of labeled samples and [V the number of unlabeled samples. For both data generation and

evaluation, we follow the same procedures used in the fully labeled setting.

Figure [2| presents our results across varying labeled data ratios for logistic and beta regression.
As expected, GPEVI with complete data (assuming all samples are labeled) achieves the highest
performance across all experimental conditions. However, our proposed SS-GPEVI demonstrates
remarkably competitive performance, closely approaching that of the fully supervised variant while
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substantially outperforming all baseline methods that utilize only labeled data. This validates the
efficacy of our semi-supervised approach in effectively leveraging unlabeled data.

D SIMULATION ENVIRONMENT STUDY

=
N

c 1.0

o == GPEVI

0os mEm SS-GPEVI
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o

Figure 3: Experimental results on PointMaze dataset with labeled dataset size n = 1000 and unlabeled
dataset size N = 1500. Error bars represent standard deviations across 100 independent runs.

To validate the practical applicability of our proposed methods, we conduct experiments on the
PointMaze offline reinforcement learning benchmark datasets. Specifically, we utilize the PointMaze
Medium Dense-v3 simulation environment, where an agent follows waypoints generated through
Q-Iteration using a PD controller until successfully reaching designated goal locations (Fu et al.|
2020).

The simulation environment features a continuous task structure where the agent maintains its current
position upon reaching a goal, while the environment generates a new random goal location, creating
an ongoing navigation challenge. The reward structure employs a dense reward function, calculated
as the negative exponential of the Euclidean distance between the agent’s current position and the
target goal. To ensure diverse trajectory exploration and increase path variance, random Gaussian
noise is injected into the agent’s action selection process.

The original dataset comprises 4, 752 episodes with a 2-dimensional continuous action space. To
align with our discrete action framework, we discretize the action dimension into 8 distinct actions, as
required by our algorithm. For computational efficiency, we truncate episodes to a maximum horizon
of H = 25 timesteps, retaining only the first 25 steps of longer episodes. The state representation has
dimensionality d = 4.

Given that the reward values are bounded in the interval (0, 1), we employ beta regression with a
logit link function to approximate the value function, which provides a more appropriate probabilistic
modeling framework for bounded outcomes compared to traditional linear regression approaches.

For our experimental setup, we allocate n = 1000 labeled samples and N = 1500 unlabeled samples
for training, while reserving a separate test set of size 250 for evaluation. We compare the following
approaches: (1) GPEVI with the full dataset of n + N samples treated as if all were labeled, (2)
SS-GPEVI that properly differentiates between the n labeled and N unlabeled samples, (3) GPEVI
trained using only the n labeled samples, (4) LPEVI trained using only the n labeled samples, (5)
single Q-learning trained using only the n labeled samples, and (6) global Q-learning trained using
only the n labeled samples. To ensure statistical reliability, all experiments are repeated 100 times.

Performance comparison is based on estimated value functions computed via a step-importance
sampling estimator (Gottesman et al., [2018; Thomas and Brunskill, 2016). The results, summarized
in Figure 3] demonstrate that our proposed methods consistently outperform baseline approaches.
Specifically, GPEVI with all n + N samples treated as labeled (representing an idealized scenario
with complete reward knowledge) achieves an average estimated value of 1.233, our SS-GPEVI
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(properly using n labeled and N unlabeled samples) achieves 1.112, while GPEVI utilizing only
the n labeled samples reaches 1.046. These results substantially exceed the performance of LPEVI
and Q-learning baselines. Notably, our SS-GPEVI outperforms the labeled-only GPEVI counterpart,
aligning with our theoretical insights on the benefits of incorporating unlabeled data. Additionally,
all variants of our method exhibit low standard deviations across runs, demonstrating robustness and
consistency in performance.

E DISCcUSSION ON UNBOUNDED REWARD FUNCTIONS

Assumption E.1. The reward noise is sub-Gaussian; that is, for all x € S and a € A, the random
variable ry(z,a) — g({(¢r(z, a), 0})) is sub-Gaussian.

Assumption [E.1] guarantees well-behaved reward noise with desirable concentration properties.
Compared to existing literature (e.g., Jin et al.| (2021); |Xie et al.[| (2021))) that typically assumes
bounded rewards for analytical simplicity, our sub-Gaussian condition represents a strictly weaker
requirement. Moreover, when rewards are bounded, Assumption [E.T]is naturally satisfied.

In contrast toJin et al.|(2021), which constrains rewards to the interval [0, 1], our framework accom-
modates arbitrary reward ranges, necessitating the standardization of function g in Algorithm[B.1] To
formalize this extension, we take gmax as an arbitrary constant larger than SUP|z| <supy, ez 1165 12 g(z)
and g, as an arbitrary constant smaller than inf |z| <supn e 107 |I2 g(z). We then establish the
normalized uncertainty bound:

~ r r r ~ ~
Fh,nTm = L = rh L ph = FT,h,nrm + prh,nrm (E.2)

9max — Ymin 9Imax — Ymin

This normalization enables us to define the normalized Q-function and its corresponding value
function as:

thmrm(af, a) = min { (@hf/hﬂ) (2, @) nrm — fh,nrm(x,a)’ H—ht 1}+

‘N/h,nrm(m) = <©h,nrm($v ')a%h,nrm(' | x)>A

where the normalized reward function is defined as:

9 (#+(2.0) 1) = g

9max — Ymin

Jnrm ((rb’f' (x, a)Tgh) ==
The normalized Bellman operator is defined as:

(@hf}h-‘rl) (T, @) nrm = Gnrm (Qbr(l’,a)Tgh) + ¢p(l‘, a)TEh,nrm’

where
n

Eh,nrm = Z(Kh + )\Idp)_l¢p(x;7 a;)vthl,nrm(x;—H»l)' (E3)

T=1

and the normalized policy:

%h,'rw'm(' | JJ) = argmax <@h,n7"m(aj7 ')77Th(' | x)>A

Th

Based on these definitions, we extend the GPEVI algorithm to handle unbounded rewards in Al-
gorithm[E.4] Similarly, for the semi-supervised variant (SS-GPEVI), we define the corresponding
normalized uncertainty quantifier:

. P TonsTon - .
Fh,nrm = == B = Fr,hﬂnrm + Fpﬁ,nrm (E4)

Jmax 9max — Gmin
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and
6h,nrm = Z (Ah + /\Idp)71¢p(-rga a;;)‘/h+1,nrm(x;rz+1) ) (E.5)
T=1

The complete procedures for both approaches are systematically presented in Algorithm [E.4] and
Algorithm [E.5] respectively.

Algorithm E.4 GPEVI for Unbounded Rewards

1: Input: Dataset D = {( xh,ah,rh)} ; hyperparameters \, o, o, &.

7,h=1"

2: Initialization: set VH+17nmn( x) « 0.

3: for steph=H,H—1,...,1do

4: Obtain 6, from equation and S, pnrm from equation
Set Ty e (¢ ) as equation

~ . T ~ ~ +
Set Qh,nrm(xy a) < min {gnrm (d)'r‘(xa a) ah) + d)p(mv a)Tﬁh,nrm - Fh,nrm(xv (L), H—h + 1}

Set Vh,nrm(') — <@h,n7‘m( ) 7Th nrm >.A

5
6
7. Set Fpnem(- | -) < argmaxy, (Qn, nrm( () 4
8
9: Output: Ty = {%h,nrm}thl'

Algorithm E.5 SS-GPEVI for Unbounded Rewards

1: Input: Labeled dataset D, unlabeled dataset D,,; hyperparameters A, o, oy, &.
2: Initialization: set XA/HH,Wm(x) + 0.
3: for steph=H,H—1,...,1do
4: Obtain §h, from equationusing D.
: Obtain marm from equation using both D and D,,.

~ ~ ~ -~ +
Set Qh,nrm(za a) < min {gm"m <¢r(xa a)Tah) + ¢p($a a)T/Bh,nrm - Fh,'m‘m(xa (Z), H—h+ 1}

5:
6: Set fh’m,m(-, -) as equation
7
8

o Set Tpppm(- | ) — argmaxm (Qn, nrm( () 4
9: Set thrm(') — <Qh,nrm( ) 7Th nrm >.A
10: Output: Ty = {Fhnrm HL .

