
A Robust Conformal Uncertainty Handling
Framework for Safe Crowd Navigation

Jianpeng Yao Xiaopan Zhang† Yu Xia† Zejin Wang Amit K. Roy-Chowdhury Jiachen Li∗

University of California, Riverside

Abstract—Mobile robots navigating in crowds trained using
reinforcement learning are known to suffer performance degra-
dation when faced with out-of-distribution scenarios. We propose
that by properly accounting for the uncertainties of pedestrians,
a robot can learn safe navigation policies that are robust to
distribution shifts. Our method augments agent observations with
prediction uncertainty estimates generated by adaptive conformal
inference, and it uses these estimates to guide the agent’s
behavior through constrained reinforcement learning. The system
helps regulate the agent’s actions and enables it to adapt to
distribution shifts. In the in-distribution setting, our approach
achieves a 96.93% success rate, which is over 8.80% higher
than the previous state-of-the-art baselines with over 3.72 times
fewer collisions and 2.43 times fewer intrusions into ground-
truth human future trajectories. In three out-of-distribution
scenarios, our method shows much stronger robustness when
facing distribution shifts in velocity variations, policy changes,
and transitions from individual to group dynamics. We deploy
our method on a real robot, and experiments show that the
robot makes safe and robust decisions when interacting with
both sparse and dense crowds.

I. INTRODUCTION

Safely navigating among crowds is fundamental to a future
where robots work closely with humans [6, 28]. Various solu-
tions have been studied, including rule-based methods [34, 12],
optimization-based planners [11, 30, 16], reinforcement learn-
ing (RL) approaches [4, 25], and hybrid systems that track a
reference path from an optimizer while a learned policy makes
necessary adaptations [35, 36]. For RL approaches, a single
millisecond-level forward pass can generate decisions, making
them faster and more scalable than optimization- or rule-
based planners. Yet while they excel in in-distribution settings,
their performance drops sharply in out-of-distribution (OOD)
environments. This indicates a tendency towards overfitting
and difficulty in generalizing to diverse crowd dynamics.

Moreover, previous studies have shown that incorporat-
ing predictions into observations, thus forming prediction-
augmented observations [26, 37], can explicitly represent hu-
man intentions and aid in robot decision making. However, this
practice may exacerbate overfitting issues, as human dynamics
in real-world scenarios are inherently complex and difficult
to fully capture in simulation environments or datasets, and
trajectory predictions fitted for one certain dynamics face
generalization challenges to other dynamics. Inaccurate pre-
dictions can severely mislead robot decisions, especially when
robots rely heavily on them to determine actions. Due to

* Correspondence to: Jiachen Li <jiachen.li@ucr.edu>
† These authors contributed equally to this paper.

compounded overfitting from both predictions and the learned
policy, robots specialized for these environments often fail to
generalize to new scenarios with different crowd dynamics. In
other words, existing methods lack a systematic treatment of
prediction errors to improve policy generalizability.

In this paper, we propose that by properly quantifying
uncertainties in human trajectory predictions and incorporating
the results into decision making algorithms, it is possible to
alleviate overfitting in RL-based crowd navigation. Uncer-
tainty serves as an indicator of the reliability of prediction
hypotheses, reflecting both prediction errors and the sensi-
tivity of prediction models to distribution shifts. Therefore,
encouraging the agent to account for uncertainty enables it
to generate actions that are more robust to distribution shifts
and resilient to incorrect assumptions about human dynam-
ics. Specifically, we introduce a learning-based framework
that explicitly reasons about prediction uncertainty. First, we
apply adaptive conformal inference (ACI) [7, 8] to quantify
the uncertainty of each predicted human trajectory with a
prediction set that contains the true future position with
a user-defined coverage probability. Unlike other conformal
approaches [1], ACI updates its calibration online, so it can
swiftly adapt when the underlying crowd dynamics shift.
Second, we employ constrained reinforcement learning (CRL)
to introduce effective controllability into the decision making
system, using uncertainty estimates to guide both the learning
process and the agent’s behavior. Our system achieves the
state-of-the-art (SOTA) performance in safety metrics and with
much smaller performance drops in OOD settings. In the in-
distribution setting, our system achieves an over 8.80% higher
success rate than previous SOTA RL baselines, with more
than 3.72 times fewer collisions and over 2.43 times fewer in-
trusions into pedestrian trajectories in in-distribution settings.
In three different OOD test scenarios that introduce velocity
shifts, policy shifts, and pedestrian grouping behavior, our
method maintains a high success rate and low collision rate,
while competing approaches degrade significantly. Finally, we
deploy the learned policy on a real Mecanum-wheel robot.
With only minor clipping and smoothing, the policy transfers
directly from simulation and achieves safe navigation in both
sparse and dense crowds.

II. RELATED WORK

Crowd Navigation. Mobile robots are expected to interact
with humans and complete various tasks, such as providing
assistance [6]. Crowd navigation forms the foundation for

mailto:jiachen.li@ucr.edu

performing most high-level tasks. Robots are required to
navigate in crowds, where the challenge of modeling dynamic
human behavior makes navigation challenging. It is crucial
to capture the subtleties of human behavior, such as human
intentions and interactions between agents [20, 9, 39, 19, 21],
and properly use them for effective robotic decisions. Deep
RL offers a potentially viable solution to the challenging
navigation task [23, 22, 27]. Previous work on RL-based
methods for social robots includes the capture of agent-agent
interactions [3, 22] and the intentions of human agents [26],
incorporating these as predictions into RL policy networks.
Our work focuses on alleviating performance degradation in
OOD scenarios and proposes a system that works towards this
challenge by effectively considering and handling uncertainties
in human behavior predictions.

Planning Under Uncertainty. Trajectory planning under
uncertainty has attracted increasing attention. In optimization-
based and search-based methods, researchers have integrated
uncertainty quantification from perception and prediction into
various controllers [38, 5, 15, 24]. These methods easily
support adding constraints or safety shields, allowing explicit
management of uncertainty. By contrast, guiding decision
making in RL agents with uncertainty measures is less straight-
forward, since policy networks often behave as black boxes.
Prior work has augmented agent observations with uncertainty
estimates [13, 10] or post-processed policy outputs based
on uncertainty to ensure safe behavior [33]. However, most
approaches avoid integrating uncertainty guidance directly into
the learning process and still suffer from OOD performance
degradation similar to the methods without uncertainty mea-
sures. In our work, we propose that uncertainty-aware planning
can effectively mitigate OOD performance degradation for RL-
based crowd navigation and introduce a CRL framework that
enhances controllability and leverages uncertainty estimates to
effectively guide decision making, thereby improving robust-
ness to prediction errors and OOD scenarios.

III. METHOD

A. Problem Formulation

In our setting, we have H humans in the environment,
each indexed by h, within an episode of horizon T . At each
time step t, the positions of humans are represented as ph(t).
We predict K future steps (a larger K means more extended
future predictions) for each human’s future trajectories. The
prediction point for the k-th prediction of the h-th human is
denoted as ph,k(t), where 1 ≤ h ≤ H and 1 ≤ k ≤ K. We
formulate the task as a constrained Markov decision process,
where the CRL agent is provided with observations of the state
St at each timestep, which consists of two main parts. The
first part includes physical information: the current positions
of humans and the robot, and other quantities about the robot’s
dynamics. The second part comprises post-processed features
generated by models, such as the predicted human trajectories.
We denote physical state components of ego information as
e, physical components of human information as h, and
components generated by models as m. The complete state

St is written as St = [e,h,m]. The agent then generates
action At = (vx, vy) to control the moving speed of the
robot according to St. After taking an action, the environment
provides a reward Rt and a cost Ct. We aim to obtain an
optimal policy π(At | St) that maximizes rewards while
satisfying cost constraints.

