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Abstract

In this work we study offline Reinforcement Learning (RL), and extend the previous
work on learning Regular Decision Processes (RDPs), which are a class of non-
Markovian environments, where the unknown dependency of future observations
and rewards from the past interactions can be captured by some hidden finite-state
automaton. We utilise the language metric introduced by Deb et al. [2025], and
introduce a novel algorithm to learn a significantly more compact RDP with cycles,
which are crucial for scaling to larger, more complex environments. Key to our
results is a novel notion of priors for automaton learning, that allows us to exploit
prior domain-related knowledge, used to factor out of the state space any feature
that is known a priori. We validate our approach experimentally and provide
a Probably Approximately Correct (PAC) analysis of our algorithm, showing it
enjoys a sample complexity polynomial in the problem parameters.

1 Introduction

Reinforcement Learning (RL) is a family of powerful algorithms for learning behaviour from repeated
interactions with a stochastic dynamical system. A key assumption that underlies the majority of
existing RL algorithms is the Markov property, which implies that the current observation of the
environment, together with the agent’s current action, is sufficient to predict the future evolution of
the system [Puterman, 1994, Sutton et al., 1998]. Although it offers a great mathematical appeal that
proves instrumental in many RL developments, there exist many interesting application scenarios
–e.g., in robotics– where the Markov property does not hold. In such non-Markov cases, RL becomes
considerably more difficult. A classical approach to deal with such cases has been to consider a hidden
state [Whitehead and Lin, 1995], to account for missing piece of information from the agent’s current
observation. This is most notably studied in the context of Partially Observable Markov Decision
Processes, or POMDPs [Kaelbling et al., 1998]. Although the POMDP framework offers very
expressive representations and is of great relevance in practice, it suffers from intractability in both
planning and learning, and consequently the corresponding learning algorithms become impractical
in large problems, unless some restrictive assumptions are imposed. An alternative recently proposed
framework is Regular Decision Process, or RDP [Brafman and De Giacomo, 2019, 2024], wherein
the past interaction history is compactly represented by a finite state automaton. In essence, an
RDP is a special POMDP, whose hidden dynamics evolve according to some (unobservable) finite-
state automaton featuring a controlled form of stochasticity, ensuring key favourable properties.
Although RDPs by construction are less generic compared to POMDPs, they are computationally and
statistically tractable. This has led to a growing interest in developing RDP learning algorithms from
trajectories [Abadi and Brafman, 2020, Ronca and De Giacomo, 2021, Ronca et al., 2022, Cipollone
et al., 2023, Deb et al., 2025].

We investigate offline RL in episodic RDPs, where the goal is to find a near-optimal policy from a
dataset pre-collected using a behaviour policy. This problem was first studied by Cipollone et al.
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[2023], where a first algorithm with provable PAC-type performance guarantee in terms of sample
complexity was proposed. Despite its appeal, this bound may imply a sample complexity growing
exponentially in episode length in some problem instance. This was remedied in [Deb et al., 2025]
through statistical tests defined via a novel metric called the language metric, specifically designed
for traces, borrowing ideas from the theory of formal languages. However, the models presented in
these papers consider an unstructured (i.e., atomic) hidden state modelling, which are incompetent to
leverage some prior information one has about the structure of the hidden states.

In this paper, we extend previous work for RDP learning along two dimensions. The first contribution
is to introduce priors for automaton learning. A prior is an automaton that incorporates prior
knowledge about a problem. Given one or more priors, an RDP can be expressed as the cascade
composition of the prior automata and a domain-specific automaton. This amounts to factoring out
the features provided by the priors, and hence learning compact domain-specific automata. Notable
priors include the timestep prior to factor out timesteps from the state space while still considering
them, the Markov prior to specify that the previous observation may be relevant and avoid learning to
remember it (notably this ensures that the domain-specific automaton will be a trivial single-state
automaton if the RDP is in fact an MDP), and spatial priors that provide a description of the physical
space of the domain and relieve the domain-specific automaton from having to learn it.

The second contribution is to allow cycles in the learned domain-specific automaton. In previous
work the RDP states are organized in layers, one for each timestep. Introducing cycles can make the
learned automaton significantly more compact, especially for episodic problems with long horizons.
We identify conditions under which RDPs with cycles can be correctly learned, and demonstrate in
experiments that the learned RDPs are often much smaller than in previous work. To learn RDPs
with cycles our algorithm has to compare suffix distributions with different lengths, which is possible
by exploiting the language metric [Deb et al., 2025]. In addition to experiments, we perform a
theoretical analysis of the sample complexity of our algorithm, showing it enjoys a sample complexity
polynomial in the problem parameters.

1.1 Related work

Offline RL under the Markov property is by now well-established, and there exists a large and growing
literature covering a broad range of MDP settings. In many settings, algorithms with optimal sample
complexity bounds exist. To mention some notable studies, we refer to [Chen and Jiang, 2019, Jin
et al., 2021, Li et al., 2024b, Rashidinejad et al., 2021, Uehara and Sun, 2022].

Research on decision making under non-Markov assumption dates back to, at least, three decades
ago; some early attempts include [Schmidhuber, 1990, Whitehead and Lin, 1995, Bacchus et al.,
1996, Bakker, 2001]. A classical and effective approach to tackle non-Markov problems was through
considering hidden states [Whitehead and Lin, 1995], which related such problems to partially-
observable problems. We discuss below the most relevant lines of research that can handle non-
Markov problems, while excusing ourselves to give a through overview of all related developments.

POMDPs, PSRs, and State Representation There exist at least two major lines of research
to handle hidden information states in the context of partial observability: POMDPs and state
representations. Since RDPs are special POMDPs –with underlying dynamics evolving according
to some finite state automaton–, RL algorithms for POMDPs also apply to RDPs. Unfortunately,
tractable learning for general POMDPs remain to be an open problem, and to the best of our
knowledge has only been achieved in subclasses such as ergodicity [Azizzadenesheli et al., 2016],
undercomplete POMDPs [Guo et al., 2022, Jin et al., 2020], few-step decodability [Efroni et al.,
2022, Krishnamurthy et al., 2016], or weakly-revealing [Liu et al., 2022]. In this context, Hahn et al.
[2024] introduces a generalization of RDPs with ω-regular lookahead called Omega-Regular Decision
Processes (ODPs) and provide classical complexity results. In the case of state representation, the
most notable notion is Predictive State Representation (PSR) [Bowling et al., 2006, James and Singh,
2004, Kulesza et al., 2015, Singh et al., 2003], which provide general descriptions of dynamical
systems; they capture POMDPs and therefore RDPs. However, existing work on PSRs [Zhan et al.,
2023] rely on PSR-specific parameters and are therefore not directly applicable to RDPs.

Reward Machines and RDPs Some early work on non-Markov decision making restrict attention
to non-Markov rewards, while assuming Markov dynamics. This is, for instance, considered in
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[Bacchus et al., 1996], where the reward function is specified in a temporal logic of the past.
Revisiting this setting has led to some fast growing lines of research that notably include reward
machines [Toro Icarte et al., 2018] and temporal logics of the future on finite traces [Brafman et al.,
2018, Giacomo et al., 2020]. A reward machine is a finite automaton (or transducer) used to specify a
non-Markovian reward function. Reward machines have been introduced in [Toro Icarte et al., 2018]
along with an RL algorithm that assumes the reward machine to be known. There is a fast growing
line of research on reward machines in a variety of settings; see, e.g., [Gaon and Brafman, 2020, Xu
et al., 2020, Dohmen et al., 2022, Furelos-Blanco et al., 2023, Varricchione et al., 2024, Parać et al.,
2024, Li et al., 2024a, Bourel et al., 2023]. Reward machines have been generalised so as to predict
observations as well [Toro Icarte et al., 2019, Hasanbeig et al., 2021], which makes them equivalent
to RDPs—as mentioned above. Although some of these algorithms tackle the case of unobservable
reward machines, they do not report performance guarantees on the proposed methods. Following
their introduction by Brafman and De Giacomo [2019], RDPs were studied in the RL setting; in the
online RL setting, some attempts include [Ronca and De Giacomo, 2021, Ronca et al., 2022, Abadi
and Brafman, 2020]. They are recently studied in the offline RL setting –the same setting considered
here– following the work by Cipollone et al. [2023].