We could also get similar theory guarantees for these two algorithms as follows:

Theorem E.1. Under Assumptions andm we set A\ = 1, ap = ¢p/dylogH/E, oy =
¢p(Gmax — Gmin) (dp + dy) H\/C, where ¢ = log (2 (d, + d,) Hn/E), ¢, ¢, > 0 are absolute
constants and £ € (0, 1) is the confidence parameter. Then Fh,mm in equatzon is a &-uncertainty
quantifier of @h w.r.t. value function ‘7h+1,nrm- For any x € S and n large enough, Ty =

{%h,nrm}thl in Algorithm satisfies
H
SubOpt Tnrm; T Z [Fh z,a) |z = :17]

with probability at least 1 — . Here E .« is taken wzth respect to the trajectory induced by 7 in the
underlying MDP given the fixed Ay, and Eh(ﬁh)

Corollary E.1. Under the assumptions of Theorem if Amin(Ar) > 0, we have for n large enough,
d, H? log(H /€) )

n

SubOpt (%nrm; 17) <0 (

n

<0 ( e —omn)(Gy + & P Iog (5 dr)Hn/e))
with probability at least 1 — &.
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Theorem E.2. Under Assumptions andn we set X = 1, ap = ¢pv/drlogH/E, o =
¢p(Gmax — Gmin) (dp + dy) H\/C, where ¢ = log (2 (d, + d,) Hn/E), ¢, ¢, > 0 are absolute
constants and § € (0, 1) is the confidence parameter. Then fh in equation is a &-uncertainty
quantifier of @h w.r.t. value function \7h+1,mm. For any x € S and n large enough, Ty =

{Th nrm }le in Algorithm IIZ5] satisfies,

SubOpPt(Trrm; ) < Y Ere [Fr,h(xmah) + 2T (zh, ap) | 21 = 33}

M= 11

+

B [Berr [ 21 = 7]

>
Il

1

~ 3/4
with probability at least 1 — &, where A,,, = O (%) represents the additional error arising from
the mismatch between the reward uncertainty quantifiers in the semi-supervised setting. Specifically,
Aerr accounts for the difference between using 0y, (estimated from labeled data) and 0, (the true

parameter) in the uncertainty quantification when constructing the pessimistic value functions.

Corollary E.2. Under the assumptions of Theorem if Amin(AR) > p, then we have for n large
enough,

2
b0t 5,50) < 0 o HE A

+0 \/(gmax — Guin)? (dp + dr)* H*log (2 (d, + dp,) H(n + N) /€)
n+ N

with probability at least 1 — &, which is strictly better than the bound for the supervised approach
when N > 0.

Impact of Reward Scale on Theoretical Guarantees. Corollaries [E.T|and [E.2]reveal a critical
insight: the suboptimality bounds for both algorithms exhibit explicit dependence on the range of
rewards, (gmaz — 9gmin), in the second term. This dependence emerges from the normalization
procedure and has important implications. Particularly, for problems with large reward ranges, the
second term in the bound may dominate, potentially resulting in performance degradation. This
observation aligns with intuition—in settings where rewards vary dramatically, accurately estimating
the transition dynamics becomes more challenging as errors are amplified by the reward scale.

Semi-Supervised Advantage with Unbounded Rewards. The advantage of the semi-supervised
approach, as quantified in Corollary [E.2] persists in the unbounded reward setting, with the crucial
benefit that the term containing (gmax — gmin) benefits from the enlarged sample size (n + N). This
suggests that semi-supervised learning provides particularly significant advantages in unbounded
reward scenarios, as the reduction in uncertainty regarding transition dynamics helps mitigate the
amplification effect of large reward ranges. Specifically, when N > n and d,, > d,., the second term
in the bound is substantially reduced compared to the supervised approach, yielding performance
improvements that scale with both the reward range and the ratio of unlabeled to labeled data.

F PROOF OF PROPOSITION 1]

GLMDP is Bellman complete with respect to the following function class
F={z,a— g({¢r(x,a),0) + (¢pp(x,a),B) : 6 € R B c R}
In other words, the optimal Q-value function Q}, € F for all h € [H].

Proof. We define the optimal Bellman operator w.r.t to some policy 7 by

BrQ(z,a) = Elrp(z,a) + Q(zp41, m(@hi1)) | ®n = z, a1, = al.
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Bellman completeness requires for all f € F and 7, B} f € F.

hf(x,a) = E[Rp(znh, an) + f($h+17 (Tht1)) | 2 = 2,05 = a]
= 9((¢r(x,0),05)) + E[f (@ni1, 7(2he1) | 21 = a0 = a]

= 9((¢r(z,a),0r)) /fif? m(z"))P(z" | z,a)dx
= 9l(6, .00 07) + [ 176,z 0). e
— 90060, + (9., [ 7y’ ).

Thus, we have B}, f € F with parameters 0;; and [ , f(z', w(z"))up (') da’

The realizability is guaranteed by Bellman completeness. O

G PROOF OF THEOREMS [IIAND [E.1]

We only need to prove Theorem [E'.T] since we can choose gmax = 1 given rewards are bounded by
[0, 1]. In addition, Without loss of generality, we can assume gmax = 1. Henceforth, for notational
simplicity, we omit the subscript "nrm". This convention is consistently maintained throughout

Sections[J] [} J]and M]

Proof. By Lemma 3.1 of Jin et al.|(2021), we can decompose SubOpt (%; ac) into three parts:

H H

SubOpt (7;2) =— ZE% [th(zh,an) | 21 = z] + ZE“* [th(zh,an) | 21 = 2]
h=1 h=1

(A): Spurious Correlation (B): Intrinsic Uncertainty

H
+ > Eae [(@nlan, ), i | on) = Fu- | on))a | 21 = 2],

h=1

(C): Optimization Error

where 1, (z,a) = (B, Viy1)(z,a) — Qn(z, a). By the definition of 7, we have (C) < 0. We then
show that with probability at least 1 — &,

0 < tp(z,a) < 20 (z,a) forall (z,a) € S x A, (G.6)
which implies the conclusion of the theorem that

H
SubOpt (T;2) <2 Er- [Cu(z,a) | 21 = a].
h=1

Note that Lemma 5.1 of Jin et al.| (2021) still holds if g,ax = 1. Hence to show equation@ we
only need to show that {I', }/_, are £-uncertainty quantifiers such that

’(BthH)(;p,a) — (BVhia) () a)’ < Tp(z,a) forall (z,a) € S x A, h € [H]
with probability at least 1 — &. By the definition of By, we have
(Bth+1)(z,a) =E [rh (xh,ah) + ‘7h+1(:17h+1) | xp = x,ap, = a]
=E[ry,(zn,an) | zn = 2, an = a —|—/ Vi1 (2P (2’ | o = 2, ap, = a)da’

z’'eS

=9((or(,a),07)) + (Pp(; a), Br) ,
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where 8, = [, .5 pin (') Vig1 (z')dz’. Then we have

(BuVis1) (@, 0)— (B Vi) (2, 0) = g((6r(x,a),0})) — 9((6r (2, a), 1)) + (dp(x, a), By — Bn) -
(1) (ii)

By Lemma we have |(i)| < T, (, a) with probability at least 1 — % We then bound (ii). For

notional simplicity, we define Qj, = (A, + /\Idp)’l. By the definition of Bh’ we have

(i) =¢p(x,0) B — dp(x,0) U Y _ dp(@F,. af)Vis (2] 41)

=1

= ¢p(w,0) B — dp(w,0) U Y _ by, a7 )bp(,, af,) Bn
=1
(iii)
— 6p(2,0)" Y dp(ah,ah) (Virr (@h 1) — Gp(2F,aF) Bn) -

T=1

(iv)
Then by Lemma we have || 8|2 < H+/d,, and
|(iid)| =y (2, a)"Br — bp(, @) (Ap + Mg,) " AnB| = |Adp(, a)"(Ap + Mg,) ™ By
<H, /Adp\/¢,,(x, a) (A, + M)~ 1oy (z,a) .

