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Abstract

Cell Segmentation in Multi-modality Microscopy Images NeurIPS 2022 competi-
tion aims to benchmark cell segmentation methods that could be applied to various
microscopy images across multiple imaging platforms and tissue types. Due to the
difficulty of obtaining labeled data, the competition team set this cell segmentation
problem as a weakly supervised task and provided some labeled data and a large
amount of unlabeled data. We constructed a network structure with CoaT as the
encoder and designed a decoder for fusing different scale features, and conducted
related experiments with full supervision and semi-supervision respectively. We
followed cellpose’s strategy and constructed a model to predict the central region
of individual cells, and obtained the final instance segmentation results by the
watershed algorithm. The method we proposed obtained an F1 score of 0.7724 on
the tuning set.

1 Introduction

Many biological applications require the segmentation of cell bodies, membranes, and nuclei from
microscopy images. Cellpose [1] generated topological maps through a process of simulated diffusion
that used ground-truth masks. A neural network was then trained to predict the horizontal and vertical
gradients of the topology map and a binary prediction mask to indicate whether a given pixel was
inside or outside the ROI. On the test image, a vector field is also obtained by predicting the binary
mask as well as the horizontal gradient and vertical gradient by the network, and the exact shape of
individual cells is recovered by this vector field to obtain the final instance segmentation results.

There are some differences between the universal instance segmentation of natural image and cell
instance segmentation. We summarize this task’s key points and difficulties: (1) Universal Instance
Segmentation always has multiple class instances in each image, but cell segmentation is different.
Most of the time we study only a few or a single class of cells under the same imaging instrument.
(2) The target cells sizes are relatively balanced over the whole dataset, but the cell size is stable in
the same image during cell segmentation. (3) The density of image instances is different, and the
task of dense segmentation of the same type of instances is performed during cell segmentation. (4)
Boundary separation is more difficult. In cell segmentation, the area close to the cell membrane can
hardly be distinguished by significant edge features. Shape information in a wide field of view is
required, which requires a large receptive field.

We followed cellpose’s strategy and constructed a model to predict the central regions of individual
cells indirectly, and then to obtain the final instance segmentation results by the watershed algorithm
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to enhance concept of the "cell’s center" compared with vanilla cellpose. For the architecture part,
we used CoaT-Lite [2] as the encoder of the network and designed a decoder to fuse the outputs of
different layers of the encoder. In addition, to obtain a model with better generalization capability,
we use the mean-teacher approach to perform semi-supervised training using the provided unlabeled
data.

The structure of this paper is as follows: Chapter 2 introduces the proposed method in three parts:
preprocessing, model architecture, and post-processing. The datasets used and the details of the
experiments are described in detail in Chapter 3. Chapter 4 presents the results of some of our
experiments and a discussion about them. In the last chapter, we summarize the task and the
competition process.

2 Method

In this chapter, we will detail the strategy and process of the adopted method in three parts: pre-
processing, model architecture, and post-processing.

2.1 Preprocessing

To follow cellpose’s instance segmentation strategy, we process the provided instance labels to obtain
the corresponding gradient vector fields and binary classification masks. Fig 1 shows an example of
pre-processing the instance labels.

Figure 1: Instance of splitting labels to generate gradient fields.

2.2 Model Architecture

Figure 2: The overall framework of the model proposed in this paper.

The overall structure of CoaT is shown on the left in Fig 2, where the encoder part on the left is
CoaT-Lite, through which we can get four different scales of feature maps. the MixUpSample Block
samples these different scales of feature maps to get a set of features of the same size and concat in
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the channel dimension. We design a Fusion Block to fully fuse these features, and finally, pass a
Softmax layer to obtain the final gradient field and binary prediction results.

The structure of the CoaT Serial Block is shown in Fig 3. The module first downsamples the input
features through a patch embedding layer, and then flattens them into a set of image tokens sequences.
After passing through multiple Conv-Attention modules, the resulting image tokens are reshaped into
a 2D feature map input for the next serial block. In addition, the Conv-Attention module is visible on
the right side in Fig 3.

Figure 3: Schematic illustration of the serial block in CoaT and illustration of the conv-attentional
module [2].

The MixUpSample Block uses a mixture of bilinear interpolation and nearest neighbor interpolation
to upsample feature maps of different sizes to the same size for the subsequent fusion of these feature
maps.

Consider that convolution exists spatial-agnostic and channel-specific, while Involution has the
opposite property. We use both convolution and involution in Fusion Block so that the feature maps
after concat on the channels can be fully integrated in both spatial and channel dimensions.

Loss function: we use the summation between Dice loss and cross entropy loss because compound
loss functions have been proved to be robust in various medical image segmentation tasks [3]. In
addition, we used MSE loss on the predicted resulting gradient fields.