2 Preliminaries

Notation We use ∆(X ) to denote the set of probability distributions over a set X . A conditional
probability distribution is a function p : X → ∆(Y) whose elements equal p(y | x). We use I(E)
to denote the indicator function of an event E. Given integers m and n such that 0 ≤ m ≤ n, let
Jm,nK := {m, . . . , n} and JnK := J1, nK. The notation Õ(·) hides poly-logarithmic terms.

2.1 Language metrics

The notion of language metric has been introduced by Deb et al. [2025], and here we present a close
variant. Let Γ be an alphabet, i.e. a finite set of symbols. Given a natural number ℓ ∈ N, let Γℓ be the
set of strings of symbols in Γ of length ℓ, and let Γ+ = ∪∞ℓ=1Γ

ℓ be the set of non-empty strings of
any length. The empty string is denoted ε. A language X ⊆ Γ+ is a subset of non-empty strings. Let
X be a set of languages. The language metric in X is a function LX : ∆(Γ+)×∆(Γ+) → R, on
pairs of probability distributions p, p′ ∈ ∆(Γ+), defined as LX (p, p′) := maxX∈X |p(X)− p′(X)|,
where the probability of a language is p(X) :=

∑
x∈X p(x).

To learn cyclic automata in episodic RDPs we necessarily have to compare probability distributions
over strings of different lengths. To do so we exploit the fact that the language metric LX is a
pseudo-metric: two different distributions p ̸= p′ may satisfy LX (p, p′) = 0. We are therefore
interested in languages that are invariant to the string length. One such example is the family of
languages that contain some pattern, e.g. any string that contains a given symbol γ ∈ Γ. Even if p
and p′ assign non-zero probability to strings of different lengths, we may still have LX (p, p′) = 0.

2.2 Episodic decision processes and regular decision processes

An episodic decision process is a tuple P = ⟨O,A,R, T̄ , R̄,H, ν⟩, where O is a finite set of
observations, A is a finite set of actions, R ⊂ [0, 1] is a finite set of rewards, H > 0 is an integer
horizon, and ν ∈ ∆(O) is an initial distribution on observations. We frequently consider the
concatenationAO of the setsA andO. LetHt = (AO)t+1 be the set of histories of length t+1, and
let hm:n ∈ Hn−m denote a history from time m to time n, both included. Each action-observation
pair ao ∈ AO in a history has an associated reward label r ∈ R, which we write ao/r ∈ AO/R
with the understanding that the slash corresponds to string concatenation. A trajectory e0:T is the full
history generated until (and including) time T .

We assume that a trajectory e0:T can be partitioned into episodes eℓ:ℓ+H ∈ HH of length H + 1. In
each episode e0:H , a0 is a dummy action and o0 is sampled from the distribution ν. The transition
function T̄ : H×A → ∆(O) and the reward function R̄ : H×A → ∆(R) depend on the current
history in H = ∪Ht=0Ht. Given P, a generic policy is a function π : (AO)∗ → ∆(A) that maps
trajectories to distributions over actions. The value function V π : J0, HK×H → R of a policy π is a
mapping that assigns real values to histories. For h ∈ H, it is defined as V π(H,h) := 0 and

V π(t, h) := E
[∑H

i=t+1 ri

∣∣∣h, π] , ∀t ∈ J0, HK, ∀h ∈ Ht.
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For brevity, we write V π
t (h) := V π(t, h). The optimal value function V ∗ is defined as V ∗

t (h) :=
supπ V

π
t (h),∀t ∈ J0, HK,∀h ∈ Ht, where sup is taken over all policies π : (AO)∗ → ∆(A). Any

policy achieving V ∗ is called an optimal policy, which we denote by π∗; namely V π∗
= V ∗. In

what follows, we consider simpler policies of the form π : H → ∆(A) mapping finite histories to
distributions over actions. Let ΠH denote the set of such policies. It can be shown that ΠH always
contains an optimal policy, i.e. V ∗

t (h) := maxπ∈ΠH V π
t (h),∀t ∈ [H],∀h ∈ Ht. A policy π̂ is

ε-optimal iff Eh0
[V ∗

0 (h0)− V π̂
0 (h0)] ≤ ε, where h0 = a⊥o0 for some o0 ∼ ν.

Each history h ∈ Ht and policy π induces a probability distribution over suffixes pπh ∈ ∆(ΓH−t),
where Γ = AO/R is the alphabet of action-observation-reward triplets. Concretely, the probability
of a suffix et+1:H = at+1ot+1/rt+1 · · · aHoH/rH is given by

pπh(et+1:H) =
∏H

i=t+1 π(ai|hi−1) T̄ (oi|hi−1, ai) R̄(ri|hi−1, ai),

where hi−1 = hat+1ot+1 · · · ai−1oi−1 for each i ∈ Jt+1, HK. Two histories h and h′ are equivalent
w.r.t. a class of policies Π if pπh = pπh′ for every policy π ∈ Π; we write equivalence as h ∼Π h′.
Observation 1. Specific policies may induce the same distribution for histories that are not equivalent.
Namely, for a class of policies Π, and two histories h and h′, a policy π1 ∈ Π may induce different
distributions pπ1

h ̸= pπ1

h′ , while a second policy π2 ∈ Π may induce identical distributions pπ2

h = pπ2

h′

(as shown in Example 5, Appendix B).

Episodic RDPs We adopt the episodic variant of RDPs by Deb et al. [2025], a minor modification
of the one by Cipollone et al. [2023]. An episodic regular decision process is an episodic decision
process R = ⟨O,A,R, T̄ , R̄,H, ν⟩ described by a probabilistic-deterministic finite automaton, or
simply automaton for us, of the specific form A = ⟨U ,Σ,Ω, τ, θ, u0⟩ with U a finite set of states,
Σ = AO a finite input alphabet composed of actions and observations, Ω a finite output alphabet,
τ : U × Σ→ U a transition function, θ : U → Ω an output function, and u0 ∈ U an initial state. Let
τ−1 denote the inverse of τ , i.e., τ−1(u) ⊆ U × AO is the subset of state-input pairs that map to
u ∈ U . An RDP R implicitly represents a function τ̄ : H → U from histories in H to states in U ,
recursively defined as τ̄(h0) := τ(q0, a0o0) and τ̄(ht) := τ(τ̄(ht−1), atot). We use A,O,R,U to
denote the cardinality of A,O,R,U , respectively, and assume H ≥ 2, A ≥ 2 and O ≥ 2.

The output function θ : U → Ω maps the current state to an output in Ω. The output space Ω = Ωo×Ωr

consists of a finite set of functions that specify the conditional probabilities of observations and
rewards, of the form Ωo ⊆ A → ∆(O) and Ωr ⊆ A → ∆(R). For convenience, we often split the
output function into two functions θo : U × A → ∆(O) and θr : U × A → ∆(R) specifying the
conditional probabilities separately. The transition function and reward function of R are defined
as T̄ (o | h, a) = θo(o | τ̄(h), a) and R̄(r | h, a) = θr(r | τ̄(h), a) for each history h ∈ H and
action-observation-reward triplet ao/r ∈ AO/R. An RDP is minimal if its automaton is minimal,
i.e., without redundant states, and hence unique, cf. [Hartmanis and Stearns, 1966].

The class ΠR of policies acting according to the states of an RDP R is of particular importance. They
are called regular policies, and they are defined as the policies π : H → ∆(A) satisfying the equality
π(h1) = π(h2) for all pairs of equivalent histories h1, h2 mapping to same state u = τ̄(h) = τ̄(h′).
Hence, we can compactly define a regular policy as a function of the state, i.e., π : U → ∆(A).
Regular policies exhibit key properties: (P1) under a regular policy, suffixes have the same probability
of being generated for histories that map to the same state in U ; (P2) there exists at least one optimal
policy that is regular; (P3) in the special case where an RDP is Markovian in both observations and
rewards, it is sufficient for the states in U to track the observation in O.