We then bound |(iv)|. To simplify the notation, for h € [H] and 7 € [n], and any value function
V :S8 — [0, H], we define

(V) =V(hy1) —E[V(@ne) | 2n = 27, a1 = 0] .

We then have N
(V)] =¢p(2,0)" Q> dp(=, af ) (Vigr)

T=1

< ll¢p(x, a)

n
>~ oplanap)er (Vi) -
=1 h

™)
We then bound term (v) via concentration inequalities. An obstacle is that XW/hH depends on
n . o, . .
{(z,ap)} _, via {(z7,, a;,)}re[n]yh»h, as it is constructed based on the dataset D. To this end,

we resort to uniform concentration inequalities. Specifically, for all h € [H], we define the function
class

ViR, B, Jy, Ty p ) = {Vi(@:0,8,5, A, 9,%) : S = [0, H] with
10]l2 < . 1Bll2 < B.3r € 0,79 € [0, J,], 2 = pla A = N, |
where Vi, (2;0, 8, E, A, v, ) = meza( { min {fT(x,a; 0,5, %)+ fplz,a; 8,A,vp), H—h + 1}+}
with f,(,a;0,5, %) = g((6r (2, 0),0)) = % - Vo (2, 0) 7560w, a)
and f,(z,a: 5, A, ) = (@p(2,a). B) — 7 - /(2 0) A1 (. a)
For all € > 0, let N (e; R, B, J,., Jp, p, \) be the minimal e-cover of Vj, (R, B, J,., J,, p, \) with

respect to the supremum norm. In other words, for any function V' € Vi (R, B, J, p, A), there exists a
function V1 € Ny, (€ R, B, J,, J,, p, \) such that

sup |V () — VT(x)‘ <e.
€S
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Meanwhile, among all e-covers of V,,(R, B, J,, J;,, p, A) defined by such a property, we choose
Nu(e; R, B, J, p, \) as the one with the minimal cardinality.

Recall the construction of Vh in Algorithm For sufficiently large n, by Lemma we have
10n]l2 < 105112 + 115 — 67 ]l2 < 2[|65||2 := Ro with probability at least 1 — £/4. By equation|L.22}
we have Amin (£35(01)) > p/2 with probability at least 1 — &/4 where p = Amin (S4(65)) > 0. By

Lemma we have || 3|2 < H./nd,/\ := By. Finally, we take J, = 2a, and J,, = 2a;,. Under
these events, we have B
Vh+1 c Vh+1(Ro, BQ, Jr, Jp, np/?, )\).

Here A > 0 is the regularization parameter and o, > 0 are the scaling parameters, which
are specified in Algorithm For notational simplicity, we use Vj, 11 and Nj41(€) to denote
Vht1(Ro, Bo, Iy, Jp,np/2, X) and Ny, 41 (€; Ro, Bo, Jr, Jp, np/2, X), respectively. As a result, there
exists functions V; | € Aj,11(e) such that

sup Vi1 (2) = Vi, (2)] < e.
zeS

Hence, given X~/h+1 and VhT L1, We have
EHVJH(x;L_H) — ‘7h+1(xh+1)| | xp = x,ap, = a] <e V(z,a) €S x AVhe[H].

Here the conditional expectation is induced by the transition kernel P}, (- | x, a). As a result, for all
h € [H], we have

‘eﬁ(f/hﬂ) — GZ(V,LTH)‘ < 2¢,V7 € [n].

By the Cauchy-Schwarz inequality, for any two vectors a, b € R and any positive definite matrix
A € R4 it holds that [|a + b||2 < 2||a||3 + 2]|b||3. Hence, for all h € [H], we have

697 < 2| S ot a0, 42| 3 bt (@) — ) ]
r=1

T=1

bV D (vi)

Here (vi) can be bounded by
. - T T T T 2 T(Y) T 2
(vi) < QHQh Z bp(xh, ap,)dp(Th, ah)TH Z (6h(Vig1) — fh(VhTH)) < 8ne”, (G.7)
T=1 T=1

where we denote || A|| as the operator norm of a matrix A. We then bound b({V,:r 41)) via uniform

concentration inequalities. Applying Lemma and the union bound, for any fixed h € [H], we
have

]PD< sup Z (bp(x}:,a};)e,:(V)H > H?(2log(1/6) + d, log(1 + n/A)))
VeNnti(e) ' T Qp

< 6| Nnt1(e)l-

Forall £ € (0,1) and all € > 0, we set 6 = £/(4H [Np+1(€)|). Hence, for any fixed h € [H], it holds
that

w3 6afap)er(v)

VeNut(e) ' T HQ
< H? (210 (4H N1 (€)1 /€) + dp log(1 + n/A))

with probability at least 1 — £/(4H), which is taken with respect to Pp. Using the union bound
again, we have equation holds for all h € [H| with probability at least 1 — £/4. Combining
equation|G.7]and equation|G.8] we have

< H?(21log(1/5) + dplog(1 4+ n/N))
" (G.8)

(V)| < H? (2 log (4H |\, 11(6)|/€) + dy log(1 + n/A)) + 8neé.

23



Under review as a conference paper at ICLR 2026

Applying Lemma|L.6|with Ry = 2/6}]|2. Bo = H\/n/X € = H\/dy/ /1. o = ¢,\/dy log HJE,
oy = ¢p(dy + dy)HV/C, ¢ =log (2(d, + dp)Hn/€), and XA = 1, when n, ¢, > ¢, are sufficiently
large, we have

log [N (€ Ro, Bo, Jr, Jp,mp/2, )|

< d, log(1 +8LRy/e) + d2log (1 + 64d,'/*J2 /(npe?))
+dylog(1 +8By/e) + d2log (1 + 32d,"/* T2 /(A\e?))

= d, log(1 +8LRyH " \/n/\/dy) + d?log (1 + 256¢2d,*/* log(H/€) /(dppH?))
+dylog(1 + 8n/+\/d,) + d2log (1 + 32¢2nd,"/*(d, + dp)*¢/d,)

< 2d, log(1 + 8LRoH '/n/+/d,) + 2d2log (1 + 32c2n(d, + d,)*(/dL/?)

< 2d,¢ + 2d; log (64cin(d, + dp)>C/d)/?)

< 2d,¢ + 2d2(5 + 2log ¢, + 3()

< 2(d; + dp)*(log ¢ + 5¢)

which implies that
(V)2 < H? (2 log (4H Ny 1(e)|/€) + dy log(1 + n/)\)) + 8ne?

<om? (10g(4H/§) +2(d, + d,)2(log ¢ + 5¢) + dy log(1 + n)) +8H2d,

< 2H? (( +2(d, + dp)?(log cp + 5¢) + dpC + 4dp)
< 20(d, + dp)*H?¢(1 4 log ¢p) < (dy + dp)*H?c2( /4

when ¢, > 1 sufficiently large. We then have |(iv)| < o, /2| ¢p(z, a)7||q, . In addition, H/Ad,, <
o, /2, we have

\(i1)| = [(bp(@,a), Bn — Br)| < aplldp(z,a)llq, = Tpn(z,a),
which finishes the proof. O

H PROOF OF COROLLARIES 2]AND [E.T]

Proof. Note that using the matrix Bernstein inequality(Tropp}, 2015) , for n large enough, we have
1~
Amin(ﬁAh) 2 l)/2

holds for any h € [H] with probability at least 1 — /2. Also using equation [L.22] we have for n
large enough,

)\min(%ih(gh)) > p/2

holds for any h € H with probability at least 1 — £/2. Conditioning on the two events, the first claim
of the corollary immediately follows from Theorem
The second claim immediately comes from Lemma O

I PROOF OF THEOREMS 2] AND

Proof. Following the definition of SubOpt(7, «), we decompose the suboptimality gap as:

o () = Vg (2)
=V g (2) = Vi (@) + Vig- () — V. (2)
< Vyg-(2) = Vi g (2)
(2)
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where the footnote §* and 6 mean that we use true and estimated 6 in each time step. The first
inequality follows from Lemma 1 of Jin et al.|(2021). We analyze each term separately.

For term (), we have:

(i) = Vi g+ (z) =V, 5()

S B 00600 030) — ({612 01.50)) |1 =] 09)

=
Il
—_

H
< ZE”* [frvh(z,a) | 1 = x}

>
Il
—

where the last inequality follows from Lemma since l:r, n(z,a) bounds the difference in the
reward function approximation.