B. Method Overview

The overall pipeline of our method is illustrated in Fig. 1.
First, we employ two different trajectory predictors: the con-
stant velocity (CV) predictor [31] and the Gumbel social
transformer (GST) predictor [14]. This is to demonstrate that
our algorithm can adapt to both rule-based and learning-
based predictors. Next, we use ACI to quantify prediction
uncertainties and incorporate them into m; subsequently, we
adopt a policy network with a combined attention mechanism
as proposed in [26] to process these uncertainties along with
other features. Finally, we employ CRL to guide the agents’
behavior using the uncertainty quantification results. Instead of
directly applying constraints to the collision rate, we impose
constraints on the average cumulative intrusions of the robot
into other agents’ uncertainty areas. This approach provides
behavior-level guidance and effectively addresses the issue of
sparse constraint feedback, thereby improving upon previous
methods that directly constrained result-oriented metrics such
as the collision rate.

C. Rule-Based and Learning-Based Trajectory Prediction

Our system adapts to different prediction models, including
both learning-based and rule-based trajectory predictors, and
can mitigate the adverse effects of incorrect predictions on
the subsequent decision-making process. For the rule-based
prediction model, we use the CV model to obtain simple and
effective estimates of future human states by extrapolating
the current states of human agents based on their velocities.
For learning-based prediction models, we choose the GST
predictor [14] as the learning-based prediction model, which is
designed to address the challenges of partially detected pedes-
trians and redundant interaction modeling. GST is adapted for
the efficient encoding of pedestrian features and demonstrates
adaptability and robustness in high-density crowds.

D. ACI for Quantifying Prediction Uncertainty

After obtaining the K-step future predictions, we quantify
the prediction uncertainty using dynamically-tuned adaptive
conformal inference (DtACI) [8], an ACI algorithm that adapts
effectively to distribution shifts and thus serves as a good
fit for online uncertainty estimation in social navigation. For
each prediction step of each pedestrian, we run M prediction
error estimators simultaneously. At time step t, we calculate
the actual prediction error δh,k between the current position
and the predicted position made at time step t − k for the
k-th prediction step of the h-th human as δh,k(t) = ∥ph(t)−
ph,k(t− k)∥2, where ph(t) is the position of the h-th human
at time t, ph,k(t − k) is the k-step predicted position of the
h-th human made at time t−k, and δh,k(t) is calculated as the

Human positions

Robot features

Trajectory
prediction

H-R attention

Prediction
uncertainty

H-H attention

GRU

MLP

Reward critic

Actor

Cost
advantage

Cost critic

Reward
advantage

Cost

-—

Update

×

Reward GAE

GAE

Reward
return

Cost
return

ACI

||

Fig. 1: The overall pipeline of our method. We mark components related to humans in yellow, components related to physical information and decision-making
of the robot in blue, and fused features in green. We use ACI to quantify the prediction uncertainty of human trajectories and concatenate these metrics with
predictions before inputting them into networks. The networks contain attention mechanisms for interactions between humans (H-H attention) and between
humans and the ego robot (H-R attention). Prediction uncertainty combined with physical information is used for designing costs. For the CRL agent using
PPO Lagrangian, the actor and reward critic share some layers while the cost critic uses a separate network. We adopt reward value loss lR, action loss lπ ,
and cost value loss lC for updating the agent.

L2 norm of the difference of ph(t) and ph,k(t− k). We then
update the estimated error generated by the m-th estimator for
the h-th human as

δ̂
(m)
h,k (t) = δ̂

(m)
h,k (t− 1) − γ(m)

(
α− err

(m)
h,k (t)

)
, (1)

where δ̂
(m)
h,k represents the estimated prediction error of the

m-th estimator corresponding to a k-step ahead prediction
for the h-th human, γ(m) is the learning rate of the m-th
prediction error estimator for all humans and predictions, α is
the coverage parameter, and

err
(m)
h,k (t) :=

{
1, if δ̂(m)

h,k (t− 1) < δh,k(t),

0, if δ̂(m)
h,k (t− 1) ≥ δh,k(t).

(2)

According to quantile regression [8], δ̂
(m)
h,k converges to the

(1− α) quantile of actual errors. Since we run M prediction
error estimators with different learning rates simultaneously,
for each error estimator, after taking in the actual prediction
error δh,k and updating the estimated prediction error for
the next step, we evaluate the errors of each estimator and
update the probability distribution for choosing the next output
prediction error estimator by

w
(m)
h,k ← (1− σ)

w
(m)
h,k exp

(
−η ℓ(δh,k,δ

(m)
h,k)

)
∑M

j=1 w
(j)
h,k exp

(
−η ℓ(δh,k,δ

(j)
h,k)

) + σ
M , (3)

p
(m)
h,k ←

w
(m)
h,k∑M

j=1 w
(j)
h,k

, (4)

where we ignore the explicit time-step notation t for simplicity,
and use the arrow to indicate the replacement of values. The
weight w(m)

h,k corresponds to the probability p
(m)
h,k for the m-

th prediction error estimator, σ and η are hyperparameters
of DtACI for adjusting the speed at which weights change.

ℓ(δh,k, δ
(m)
h,k) is the pinball loss function used to measure the

estimation error:

ℓ(δh,k, δ
(m)
h,k) =

{
α
(
δh,k − δ

(m)
h,k

)
, if δh,k ≥ δ

(m)
h,k ,

(α− 1)
(
δh,k − δ

(m)
h,k

)
, if δh,k < δ

(m)
h,k .

(5)
Each time we estimate the prediction uncertainty, we treat
δ̂h,k as a discrete random variable taking values in the set
{δ̂(1)h,k, . . . , δ̂

(M)
h,k }. The probability mass function of δ̂h,k is:

P
(
δ̂h,k = δ̂

(m)
h,k

)
= p

(m)
h,k , m = 1, . . . ,M,

∑M
m=1 p

(m)
h,k = 1. (6)

In other words, δ̂h,k follows a categorical distribution whose
probability mass function is

{
p
(1)
h,k, . . . , p

(M)
h,k

}
.

E. Policy Network Structure

Once we have obtained the trajectory prediction results and
the corresponding prediction uncertainty, we concatenate the
uncertainty quantification with the predicted trajectory before
feeding it into the attention layers. This allows the RL agents to
account for the prediction uncertainty in their decision-making
process, as shown in Fig. 1. The first block is the human-
human attention (H-H attention in Fig. 1), which models
each human as a separate node to capture interactions among
humans. Next, we fuse the robot features (including velocity,
heading, positions, and goal) into the attention blocks through
human-robot attention (H-R attention) to obtain fused feature
embeddings capturing the interactions between humans and
the ego robot. We then process these fused embeddings with
the robot features and concatenate them to form the GRU
input, thereby capturing temporal information. Lastly, the final
fused features are passed to the actor and critic networks for
further processing. For more details about the policy network
structure, please refer to [26].

F. Decision Making with Effective Uncertainty Handling

To enhance controllability and enable effective guidance
under uncertainty, we adopt a physically meaningful cost and
adjust its distribution based on a predefined cost limit using
CRL, which is not achievable with traditional RL and reward
shaping, as conventional rewards provide only an aggregate
signal without any mechanism to ensure that safety-related
components converge within a specified range. First, we design
the safety critical area of pedestrians as a combination of a
circular area around the human’s position and an uncertainty
area around K ′ (K ′ ≤ K) steps of predictions. Since we have
H human agents in the environment, the two parts of the area
are defined as

Di(pego) = {pego : |pego − p| ≤ ri} , p ∈ Pi, i = 1, 2, (7)

P1 = {ph}, P2 = {ph,k}, 1 ≤ h ≤ H, 1 ≤ k ≤ K ′, (8)

r1 = rego + rh + rcomfort, r2 = rego + rh + δ̂h,k, (9)

where D1 is the subarea around the current positions of
humans and D2 is the subarea around the predicted positions
of humans. If the current center position of the ego robot pego
is in either D1 or D2, an intrusion occurs. For the computation,
we consider the distance between the center positions of agents
and prediction points. rego is the radius of the ego robot, rh
is the radius of the h-th human, rcomfort is the radius of the
subarea around the current positions of humans, and δ̂h,k is
the prediction uncertainty generated by DtACI for the k-th
prediction point of the h-th human.