In the case of RDPs, under regular policies, the notion of history equivalence admits an alternative
and insightful form. Two histories h and h′ are equivalent if and only if they map to the same state,
i.e., h ∼ΠR

h′ ⇔ τ̄(h) = τ̄(h′) = u for u ∈ U . Thus, in this setting, we can also write pπu in place
of the identical distributions pπh and pπh′ . This shows that the meaning of a history is captured by the
state u = τ̄(h) the history maps to.

Distinguishing RDP states We will use language metrics LX to learn RDPs from data. Thus we
are interested in language sets X that correctly distinguish an RDP R. For a given regular policy π, a
language set distinguishes an RDP R if the following two conditions hold:

• For each pair of histories h, h′ such that τ̄(h) = τ̄(h′), LX (pπh, p
π
h′) = 0.

• For each pair of histories h, h′ such that τ̄(h) ̸= τ̄(h′), LX (pπh, p
π
h′) ≥ µX > 0.
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Note that two histories h, h′ such that τ̄(h) = τ̄(h′) may have different lengths. In this case we
have pπh ̸= pπh′ , but LX (pπh, p

π
h′) = 0 may still hold due to LX being a pseudo-metric. The quantity

µX := infh,h′:τ̄(h) ̸=τ̄(h′) LX (pπh, p
π
h′) is called the distinguishability of an RDP R under a language

set X and a regular policy π. A language set will not distinguish an RDP under policies causing
collapse of distributions as pointed out in Observation 1. Hence, we say that a policy π is admissible
if it ensures that pπh ̸= pπh′ for every two histories h, h′ such that τ̄(h) ̸= τ̄(h′). We highlight this
property to isolate the cases where the impossibility of distinguishing states depends on the policy
and not on the considered language set X .

Automata cascades Representing automata with a state space U of atomic elements does not allow
for specifying the complex meaning of a state and the single functionalities implemented by the
transition function τ in order to perform state updates. Cascades offer a richer way to to represent
automata and overcome such limitations. A cascade is an automaton C = ⟨Σ,U , τ, u0,Ω, θ⟩ given
by the composition A1 ⋉ · · · ⋉ Ad where every Ai = ⟨Σi,Ui, τi, ui

0⟩ is a partial automaton that
only specifies the components relevant to describe transitions (called a semiautomaton, following
the terminology of automata theory). Every Ai is called a component of the cascade, and its input
alphabet is Σi := U1 · · · Ui−1Σ, allowing it to read the states of the preceding components in addition
to inputs from Σ. Then, the states of C are given by the states of the single components, with
U := U1 × · · · × Ud and u0 := ⟨u1

0, . . . , u
d
0⟩, and the transition function is

τ(u1, . . . , ud, σ) := ⟨τ1(u1, σ), τ2(u2, u1σ), . . . , τd(ud, u1 · · ·ud−1σ)⟩,
where the transition function τi of the i-th cascade component is applied to the component’s state ui

and to the extended input u1 · · ·ui−1σ containing the states of the preceding cascade components
in addition to the input σ. We note that a component does not need to depend on all preceding
components necessarily—in some cases, its transition function may ignore the state of some of
the preceding components. This can be specified through the cross-product notation. For example,
we can write (A1 × A2) ⋉ A3 to say that A2 ignores the state of A1, and then A3 reads the
state of both A1 and A2—note that parentheses are important to make it clear that we are not
stating that A3 is independent from A1. We remark that cascades offer an advanced representation
formalism–compared to conventional representations that are oblivious of the structure of states and
transition function—as they allow for specifying how an automaton is realised by the composition
of several components, each implementing a specific functionality, building on information already
computed by the preceding components. We remark that cascades are an advanced representation
formalism because they allow for specifying how an automaton is realised by the composition of
several components, each implementing a specific functionality, building on information already
computed by the preceding components. This observation applies directly to the transition function τ ,
and indirectly also to the output function θ. In fact, the output function θ : U1 × · · · × Ud → Ω of a
cascade is over a factored state space, which allows for richer descriptions that make it explicit how
the function depends on the single state components.

2.3 Offline RL in episodic RDPs

Consider a batch dataset D comprising episodes sampled using an admissible regular behavior policy
πb. Specifically, the k-th episode (or episode trace) inD is of the form ek0:H = ak0o

k
0/r

k
0 · · · akHokH/rkH

where, for each t ∈ JHK,

ok0 ∼ ν, uk
0 = u0, akt ∼ πb(uk

t ), okt ∼ θo(u
k
t , a

k
t ), rkt ∼ θr(u

k
t , a

k
t ), uk

t+1 = τ(uk
t , a

k
t o

k
t ).

The learner seeks an ε-optimal policy π̂ for a given accuracy ε ∈ (0, H], using the smallest dataset D
possible, without further exploration. More precisely, we aim at finding π̂ satisfying V ∗

0 (h)−V π̂
0 (h) ≤

ε for each h ∈ H with probability at least 1− δ, using the smallest dataset D possible. We stress that
in so doing πb and underlying RDP states uk

t are unknown to the learner. It suffices to restrict attention
to regular ε-optimal policies (cf. Proposition 5 in Deb et al. [2025]). However, some assumptions
must be imposed on πb to provably guarantee that an ε-optimal regular policy can be learned from D.

Given a regular policy π : U → ∆(A), let dπt ∈ ∆(U × AO) be the induced occupancy, i.e., a
probability distribution over candidate states u, ao ∈ U ×AO, recursively defined as

dπ0 (u0, a0o0) = ν(o0),

dπt (ut, atot) =
∑

u,ao∈ τ−1(ut)
dπt−1(u, ao)π(at |ut) θo(ot |ut, at), ∀t ∈ JHK.
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Of particular interest is the occupancy d∗t := dπ
∗

t associated with an optimal policy π∗, which is
unique if we assume that π∗ is unique. Likewise, let dbt := dπ

b

t be the occupancy associated with πb.
Since a state u ∈ U may appear at different time steps, we often abuse notation and write db(u, ao)
or d∗(u, ao) to denote the occupancy of u, ao for the first timestep at which u may appear.

As in offline RL in MDPs, it is necessary to control the mismatch in occupancy between the behavior
policy πb and the optimal policy π∗. Concretely, the single-policy RDP concentrability coefficient
associated with RDP R and behavior policy πb is defined as

C∗
R = max

u,ao∈U×AO

d∗(u, ao)

db(u, ao)
.

It is generally impossible to learn an RDP correctly from samples collected under a behaviour policy
that does not have a finite concentrability coefficient, since this describes a situation where important
states are not explored. Thus, we assume concentrability to be bounded away from infinity, C∗

R <∞,
which further implies that for every u, ao ∈ U ×AO, db(u, ao) > 0 whenever d∗(u, ao) > 0.

3 Novel Techniques and Concepts

Equipped with the notions and definitions introduced in Section 2, we introduce two key notions
that prove instrumental in the design of our proposed algorithm (Section 2.3). The first one deals
with incorporating and leveraging some prior knowledge in RDPs, while the second characterises
particularly-favourable cases for learning RDPs with priors, also extending the stationarity assumption
in terms of timestep priors. We believe these notions could be of independent interest beyond RDPs.