For term (47), we have:

(i) = Vl*,g(x) -V, ()
H
= Ep (Bh‘/}h—&-l) (@n,an) — Qn (zn,an) | 71 = I}
h;l )
(OB R AGEAEEL AGERVNEEE
h=1
2 - ~ (1.10)
<> Ene K]BthH) (zh,an) — Qn (zn,an) | 21 = ’I]

where v, (2, a) = (B, Vig1) (2, a) — Qn(, a) and the inequalities follow from a similar analysis as
in Theorem [Tl

For term (4i), we have:

(iti) =V, 5(x) — V1 ¢+ ()
H
=3 Ex |9 (6r(@,)T0h) + dplw, @) By~ Ta(w,0,00) | 1 = 2]
h—
H1 L
- ZE% [g (cﬁr(az,a)TG}i) + ¢p(z, a) By —Th(z,a,0;) | 2 = x}
h=
H1 N
= ZE% {g <¢r(xaa)T0h) - g (¢r(x7a)T0;) | xr1 = I}
h=
H1 R R N
+ ZE; [Fh(ﬂc,a, 0;) —Th(z,a,0) | 21 = CE}
h=1
By Lemma|L.3] we have
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EH:]E; [g (¢r($,a)T§h) — g (¢r(x,0)T0}) | 21 = m} < EH:]E; [fryh(x,a) |z =2
h=1

h=1

Now, let’s analyze the difference in the uncertainty quantifiers:

Un(w,a,0;) — Th(z, a,0,)
= s (300,00 00) 0l ) 2 =3 ({00,030 il g, 11 = 2]
Define A as:

&= (0.0 00) lor (o0l )+ = 0 ({0n(00).80)) 16 (0,0l ) )

We decompose A into:

A= ap [0 00)) = g ((6r:0n)) [ 161, (5

Ay

+ard ((n0)) (16015, )2~ Il 5

Az

Under Assumption [2] we have:
2

1 1
ek = Auwin (S (6)) oo = 7R 1 =V
min h

By Assumption[TJand Lemma|C:2] we bound A;:
Ar<arL |3 ((6n,6i) = ((6:01) )| 160, (g2)
< ar L {0, 07 = 0] Inl, 5

< ar L6 2018 = 6112 1005,

<ol |2 [cdrlogl/€
np n

. \/ 2c(log H/€)(log 1/€) d,

p n

111)

For Ay, let L = sup, ¢(x), then:

Ar<arl 'n@@h(g;)-l ~ Igellg, 5y

< OérL\/ oF (ih 05)"" — Sh (5h)_1) Or

2 S x\—1 $ F\ 7!
< Ly l16 3 - 150 67) 7"~ S (6) |
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Using the matrix identity A=! — B~! = A=}(B — A)B~}, we get:

IS0 )7 =S (8) 1< IS 67 1180 @)~ S (8) 1150 (B)

12 ~ 2
2 L) 3l

np p
< 4L [ed,log1/€
~ np? n

4L d, log 1
A, < QTL\/Q cdylog 1/¢
np n

dALlog(H/€) (cdylogl/e\"*
np? n

IN

Therefore:

(1.12)

=L

Combining and[.12] and define A,

A, |2Uog H/O(0g1/€) dv (. [dyALIOB(H/€) ( cdylog1/ i L13)
p n np? n

We could get:

A § Aerr

., \/20(10gH/§)(10g Y dr /dT4Llog2(H/§) . (ch log 1 /§>1/4
p n np n
~ dT ~ 2/4

for sufficiently large n.

Combining[[.9] and we have:

H H
SubOpt(7; z) < ZEw* [i«,h(%ﬂh) + 20 (zp, an) | 21 = JS] + ZE% [Agpr | 1 = 7]
h=1 h=1
O
J PROOF OF COROLLARIES 3] AND
Proof. From Theorem[2] we get:
A S Aerr
_ g, [2elog H/§)(0g1/€) dy . |drALlog(H/€) (cdr 1og1/§>”4
P n np? n (J.14)

~5 (d>>
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for sufficiently large n.

Now, for the semi-supervised estimator Eh, we benefit from the additional unlabeled data. By using a
similar analysis as in the proof of Theorem and if A, > p, we can show that:

~

Byn.0) = apy/ép(@, )T Ry + My,) ' 6y(. )

o[t d) H10g (2(d, +dy) Hin + N)/€) (.15)
- n+ N

From Lemma|L.3] we could also get similar results that:

F (z,a) = cor/d,log H/E x \/g 0))2 0, (2,0) S0 (01) L r (2, @)
:O<(M%WKQ 010
n

Therefore, the increased sample size from n to n+ IV leads to a reduction in the uncertainty quantifier
related to the transition dynamics.

Combining [I.14] .13} and .16} when n is large enough, we have:

H
SubOpt(7; x) ZE [ rh(Th,an) + 2Fh(zh,ah) | 1 = x} + ZEﬁ [Aerr | 21 = ]
h=1

§ 0( /dTHQITcL)gH/§> o \/(dp—&-dT)QH‘llog 2.0 +dy) (o4 V)9
+6< ))

_0 ( d,H? 1og(H/§)>

S ‘&\w

IS

n

Lo \/(dp +d,)* H'log (2 (d, + dy) H(n + N)/©)
n+ N

J.17)

This result shows that the semi-supervised approach benefits from unlabeled data in improving the
estimation of transition dynamics while the reward estimation is limited by the size of the labeled
dataset n. When N > n, this approach can significantly reduce the overall suboptimality compared
to using only labeled data.

O
K PROOF OF THEOREM
Proof. By Lemmas [L.10 [Lll and |L 12|, taking confy; = min{H — h + 17’yr||¢)r||A/ 1+

Vpllép ||A 1 } in Lemma 7 in|Wang et al.{(2019), and using Lemma 6 in Wang et al.| (2019), Lemma

[CI0]and Lemmam], we have
T
R(w) < HVT (/2 (T +T/dy) + 7/ 2dn (1 + T/dy) ) + 3 G0
t=1
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holds with probability at least 1 — 2pg/3, where (; = ZhH:1 Ez ,confp ¢ 1(xn, The(on)) —
confy ¢—1(zn,t, an,). Hence using the Azuma inequality we have

R(w) < HVT (3/2d, (1 +T/d,) + /24, (1 + T/dy) ) + /2 In(6/po) TH?

holds with probability at least 1 — py. O

L  TECHNICAL LEMMAS

Lemma L.1. If \in (X1(6])) > p > 0, then for & € (0, 1), with sufficiently large n, we have

1= ., _3
)\min(%zh(eh)) Z Zp

with probability at least 1 — &.

Proof. By the matrix Bernstein inequality (Tropp, 2015) and ||¢,(x, a)||2 < 1, we have

125(65) ~ Sa(61)] < Oiog(d /&) /n L1s)

with probability at least 1 — £/2 for an absolute constant C' > 0. Hence if n is sufficiently large, we

have
1= * * 15 * * P 3p
(= > : —||= — >p— === .
)‘mm(nzh(eh)) > Amin (Eh(eh)) anh(eh) Eh(eh)H Zp 4 4
O

Lemma L.2. Suppose that Ayin (X1(05)) > p > 0. Under Assumption for & € (0,1), with
sufficiently large n and h € [H] fixed, we have

cdr log1/¢ cd, log1/€

, 5 _9* 2 <
16, —0713 < -

and ||V Lu(O) 151 )

IN

~ cd,logl/¢
|0n—0;, le (9*) < o

with probability at least 1 — & for some absolute constant ¢ > 0.

Proof. Apply Theorem 2.1 in[Hsu et al.| (2012) to A = 2;1/2 (07) and x = /nV Ly (0}). Since
Vin(0;) = (rn — 9({6n.03))) on

is subguassian since we assume 7, — g({¢y, 0*)) is subguassian, there exists ¢ > 0, independent
with n, such that for any ¢ > 0,

P(ll212, 071 — o (Tr(En(07)™) + 21Ta(87) 7 It + 2y Te(En(05)2)t ) > 0) <™.