At each time step t, we iterate through all cost areas of
all humans and calculate the maximum intrusion, denoted as
dintru,t. For an episode with a horizon of T , we have

max
π

T∑
t=0

Rt(St, At) s.t.
T∑

t=0

dintru,t = d̃, (10)

where d̃ is a pre-defined threshold.
We formulate the cost Ct using the intrusions as

Ct(St, At) = µdintru,t, where µ is a constant.Our reward
includes three components: Rsuccess, Rcollision, and Rpotential.
Rsuccess is the reward for robot reaches the goal, Rcollision is
for the robot collides with pedestrians, and Rpotential provides
a dense reward that drives the ego robot to approach the goal,
proportional to the distance the ego robot approaches the goal
compared to the previous time step [26].

In our work, we use the PPO Lagrangian [29] for opti-
mization. We set up two critics to compute the state value for
reward and the state value for cost. The loss functions for the
critics are defined as

lRt = c1(V
R
θ1 (St)− V targ,R

t)2, (11)

lCt = c2(V
C
θ2 (St)− V targ,C

t)2, (12)

where c1 and c2 are constants, V R
θ1
(St) and V C

θ2
(St) are

network-generated value estimates for reward and cost, respec-
tively, and V targ,R

t and V targ,C
t are the target values.

As for the policy network, the action loss is similar to
the form in PPO [32] except that we employ the combined
advantage Â′

t =
ÂR

t −λÂC
t

1+λ . The action loss function can then
be written as

lπt = Êt

[
min

(
rt(θ3)Â

′
t, clip (rt(θ3), 1− ϵ, 1 + ϵ) Â′

t

)]
, (13)

where rt(θ3) represents the change ratio between the updated
and old policies, ϵ is the clip ratio, and Â′

t represents the
estimated value advantage function at time step t. Lastly, we
update λ using gradient descent. The loss function [17] for
updating λ is defined as lλt = −λ(C̄ − d̃C), where C̄ is
the mean episodic cost and d̃C is the cost limit proportional
to d̃. Intuitively, when C̄ is greater than d̃C (i.e., intrusions
are frequent), λ will increase according to gradient descent,
leading the RL agents to consider cost advantages more when
updating the policy and thus, actions with larger costs will be
less preferred, and vice versa.

IV. EXPERIMENTS

A. Simulation Settings and Evaluation Metrics

We adopt CrowdNav [3], one of the most widely adopted
simulation environments for crowd navigation. The environ-
ment consists of 20 humans and one robot in a 12m × 12m
area, with randomized initial positions and goal locations.
The robot has a radius of 0.2m, while human radii are
randomly sampled between 0.3m and 0.5m. The robot’s
maximum speed is set to 1.0m/s. We adopt the standard
evaluation metrics [26], including success rate (SR), collision
rate (CR), timeout rate (TR), navigation time (NT), path length
(PL), intrusion time ratio (ITR), and social distance (SD).
The detailed definitions can be found in Appendix C. For
all of these metrics, SR reflects the effectiveness and CR
evaluates the safety of algorithms. TR, NT, and PL measure
the efficiency of the policy-generated paths, and ITR and SD
measure the politeness of the paths. We believe SR and CR are
the most important metrics. Policies with lower SR or higher
CR, even if they might perform better on other metrics, are not
as good as those with higher SR and lower CR. We include
our implementation details in Appendix D.

B. Baselines and Ablation Models

Our baselines include optimal reciprocal collision avoidance
(ORCA) [34], social force (SF) [12], model-predictive control
(MPC), SafeCrowdNav [37], and CrowdNav++ [26]. ORCA
and SF are classic rule-based algorithms in obstacle avoidance,
MPC is an optimization-based algorithm, and SafeCrowdNav
and CrowdNav++ represent the previous SOTA RL algorithms
in crowd navigation. For MPC, we implement a cost function
similar to that in [24, 15], which uses uncertainty as a reference
in the cost formulation to improve safety. We test our method
with the CV and the GST predictors, represented as Ours
(w/ CV) and Ours (w/ GST), respectively. We also include
RL (w/o ACI) and RL (w/ ACI) as two ablation models.
The two variants have the same network structures as Ours
(w/ GST), but RL (w/o ACI) excludes uncertainty estimates

TABLE I: In-Distribution Test Results

Methods SR↑ CR↓ TR↓ NT↓ PL↓ ITR↓ SD↑

SF 15.60% 21.44% 62.96% 30.23 34.64 3.78% 0.42
ORCA 67.84% 27.52% 4.64% 22.80 19.74 1.10% 0.50
MPC 73.76% 25.52% 0.72% 19.09 20.88 11.91% 0.43
SafeCrowdNav 89.09±3.18% 10.91±3.18% 0.00±0.00% 13.06±0.34 12.06±0.45 14.09±0.91% 0.39±0.01
CrowdNav++ 86.11±0.61% 13.81±0.57% 0.00±0.14% 14.96±1.07 20.68±0.88 6.61±0.98% 0.43±0.01

RL (w/o ACI) 92.67±1.51% 7.33±1.51% 0.00±0.00% 12.89±0.10 19.42±0.12 10.62±0.57% 0.39±0.01
RL (w/ ACI) 94.08±1.18% 5.92±1.18% 0.00±0.00% 13.35±0.26 19.88±0.25 8.81±0.67% 0.40±0.00

Ours (w/ CV) 96.03±1.14% 3.73±1.24% 0.24±0.24% 17.88±0.60 24.51±0.76 2.40±0.22% 0.45±0.00
Ours (w/ GST) 96.93±0.68% 2.93±0.61% 0.13±0.12% 17.54±0.86 24.27±0.85 2.72±0.16% 0.44±0.00

TABLE II: Out-of-Distribution Test Results

Environments Methods SR↑ CR↓ TR↓ NT↓ PL↓ ITR↓ SD↑

20% Rushing Humans

SF 12.24% 19.12% 68.64% 32.06 36.15 5.31% 0.40
ORCA 60.32% 34.96% 4.72% 23.41 19.84 2.95 % 0.48
MPC 49.76% 49.84% 0.40% 18.52 17.77 19.70% 0.39

SafeCrowdNav 69.71±4.55% 30.29±4.55% 0.00±0.00% 13.47±0.40 10.96±0.66 20.20±1.10% 0.37±0.00
CrowdNav++ 73.17±1.24% 26.67±1.40% 0.16±0.16% 15.43±1.63 19.89±1.12 12.38±1.48 0.39±0.00
RL (w/o ACI) 74.19±1.26% 25.81±1.26% 0.00±0.00% 13.31±0.30 18.20±0.10 18.23±0.31% 0.37±0.00
RL (w/ ACI) 76.96±4.29% 23.04±4.29% 0.00±0.00% 14.13±0.32 19.04±0.14 15.84±1.14% 0.37±0.01
Ours (w/ CV) 87.07±0.89% 12.75±1.21% 0.19±0.32% 18.74±0.31 24.57±0.66 5.29±0.20% 0.40±0.00

Ours (w/ GST) 87.17±4.14% 12.75±4.00% 0.08±0.14% 18.32±1.01 24.04±0.85 6.82±1.36% 0.38±0.00

SF Pedestrian Model

SF 12.08% 6.72% 81.20% 29.76 40.56 1.60% 0.45
ORCA 92.56% 4.88% 2.56% 22.36 21.91 0.72% 0.48
MPC 89.76% 10.00% 0.24% 17.07 20.58 8.58% 0.41

SafeCrowdNav 91.28±0.60% 8.72±0.60% 0.00±0.00% 12.12±0.23 11.37±0.29 10.94±0.40% 0.39±0.00
CrowdNav++ 92.48±1.36% 7.52±1.36% 0.00±0.00% 14.65±1.81 20.82±1.71 6.48±0.88% 0.41±0.00
RL (w/o ACI) 95.68±0.89% 4.32±0.89% 0.00±0.00% 12.35±0.21 18.99±0.16 9.98±0.49% 0.39±0.00
RL (w/ ACI) 97.41±0.81% 2.59±0.81% 0.00±0.00% 13.08±0.24 19.81±0.24 8.07±0.43% 0.40±0.01
Ours (w/ CV) 98.48±0.92% 1.39±0.82% 0.13±0.12% 19.02±0.45 25.84±0.54 2.04±0.25% 0.43±0.01