In order to make full use of the large amount of unlabeled data and to make the model more
generalizable, we conducted semi-supervised experiments by the mean teacher [4] approach.

2.3 Post-processing

First, the gradient field and binary mask obtained by the backbone network are used to generate a
prediction map containing the center pixels’s set of each cell instance. It’s different from cellpose
which marks all pixels inside the cells’ masks, because we find that that some center points with
similar features are easy to connect into one center point set in the dynamic programming of these
center points. To overcome this, we only collect the center region sets using dynamic programming
with only 3 iterations (that means only the points within 3 pixels near the center point will participate
in the generation of the center point), and then use the Marker-Controlled Watershed Segmentation to
finish the instance segmentation.
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3 Experiments

3.1 Dataset

We did not use any real external dataset, but only the official dataset provided by the competition for
training and validation, and some rare cell shapes were automatically synthesized offline. The training
set consists of 1000 labeled image patches from various microscopic types, tissue types, and stain
types, and over 2200 unlabeled images. And there are four microscopy modalities in the training set,
including Brightfield, Fluorescent, Phase-contrast, and Differential interference contrast. Noting that
some of the cell types in the validation set were fewer in the test set, we used the taichi physics engine
[5] to simulate some simply shaped soft cells and generate the cell images automatically. Some of
the generated samples are shown in Fig 4. In addition, our encoder is loaded with the weights of the
CoaT-Lite Medium version pre-trained under the ImageNet dataset, which can be downloaded at this
URL: https://github.com/mlpc-ucsd/CoaT.

Figure 4: Samples generated by taichi.

3.2 Implementation details

Please include all the implementation details in this subsection. The following items are minimal
requirements.

3.2.1 Environment settings

The development environments and requirements are presented in Table 1.

Table 1: Development environments and requirements.

System Ubuntu 18.04.5 LTS
CPU Intel(R) Core(TM) i9-10900X CPU@3.30GHz
RAM 16×4GB; 2.67MT/s
GPU (number and type) 4 NVIDIA 2080Ti 11G
CUDA version 10.2
Programming language Python 3.8
Deep learning framework Pytorch (Torch 1.12.0, torchvision 0.13.0)
Code https://github.com/zzh980123/NeurIPS-CellSeg

3.2.2 Training protocols

Data augmentation
Online:
Official Augmentations: Flip, Rotate, Random Crop, Gauassian Smooth, Gauassian Noise, Adjust
Contrast, Histogram Shift, Random Zoom.
More: Color Jitter, Scale Intensity, Cutout.
Offline:
We use the Taichi Physical Engine and mpm18 (Material Point Method) to simulate cell distribution.

patch sampling strategy during training (e.g., randomly sample 512 × 512 patches) and inference
(slide window with a patch size 768× 768)

optimal model selection criteria
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Table 2: Training protocols. If the method includes more than one model, please present this table for
each model seperately.

Network initialization “he" normal initialization
Patch size 512×512
Total epochs/Max epochs 186/1000
Optimizer AdamW
Initial learning rate (lr) 6e-5
Lr decay schedule /
Training time <48 hours
Loss function CEDice Loss + MSE Loss
Number of model parameters 50.58M1

Number of flops 404.90G2

4 Results and discussion

We try to train our model under the framework of mean-teacher and some improved methods of it.
But all the method we tried failed (see F1 score below).

By the local validation set and the tuning set, we compare the quantitative of all the cells’ segmentation
results by F1 score or observation.

We check the validation set output segment results, small cells which area is less than 16 × N (N >
16), and fluorescyte cells always get low F1 score.

Our method follows cellpose, so the total test time is amortized between the model inference stage
and the post-processing generation mask stage. The inference time is almost based on the model’s
FLOPs, so the input size affects much, we tried size of 256, 512, 768 and 1024, the size of 768 get
the best score and cost nearly the least time on large images. Besides, a valid way to reduce the
inference time is to transfer the model parameters and structure to ONNX/tflite and then use other
high-performance inference engines, but no one in our team is good at model deployment (due to the
use of a special operator called involution, we failed many times), we give it up. The whole-slide
image in our method cost about 1 minute within our vision, therefore we did not try to optimize
inference time for such images.

4.1 Quantitative results on tuning set

We spend a lot of time exploring the effect of different cell representations and network model structure
on segmentation results. Obviously, the SDF-based (Signed Distance Field) cell representation is
equivalent to the gradient field based cell representation in theory. In another word, the SDF-based
method is is the cumulative function of gradient field based cell in the spatial dimension. But this
may case a lower fault tolerance rate for the probability distribution of the center points of the cell
with SDF-based method. We compare the different representations at Table 3. The SDF-based model
details is in the Appendix.