Hence
3od,||Xh(0;) "] log(1/€)
n

IVLROIZ, 05)-+ <
holds with probability at least 1 — &, for any small £ > 0.

Similarly, for any 1 < 7 < n, applying Theorem 2.1 in Hsu et al. (2012) to A = %;,(65)~/? and
x = ¢}, there exists o’ > 0 independent with n, such that

ax 167115+ < 30"dx[|3, " | log(n/€).

holds with probability at least 1 — &, for any (small) £ > 0. Using Theorem A.2 in |Ostrovskii and
Bach| (2021)), we have

—

max (167155 o)+ VLR O 5, 0011 < 1

holds with probability at least 1 — 3¢ if n is sufficiently large.

29



Under review as a conference paper at ICLR 2026

It’s easy to check £}, falls into the case (a) of Proposition B.3 in|Ostrovskii and Bach| (2021)) with
0o = 05, Hy = Sp, W(0) = ¢" where 7(0) := argmin, ., [(#7,0 — 0;)|. Then using
Proposition B.4 in|Ostrovskii and Bach|(2021)), we have T

120d,. log(1/¢)

w07 = on @19

18 = 631, 5, s, < IVERODIZ

holds with probability at least 1 — 3¢ if n is large enough, for some constant /& > 0, any small £ > 0
and € > 0. The bound for ||} — 6},||2 immediately comes from equation and Lemma O

Lemma L.3. Suppose that Ay (E;L(G,*L)) > p > 0. Under Assumptionsfor§ € (0,1), with
sufficiently large n, we have,

‘g(<¢r($,a)7§h>) —g(<¢r($7a),9;;>)’ <cov/dylog H/§
% \J3((0(z, 0), B))2 60 (2, ) S (B) 1 0 (2, 0)

forall (x,a) € S x Aand h € [H) with probability at least 1 — £ for some absolute constant ¢y > 0.

Proof. By Taylor’s theorem,
~ 1 ~ o~ ~
0 =VLy(0h) = VL(O}) — Ezh(oh)(ah = 0) + o(ll0n — 63 ]12)

Hence, we have

~ 1~ _ ~

O — 0 = (S50 (0)) ™" (= VL) + o1 — 03]2) (L.20)
By Taylor’s theorem again, we have

9((¢r(x,0),0n)) = 9((6r(x,), 0%)) =3((6,(x, a), 0)) (1 (x, @), On — OF)
1. % ~ «
+ 59(én(w, a), 0)){6r (2, @), On — 07)”
=eq + e

for some 0}, on the line segment between 0% and 0),. We then bound |e;| and |es| separately. First, by
equation|[C.20 we have

er =(60(e,0), (5 (03)) ™ (= VLA (03) + ol — 7]2)))

By the matrix Bernstein inequality (Troppl 2015)), we have

1-5(6}) — 20031 < C/lo(H /&) (L21)

with probability at least 1 — £/2 for an absolute constant C' > 0. As a result,
s * * 15 * P 3P
Amin (=24 (07)) = Amin (B (07)) — [1=E0(05) = Sa (@) 2 p— 5 = —
n n 4 4
when n is sufficiently large. Besides, we have

I * s =~ L S T T x 7 T T
120 (05) = Ea(@n)ll < — > v (xR, ah), 0 = On)lllér (27, af) 3
T=1
< L||6;, = Onll2-
For n sufficiently large and any h € [H], by Lemma|L.2] we have

~ 5 _cdy.logH/¢ P
0n — 07115 < ~ n < 1L

with probability at least 1 — £, which implies that

3p

1~ ~ 1o le ~ 1<
)\min(;zh(eh)) > )\min(gzh(GZ)) - ||E2h(9h) - gZh(Gﬁ)” =% (L.22)

RS
NI
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Note that we have

(6 >,(lihw*))‘l(—vch<ez>+o<||5h—ezuz>>\

< [(0r @ a), (24 E) (= VLLER) + o1 — 63]2))

(), ((50060) ™ = (250(00) ) (~ VL) + ol — 6112)|

) + %n@.(x,a)u(

A

< ¢ (z, a)ll(

L5 00) (250@0) 15,(0n))

4L ~
— ||y (, 18, — 62
+ Pz ¢ (z Q)H(%E;L(Gh)) [0 w2

by the Cauchy-Schwarz inequality. By equation|[L:22]and Lemma|L:2] we have

[y, < Ivenn], < 2 [AEDE.
Thus, we get
erl < S/ B o, (0,05, -
Finally,
eal = |f (60220, 00)) (61 (2, 0), B — 03]
<

- 2 *
— ||¢T(m7a)||(lih(§h))71||9 Hh” lzh(eh

' Ld,log H/¢ 9
< SR ol

d, log H/EG((d(x, a),00)) |6 (2, )5, (3,

for some constant ¢’ > 0 for sufficiently large n, where the first inequality comes from the Cauchy-
Schwarz inequality, Assumption [I] the second inequality comes from Lemma [C:2] and the last

inequality comes from the fact that with high probability, th ||2 lies in a fixed compact interval, say
[0, D] and guin = infyejo,p) §(y) > 0 since if gmin = O, there exists z € R such that g(z) = 0
otherwise g must be a constant function since ¢ is continuous and |j| < g.

Combining these derivations and using the union bounds, we finish the proof. O

Lemma L.4 (Bounded Coefficients). For any functions V : & — [0, Vinax| where Vipax > 0 is an
absolute constant, the vector 35, = fm’es wn (2" V (2")da' satisfies || Brll2 < Vinax+/dp. Besides, we
have

1Brlls < Hy/ndy/A.

Proof. First, we have
16all = | / N2 || < Vil (S)| < Vimaer/dp.
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Besides, note that |V, (z7,1)| < H, we have

1Bull2 = 11> (A + ALa,) ™ 6y (27, af) Via (@41 12

T=1

<HY \|\/¢(a¢;, af)(Ap, + XLy, )~V/2(Ay + Mg ) ~1(A, + Mg )~ 1/2¢(2, af).
T=1

<5 2 Volah.ap)' (Rn + XL, )~'(a af)

n - TV
S H X Z¢("E;,CL;> Ahlqb(x;—wa;;)

T=1

n _ n .
< Hy[ Tr[(Ah+Ald,,)*;m;,a;)qb(x;,a;)]

= H\/f\/TI‘[(Kh + )\Idp)flj\h]
nd

< P

< H,/ 3

Lemma L.5 (Covering Number of Euclidean Ball). For any € > 0, the e-covering number of the
Euclidean ball in R? with radius R > 0 is upper bounded by (1 + 2R /€).

O

Proof. See Lemma 5.2 in |Vershynin| (2010). O

Lemma L.6. Let V), (R, B, J,., J,, p, ) denote a class of functions from S to R with the following
parametric form

Va5 0, 8,5, Ay vy 1p) = max { min { fr(z,a; 0,5, 7) + fp(z,a; 8,A,v,), H — h + 1}+}
with f(2,0;0,5, %) = ({6, (2,0),0)) = % - v/ (@, )51, (2, 0)
and fy(x,a: 8, A, 7y) = (0p(x.0). B) — 7 /(. 0) A1y (1 0)

where the parameters (0, 3,5, A, vr,vp) satisfy ||0ll2 < R, ||Bll2 < B,vr,v € [0,J],2 >
pla,, A = Xy, . Suppose that the first-order derivative §(-) of the link function g(-) is bounded
by L > 0. Assume that max{||¢,(x,a)||2,||¢p(z,a)ll2} < 1 forall (x,a) € S x A, and let
Niu(e; R, B, J, p,\) be the e-covering number of Vi(R, B, J, p, \) with respect to the distance
dist(V, V') = sup,es |V (2) — V'(2)|. Then

log NV (e; R, B, L, p,A) < d, log(1 4+ 8LR/€) + dy, log(1 + 8B/e) + d2 log (1 + 32d7»1/2J2/(p62))
+d2log (1 +32d," 2 J? /(A?)).