Ours (w/ GST) 98.96±0.52% 1.04±0.52% 0.00±0.00% 18.18±0.84 25.05±0.79 2.66±0.45% 0.42±0.00

Groups

SF 2.56% 97.44% 0.00% 9.41 9.91 23.59% 0.35
ORCA 49.44% 46.72% 3.84 22.98 19.37 20.46% 0.39
MPC 69.12% 29.76% 1.12% 20.48 22.78 24.08% 0.37

SafeCrowdNav 75.73±2.01% 24.27±2.01% 0.00±0.00% 16.29±0.44 13.44±0.64 26.78±1.42% 0.35±0.01
CrowdNav++ 81.84±15.17% 18.13±15.20% 0.03±0.05% 17.28±1.30 24.95±3.60 9.05±6.54% 0.39±0.01
RL (w/o ACI) 71.07±6.33% 28.93±6.33% 0.00±0.00% 14.87±0.67 21.35±1.08 20.17±2.07% 0.36±0.01
RL (w/ ACI) 83.12±7.81% 16.88±7.81% 0.00±0.00% 15.70±0.39 23.53±1.30 12.67±4.83% 0.37±0.01
Ours (w/ CV) 94.51±4.20% 5.41±4.23% 0.08±0.14% 21.16±1.32 30.61±1.98 3.00±0.61% 0.43±0.01

Ours (w/ GST) 94.13±3.51% 5.71±3.31% 0.16±0.21% 20.19±0.69 29.69±0.81 3.55±1.21% 0.41±0.01

from the input and does not employ CRL, while RL (w/ ACI)
incorporates uncertainty estimates but does not apply CRL.

C. In-Distribution Test Results

Quantitative Analysis. For all the test results in Table I-
II, we evaluate 1250 samples across 5 random test seeds and
calculate the mean performance and standard deviations of
models trained with 3 different training seeds. The test results
under the same setting as the training environment are shown
in Table I. From these results, we can see that SF, ORCA, and
MPC have lower SR and higher CR compared to RL methods.
When comparing all the RL-based methods, both Ours (w/
GST) and Ours (w/ CV) outperform other methods in safety
metrics and ITR, indicating that our method can generate both
safe and polite trajectories that cause minimal intrusions to
pedestrians. Although our method generates paths with higher
TR, NT, and PL compared to RL baselines and ablation
models, this tradeoff is reasonable considering the overall
improvement in effectiveness and safety. Notably, Ours (w/
GST) achieves over an 8.80% higher SR, decreases collisions
by more than 3.72 times, and reduces intrusions into the future
pedestrian trajectories by more than 2.43 times compared to
the two RL baselines.

Qualitative Analysis. We visualize the behaviors of Ours
(w/ GST) and CrowdNav++ in the same episode in Fig. 2(a)
and Fig. 2(b), respectively. At the beginning, CrowdNav++ de-
cides to approach the goal directly. However, as the pedestrians
move, they gradually surround the robot, which leads to an
almost inevitable collision for CrowdNav++. In contrast, Ours
(w/ GST) chooses to move the robot out of the crowds from
the start. At step 24, Ours (w/ GST) rapidly reacts to a sudden
change in human direction, and the expanding uncertainty area
due to prediction errors accumulated helps the robot perform
an avoidance maneuver.

D. Out-of-Distribution Test Results

OOD Scenarios Mixed with 20% Rushing Humans.
In this setting, we set 20% of the human agents to have a
maximum speed of 2.0m/s. From the results in Table II, we
observe that all methods exhibit degraded performance com-
pared to in-distribution conditions. Especially, SafeCrowdNav,
CrowdNav++, RL (w/o ACI), and RL (w/ ACI) experience SR
drops of 19.38%, 12.94%, 18.48%, and 17.12%, respectively.
In contrast, Ours (w/ CV) and Ours (w/ GST) exhibit smaller
SR drops of 8.96% and 9.76%, respectively. We visualize a
scenario performed by Ours (w/ GST) in Fig. 2(c), where two

Step 50

Approaching

Step 59

Slowly moving

Escaped

Step 81

Step 32

Rushing humans

d)

Step 2 Step 27

Step 31 Step 43

Step 2 Step 24

Step 27 Step 85

Sudden change

Avoidance

Expanding ACI

a) b)

Step 34
Avoidance

Expanding ACI

e)

Collision

Success

Step 38

Escaped

Stuck

Step 30

c)

Step 48 Step 67 Step 80

Yield

Success

Fig. 2: Test-case visualizations. Pedestrians are shown in blue, the robot in yellow, and the goal as an orange star. Light-blue circles show the quantified
uncertainties around pedestrians. (a) Ours (w/ GST) successfully navigates to the goal in an in-distribution environment. (b) CrowdNav++ fails to complete
the same episode; here, light-blue circles represent predicted trajectories rather than uncertainties. (c) Ours (w/ GST) in an OOD environment with rushing
pedestrians. (d) Ours (w/ GST) in an OOD environment using the SF pedestrian model. (e) Ours (w/ GST) in an OOD environment with pedestrian groups.

rushing humans are moving toward the agent at step 32. Due
to the GST predictor facing the challenges of OOD conditions,
the uncertainty area generated by ACI becomes much larger.
The robot then chooses to navigate between these two agents
through the gap between the uncertainty areas at step 34 and
successfully escapes to a safe area at step 38.

OOD Scenarios with SF Pedestrian Model. In this setting,
we change the behavior policy of all human agents from
ORCA to SF. From the results in Table II, all methods perform
better than in in-distribution conditions. Ours (w/ CV) and
Ours (w/ GST) achieve almost perfect results in terms of
SR, CR, and TR, implying that our methods adapt well
to OOD scenarios caused by different behavior models. We
visualize a scenario performed by Ours (w/ GST) in Fig. 2(d).
When three humans approach each other, the robot with our
policy maintains a conservative distance from the crowds and
successfully escapes afterward.

OOD Scenarios with Group Dynamics. In this setting,
pedestrians are clustered into cohesive groups that maintain
tight intra-group spacing. As Table II shows, every RL baseline
and ablation variant suffers a noticeable performance drop.
Especially, SafeCrowdNav and RL (w/ ACI) fall to SR below
76%. The adaptability to grouped pedestrians of CrowdNav++
is highly sensitive to the training seed, with variance exceeding
15%. By contrast, Ours (w/ CV) and Ours (w/ GST) retain
SR above 94% and CR below 6%, while also displaying the
smallest variance across seeds.

E. Other Test Results
We include additional test results in Appendix E to H,

covering the effectiveness of ACI quantification, a convergence

comparison between Ours (w/ GST) and RL (w/ ACI), the
influence of different cost limits on policy aggressiveness, and
cross-evaluations of algorithms trained in environments where
humans either actively avoid or ignore the robot.

F. Real-Robot Experiments

We deploy our method on a ROSMASTER X3 robot with
Mecanum wheels running ROS2, connected via router to a
laptop equipped with a mobile NVIDIA RTX 3070 GPU. We
apply the model to the robot without further fine-tuning, using
only basic clipping and smoothing. Perception is performed
with a 6 Hz RPLIDAR-A1 LiDAR, human detection via a pre-
trained DR-SPAAM model [18], tracking with SORT [2], and
trajectory prediction with GST. We implement two movement
modes: fixed-goal reaching and long-range navigation with
a dynamically updated goal. The robot navigates outdoor
environments and executes safe behaviors in both sparse and
dense crowds. For more details, please refer to Appendix I-K
and the supplementary video.