3.1 Priors for RDPs

We introduce the novel notion of priors for RDPs, that allow for shaping the state space of an
RDP with fundamental structures known a priori. This enables learning algorithms to focus on
domain-specific aspects, relieving them from the burden of having to learn fundamental structures
that are known to be present in a domain. A prior is an automaton without output components (a
semiautomaton), Ap = ⟨Σp,Up, τp, up

0⟩ with input alphabet Σp = AO, or alternatively Σp = U ′
pAO

in the case it is part of a cascade where it depends on additional priors that precede it in the cascade
and provide it with states from U ′

p. Priors are included in the representation of an RDP by expressing
its automaton A as a cascade A = Ap ⋉Ar where Ar is a second ‘remainder’ semiautomaton. In
general, we can include several priors as A = A1

p ⋉ · · ·⋉Am
p ⋉Ar. We can specify independence

between some of the cascade components as, e.g., A = (A1
p ×A2

p) ⋉ Ar. Effectively, cascades
allow for decomposing A into several components, each factoring out a specific feature implicit in
the states of A. The cascade decomposition focuses on states and transitions, but also provides a
structured state space that allows for richer descriptions of the output function of A. In fact, output
functions will be over a factored state space U1

p × · · · × Um
p × Ur (abbreviated as U1:m

p × Ur), and
they can be seen as functions of the overall state as in (a), or as functions of Ur mapping to functions
over the prior state space U1:m

p as in (b),

(a) θ :
(
U1:m
p × Ur

)
→
(
A → ∆(OR)

)
, (b) θ : Ur →

(
U1:m
p →

(
A → ∆(OR)

))
.

Note that, although the output function of A has an extended domain, the automaton A still represents
the functions T̄ and R̄ of the RDP over histories as usual. Specifically, the cascade decomposition
only changes the way we express the (hidden) states of an RDP, that are now seen as consisting
of several components focusing on specific aspects. It is also important to note that, although the
factored state space may contain extra states compared to the standard state space consisting of
atomic elements, this redundancy does not prevent the cascaded automaton from representing the
RDP correctly, since redundant states can be ‘collapsed’ by the output function—formally, there
may not be a bijection (isomorphism), but there is always an injection (homomorphism) that maps
factored states to the corresponding atomic states.

Next we describe three of the most fundamental priors, and showcase their usage in RDPs.

Markov priors Markov priors allow for specifying that the previous observation may be a relevant
feature in determining distributions over episode suffixes. Markov priors are simple semiautomata
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that store the previous observation. Specifically, the Markov prior for observations O is MO =
⟨AO,O ∪ {⋆}, τo, ⋆⟩ where the initial state ‘⋆’ is an arbitrary element not in O, and the transition
function is the function τo(o, ao

′) := o′, that simply returns o′ disregarding o and a. Including a
Markov prior in the RDP automaton as A = MO ⋉Ar allows for factoring out the functionality of
storing the previous observations, hence avoiding that this aspect is factored into the state space of
Ar, which is left more compact and cleaner.

Timestep priors Timestep priors allow for specifying that the current timestep in an episode
may be a relevant feature in determining distributions over episode suffixes. Timestep priors are
simple semiautomata that count the number of timesteps elapsed. Specifically, the timestep prior for
horizon H is TH = ⟨AO, J0, HK, τt, 0⟩ where the transition function is defined as τt(t, ao) := t+1.
Including a timestep prior in the RDP automaton as A = TH ⋉ Ar allows for factoring out the
functionality of keeping track of the current timestep, hence avoiding that this aspect is factored into
the state space of Ar, which is left more compact and cleaner.

Spatial priors Spatial priors allow for describing the physical space (its geometry) of a domain,
and specify that the current position in such space may be a relevant feature in determining distri-
butions over episode suffixes. Automata allow for describing all finite spaces. A notable instance
is the m × n grid prior for an RDP including motion actions Am = {→,←, ↑, ↓} ⊆ A, defined
as Gm×n = ⟨AO, JmK × JnK, τm×n, ⟨x0, y0⟩⟩ with transition function τm×n(x, y, ao) returning
updated coordinates when a is one of the motion actions.

Example (RDPs with Markov and timestep priors) To convey a clearer idea of the effect of
priors, we show explicitly what the automaton of an RDP looks like when Markov and timestep priors
are included at the same time. In particular, the two priors do not depend on each other, and hence
they are composed as TH×MO. Then, the automaton of the RDP is expressed as (TH×MO)⋉Ar.
The resulting state space is U = J0, HK×O × Ur, and the transition function is

τ(t, o, ur, ao
′) = ⟨τt(t, ao′), τo(o, ao′), τr(ur, toao

′)⟩ = ⟨t+ 1, o′, u′
r⟩,

where u′
r = τr(ur, toao

′) is the result of applying the transition function τr of Ar to the previous state
ur and the extended input toao′, which includes the current timestep t and the previous observation o,
in addition to the current action a and observation o′.

3.2 Partial independence from priors (and semi-stationarity)

In some special cases, the domain-specific automaton can be learned without considering priors
explicitly at learning time. Let us consider an RDP expressed as a cascade Ap ⋉Ar where Ap is a
prior and Ar is a domain-specific automaton. This yields a state space U = Up × Ur, and hence an
output function of the form θ : Up × Ur → (A → ∆(OR)). Intuitively, this cascade representation
amounts to a factoring out the cascade features from A. Then, the special case when priors can be
considered separately is captured by the following notion.

Definition 1. An RDP represented by the cascade Ap ⋉Ar is partially independent from priors
when the following conditions hold: (I) the two cascade components are independent, A = Ap×Ar,
(II) the observation function θo of A can be expressed as the product of two independent functions
as θo(o |up, ur, a) = θpo (o |up, a) · θro(o |ur, a), and (III) the reward function θr can be expressed
as the product of two independent functions as θr(r |up, ur, a) = θpr (r |up, a) · θrr (r |ur, a). When
Conditions (I) and (III) hold, we say the RDP is partially independent from priors w.r.t. rewards.
When an RDP is partial independent from a timestep prior TH , we say the RDP is semi-stationary.

The definition applies to the case of multiple priors, as they can all be seen as part of Ap.

Example 1. The T-maze of length N and horizon H [Deb et al., 2025], when represented as
TH ⋉ Ar is partially independent from the timestep prior TH , or semi-stationary. Furthermore,
when represented as (TH ×G3×(N+1))⋉Ar, with G3×(N+1) the grid prior, the RDP is partially
independent from both priors w.r.t. rewards only. Details in Appendix B.3.

Partial independence is important because it allows for learning the domain-specific automaton Ar

while ignoring the prior Ap at learning time, since states ur = τ̄r(h) and the corresponding transition
function τr can be learned by checking similarity of the distributions they induce on episode suffixes,
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which are independent of any feature provided by the priors. If independence is only w.r.t. rewards,
only the reward function can be captured correctly by a cascade where independence from priors is
included, which can still be useful to learn optimal policies. We explore partial independence in our
experiments.

4 Algorithm and PAC analysis

In this section we present ADACT–L, our algorithm for learning RDPs with priors and cycles. The
algorithm assumes that we are provided with a prior automaton Ap = ⟨Σ,Up, τp, u0

p⟩, and the aim
is to learn a problem-specific automaton Ar = ⟨Σ,Ur, τr, u0

r ⟩ such that the RDP is expressed as a
cascade Ap ⋉Ar. For this purpose, the transition function τr : Ur × Up Σ → Ur incorporates the
states of the prior automaton as part of its input. We remark that the prior automaton Ap could
itself be a cascade of automata, and that the algorithm can learn an RDP without prior knowledge by
defining a prior automaton Ap with a single state.