Some of the experiments on the tuning set are shown in Table 3. Where 3class means the same way
as the official baseline provided to get the output of 3 class from the network. From the table, it can
be seen that using both gradient field and watershed give the best F1 score in the tuning set. * present
without fine-tune at the train dataset. DFC present DeFormable sparse Convolution and the structure
is shown at Appendix.

In addition, we performed partial ablation experiments on the fusion module, including using only 3
× 3 convolution, using only Involution, replacing 3 × 3 convolution with an oversized convolution
kernel of 31 × 31 size [6, 7]. The results are visible in Table 4. In particular, the experiment with the
31 × 31 convolution kernel size, we used large convolution kernels in multiple places of the decoder
instead of just in the fusion block.
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Table 3: Quantitative results on tuning set.

Method F1 Score
MaskRCNN 74.72
UNet+3class 54.72
SwinUNetr+3class 54.72
SwinUNetr+3class+DFC 56.62
CoaT+3class 72.30
Cellpose* 51.42
CoaT+SDF 58.32
CoaT+grad 75.45
CoaT+grad+Watershed 77.24

Table 4: Quantitative results of different fusion modules on tuning set.

Fusion Method F1 Score
3 × 3 Conv 74.2
31 × 31 Conv [6] 68.42
Involution [8] 77.24

We also tested the effect of the size of the input feature maps under the model of CoaT+3class, and the
results are shown in Table 5. Based on the results of this experiment, we choose 768x768 resolution
as the input feature map size for all other models.

Table 5: Quantitative results of different fusion modules on tuning set.

Input Size F1 Score
256 × 256 67.86
512 × 512 69.72
768 × 768 72.30
1024 × 1024 71.90

We performed semi-supervised training using the unlabeled dataset using the methods [4, 9] under
the mean teacher framework. Perhaps because the distribution of combination of unlabeled images
and labeled images is shifted compared with the train/validation dataset’s distribution, the results on
the tuning set are not satisfactory. Some of the results are shown in Table 6.

Table 6: Quantitative results of different fusion modules on tuning set.

Semi-supervisory strategy F1 Score
[1]: w/o mean teacher 77.24
[2]: mean teacher fine tune based [1] 77.06
[3]: mean teacher + confidence loss 74.16
[4]: mean teacher + confidence loss + cutout augmentation 74.17

4.2 Qualitative results on validation set

Fig 5 presents some easy and hard examples on validation set. Where the first row is the original
graph, the second row is the predicted result after full-supervised training, and the third row is the
predicted result after semi-supervised training. As you can see from the figure, the semi-supervised
approach does not work well.

4.3 Segmentation efficiency results on validation set

The average running time is 2.76 s per case in inference phase (totally 127 images in our augment
data set), and average used GPU memory is 799.52 MB. The area under GPU memory-time curve is
247845 and the under CPU utilization-time curve is about 1395.
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Figure 5: Qualitative results of full-supervised and semi-supervised model on easy (Three columns
on the left) and hard examples. Each prediction graph is the result of ground truth and predicted
label overlap, where the red outline is the ground truth and the yellow outline is the predicted label
obtained.

4.4 Limitation and future work

The results of the semi-supervised experiments we have conducted so far are not satisfactory, so
we will follow up by learning more about semi-supervision and conducting experiments. We note
that omnipose [10] is a proposed method based on cellpose and was recently published in Nature
Methods, and we may subsequently refer to these changes to improve the performance of our model.
In addition, integrating multiple models and using ONNX to accelerate inference might be a good
way to improve the results.

5 Conclusion

The main challenge of this task is to separate the adherent cells from each other. Compared to the
methods in baseline and cellpose, the method proposed in this paper is significantly improved and
better able to accomplish this task.
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A Appendix

SDF-based representation model

Figure 6: The implicit SDF representation of cell by level set. x and y present the image and label, d
and x will be reshaped and concatenated simply before fed into the network.

We experimented with different SDF representations of cell segmentation: explicit SDF and implicit
SDF. An implicit sdf is defined as embedding the level set parameter into the network to represent the
discrete SDF of the segmentation of cells. Fig 6 shows training protocol of implicit SDF method .

Let d denotes the distance between cell edge and the level, in our experiments, we sampled the
d ∈ Ω ∈ [m,n] where Ω is a truncated normal distribution N (µ, σ2), m and n is the boundary of the
truncation.

The network learn the function to represent the level set of the segmentation boundary as the Eq.1.
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fθ(x, d) = y′ (1)
Where, x denotes the image, y′ denotes the predict binary classification results match the level d, θ
presents the parameters of network.

Deformable sparse Convolution

DFC(Deformable sparse Convolution) is similar to DCN(Deformable ConvNets)[11, 12], but the
same offset vector is applied for convolution, because the morphology of cells in an image is always
similar. The difference is shown in Fig 7.

Figure 7: Illustration of the difference between DFC and DCN, every position in the feature map in
DFC shares a same offset vector.
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