Proof. Equivalently, we can reparametrize the function class Vi, (R, B, J, p, \) by setting M, =
725~  and M, = 42A~1, so we have

fr($7a;ea Ey’)/r) = fr(xaa;97Mr) = g(<¢r(x7a)30>) - \/Qbr(Iya)TMr(ybr(l‘aa)

and

Jola; 8,0, 7) = Fyp(,a3 B, My) = (0 (2,a), B) — \ /6y, 0) Moy (i, 0)
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for | M,|| < J?p~! and || M,|| < J2A~!. Then for any two function V and V' € V},(R, B, L, p, \)
with parameters (0, 3, M,., M,,) and (6', 3', M, M), we have

dist(V, V') <sup|f,(z,a;0, M) + fp(, a5 8, My) — fr(x,0;6', My) = fp(,a; 8, M)
<sup |9((r(2,a),0)) = g((¢r(2,a),0)] + sup [(0p (@, a), B) — (¢p(x,a), B')]
+sup V6 (2, 0)" My (2, a) = v/ (2,0) My (2, a)]

+5up |1/ 6y (2, 0) Moy (2,0) — [, @) My ()|

< sup L1|<¢T70_9/>)|+ sup |<¢p7ﬁ_ﬁ/>)’

¢rillorll2<1 Fpilldpll2<1
+ sup VG = MDG +  sup L [lop(M, — Mp)oy|
éril|drll2<1 dpilldpll2<1

=L|I0— 0|2+ 18— B'll2 + VIIM; — M| + /| M, — M|

<L = O'll2 + 18 = B'll2 + V1M = Mg + /[|Mp — M|lr,

where the third inequality follows from the fact that [/z — \/y| < \/|z — y[ holds for any z,y > 0.
Let Cp be an e/4L-cover of {# € R | ||| < R}, Cs be an €/4-cover of {3 € R% | ||B]| < B}

with respect to the £o-norm, and Cjy, be an €2 /16-cover of {M,. € Ré>dr | || M, ||p < di/zﬂp’l},

Cr, be an €2 /16-cover of {M,, € R¥% > | |[My||p < db/? 72X~} with respect to the norm. By
Lemma|C3] we have

ICo| < (1+8LR/e)™, |Cs| < (1+8B/e)%,
Car, | < [1+ 324,272/ (pe2)] ™, |Cag, | < [1+ 32,1202/ (8e2)]

Since dist(V, V') < L||0 — || + |8 — ' |l2 + /[[My — M[||p + /I|M}, — M} ||, for any V €
Vi(R, B, J,p, \), we can find 0’ € Cy, 3’ € Cp, M. € Car,, M}, € Cpy,, such that dist(V, V') < e.
Hence, it holds that NV}, (¢; R, B, J, p, A) < [Cq| - |C3| - |Cas, | - |Cau, |, which gives:

log Ni(e; R, B, J, p, ) <log|Cy| + log |Cs| + log |Caz, | + log [Car, |
<d,log(1+8LR/¢) + d,log(1 + 8B/¢)
+d2log (1+32d,"%J? /(pe?)) + d2log (1 + 32d,"/* T/ (\e?)).
This concludes the proof. O

Lemma L.7 (Concentration of Self-Normalized Processes). Let V : S — [0, H — 1] be any fixed
functions. For any fixed h € [H| and any § € (0,1), we have

Pp (H S dplaf,an)en (V)] > H(210g(1/8) +dy log(1 + n/A») <a

Proof. For the fixed h € [H], we define the o-algebra

= o({ (o)) U o},
where o(-) denotes the o-algebra generated by a set of random variables. For all 7 € [n], we have
op(x],a}) € Fr ', as (2], a]) is F;~'-measurable. Also, for the fixed function V and all 7 € [n],
we have
(V) =V(zj41) —E[V(zh1) | zn = 2, an = af] € Ff,
as xj ., is J;-measurable. Hence, {eg(V)}:z
{Fnjr}h—o- We have

| 1s a stochastic process adapted to the filtration

Eplep (V) | 7~ '] =E[e,(V) | F; ] =0.
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As aresult, €] (V) is mean-zero and H-sub-Gaussian conditioning on F; .

We invoke Lemma With My = Mg, and M,, = (Qh)fl = 1~Xh + Alg,. For the fixed function V'
and fixed h € [H], we have

> 2H? - log (

Qy,

det (K + AI,,)"? s
5 - det(MIy, )1/ )] =

Pp (H >~ oplarsap)e (V)]
T=1
forall § € (0,1). Note that ||¢,(z,a)|| < 1forall (z,a) € S x .A. We have || Ay, + My, [Jop < A+n.
Hence, it holds that det (Aj, + AIz,) < (A +n)% an det(\Ly,) = A%, which implies

Pp (H Z%(xﬁ,aﬁ)eﬁ(‘/)uﬂh > H?*(2log(1/68) + d, log(1 +n/,\))> <

Therefore, we finish the proof. O

Lemma L.8 (Concentration of Self-Normalized Processes). Let {F;}:2, be a filtration and {€;}32
be an R-valued stochastic process such that €, is Fy-measurable for all t > 1. Moreover, suppose
that conditioning on F;_1, €; is a zero-mean and o-sub-Gaussian random variable for all t > 1, that
is,

Ele; | Fi-1] =0, E[exp(Aer) | Feo1] < exp(A?0?/2), VAeR.

Meanwhile, let {¢;}$°, be an R-valued stochastic process such that ¢, is F;_1-measurable for all
t > 1. Also, let My € R be a deterministic positive-definite matrix and

t
M, =My + Y ¢:6]
s=1

forallt > 1. Forall § > 0, it holds that

t
H Z ¢565
s=1

for all t > 1 with probability at least 1 — §.

det(M,)!/? det(Mo)-1/2)
5

2
. < 202 . log(
My

Proof. See Theorem 1 of Abbasi-yadkori et al.|(2011)) for a detailed proof. O

Lemma L.9 (Concentration). When n is sufficiently large, for any h € [H), it holds for any h € [H)|
that

|n~"Ap — Cn|| < C\/log(dHE/€)/n
with probability at least 1 — &, where C' > 0 is an absolute constant and the expectation Ep is with
respect to the data collecting process.
Proof. We notice that
Kh 1 - T T T T :—L— Zy
M= 25 (otat anotet al) "~ En[o(sn, m)o(n,an) ) = =2,

n
=1

where we write
Zy = (zh, a7)p(x],an) " — Ep [¢(zn, an)d(zh, an) " | 21 = z].

We notice that || Z7 || < 2. Then, applying the matrix Bernstein inequality (Troppl 2015), we have that

In=" " 27| < C/log(d/€) /n

with probability at least 1 — £ for an absolute constant C' > 0. Applying the union bound, by the
definition of Z], we have for any h € [H| that

Hn—lxh — Ep [¢(@n, an)d(zn, an) ] H < C\/log(dHK€)/n

with probability at least 1 — &. Thus, we complete the proof of Lemma|L.9 [
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Lemma L.10. Under Assumptions[3|andf] we have for any p; € (0,1)

906+ (2, @) Or) = 19(61 (2, ) 07)

34+ 16|d-In(2Mt) + In(TH
< Ky fang o BRI OMY L THP)) (0 gy

holds with probability at least 1 — py for any h € [H] and t € [T).

Proof. By the definition of §h +, we have

(¢r(xh,7an,),0})

t
Zrhr ¢7 Th, Tva‘hT G}L eht S Z/ g(u)duv
=17(o

— +(Zh,7san,),0n,0)

Then we have

> nr — (e (@nr ans). 050 br (Th.ry anr), One — 03)
(L.23)

(G (Th v ran,2),0n,c)

= Z/ g(u) — g({Pr(Th,ryan,r), 0h))du

r (Ih 7,Qh, T) 9h>

The right side is larger than

t
> k(e (@nrs ane), One — 05) = ki
=1

Also we can bound the left side of equation|L.23|by using Lemma 9 in[Wang et al.| (2019), that is ,
for any § € (0, 1) with probability at least 1 — J, we have

t

S nr = 9(br(@nr ane ), OG0 (@nry an.r), Ot — 05)

T=1

<1+ 2(1 + \/vh,t) Vd, n(2Mt) + In 1/5.

Hence

KVie < 142(14 Vi, )V, n(20M8) + 0 1/3

<max{2+4)/1 (QMt) VVii /& 2 M+ T 175 }.