Function ADACT–L(Ur, D, Ap, δ)

Input: Automaton states Ur = {u0
r , u

1
r , u

2
r , . . .}, dataset D of traces in ΓH+1,

prior automaton Ap = ⟨Σ,Up, τp, u
0
p ⟩, failure probability 0 < δ < 1

Output: Transition function τr : Ur × UpAO → Ur
1 foreach up ∈ Up do i(up)← 0

2 Q← {u0
pu

0
r } // queue data structure containing u0

pu
0
r

3 i(u0
p)← 1, t(u0

pu
0
r )← 0, Z(u0

pu
0
r )← D

4 while Q is not empty do
5 dequeue upur from Q // next joint state
6 for ao ∈ AO do
7 u′

p ← τp(up, ao) // next prior state
8 Z(ao)← {et+1:H | ao/ret+1:H ∈ Z(upur)} // compute suffixes
9 j ← i(u′

p)
10 for k = 0, . . . , i(u′

p)− 1 do
11 if not TESTDISTINCT(Z(u′

pu
k
r ,Z(ao), δ) then j ← k

12 end
13 τ(ur, upao)← uj

r // define transition function
14 if j = i(u′

p) then
15 enqueue u′

pu
j
r in Q

16 i(u′
p)← j + 1, t(u′

pu
j
r )← t(upur) + 1, Z(u′

pu
j
r )← Z(ao)

17 else if t(u′
pu

j
r ) = t(upur) + 1 then Z(u′

pu
j
r )← Z(u′

pu
j
r ) ∪ Z(ao)

18 end
19 end
20 return τ

21 Function TESTDISTINCT(Z1, Z2, δ)
22 return LX (Z1,Z2) ≥

√
log(2|X |/δ)/min(|Z1|, |Z2|) // statistical test

The algorithm is based on the fact that the transition function τr is invariant to the specific order
of pairs upur as long as the initial state u0

p of Ap is always paired with the initial state u0
r of Ar.

For example, let u1
r and u2

r be two states of Ar and let up be a state of Ap. We can construct an
equivalent RDP by swapping the definitions of τr(u1

r , up ·) and τ(u2
r , up ·) and changing the definition

of τ(·, u′
pao) from u1

r to u2
r or vice versa whenever τp(u′

p, ao) = up.

As a consequence of the above fact, when we discover a new transition for a given prior state up, the
identity of the associated state in Ur can be arbitrary. In the algorithm, we simply assign the transition
to the next available state in Ur for up. To do so, we assume that we have access to a sequence of
states u0

r , u
1
r , u

2
r , . . . and for each prior state up ∈ Up we remember the index i(up) ≥ 0 of the next

available state in Ur. We also remember the first timestep t(upur) of each state pair in order to add all
suffixes of the same length to the associated multiset.

In Appendix A we prove the following sample complexity bound for ADACT–L.
Theorem 1. ADACT–L(D, δ) returns a minimal automaton Ar with probability at least 1 −
2AOUUp δ when using a language set X that distinguishes Ap ⋉Ar under the behavior policy πb

8



with associated distinguishability µX and the size of the dataset D is at least

|D| ≥ Õ
(
C∗

R log(1/δ) log |X |
d∗m · µ2

X

)
,

where d∗m = minu,ao d
∗(u, ao) is the minimum occupancy of the optimal policy π∗.

5 Experimental Evaluation

We conduct numerical experiments to further demonstrate the performance and properties of
ADACT–L. We present our results for five familiar domains in the literature of POMDPs and
RDPs: Corridor [Ronca and De Giacomo, 2021], T-maze(c) [Bakker, 2001], Cookie [Toro Icarte
et al., 2019], Cheese [McCallum, 1992] and Mini-hall [Littman et al., 1995], and summarize our
results in Table 1. We compare against FlexFringe [Baumgartner and Verwer, 2023], a state-of-the-art
algorithm for learning probabilistic-deterministic finite automata, which includes RDPs as a special
case, and ADACT-H [Deb et al., 2025]. FlexFringe can learn RDPs with cycles, but includes
several heuristics that do not preserve high-probability sample complexity guarantees. ADACT-H
learns RDPs without cycles. The proposed algorithm ADACT–L can learn cycles in addition to
providing sample complexity guarantees. In all experiments we use a Markov prior and a language
set X consisting of one language per action-observation-reward triplet, containing all strings of any
length that includes the triplet. This language set assumes partial independence of the learned RDP,
sometimes only w.r.t. rewards (cf. Section 3.2), but may only learn an approximate RDP in some
domains.

From our results in Table 1, we can see that ADACT–L learns much smaller automata, while also
achieving the highest average reward. In T-maze(c), FlexFringe fails to find the optimal policy, since
the heuristics defined for FlexFringe are not optimized to preserve reward. In the domains Cheese and
Minihall, all the algorithms fail to learn the optimal policy owing to the complexity of the POMDP
environments; however, ADACT–L outperforms the other approaches by getting a higher average
reward as well as learning significantly smaller automata.

FlexFringe ADACT-H ADACT–L

Name H U r time U r time U r time

Corridor 5 11 1.0 0.03 11 1.0 0.01 3 1.0 0.01
T-maze(c) 5 29 0.0 0.11 18 1.0 0.26 5 1.0 0.15
Cookie 9 220 1.0 0.36 91 1.0 0.08 11 1.0 0.08
Cheese 6 669 0.69± .04 19.28 1178 0.87± .03 12.11 85 0.89± .04 7.27
Mini-hall 15 897 0.33± .04 25.79 6098 0.86± .03 29.90 65 0.87± .04 25.18

Table 1: For each domain, H , U are the horizon and the number of states in the learned automaton
respectively, r is the average normalised reward (over 100 episodes) of the derived policy, and ‘time’
is the running time in seconds of automaton learning. Best results emphasised in bold.

6 Conclusions

In this work, we introduce a novel algorithm ADACT–L utilizing the language metric introduced
by Deb et al. [2025], which allows us to learn a significantly smaller RDP with cycles, and also
identify conditions under which RDPs with cycles can be correctly learned which makes it possible
to scale to larger and more complex domains. Further to exploit domain-related knowledge, we
also introduce the notion of priors for automaton learning, that can be used to factor out of the state
space any feature that is known a priori. We further validate our approach experimentally over five
familiar domains in the POMDP and RDP literature, and compare the performance of our algorithm
to FlexFringe, a state-of-the-art algorithm for learning PDFA. Finally, as future work, we plan to
explore the approximate version of our algorithm and also to extend our work to the online setting.
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A Technical Lemmas

The technical lemmas are reformulated from [Deb et al., 2025] for our setting. Following the proof-
structure, we first provide the high probability upper bound on the language metric LX adapted to
our setting.

Lemma 2. Let X be a language set. Given a candidate state u, ao ∈ U ×AO and a multiset Z(uao)
of suffixes in Γ+, with probability at least 1− δ the language metric LX satisfies

LX (p̂uao, puao) ≤

√
log(2|X |/δ)
2|Z(uao)|

,

where puao ∈ ∆(Γ+) is the true distribution on suffixes induced by the candidate uao and the
behavior policy πb, and p̂uao ∈ ∆(Γ+) is the empirical estimate on suffixes induced by Z(uao).

Proof. Let puao(X) =
∑

x∈X puao(x) be the true probability of each language language X ∈ X ,
and let p̂uao(X) =

∑
x∈Z(uao) I(x ∈ X)/|Z(uao)| be the empirical estimate of puao(X). Following

Hoeffding’s inequality we get

P

(
|p̂uao(X)− puao(X)| >

√
log(2/δs)

2|Z(uao)|

)
≤ δs.

Choosing δs = δ/|X | and taking a union bound implies that LX satisfies

LX (p̂uao, puao) = max
X∈X

|p̂uao(X)− puao(X)| ≤

√
log(2|X |/δ)
2|Z(uao)|

with probability 1− |X |δs = 1− δ, which completes the proof.

Next, we define an associated event EX to correctly bound the language metric LX for all candidate
states:

EX =

{
∀u, ao ∈ U ×AO : LX (p̂uao, puao) ≤

√
log(2|X |/δ)
2|Z(uao)|

}
.

We next prove a high-probability sample complexity bound for accurately estimating the occupancy
db(u, ao) of each candidate state. Let d̂(uao) be the empirical occupancy of uao. Given a number of
episodes N , an empirical Bernstein inequality yields

P

∣∣∣d̂(uao)− db(u, ao)
∣∣∣ >

√
2d̂(uao) log(4/δ)

N
+

14 log(4/δ)

3N

 ≤ δ. (1)

We can next define Gδ as the function for the bound in the empirical Bernstein inequality where δ is
the given failure probability, given by

Gδ(d̂, N) =

√
2d̂ log(4/δ)

N
+

14 log(4/δ)

3N

where Gδ is monotonically increasing in d̂ and monotonically decreasing in N . We can further define
an associated event EB to correctly bound |d̂(uao)− db(u, ao)| for all hao:

EB =
{
∀u, ao ∈ U ×AO :

∣∣∣d̂(uao)− db(u, ao)
∣∣∣ ≤ Gδ(d̂(uao), N)

}
.