V. CONCLUSION
In this paper, we introduce an RL-based trajectory-planning

framework that integrates conformal uncertainty into a CRL
scheme to mitigate OOD performance degradation. Unlike
conventional RL planners that overfit and falter under distri-
bution shifts, our method dynamically leverages uncertainty
estimates to adapt to velocity variations, policy changes,
and transitions from individual to group dynamics. Extensive
simulations demonstrate robust stability across diverse OOD
scenarios, and real-world trials confirm the practical effective-
ness of our approach.

REFERENCES

[1] Anastasios N Angelopoulos, Stephen Bates, et al. Con-
formal prediction: A gentle introduction. Foundations
and Trends® in Machine Learning, 16(4):494–591, 2023.

[2] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos,
and Ben Upcroft. Simple online and realtime tracking. In
2016 IEEE international conference on image processing
(ICIP), pages 3464–3468. IEEE, 2016.

[3] Changan Chen, Yuejiang Liu, Sven Kreiss, and Alexan-
dre Alahi. Crowd-robot interaction: Crowd-aware
robot navigation with attention-based deep reinforcement
learning. In 2019 international conference on robotics
and automation (ICRA), pages 6015–6022. IEEE, 2019.

[4] Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P
How. Decentralized non-communicating multiagent col-
lision avoidance with deep reinforcement learning. In
2017 IEEE international conference on robotics and
automation (ICRA), pages 285–292. IEEE, 2017.

[5] Anushri Dixit, Lars Lindemann, Skylar X Wei, Matthew
Cleaveland, George J Pappas, and Joel W Burdick. Adap-
tive conformal prediction for motion planning among
dynamic agents. In Learning for Dynamics and Control
Conference, pages 300–314. PMLR, 2023.

[6] Anthony Francis, Claudia Pérez-d’Arpino, Chengshu Li,
Fei Xia, Alexandre Alahi, Rachid Alami, Aniket Bera,
Abhijat Biswas, Joydeep Biswas, Rohan Chandra, et al.
Principles and guidelines for evaluating social robot
navigation algorithms. arXiv preprint arXiv:2306.16740,
2023.

[7] Isaac Gibbs and Emmanuel Candes. Adaptive conformal
inference under distribution shift. Advances in Neural
Information Processing Systems, 34:1660–1672, 2021.

[8] Isaac Gibbs and Emmanuel J Candès. Conformal in-
ference for online prediction with arbitrary distribution
shifts. Journal of Machine Learning Research, 25(162):
1–36, 2024.

[9] Harshayu Girase, Haiming Gang, Srikanth Malla, Jiachen
Li, Akira Kanehara, Karttikeya Mangalam, and Chiho
Choi. Loki: Long term and key intentions for trajectory
prediction. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 9803–
9812, 2021.

[10] Mahsa Golchoubian, Moojan Ghafurian, Kerstin Dauten-
hahn, and Nasser Lashgarian Azad. Uncertainty-aware
drl for autonomous vehicle crowd navigation in shared
space. IEEE Transactions on Intelligent Vehicles, 2024.

[11] James R Han, Hugues Thomas, Jian Zhang, Nicholas
Rhinehart, and Timothy D Barfoot. Dr-mpc: Deep
residual model predictive control for real-world social
navigation. IEEE Robotics and Automation Letters, 2025.

[12] Dirk Helbing and Peter Molnar. Social force model
for pedestrian dynamics. Physical review E, 51(5):4282,
1995.

[13] Huang Huang, Satvik Sharma, Antonio Loquercio, Anas-
tasios Angelopoulos, Ken Goldberg, and Jitendra Malik.

Conformal policy learning for sensorimotor control under
distribution shifts. arXiv preprint arXiv:2311.01457,
2023.

[14] Zhe Huang, Ruohua Li, Kazuki Shin, and Katherine
Driggs-Campbell. Learning sparse interaction graphs of
partially detected pedestrians for trajectory prediction.
IEEE Robotics and Automation Letters, 7(2):1198–1205,
2021.

[15] Zhe Huang, Tianchen Ji, Heling Zhang, Fatemeh Cher-
aghi Pouria, Katherine Driggs-Campbell, and Roy Dong.
Interaction-aware conformal prediction for crowd navi-
gation. arXiv preprint arXiv:2502.06221, 2025.

[16] Walter Jansma, Elia Trevisan, Álvaro Serra-Gómez, and
Javier Alonso-Mora. Interaction-aware sampling-based
mpc with learned local goal predictions. In 2023 In-
ternational Symposium on Multi-Robot and Multi-Agent
Systems (MRS), pages 15–21. IEEE, 2023.

[17] Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xue-
hai Pan, Ruiyang Sun, Weidong Huang, Yiran Geng,
Mickel Liu, and Yaodong Yang. Omnisafe: An infrastruc-
ture for accelerating safe reinforcement learning research.
arXiv preprint arXiv:2305.09304, 2023.

[18] Dan Jia, Alexander Hermans, and Bastian Leibe. Dr-
spaam: A spatial-attention and auto-regressive model for
person detection in 2d range data. In 2020 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), pages 10270–10277. IEEE, 2020.

[19] Bernard Lange, Jiachen Li, and Mykel J Kochender-
fer. Scene informer: Anchor-based occlusion inference
and trajectory prediction in partially observable environ-
ments. In IEEE International Conferences on Robotics
and Automation (ICRA), 2024.

[20] Jiachen Li, Fan Yang, Masayoshi Tomizuka, and Chiho
Choi. Evolvegraph: Multi-agent trajectory prediction
with dynamic relational reasoning. Advances in neural
information processing systems, 33, 2020.

[21] Jiachen Li, Xinwei Shi, Feiyu Chen, Jonathan Stroud,
Zhishuai Zhang, Tian Lan, Junhua Mao, Jeonhyung
Kang, Khaled S Refaat, Weilong Yang, et al. Pedes-
trian crossing action recognition and trajectory prediction
with 3d human keypoints. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages
1463–1470. IEEE, 2023.

[22] Jiachen Li, Chuanbo Hua, Hengbo Ma, Jinkyoo Park,
Victoria Dax, and Mykel J Kochenderfer. Multi-agent
dynamic relational reasoning for social robot navigation.
arXiv preprint arXiv:2401.12275, 2024.

[23] Kunming Li, Yijun Chen, Mao Shan, Jiachen Li, Stewart
Worrall, and Eduardo Nebot. Game theory-based simul-
taneous prediction and planning for autonomous vehicle
navigation in crowded environments. In 2023 IEEE 26th
International Conference on Intelligent Transportation
Systems (ITSC), pages 2977–2984. IEEE, 2023.

[24] Lars Lindemann, Matthew Cleaveland, Gihyun Shim, and
George J Pappas. Safe planning in dynamic environments
using conformal prediction. IEEE Robotics and Automa-

tion Letters, 8(8):5116–5123, 2023.
[25] Shuijing Liu, Peixin Chang, Weihang Liang, Neeloy

Chakraborty, and Katherine Driggs-Campbell. Decen-
tralized structural-rnn for robot crowd navigation with
deep reinforcement learning. In 2021 IEEE international
conference on robotics and automation (ICRA), pages
3517–3524. IEEE, 2021.

[26] Shuijing Liu, Peixin Chang, Zhe Huang, Neeloy
Chakraborty, Kaiwen Hong, Weihang Liang, D Liv-
ingston McPherson, Junyi Geng, and Katherine Driggs-
Campbell. Intention aware robot crowd navigation with
attention-based interaction graph. In 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 12015–12021. IEEE, 2023.

[27] Licheng Luo and Mingyu Cai. Bridging deep rein-
forcement learning and motion planning for model-free
navigation in cluttered environments. arXiv preprint
arXiv:2504.07283, 2025.

[28] Christoforos Mavrogiannis, Francesca Baldini, Allan
Wang, Dapeng Zhao, Pete Trautman, Aaron Steinfeld,
and Jean Oh. Core challenges of social robot navigation:
A survey. ACM Transactions on Human-Robot Interac-
tion, 12(3):1–39, 2023.