Then we have
34 16[d, In 2Mt + In(TH/p1)]

k
with probability at least 1 — p; for any h € [H], t € [T]. Then

9(0r(2,a) Ony) — |9(dr(z,0) 65)

< KII6r(@,0) | -1y Vi + 4212

34 16[d, In(2M In(TH
< K- 10,0l sy LMD + nCTH )

Vit <

+ 4M?

Lemma L.11. Under the assumptions of Theorem 3| we have
[{bp(,a), Bre) = E(Virrelz, a)| < vplldn(; a)lly; 1

holds for any h € [H|, t € [T] with probability at least 1 — pg /3.
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Proof. We can easily follow the proof of Lemmas B.2 and B.3 inJin et al.|(2020)) to obtain the next

two properties of 3y, ¢
[1Bn.ell < H+/dypt

and if we define V11, = maxse 4 Qnr1(Tni1.4,a) we have for any ps € (0,1), there exists a
universal constant C' such that

t
H Z d)p(xhﬁy ah,‘r)[‘/h.—&-l,T(Ih—&-l,T) - E(Vh+1,T|xh,‘ra ah,T)] ||A}t1t

=1

< Cd,H\/[3(c, + 1)d,TH/py)

holds for any h € [H], t € [T] with probability at least 1 — py/3. Define B+ = [ Vi (2')dpn(2)
which is smaller than H \/ﬁ, and then

(ép(@, a), Bht) — E(Viia 2, a)]

= |<¢P<xa Cl), Bh,t - Bh,t>|

t
= [(¢p(x, a) Ay 4 [—Bn,e + Z Gp(Thry an ) [Vir1,t(@nytr) — EVag il n -, anr)])|

T=1

< (H\/dy + Cay H\[nf3(cr + 1)dyTH/po)] ) 6, 0)] -

< 7p||¢p(xv a)HA;}t'

The last inequality holds if ¢, is not too small. O
Lemma L.12. Under the assumptions of Theorem with probability 1 — 2pg /3,

Qni(z,a) > Qh(z,a)
holds for all h,t, s, a.

Proof. We prove this lemma by induction on h. When h = H, it is trivial. Suppose Qp,+1,¢(7,a) >
Qj 41 (7, a), then we have

Qn(z,a) > E(r, + Vigr,elz,a) > E(ry + max Qhi1lz,a) > Qj(x,a).

holds with probability at least 1 — 2pg /3. O

M RELAXING ASSUMPTION 2]

Given a regularization parameter X = X/, > n~'/2, we define
L 9'—171—7 hsa,), 0 G 7.03), 0 N|6]|3
o (0) = = (=17, af). 0) + G((dn(wh, ah). 0)) + NI6]3),
T=1

and a new estimator for 0} is defined as

@L,,\/ = argmin Ly, y ().

e
We also define
I (0) = =rn(br(zh, an), 0)) + G((dr(xn, an), 0)) + N|0]13,
0} = argmin E-lp x (0),
e
Eh,)\’ (9) = vz[Eﬂlh,/\’ (9)]5
and

S (0) = V2L x (0) = Y §({r (3, af), 0)) b (2, af)or (2, aF) + 2N Ty,
T=1
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Lemma M.13. Under Assumptions[E.1|and[I} We have
65,5 — Orll2 < 116712
holds for any h € [H].

Proof. By the definitions of 6} and 67 ;, we have

0=Er[(g({br 05 x)) — g(br, O5))) br] + 2X05
Using Taylor’s expansion for F,(6) := E [g((¢r,0))(¢r,v)] where v € R% , we have that there
exists t € [0,1] and 6 = t0F + (1 — t)05 v/ such that

—2N (v, 03 3} = Fulb} ) = Fu(6}) = (Ex [9((0r,0))brr ] 0, 67 x — 0}) (M.24)
We take v = 0} — 0 ,,, then
2N |[o2l165 12 = —2X (v, 65) = ((2N'Ta, +Ex [§((6r,0))6r6,])v, 67 — 63)
> 2N [0 x = O3 13-
Hence (|67, — 0712 < [167]]2- B

Lemma M.14. Under Assumptionand for & € (0, 1), with sufficiently large n and h € [H|
fixed, we have

< Cyd,log1/¢ Chd, logl/¢
A T n\ n\
with probability at least 1 — & for some absolute constant Cy > 0. Here we abbreviate ¥y, »/ (9; \)
and ihy)\/ (927/\,) to Eh’)\/ and ih,/\/-

16,3 — 073 3 5 and ||V£h(0,t)||;;; <

Proof. Apply Theorem 2.1 inHsu et al[(2012) to A = ¥, {\/,2 and z = \/nV Ly 1 (0} ). Since

Vina (05 30) = (rn — 9((dn, 05 1)) bn + 2N 05

is subguassian since we assume rp — g({(¢n, 0*)) is subguassian, and 6; ,,, 6} lies in a compact
space, there exists ¢ > 0 independent with n such that for any ¢ > 0,

P(||x||22;1/ — o (Te(Sp ) + 2 1t + 20/ Tr(S,208) > 0) <ot

Bod, |3, | 1og(1/€)
n

Hence

IVLRORDIE - <
h,A
with
holds with probability at least 1 — &, for any (small) £ > 0.

Similarly, for any 1 < 7 < n, applying Theorem 2.1 in|Hsu et al.| (2012) to A = Eh {\/,2 and x = ¢j,

we have there exists o’ > 0, such that
max ||¢>h|| < 30"d, |35 ) | log(n/€).

1<r<n
holds with probability at least 1 — &, for any (small) £ > 0. Using Theorem A.2 in |Ostrovskii and
Bach|(2021)), we have

_1
max [|¢7 s, IVLR(O5)II%-

1<r<n 4
holds with probability at least 1 — 3¢ if n satisfies n > 36aa’d§LX 2[log(n) — log(&)]log(1/€)
and n > C3\ ~2[d,. + log(1/€)] for some C5 > 0. It’s easy to check L,y falls into the case (a) of
Proposition B.3 in|Ostrovskii and Bach|(2021) with 6, = 97;7/\,, Ho=%p 5 n W(0) = »7(?) where
7(0) = argmin, ., ., [(¢7, 0 — 6}, y,)|. Then using Proposition B.4 in Ostrovskii and Bach|(2021),

we have 120 log(1/€)
n L —0F ., 2 < * (12 < o log
Hoh,)\ eh,)\ ||%Eh,)\’ >~ 4||V£h(0h)||(%2h7)\l),1 — n\
holds with probability at least 1 — 3¢. if n > K1\ ~2[log(1/€)]!*¢, for some constant K7 > 0, any
small £ > 0 and e > 0. O
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Lemma M.15. We denote E . ¢, (xp, ap)dr(zh, ah)T and 3" _| ¢ (x], a})or (], aﬁ)T as A, p, and
Ar . UnderAssumptionsand for & € (0,1), with sufficiently large n, we have,

’g(((b,(it,&), gh)\’» - g({¢r(, a)792>)’

d.logHd,/¢ d,logH/¢
(\/ 2 + L2 \7/2 )||¢T(x’a)Him,(ﬁM,)*l (M.25)

log(Hd, /€)]"*
+ CQL\/Y(HQST(:C’a)||(2>\’IdT+%KT-,h)_1 + W )

forall (x,a) € § x Aand h € [H] with probability at least 1 — £ for some absolute constant Cy > 0.