The following lemma shows that we can control the number of episodes N to obtain an upper bound
on the function Gδ .

Lemma 3. For fixed probabilities δ and d̂, if N ≥ 16 log(4/δ)/d̂ it holds that 3Gδ(d̂, N) < 2d̂.
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Proof. We first show that the inequality holds for N = 16 log(4/δ)/d̂. In this case we have

3Gδ(d̂, N) = 3

√
2d̂2 log(4/δ)

16 log(4/δ)
+

14d̂ log(4/δ)

16 log(4/δ)
=

(
3√
8
+

14

16

)
d̂ < 2d̂.

The case N > 16 log(4/δ)/d̂ follows from the fact that Gδ is monotonically decreasing in N .

Since d̂(uao) = |Z(uao)|/N implies N = |Z(uao)|/d̂(uao), we obtain the following corollary.
Corollary 4. Under event EB , if |Z(uao)| ≥ 16 log(4/δ), it holds that |d̂(uao) − db(u, ao)| ≤
2d̂(uao)/3.

We show that under event EB , we can choose the sample complexity N to ensure that we obtain at
least a certain number of elements in Z(uao).
Lemma 5. Given a candidate state u, ao ∈ U × AO, under event EB , it holds that |Z(uao)| ≥
b log(4/δ) if the sample complexity N satisfies

N ≥ log(4/δ)

db(u, ao)
(2b+ 31/6) .

Proof. Letting M = |Z(uao)|, due to event EB and the given bound on N it holds that

db(u, ao)− M

N
≤ Gδ(M/N,N)

⇔ 0 ≤M +NGδ(M/N,N)−Ndb(u, ao)

≤M +
√
2M log(4/δ) + 14 log(4/δ)/3− log(4/δ) (2b+ 31/6)

= M +
√
2 log(4/δ)

√
M − log(4/δ) (2b+ 1/2) .

Solving the quadratic inequality for positive
√
M yields

√
M ≥ −

√
log(4/δ)

2
+

√
log(4/δ)

2
+ log(4/δ) (2b+ 1/2)

= −
√

log(4/δ)

2
+
√
log(4/δ) + 2b log(4/δ)

≥ −
√

log(4/δ)

2
+

√
log(4/δ) +

√
2b log(4/δ)√

2
=
√

b log(4/δ),

where we have used the inequality
√
x+ y ≥ (

√
x+
√
y)/
√
2. Hence the bound on N in the lemma

implies that M =
√
M

2 ≥ b log(4/δ).

A.1 Proof of Theorem 1

We first prove two lemmas very similar to Lemmas 16 and 17 of [Deb et al., 2025].
Lemma 6. Let R be an RDP and let X be a language set that distinguishes R under the behavior
policy πb. Given a candidate state u, ao ∈ U ×AO and a reference state u′ ∈ U , let Z1 and Z2 be
two multisets sampled from the true distributions puao and pu′ on suffixes in Γ+, respectively. Under
event EX , if τ(u, ao) = u′ then TESTDISTINCT(Z1,Z2, δ) returns false.

Proof. Since τ(u, ao) = u′, any pair of histories h1 and h2 associated with u, ao and u′ satisfy
τ̄(h1) = τ̄(h2) = u′. Since X distinguishes R, this implies that LX (puao, pu′) = 0 holds. Letting
p̂uao and p̂u′ be the empirical distributions on suffixes induced by the multisets Z1 and Z2, we can
now use the event EX , Lemma 2 and the triangle inequality to obtain

LX (p̂uao, p̂u′) ≤ LX (p̂uao, puao) + LX (puao, pu′) + LX (pu′ , p̂u′)

≤

√
log(2|X |/δ)

2|Z1|
+ 0 +

√
log(2|X |/δ)

2|Z2|
≤

√
2 log(2|X |/δ)
min(|Z1|, |Z2|)

.

This is precisely the condition for which TESTDISTINCT returns false.
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Lemma 7. Let R be an RDP and let X be a language set that distinguishes R under the behavior
policy πb. Given a candidate state u, ao ∈ U × AO and a reference state u′ ∈ U , let Z1 and Z2

be two multisets sampled from the true distributions puao and pu′ on suffixes in Γ+, respectively.
Under event EX , if τ(u, ao) ̸= u′ then TESTDISTINCT(Z1,Z2, δ) answers true if Z1 and Z2 satisfy
min(|Z1|, |Z2|) ≥ 8 log(2|X |/δ)/µ2

X .

Proof. Since τ(u, ao) ̸= u′, any pair of histories h1 and h2 associated with u, ao and u′ satisfy
τ̄(h1) ̸= τ̄(h2). Since X distinguishes R, this implies that LX (puao, pu′) ≥ µX holds. Letting p̂uao
and p̂u′ be the empirical distributions on suffixes induced by the multisets Z1 and Z2, we can now
use the event EX , Lemma 2 and the triangle inequality to obtain

LX (p̂uao, p̂u′) ≥ LX (puao, pu′)− LX (p̂uao, puao)− LX (pu′ , p̂u′)

≥ µX −

√
log(2|X |/δ)

2|Z1|
−

√
log(2|X |/δ)

2|Z2|

≥ µX −

√
2 log(2|X |/δ)
min(|Z1|, |Z2|)

≥ µX −
√

µ2
X
4

=
µX

2
≥

√
2 log(2|X |/δ)
min(|Z1|, |Z2|)

,

where we have used the given condition on min(|Z1|, |Z2|) twice on the last line. This is precisely
the condition for which TESTDISTINCT returns true.

The following lemma shows that the algorithm ADACT–L returns a minimal RDP if the multisets Z
associated with candidate states satisfy |Z| ≥ 16 log(4/δ) log |X |/µ2

X ≡MX .
Lemma 8. Under event EX , ADACT–L outputs a minimal automaton Ar if the language set X
distinguishes Ap ⋉Ar under the behavior policy πb and the multiset Z(uao) associated with each
candidate state u, ao ∈ U ×AO satisfies |Z(uao)| ≥MX .

Proof. We prove the lemma using induction on RDP states u = upur ∈ Up Ur. Since the algorithm
uses a queue data structure, such state pairs are visited in breadth-first order. The base case is given
by the initial state pair u0

pu
0
r and the associated multiset Z(u0

pu
0
r ) = D. This state pair is covered by

the single initial state u0
r that has to be part of any minimal automaton Ar.

The inductive case is given by a state pair upur visited by the algorithm, and the associated multiset
Z(upur) induced by all shortest histories mapping to upur. By hypothesis of induction, all state
pairs visited by the algorithm prior to (and including) upur are induced by the known prior Ap and a
minimal automaton Ar. Consider an action-observation ao ∈ AO and let Z(ao) be the multiset of
suffixes in Z(upur) consistent with ao. Let u′

p = τp(up, ao) be the resulting next state of the prior
automaton, and let u′

r = τr(ur, upao) be the next state of a minimal automaton Ar. If u′
pu

′
r is visited

before upur, then Lemma 6 implies that TESTDISTINCT(Z(ao),Z(u′
pu

′
r), δ) returns false. In this

case the algorithm correctly defines τr(ur, upao) = u′
r, and does not enqueue a new state pair. On the

other hand, if u′
pu

′
r is not visited before upur, then if the multisets associated with all candidate states

have cardinality at least MX , Lemma 7 implies that TESTDISTINCT(Z(ao),Z(ûpûr), δ) returns true
for all state pairs ûpûr visited before upur. In this case the algorithm defines τr(ur, upao) = u′

r for
the next available state u′

r ∈ Ur associated with u′
p, and enqueues a new state pair u′

pu
′
r. This proves

that the output of the algorithm is the transition function τr of a minimal automaton Ar.