[29] Alex Ray, Joshua Achiam, and Dario Amodei. Bench-
marking safe exploration in deep reinforcement learning.
arXiv preprint arXiv:1910.01708, 2019.

[30] Sepehr Samavi, James R Han, Florian Shkurti, and
Angela P Schoellig. Sicnav: Safe and interactive crowd
navigation using model predictive control and bilevel
optimization. IEEE Transactions on Robotics, 2024.

[31] Christoph Schöller, Vincent Aravantinos, Florian Lay,
and Alois Knoll. What the constant velocity model
can teach us about pedestrian motion prediction. IEEE
Robotics and Automation Letters, 5(2):1696–1703, 2020.

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[33] Kegan J Strawn, Nora Ayanian, and Lars Lindemann.
Conformal predictive safety filter for rl controllers in
dynamic environments. IEEE Robotics and Automation
Letters, 2023.

[34] Jur Van den Berg, Ming Lin, and Dinesh Manocha.
Reciprocal velocity obstacles for real-time multi-agent
navigation. In 2008 IEEE international conference on
robotics and automation, pages 1928–1935. Ieee, 2008.

[35] Zhanteng Xie and Philip Dames. Drl-vo: Learning to
navigate through crowded dynamic scenes using velocity
obstacles. IEEE Transactions on Robotics, 39(4):2700–
2719, 2023.

[36] Zhanteng Xie and Philip Dames. Scope: Stochas-
tic cartographic occupancy prediction engine for
uncertainty-aware dynamic navigation. arXiv preprint
arXiv:2407.00144, 2024.

[37] Jing Xu, Wanruo Zhang, Jialun Cai, and Hong Liu. Safe-
crowdnav: safety evaluation of robot crowd navigation in
complex scenes. Frontiers in neurorobotics, 17:1276519,

2023.
[38] Shuo Yang, George J Pappas, Rahul Mangharam, and

Lars Lindemann. Safe perception-based control under
stochastic sensor uncertainty using conformal prediction.
In 2023 62nd IEEE Conference on Decision and Control
(CDC), pages 6072–6078. IEEE, 2023.

[39] Rui Zhou, Hongyu Zhou, Huidong Gao, Masayoshi
Tomizuka, Jiachen Li, and Zhuo Xu. Grouptron:
Dynamic multi-scale graph convolutional networks for
group-aware dense crowd trajectory forecasting. In 2022
International Conference on Robotics and Automation
(ICRA), pages 805–811. IEEE, 2022.

APPENDIX

A. Preliminaries

Adaptive Conformal Inference. Conformal methods can
augment model predictions with a prediction set that is
guaranteed to contain true values with a predefined cover-
age, enabling the quantification of uncertainties in a model-
agnostic manner [8]. Traditional split conformal prediction
requires a calibration set and places high demands on the
exchangeability between the test sample and the calibration
samples. In contrast, adaptive conformal inference (ACI) can
dynamically adjust its parameters to maintain coverage in an
online and distribution-free manner [7], making it appealing
for time-sequential applications. Dynamically-tuned adaptive
conformal inference (DtACI) [8] further boosts the applica-
bility and performance of ACI by running multiple prediction
error estimators with different learning rates simultaneously.
DtACI adaptively selects the best output based on its historical
performance, eliminating the need to pre-acquire underlying
data dynamics to achieve satisfying coverage.

Constrained Reinforcement Learning. Constrained rein-
forcement learning (CRL) extends RL algorithms by incorpo-
rating constraints on the agent’s behavior. Unlike traditional
Markov decision process (MDP) settings, where agents learn
behaviors only to maximize rewards, CRL is often formulated
as a constrained Markov decision process (CMDP). At time
step t, an agent chooses an action At under state St, receives a
reward Rt, and incurs a cost Ct, after which the environment
transitions to the next state St+1. In a CMDP, the objective is
not only to find an optimal policy that maximizes rewards but
also to manage costs associated with certain actions or states,
which may be defined as quantities related to safety in the
context of social navigation. This is generally represented as

π∗ = arg max
π∈ΠC

JR(π), (14)

where JR(π) is a reward-based objective function, and ΠC is
the feasible set of policies that satisfy the constraints added to
the problem. The goal of CRL is to ensure that costs remain
within pre-defined thresholds while maximizing reward.

B. Conceptual Differences with CBF

In CBFs, a safety function h(x) and a safe set {x : h(x) >
0} are used to encode safety. The condition ḣ(x) ≥ −γh(x)
is enforced during optimization to ensure the system remains
in the safe set, constraining the derivative of the safety
function. In contrast, our framework focuses on controlling
the integral of a risk-related function. Our cost function
C(S,A), analogous to h(x), is accumulated over time as∑T

t=0 Ct(St, At), and we aim to constrain this cumulative
cost below a small threshold d̃C . Thus, while both approaches
can shape the distribution of a safety-related function, the
optimization mechanisms differ significantly. Our methods
integrate more closely with CRL and achieve expected safety.

1-step
2-step
3-step

4-step
5-step

AC
I E

rro
r

−0.5

0

0.5

1.0

Time Step
5 10 15 20 25 30 35 40

Fig. 3: Visualization of ACI errors (i.e., estimated prediction error minus
actual prediction error) for one pedestrian’s five prediction steps during the
time period it is within the observable area of the robot. ACI provides valid
coverage when the ACI error is greater than 0.

C. Evaluation Metrics

The evaluation metrics used in our paper are introduced in
detail as follows:

• Success Rate (SR): SR measures the ratio of the number
of successful episodes (i.e., the robot reaching the goal
within the time limit of 50 s) to the total number of test
episodes, i.e., SR = Nsuccess/Ntotal.

• Collision Rate (CR: CR measures the ratio of episodes
with at least one collision to the total number of test
episodes, i.e., CR = Ncollision/Ntotal.

• Timeout Rate (TR): TR measures the ratio of episodes
that fail to reach the goal before the time limit to the
total number of test episodes, i.e., TR = Ntimeout/Ntotal.

• Navigation Time (NT): NT is the average time required
for the robot to reach the goal (computed only over
successful episodes), i.e., NT =

(
1/Nsuccess

)∑Nsuccess
k=1 Tk,

where Tk is the time the robot took to reach the goal in
the k-th successful episode.

• Path Length (PL): PL is the total distance traveled by the
robot in an episode, accumulated step by step. We report
the average path length across all episodes (including col-
lisions and timeouts), i.e., PL =

(
1/Ntotal

)∑Ntotal
i=1 disti,

where disti is the total distance traveled in episode i.
• Intrusion Time Ratio (ITR): ITR is the fraction of time

steps in an episode where the robot intrudes into the
ground-truth future positions of humans (Danger event
triggered). Its final value is an average over all episodes:

ITR = 1
Ntotal

∑Ntotal
i=1

(
danger steps in episode i

total steps in episode i × 100%
)
. (15)

• Social Distance (SD): SD is the average of the minimal
distances between the robot and any human, computed
only at the “danger steps.” We log the minimal distance
whenever a Danger event occurs, and then take the
average over all episodes.

D. Implementation Details

Under each ablation setting, we train our models using
three different random seeds on an NVIDIA RTX 4090 GPU,
keeping all other hyperparameters consistent except those we
intend to compare. Key common settings include:

• All models use human predictions as part of the input
observations and employ a pre-trained GST predictor
with fixed parameters to generate five steps of human
trajectory predictions, except for Ours (w/ CV).

• For the training parameters, we leverage the parallel
training feature of PPO by setting the batch size to 32
and running 128 parallel environments. The learning rate
is set to 3 × 10−5, and the clip parameter is set to 0.08
for both the actor and the reward critic. The learning
rate for the cost critic is set to 1.5 × 10−5. We run
2 × 107 training steps to obtain the final policy model
for testing and real-robot deployment. In our training,
varying entropy is removed, and the action noise, which
is normally distributed, is only added during training and
removed during testing and deployment.