< C2|g(<¢T<x7 a)agh)\’»

Proof. Note that
|9({r (2, 0),0n,x)) — g((br(@,a), 05))| < |9((dr (2, a), 07 1)) — g({r(x,a), 03)) |+
|g(<¢r(1‘, a)7 92,)\’>) - g(((br(.f(:, a)7 9h>)|
= kl + kQ .
First we bound k;. Similar to the argument in the end of the proof of Lemma [L.3] we have

infocs acan>0neim) teio,1] 9(@r (2, a), 10} + (1 — t)(‘);;’k&) > 0. We arbitrarily take a lower
bound of this term, say ¢; € (0,1). Taking v = 0}, ,, — 6} in equationM.24] we have

X' = =2X(0}, = 05, 07)
((2XNTa, + En [3((6r,0))60,]) 0510 — 05,053 = O1)
> 165 — 0 Bt 1ern,
for some constant co > 0. Hence
ki < Li(¢r(,a),0F \ — 0F)]
< Ll[¢r(w,a)|l2x1a, +erarn) -1 108 3 — O ll2a1s, +e1A,,

S L CQA//CI(||¢T(x’az)H(Q}\/IdT_;’_%Khm)—l + quzsr(x,a)||(2)\/1d,,.+%/~xr,h)7l

- ||¢7-($7a)||(2,\/1dr+clAT,h)*1|)

csllog(Hd,/€)]"/*
Nnl/4 ’

S L CQA//CI(HQST(I’G‘)H(2>\/Idr+%l~\r,h)*1 +
where the last inequality comes from
|||¢r(xaG)H(z,\lldr.;.clﬂh)—l - ||¢r(m,a)||(2>\’1d,,.+611\h)*1|
< 160 (2, @) (N1, + Arn) ' — (2NLy, + )10 (w, a)
12N Ty, + Arp) ™t — 2Ny, + App) Y2 (M.26)

IN

1 ~
< WHAT”L - A'r’,hHI/2
_ eallog(Hd, /€)]!/*

- Nnl/4
holds with probability 1 — & for some constant c3 > 0. The last inequality uses the matrix Bernstein
inequality [Tropp| (2015)). B
Then we bound k. By Taylor’s theorem, there exists ¢ € [0,1] and § = 0}, ,, + (1 — ¢)6 ' such
that

0= (¢(x,a), (%ih,k/ (gh,A/))71V£h,A’ (Bha))
= (¢r(z,a), (%ih,/\/ (gh.,)\’))71v£h,>\/ (Oh2)) + (Pr(, a),Opn — Oh\)

1 - 1 - M.27)
+ §<9h7z\’ - 0;;,)\’, [E Z §((or(zh, ap), 0h7/\’>)

T=1

1~ ~ _ T, o~
((52h,x(9h,x)) Y (2,a), b, (25, a})) b (0h af ) (2 af) ] (Bro — Ba0)) -
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By Taylor’s theorem again, we have

g(<¢7~(5€, CL), 5h,>\/>) - g(<¢r($v a)7 0;;,)\’» :g(<¢,«(1‘, a)a gh,)\’>)<¢7"(xv CL), 5h,)\/ - 9;:,)\’>
g(<¢r(l’, CL)7 éh,)\'>)<¢7‘(xa a)? gh’/\’ - 92,A’>2
=3((6r(,0), 0n,1))es + e

+

for some Hh a on the line segment between 65, 5o and Gh A - We then bound |es| and |ey4| separately.
First, by equatlonm we have

=(60(2,0),~ (S (h.0) " VL)

N | —

1 a
+ = (Ohn — O, [5 Z §((r(@hsaf,), On,x))
T=1

1< ~ — T~
<(E2h7x\’(9h7x\’)) 1¢T(.%‘, a)a ¢T($7};’ aﬁ))@(ﬂa CL;)¢T($;, a;;) } (ehv\' - 0;;,)\’)> .

Besides, we have

15 * 15 n L < T T n T T
H(ﬁEh,)\’(eh,/\’) - ;Eh,x(ﬁh,x))ll < o ;1 (pr(2h, af,), 05 x — Ona)| o (2, a7) |13 M28)

< L|I6} x0 = O ]2
By Lemma[M.14] we have

< Chd, log H/¢

~ 1 ~ .
1603 = O xllz < S llony =i nllis, | <=5 (M.29)

with probability at least 1 — &, for any h € [H]. Then we have

s < |(9r(,0), (B (000) ™ (= TLiw Bia)
| L6, 5,0 T8 H/E
nl/2)\/5/2
< (60 a), (- Fnx @) (= VL 0.0))]
+ (@ (@, ), n (Snox (Onn) ™ = San (0 0) ™) (= VL (05 0))]
. LCdr o (2, a)lls, |, @, -2 108 H/E

nl/2)\5/2
< ’ * ’ -
H(b""(x a)”( 13, NP ‘VE}L7)\ (Gh’)‘)‘(iih N )J)) '
(2, a 116n,x — 0 'HVE By )
e P A ST IR ) PR
N LCldrH(ybr@caa)||§~]}h)\,(§,h>\/)’l log H/f

nl/2\/5/2
by equation[M.29]and the Cauchy-Schwarz inequality. By the matrix Bernstein inequality (Troppl
2015) and ||¢,(z, a)||2 < 1, we have

1~
ngh,x (Ohx) = B (05 )|l < Cy/log(Hd, /§) /n (M.30)
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with probability at least 1 — £/2 for an absolute constant C' > 0. By equation and Lemma

[M.14] similar toequation[M.28] we have
|V £n 070

< |[VLnx (6;)

(%ih,)\/(ah'/\/)) Ehvk/(e;:»\,)_l

1~ ~
+ KN“WH — o (On,x) = B, (HZ_A/)H HV»Ch,A'(@*L )
n ' ’ Ehy\’(a;:»\/)_l

Cyd,log H/ Chd,logH/¢ Chd, log(Hd, /&) log H/
n\ + K(L nA’3 +c n2\4 ) ’

where K is chosen to be a upper bound of [[V.Ly x/ (6} ,/)[|2 with high probability. Such a upper

bound exists since the noise is subguassian and 6}, ,, is close to ;. Similarly,

Chd, logH/§ Cyd,log H/¢
L < \/ KL=
ESRICI))

HVﬁh »(0F,5)

Thus, we get

ol < <\/Wg1{/§ \/ [ Cadr log H/¢ C\/Cldrlog(Hdr/g)logH/g)
s N a3 n2 N4

Chd, log H/¢ ——Chd,log H/¢
N n\/3/2 +VEL n\'5/2 - (. a)H( LS, (O, /\’))_1
LCld | pr(, a)”zh NSO log H/¢
nl/2)\/5/2

KCCqd, long &  CidylogH/¢
(\/ : / + 1f)\/7/2/ )¢r(x’a)”§h,/\/(§h,,\/)_l'

Finally,
leal = \* (6 (2,),00)) (0, (w,a), O x — O )7

< — Xy /
=9 ||¢T’( )”E, )\,(9} ) 1||0h,)\ 0h>\ ||E, )\/(9’ W)

dLd,log H/¢
TH@( )th NG

C/
< oy VA g HEi((0(,0).00)ér (2.5, g, )

for some constant ¢/, ¢’ > 0 with sufficiently large n, where the first inequality comes from the
Cauchy-Schwarz inequality, Assumption|[I] the second inequality comes from Lemma[M.T4] and the
last inequality comes from an argument similar to the end of the proof of Lemma|L.3] Combining
these derivations and using the union bounds, we finish the proof. O

<

Then we claim a theorem analogous to Theorem |1| with respect to Algorithm where fh is
replaced by I'y, y,. We define

fh7/\' (x,a) = fr,h.,x (z,a) + I:p,h(% a)

with fr n,» €qual to the right side of equation

Theorem M.3 (Suboptimality for GPEVI Wlthout Assumption 2). Under Assumptions [E.1| and
we set X = 1, o, = ¢, (dp +d;) H\/C, where ( = log (2(d, +d,) Hn/E), ¢r,cp, > 0 are

absolute constants and & € (0,1) is the confidence parameter. Then {T, » YL in equation m isa
f-uncertaizty quantifier of By, w.r.t. value function {‘/;L+1}hH:1. For any x € S and n large enough,
T = {%h}h:v

H
SubOpt 7r :v < Z [Fh vz, a) | x; —x]
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holds with probability at least 1 — £. Here I8« is taken with respect to the trajectory induced by m*
in the underlying MDP given the fixed Ay,

Proof. The proof is similar to that of Theorem [T} where Lemmas|L.2]and[L.3]are replaced by Lemmas
and[M.15] and p is replaced by \’. Note that

log ’Nh(e; Ro, By, Jy, Jp,n\' /2, A)! < 2(d, +dy)?*(log ¢, + 5¢)

still holds due to a similar argument in the proof of Theorem |1|as we choose A’ > n~1/2. O
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