To complete the proof of the theorem we need to select a minimum number of episodes to ensure that
|Z(uao)| ≥ MX for each u, ao. Choosing b = 16 log |X |/µ2

X in Lemma 5, we get the following
bound:

N ≥ max
u,ao

{
log(4/δ)

db(u, ao)

(
32 log |X |

µ2
X

+ 31/6

)}
.

Since X distinguishes Ap ⋉Ar and event EX holds, Lemma 8 now directly applies. It is sufficient to
choose δ0 = δ/2UUpAO to ensure that events EX and EB hold for all candidate states. Using the
lower bound db(u, ao) ≥ d∗(u, ao)/C∗

R ≥ d∗m/C
∗
R yields

N ≥
C∗

R log(8UUpAO/δ0)

d∗m

(
32 log |X |

µ2
X

+ 31/6

)
= Õ

(
C∗

R log(1/δ) log |X |
d∗m · µ2

X

)
.
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which concludes the proof. We remark that Deb et al. [2025] present an improved analysis for an
approximate version of their algorithm, but we leave a similar analysis for future work.
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B Examples

We provide several examples that help to understand important aspects of RDPs, as well as of our
novel notions.

B.1 Example RDPs with a focus on distinguishability

Example 2. Consider an RDP defined by R = ⟨O,A,R, T̄ , R̄,H, ν⟩ and A = ⟨U ,Σ,Ω, τ, θ, u0⟩
with components given by

O = {o1, o2}, A = {a1, a2}, R = {0, 1}, U = {u0, u1, u2, u3}.
The (semi-)automaton A is illustrated in the following figure:

u0

u1

u2

u3a1o1, a1o2

a2o1, a2o2

a2o1, a2o2

a1o1, a1o2,
a2o1, a2o2

a2o1

a2o2

a1o1, a1o2

a1o1, a1o2

The output function θ is defined as follows:

• θo(o | u, a) = 0.5 for each o ∈ O, u ∈ {u0, u3} and a ∈ A.

• θo(o | u, a2) = 0.5 for each o ∈ O and u ∈ {u1, u2}.

• θo(o1 | u1, a1) = θo(o2 | u2, a1) = 0.75.

• θo(o2 | u1, a1) = θo(o1 | u2, a1) = 0.25.

• θr(0 | u, a) = 1 for each u ∈ {u0, u3} and a ∈ A.

• θr(1 | u, a1) = 1 for each u ∈ {u1, u2}.

• θr(0 | u, a2) = 1 for each u ∈ {u1, u2}.

Let π be the regular policy defined as π(a|u) = 0.5 for each a ∈ A and each u ∈ U . Let X be
the language defined by the regular expression .*(.o11).*. Hence a string in Γ+ = (AO/R)+
belongs to X if and only if the observation-reward pair o11 appears in the string. Let X = {X} be
the language set containing only X .

We claim that X distinguishes the RDP R under the regular policy π. For any history h mapping to
state u3, the probability of the language X is pπh(X) = 0 since the reward 1 can never appear. For
any history h mapping to state u1, eventually the policy π will select action a1 and the probability
of o11 is θo(o1 | u1, a1)θr(1 | u1, a1) = 0.75 · 1 = 0.75, implying pπh(X) = 0.75. For any
history h mapping to state u2, eventually the policy π will select action a1 and the probability
of o11 is θo(o1 | u2, a1)θr(1 | u2, a1) = 0.25 · 1 = 0.25, implying pπh(X) = 0.25. For any
history h mapping to state u0, eventually the policy π will select action a2. This always causes
a reward of 0 and transitions to u1 or u2 with equal probability. Hence the probability of o11 is
0.5 · 0.75 + 0.5 · 0.25 = 0.5, implying pπh(X) = 0.5.

As a consequence, given two histories h, h′ ∈ H, if h ∼ h′ the language metric is given by
LX (pπh, p

π
h′) = |pπh(X)−pπh′(X)| = 0, while if h ̸∼ h′ we have LX (pπh, p

π
h′) = |pπh(X)−pπh′(X)| ≥

0.25. Hence X distinguishes R for π and has distinguishability µX = 0.25. ■

Example 3. Another example RDP is the following one.

O = {o1, o2}, A = {a1, a2}, R = {0, 1}, U = {u0, u1, u2, u3, u4, u5}.
The (semi-)automaton A is illustrated in the following figure:
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u0

u1

u2

u3

u4

u5

a2o1

a1o2

a2o2

a2o1

a2o2a1o1a1o1, a1o2

a2o1

a1o2

a2o1

a1o2

a1o1, a1o2,
a2o1, a2o2

a1o1

a2o2

a1o1

a2o2

The output function θ is defined as follows:

• θo(o | u, a) = 0.5 for each o ∈ O, u ∈ {u0, u5} and a ∈ A.

• θo(o1 | u1, a) = θo(o2 | u2, a) = 0.75 for each a ∈ A.

• θo(o2 | u1, a) = θo(o1 | u2, a) = 0.25 for each a ∈ A.

• θo(o1 | u3, a) = θo(o2 | u4, a) = 1 for each a ∈ A.

• θr(0 | u, a) = 1 for each u ∈ {u0, u1, u2, u5} and a ∈ A.

• θr(0 | u3, a2) = θr(0 | u4, a1) = 1.

• θr(1 | u3, a1) = θr(1 | u4, a2) = 1.

Consider the regular policy π defined as π(a|u) = 0.5 for each u ∈ U and a ∈ A. Some facts about
the RDP:

• From state u5 we can never observe reward 1.

• From state u3 we eventually observe o11.

• From state u4 we eventually observe o21.

• From state u1 we eventually reach u3 with probability 0.75 and u4 with probability 0.25.

• From state u2 we eventually reach u3 with probability 0.25 and u4 with probability 0.75.

• From state u0 we eventually reach u3 with probability 0.5 and u4 with probability 0.5.

To prove the last three facts, let p0, p1, p2 be the probability of reaching u3 from u0, u1, u2

respectively. These probabilities satisfy the following system of linear equations:

p0 = 0.5p1 + 0.5p2,

p1 = 0.2p0 + 0.2p2 + 0.6,

p2 = 0.2p0 + 0.2p1.

The solution is given by p0 = 0.5, p1 = 0.75, p2 = 0.25.

Consider the language setX = {X1, X2}, where X1 is the language defined by the regular expression
.*(.o11).* and X2 is the language defined by the regular expression .*(.o21).*. For each state
u ∈ U , the probabilities of the two languages for histories h that map to u, i.e. τ̄(h) = u, are given by
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u0: pπh(X1) = 0.5, pπh(X2) = 0.5,
u1: pπh(X1) = 0.75, pπh(X2) = 0.25,
u2: pπh(X1) = 0.25, pπh(X2) = 0.75,
u3: pπh(X1) = 1, pπh(X2) = 0,
u4: pπh(X1) = 0, pπh(X2) = 1,
u5: pπh(X1) = 0, pπh(X2) = 0.

It is easy to verify that for the given language set X and two histories h, h′ ∈ H, LX (pπh, p
π
h′) = 0 if

h ∼ h′ and LX (pπh, p
π
h′) ≥ 0.25 if h ̸∼ h′. Hence X distinguishes R and the distinguishability is

µX = 0.25.

We can represent the RDP more compactly using a cascade Ao ⋉Ar, where Ao is a Markov prior
and Ar is the following automaton:

u′
0 u′

1 u′
2 u′

3

∗a2o1, ∗a2o2

o1a1o2, o2a2o1

o1a1o1,o2a2o2 o1a1o1,o2a2o2

∗a1o1, ∗a1o2 o1a2∗, o2a1∗ o1a2o1,o2a1o2 ∗

Concretely, the state o1u
′
1 in the cascade corresponds to the state u1 in the original RDP, while o2u

′
1

corresponds to u2. Likewise, o1u′
2 in the cascade corresponds to the state u3 in the original RDP,

while o2u
′
2 corresponds to u4. Both o1u

′
0 and o2u

′
0 map to u0, and both o1u

′
3 and o2u

′
3 map to u5.