• We set the radius of the cost subareas around current
positions of humans, rcomfort, to 0.25m and calculate costs
based on the intrusions into the subarea and the first two
prediction uncertainty areas, while inputting predictions
for all five future steps into the policy network with
a coverage parameter α = 0.1, corresponding to 90%
coverage in prediction errors.

• For DtACI hyperparameters, the initial prediction errors
are set to 0.1m, 0.2m, 0.3m, 0.4m, and 0.5m for 1- to
5-step-ahead predictions, respectively. We employ three
error estimators with learning rates γ of 0.05, 0.1, and
0.2 for each DtACI estimator.

• For the specific reward and cost functions, we set the suc-
cess reward Rsuccess to +10, the collision penalty Rcollision
to −20, and the dense potential reward that guides
the robot’s movement to 2∆dforward, where ∆dforward
measures the distance the robot moves toward the goal
compared to the previous step. The cost Ct(St, At) is
defined as 2.5dintru,t, where dintru,t represents the maxi-
mum intrusion into the cost areas of the current human
positions and the first two prediction uncertainty areas.

E. ACI Effectiveness

To validate the effectiveness of ACI in covering actual
prediction errors, we visualize the ACI errors of one hu-
man in Fig. 3. At the beginning of this trajectory, the ACI
errors for multi-step predictions are large because the GST
predictor lacks sufficient information to accurately predict
human positions, leading to large actual prediction errors that
our initial ACI values do not cover properly. However, after
several steps, ACI quickly adapts to the actual prediction error
and achieves adequate coverage. Additionally, if the coverage
remains sufficient, the ACI error will decrease to ensure that
the uncertainty estimation is not too conservative.

F. Convergence Analysis

We present the learning curves of Ours (w/ GST) in Fig.
4(a), alongside RL (w/ ACI) for comparison. The results
indicate that Ours (w/ GST) demonstrates a smoother learning
process and achieves higher rewards. Furthermore, as shown
in Fig. 4(b), the average episodic costs of Ours (w/ GST)

M
ea

n
R

ew
ar

d

−20

−10

0

10

20

30

Update Steps
1000 2000 3000 4000 5000

Cost limit = 1.2
Cost limit = 0.8
Cost limit = 0.4

M
ea

n
C

os
t

0

1

2

3

4

Episodes
0 1×105 2×105 3×105

M
ea

n
R

ew
ar

d

Update Steps Episodes

a) b)

M
ea

n
C

os
t

Ours (w / GST)
RL (w/ ACI)

Fig. 4: Convergence analysis of our method. (a) The learning curves of Ours
(w/ GST) and RL (w/ACI). Ours (w/ GST) shows faster convergence with
higher rewards. (b) The cost curves of Ours (w/ GST) with different cost
limits. The average costs across episodes can approximately approach the
predefined cost limits, which are shown by the dashed lines.

TABLE III: Performance of Ours (w/ GST) Under Different Cost Limits

Cost limit SR↑ CR↓ TR↓ NT↓ PL↓ ITR↓ SD↑

0.4 96.96% 2.80% 0.24% 18.52 25.24 2.73% 0.43
0.6 96.72% 3.04% 0.24% 16.16 22.96 3.59% 0.44
0.8 94.56% 5.44% 0.00% 13.60 20.33 5.61% 0.43
1.0 94.32% 5.68% 0.00% 13.53 20.19 6.62% 0.42
1.2 93.76% 6.24% 0.00% 12.97 19.45 7.31% 0.41

converge to different cost limit values. This provides an
effective mechanism for adjusting the aggressiveness of robot
policies, as further discussed in Appendix G.

G. Tuning Aggressiveness of Trajectories with Cost Limits

Although the main results presented in our paper focus
on low cost limits to ensure safe navigation through crowds,
we also observe interesting testing results with varying cost
limits that allow for tuning the aggressiveness of trajectories,
as shown in Table III. These results are obtained by testing
across five seeds, with 250 test samples for each seed, using
models trained with the same training seed. We find that as the
cost limits increase, the trajectories become gradually more
aggressive, reflected by an increase in ITR. This increased
aggressiveness also improves efficiency, as indicated by re-
ductions in NT and PL. However, it comes at the expense
of key metrics such as SR and CR. Therefore, for a single
best policy, we recommend keeping the cost limit as low as
possible, provided the policy can still converge.

H. Visible Robot Settings

For the main results presented in our paper, we train the RL
baselines, ablation models, and our methods in the CrowdNav
environments where humans will not actively avoid the robot,
which is a common practice in prior work [26, 37]. To
validate the effectiveness of this setting, we conduct a cross-
evaluation on models trained in environments where humans
either actively avoid or ignore the robot, as summarized in
Tables IV-V. Specifically, we evaluate the models under five
different testing seeds, each with 250 test samples, for three
models trained under three distinct training seeds. From these
results, we observe that although models trained in the visible
robot setting achieve low collision rates in their in-distribution
settings, they fail to generalize when humans do not react to
the robot. In such scenarios, nearly half of the test cases result
in collisions. In contrast, models trained in the invisible robot
setting maintain low collision rates in both testing scenarios

TABLE IV: Cross-Validation of Ours (w/ GST) for Robot Visibility Settings
Using Success Rates

Test
Train Invisible Visible

Invisible 96.93±0.68% 50.48±0.49%

Visible 99.92±0.14% 99.07±0.76%

TABLE V: Cross-Validation of Ours (w/ GST) for Robot Visibility Settings
Using Collision Rate

Test
Train Invisible Visible

Invisible 2.93±0.61% 49.52±0.49%

Visible 0.08±0.14% 0.93±0.76%

and, surprisingly, exhibit even lower collision rates when the
robot is visible than those trained in the visible robot setting.
In real-world situations, some pedestrians may ignore the robot
(e.g., when they are using their mobile phones while walking).
This mixture of reactive and non-reactive pedestrians poses
significant challenges for models that assume all humans will
actively avoid the robot. Thus, training in an environment
where humans do not react to the robot proves to be more
robust, as it better accounts for scenarios in which pedestrians
may fail to notice the robot.

I. ROS2 System for Real Robot Deployment

We develop a full ROS2 system from perception to decision
making, including four main nodes:

• Detector: This node employs a pretrained DR-SPAAM
model [18] to detect human agents from 2D LiDAR
point clouds. The model leverages a lightweight neu-
ral network, enabling real-time detection on resource-
constrained devices. According to the original paper, it
achieves an accuracy metric of AP0.5 = 70.3%.

• Tracker: This node uses the SORT [2] algorithm for track-
ing, which simply aims at assigning indices to detected
agents. To generate consistent tracking results even when
receiving noisy detections, we assign large values to the
measurement noise covariance matrix R and the process
noise covariance matrix Q of the underlying Kalman filter
to accommodate detection jitter. We also set a higher
noise coefficient for the position and scale components
of the Kalman filter and a smaller value for the velocity
components to allow more flexibility in position and scale
updates. In the initial state covariance matrix P, the
velocity components are given a large uncertainty, and
the entire matrix is scaled accordingly so the filter can
quickly adapt during early tracking. Besides, in the SORT
tracker, we only keep trajectories whose ratio of valid
detections over the entire detected period is above 0.9,
filtering out spurious or short-lived detections. At each
timestep, we run the Kalman filter’s inference step to
infer the positions of tracked agents even when they are

not correctly detected in certain frames.
• Predictor: This node uses the GST [14] model as the tra-

jectory planner, integrating the DtACI module to directly
apply uncertainty quantification after obtaining prediction
lines for the pedestrians. The parameters and model
weights are consistent with those used during training.

• Decider: This node receives information from the upper-
level nodes and determines the output action commands
(vx and vy for velocities) for the controller. We utilize the
controller integrated into the ROSMASTER X3 system
by publishing \cmd_vel. The decider supports three
modes: goal-reaching mode, long-range navigation mode,
and manual control mode. The selection of these modes
is managed by another utility node, Command Listener,
which listens to user input and communicates the com-
mands to the decider.