Note that the automaton Ar is more compact than the original RDP. ■

Example 4. A third example to illustrate the difficulty of suffixes with different lengths. Here I have
omitted actions and observations and focus only on probability distributions over suffixes (under
the given behavior policy). For simplicity, assume that all transitions are deterministic except for
u2 → u3, which has probability p (else the agent remains in u2).

u0

u1

u2 u3 u4

1− p

r = 0
p r = 1

We can reach u2 in two different ways: directly from u0 (history h), or via u1 (history h′). Let us
assume that the only language in X checks if reward 1 is present in a suffix. The current algorithm
will estimate LX (pπh, p

π
h′) using two multisets of suffixes: one whose suffixes have length H − 1, and

one whose suffixes have length H − 2.

The probability of not reaching u3 in k steps is (1−p)k, since the agent will attempt to reach u3 every
timestep and fails with probability 1 − p. Hence the probability of observing reward 1 in suffixes
of length H − 1 is 1− (1− p)H−2, and the probability of observing reward 1 in suffixes of length
H − 2 is 1− (1− p)H−3. To observe reward 1 in k steps we have to reach u3 in k − 1 steps to have
time for the last transition from u3 to u4. For example, if p = 0.1 and H = 10 we have

1− (1− p)H−2 = 1− 0.98 = 0.57,

1− (1− p)H−3 = 1− 0.97 = 0.52.

■

B.2 Examples for Section 2 (Preliminaries)

Example 5. Specific policies may induce the same distribution for histories that are not equivalent, as
noted in Observation 1. This phenomenon can be observed in the following example, which focuses
on the probability of observations, omitting rewards since they follow the same argument,

A = {a1, a2}, O = {o1, o2}, U = {u0, u1, u2},
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τ(u0, ao1) = u1 ∀a ∈ A, τ(u0, ao2) = u2 ∀a ∈ A, τ(ui, ao) = ui ∀ao ∈ AO,∀i ∈ {1, 2},

θo(o1 |u1, a1) = 0.1, θo(o1 |u1, a2) = 0.9, θo(o2 |u1, a1) = 0.9, θo(o2 |u1, a2) = 0.1,

θo(o1 |u2, a1) = 0.9, θo(o1 |u2, a2) = 0.1, θo(o2 |u2, a1) = 0.1, θo(o2 |u2, a2) = 0.9.

In this example, a regular policy causing the collapse of distributions over observations determined
by the two different states u1, u2 is the following one, defined as a function of RDP states,

π(a1 |u1) = 0.9, π(a2 |u1) = 0.1, π(a1 |u2) = 0.1, π(a2 |u2) = 0.9.

For instance, we have that the probability of o1 coincides in the two states u1 and u2,

P(o1 |u1, π) = θo(o1 |u1, a1) · π(a1 |u1) + θo(o1 |u1, a2) · π(a2 |u1) = 0.18,

P(o1 |u1, π) = θo(o1 |u1, a1) · π(a1 |u1) + θo(o1 |u1, a2) · π(a2 |u1) = 0.18.

Similarly for o2, we have P(o2 |u1, π) = P(o2 |u2, π) = 0.82. In general pπh1
= pπh2

for histories
h1, h2 mapping to u1, u2 respectively, even though h1 ̸∼ h2 since u1 ̸= u2. ■

B.3 Extended version of Example 1 (Partial independence from priors)

The T-maze with corridor length N and horizon H has observations, actions, and rewards,

O = {InCorridor , InJunction,GoalNorth,GoalSouth},

A = {North,South,East ,West},

R = {0, 1}

U =
(
{corridor} × J0, NK ∪ {junction} × J−1,+1K

)
× {GoalNorth,GoalSouth},

and it is represented by the cascade cascade TH × A where TH is the timestep prior and the
semiautomaton A = ⟨U ,AO, τ, u0⟩ is defined as follows.

States,

U = {u0} ∪
((
{corridor} × J0, NK ∪ {junction} × J−1,+1K

)
× {GoalNorth,GoalSouth}

)
.

The transition function is defined as follows, where all variables range over their entire respective
domains,

τ(u0, a goal) =

{
⟨corridor , 1, goal⟩ if a = West

⟨corridor , 0, goal⟩ otherwise

τ(corridor , x, goal , ao) =


⟨corridor , x, goal⟩ if a = North or a = South

⟨corridor ,max(0, x− 1), goal⟩ if a = East

⟨corridor , x+ 1, goal⟩ if a = West and x < N

⟨junction, 0, goal⟩ if a = West and x = N

τ(junction, y, goal , ao) =



⟨junction,min(1, y + 1), goal⟩ if a = North

⟨junction,max(−1, y − 1), goal⟩ if a = South

⟨junction, y, goal⟩ if a = West

⟨junction, y, goal⟩ if a = East and y ̸= 0

⟨corridor , N, goal⟩ if a = East and y = 0

Let⊥ represents the observation symbol marking the end of an episode. When the symbol is produced,
the generated episode trace is to be considered complete.
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The (deterministic) observation output function over the cascade state space θo : J0, HK×U×A → O
is defined as follows, where t ranges over J0, H − 1K.

θo(t, corridor , x, goal , a) =


corridor if a = North or a = South

corridor if a = East

corridor if a = West and x < N

junction if a = West and x = N

θo(t, junction, y, goal , a) =



junction if a = North

junction if a = South

junction if a = West

junction if a = East and y ̸= 0

corridor if a = East and y = 0

θo(H,u1, u2, u3, a, o) = ⊥

The (deterministic) reward output function over the cascade state space θr : J0, HK× U ×A → R is
defined as follows, where all variables range over their entire respective domains (including t),

θr(t, corridor , x, goal , a) = 0

θr(t, junction, y, goal , a) =


1 if y = 0 and a = North and goal = GoalNorth

1 if y = 0 and a = South and goal = GoalSouth

0 otherwise

Showing partial independence from the timestep prior (semi-stationarity) The automaton above
already satisfies the cascade condition (I) since it is given by TH ×A. We show its output functions
satisfy conditions (II) and (III). The observation output function (seen as returning distributions) can
be factored into the following two functions,

θro(o | corridor , x, goal , a) =
{
1 if o = θo(corridor , x, goal , a)

0 otherwise

θto(o | t, a) =


1 if o ̸= ⊥ and
1 if o = ⊥ and t = H

0 otherwise

Remark 1. The above function θro does not specify episode termination, and hence, at learning time,
the distributions it induces must be assessed by a language metric that ignores string length—as we
do when relevant in our experiments.

The reward output function (seen as returning distributions) can be factored into the following
functions, where all variables range over their entire respective domains,

θrr (r | corridor , x, goal , a) = 0

θrr (r | junction, y, goal , a) =
{
1 if r = θr(junction, y, goal , a)

0 otherwise

and

θtr (r | t, a) = 1

The above shows that the T-maze is partially independent from the timestep prior, i.e., it is semi-
stationary.
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Preserving rewards only In the T-maze automaton, we can also factor out a spatial prior as
(TH × S)⋉A where S describes the space of the maze, using states

Us = {corridor} × J0, NK ∪ {junction} × J−1,+1K.

Note that we could also use the spatial prior G3×(N+1) (introduced earlier) as a correct over-
approximation. However, introducing the independence (TH × S)×A allows only for representing
an approximation of the original automaton. Specifically, we can still represent the reward function
exactly, clear from the fact that the function θr above is independent of its first three arguments.
However, we can no longer represent precisely distributions on observations, since the function θo
depends on its second and third argument. The advantage is that the domain-specific automaton A
is very compact. It only needs to remember the goal position communicated at the beginning of an
episode, and it can do so by using the two states {GoalNorth,GoalSouth}.
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