J. Real Robot Experiments

We deploy our approach on a ROSMASTER X3 robot
equipped with Mecanum wheels, enabling flexible movement
and independent control of vx and vy . The robot connects
to a laptop with an Nvidia RTX 3070 GPU (mobile version)
via a router. Our model is trained in CrowdNav simulations
with holonomic dynamics and is deployed directly to the robot
system without further fine-tuning.

The robot uses a 2D LiDAR (RPLIDAR-A1) for human
detection via a learning-based detector. The LiDAR operates
at a scanning frequency of approximately 6Hz, which also
limits the frequencies of the tracking, prediction, and decision
making modules. Despite this, our experiments demonstrate
that the robot makes effective navigation decisions in crowded
environments, indicating that the system generalizes well to
cost-efficient robots. Human detection is done with a pre-
trained DR-SPAAM model [18], tracking is done with SORT
[2], prediction is done with the GST model [14], and decision
making is powered by Ours (w/GST). For further details about
our system, please refer to Appendix I, and computational
speed analyses for the core functions of each module are
provided in Appendix K.

We conduct the experiments on a large outdoor terrace
covering an area greater than 15m × 20m. The robot operates
in two movement modes:

• Goal-reaching mode: The robot navigates to a predeter-
mined target point, which is the original setting in the
standard CrowdNav training phase.

• Long-range navigation mode: The goal of the robot
is dynamically updated based on its movement. This
approach addresses the limitation that, during training,
the goal inputs to the policy networks are constrained to a
limited range. As a result, distant goals beyond 12m may
negatively impact policy performance. By introducing a
continuously updated moving target, we show that the
robot can reliably navigate distances exceeding 20m
through experiments. This method has the potential to be
extended to even longer distances if the system is fully
integrated onboard in the future.

t = 1 s

t = 5 s

t = 13 s

t = 16 s
Standing still

Shrinking ACI

Moving

a) Uncertainty Visualization b) Yielding Behavior c) Goal-Reaching Mode d) Long-Range Navigation

Slowing down

t = 3 s

t = 3.5 s

Yielding

t = 2 s

Moving forward

t = 4.5 s

Pass

t = 0 s
Goal

t = 27 s

Success

t = 16 s

t = 23 s

t = 0 s

t = 66 s

t = 25 s

Moving goal

Moving goal

Moving goal

t = 43 s
Moving goal

Fig. 5: We deploy our methods on a ROSMASTER X3 with Mecanum wheels using the ROS2 system. For the four subplots, the left sides display photos
taken from the experiments, and the right sides show visualizations in RViz. In the RViz visualizations, the red circles represent detection results, and the
white numbers inside the red circles indicate the output probabilities of the detection model. The purple numbers correspond to the indices generated by the
tracker. The prediction lines are shown in blue, and the prediction uncertainties are depicted in semi-transparent light blue. In (a), the green robot represents
the robot’s current location. In (b)-(d), where the decision node is enabled, the yellow sphere indicates the robot’s position, and the yellow arrow represents
the command output from the decider node. The orange circle indicates the goal position. (a) In the uncertainty visualization, the human initially walks around
the robot and then stands still behind it. The uncertainty area adjusts dynamically based on the prediction accuracy. (b) The robot equipped with Ours (w/
GST) demonstrates stable yielding behavior when interacting with humans. (c) In goal-reaching mode, the robot navigates through crowds and successfully
reaches its goal. (d) In long-range navigation mode, the moving goal consistently guides the robot’s movement.

We show several representative real-world testing scenarios
and results in Fig. 5. Specifically, we first visualize the pre-
diction uncertainties using RViz in Fig. 5(a). Before t = 13 s,
the human walks around the robot, and the robot successfully
detects the human’s position while visualizing the predicted
trajectory and the associated uncertainty area. Since the pre-
diction model does not fully capture the human’s circular
walking pattern, the long-horizon prediction uncertainty area
is significantly larger than that of short-horizon predictions.
After t = 13 s, the human stands still behind the robot.
Initially, the prediction uncertainty area is large because the
uncertainty results are carried over from iterative processes.
Gradually, the uncertainty area shrinks to reflect more precise
prediction uncertainties. After approximately 3 seconds, the
uncertainty area stabilizes and reduces to almost zero. This
process demonstrates that by using DtACI, the system can ef-
fectively adapt to different conditions and dynamically reflect
prediction uncertainties. This enables safer decision making
without being overly conservative.

In Fig. 5(b), by allowing the robot to interact with a single
agent, we observe that the robot can generate stable yielding
behaviors. At t = 2 s, the robot detects that a human is
coming along a path that will intersect with its original moving
trajectory. It begins by slowing down to reduce the risk of a
collision (t = 3 s). At t = 3.5 s, the robot adjusts its direction,
moving towards the backside area of the human to avoid

intrusions. At t = 4.5 s, the robot successfully passes.

In Fig. 5(c), the robot navigates in goal-reaching mode
while interacting with humans along its path. We observe
that the robot encounters very dense crowds at t = 16 s and
t = 23 s. Throughout this process, the robot makes appropriate
decisions to minimize intrusions into humans’ trajectories
while progressing toward its goal, and it ultimately reaches
the goal despite the dense human interactions.

In Fig. 5(d), we implement the long-range navigation mode,
enabling the robot to navigate distances beyond those en-
countered during training. In this mode, the moving goal is
dynamically updated to remain 5m ahead of the robot’s posi-
tion along the longitudinal axis, while its lateral position re-
mains fixed. Under these conditions, the robot moves forward
while actively avoiding dynamic obstacles, as demonstrated at
t = 25 s. Although the robot temporarily deviates laterally to
avoid collisions, the fixed lateral component of the moving
goal serves as a stable reference, helping the robot stay within
a reasonable lateral range.

Overall, our system demonstrates robust decision-making
capabilities in crowded environments. By quantifying predic-
tion uncertainty and incorporating it into behavior guidance,
the robot develops more adaptive spatial awareness and ex-
hibits consistent, safe, and socially aware behaviors.

0.00

0.01

0.02

0.03

0.04

Ti
m

e
(s

)

 DR-SPAAM DtACI GST SORT CRL

Fig. 6: Visualizations of computational time distributions for five key modules
of our ROS2 system. The data samples were collected during experiments
in dense human environments. The shape of each violin plot represents
the density of computation times, with wider areas indicating a higher
concentration of values. The white dots at the center of each shape denote
the mean computation time for the respective module.

K. Computational Speed Analysis

We log the time consumption of key functions across
different nodes, including the inference times of the detection
model (DR-SPAAM), prediction model (GST), and the policy
network (CRL), as well as the update times for the tracker
(SORT) and uncertainty quantifier (DtACI) in dense crowd
experiments, and visualize the results in Fig. 6. The visual-
ization shows that GST has the longest average computation
time and the largest variance. In contrast, DR-SPAAM and
SORT maintain low and stable computation times, making
them efficient for real-time applications. While DtACI has
relatively high computational costs due to its pure Python
implementation, its average time remains below 0.01 s, well
within acceptable limits. This overhead can be greatly reduced
by transitioning to more efficient languages like C++. Despite
this, the worst-case computation time for all main modules
stays below 0.1 seconds, meeting and exceeding our system’s
decision frequency requirements.

	Introduction
	Related Work
	Method
	Problem Formulation
	Method Overview
	Rule-Based and Learning-Based Trajectory Prediction
	ACI for Quantifying Prediction Uncertainty
	Policy Network Structure
	Decision Making with Effective Uncertainty Handling

	Experiments
	Simulation Settings and Evaluation Metrics
	Baselines and Ablation Models
	In-Distribution Test Results
	Out-of-Distribution Test Results
	Other Test Results
	Real-Robot Experiments

	CONCLUSION
	Appendix
	Preliminaries
	Conceptual Differences with CBF
	Evaluation Metrics
	Implementation Details
	ACI Effectiveness
	Convergence Analysis
	Tuning Aggressiveness of Trajectories with Cost Limits
	Visible Robot Settings
	ROS2 System for Real Robot Deployment
	Real Robot Experiments
	Computational Speed Analysis

