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Abstract
We introduce Context Tuning, a simple and
effective method to significantly enhance few-
shot adaptation of language models (LLMs)
without fine-tuning model parameters. While
prompt-based adaptation techniques have demon-
strated the effectiveness of lightweight adaptation
methods for large language models (LLMs), they
typically initialize a trainable prompt or prefix
with irrelevant tokens for the task at hand. In
contrast, Context Tuning initializes the trainable
prompt or prefix with task-specific demonstration
examples, leveraging the model’s inherent
In-Context Learning (ICL) ability to extract
relevant information for improved few-shot
learning performance. Extensive evaluations
on benchmarks such as CrossFit, UnifiedQA,
MMLU, BIG-Bench Hard, and ARC demonstrate
that Context Tuning outperforms traditional
prompt-based adaptation methods and achieves
competitive accuracy to Test-Time Training with
significantly higher training efficiency.

1 Introduction
Large language models (LLMs) excel on diverse natural
language processing (NLP) tasks by leveraging knowledge
from large-scale pretraining (Brown et al., 2020; Grattafiori
et al., 2024; Jiang et al., 2023). These models can adapt
to new tasks using only a few input and output examples
provided in context, a process known as In-Context
Learning (ICL) (Brown et al., 2020). However, ICL often
struggles with complex reasoning or domain shifts, as it
relies solely on a forward pass to interpret the examples.
While methods like Test-Time Training (TTT) (Akyürek
et al., 2024) improve adaptation with limited data, they
can be computationally expensive. This motivates the
development of more efficient and effective few-shot
adaptation techniques for LLMs.
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Figure 1: Comparison of training-free, prompt-based
adaptation, and In-Context Optimization methods on
solving 26 NLP-LR tasks from Table 1. Circles are
baselines; stars are our methods; bolded methods attain the
best performance-efficiency tradeoff.

Contrary to ICL’s reliance on a forward pass, prompt-based
adaptation methods like Prompt Tuning (Lester et al.,
2021) and Prefix Tuning (Li & Liang, 2021) prepend
trainable vectors to each input and optimize them via
gradient descent. At a conceptual level, ICL harnesses
the model’s ability to extract task-relevant information
from the few-shot context, while prompt-based adaptation
methods optimize randomly initialized vectors to guide the
model’s behavior in solving each example. Given these
complementary approaches, it is natural to ask whether
we can bridge them by directly optimizing the context of
few-shot examples to steer the model more effectively.

In this work, we introduce Context Tuning, a simple and
effective method for few-shot learning that initializes
trainable vectors from the few-shot examples of a novel task
and optimizes them to solve each example. We develop two
variants: CT-Prompt applies Prompt Tuning to a soft prompt
initialized from few-shot examples, and CT-KV applies
Prefix Tuning to optimize the key-value (KV) cache derived
from those same examples. While CT-Prompt achieves
strong performance, it suffers from a quadratic training time
to the number of examples. Similarly, the recently proposed
Test-Time Training (TTT) (Akyürek et al., 2024) method,
which fine-tunes model parameters with LoRA (Hu et al.,
2022) on permutations of few-shot examples, also incurs
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quadratic cost. In contrast, CT-KV achieves linear training
time while also outperforming CT-Prompt and achieving
competitive performance to TTT, thanks to the efficiency
and per-layer conditioning of the KV cache. In addition,
because Context Tuning tunes the context and TTT tunes the
model, the two methods are complementary: applying CT-

KV to refine the model context after TTT’s weight updates
leads to additional performance gains. A high-level com-
parison in Figure 1 illustrates CT-KV’s high efficiency and
accuracy, whether used alone or in combination with TTT.

We situate two approaches for few-shot learning with in-
context examples – TTT that optimizes the model itself, and
Context Tuning that optimizes the model’s context – within
a broader framework we term In-Context Optimization

(ICO). Under ICO, adaptation leverages ICL and either
updates its parameters or its context representation. We
evaluate ICL, prompt-based adaptation methods, and ICO

techniques across a wide range of benchmarks. CT-KV

significantly outperforms both ICL and prompt-based
adaptation methods, while remaining competitive with
the more computationally intensive TTT. Furthermore, we
show that CT-KV can serve as a post-hoc refinement step
following TTT, leading to improved few-shot adaptation
performance compared to either method used in isolation.

2 Background
We introduce the definition of ICL, Prefix Tuning, and
Prompt Tuning. For single-task few-shot adaptation,
we consider a language model pω with parameters ω,
d hidden dimensions, L layers, a demonstration set
D = {(xi, yi)}ki=1, and the goal of solving a new query xq

from the same task. We denote the concatenated context
of all demonstration pairs as C = [x1; y1; . . . ;xk; yk].

In-Context Learning. ICL concatenates all k demon-
stration pairs followed by the query xq. The model then
predicts ŷq conditioned on this context:

ŷq = argmax
y

pω

(
y
∣∣ [ C;xq ]

)
.

In ICL, there is no gradient-based optimization; instead,
the model adapts by attending to the tokens of the
demonstration pairs provided in context.

Prompt Tuning. In Prompt Tuning, the model parameters ω
remain fixed. Instead, m trainable soft prompt tokens P are
prepended to each input and optimized via gradient descent:

P
→ = argmin

P

k∑

i=1

→ log pω
(
yi

∣∣ [P ;xi ]
)
.

After optimizing on the demonstration pairs, the optimized
soft prompt P → can be used for inference:

ŷq = argmax
y

pω

(
y
∣∣ [P →;xq ]

)
.

Prefix Tuning. Prefix Tuning also keeps ω fixed but learns
layer-wise prefixes of m trainable vectors for the keys and
values in each transformer layer: ! = {Kj , Vj}Lj=1. Each
layer’s attention uses these prefixes by prepending Kj to
its keys and Vj to its values. Prefix Tuning’s optimization
and inference equations are analogous to those of Prompt
Tuning, but with ! instead of P .

3 Context Tuning for In-Context
Optimization

In this section, we introduce the mathematical formulation
of In-Context Optimization (ICO), a few-shot adaptation
scheme that uses demonstrations in the context and performs
gradient-based optimization on either the model parameters
or a context representation. We then show that Test-Time
Training (TTT) (Akyürek et al., 2024) is an instance of ICO.
Finally, we present Context Tuning, formalizing its CT-

Prompt and CT-KV variants along with the two additional
design choices that drive their strong performance.

3.1 In-Context Optimization

ICO unifies two prevalent techniques for few-shot learning:
ICL and gradient-based optimization. Formally, ICO’s
optimization objective is to minimize the loss

k∑

i=1

→ log pω
(
yi

∣∣ [ ε(i)context ;xi ]
)
, (1)

where ε
(i)
context is a context representation derived from

the set of demonstration pairs D = {(xi, yi)}ki=1. While
Prompt Tuning and Prefix Tuning also prepend additional
contexts during optimization, their contexts are randomly
initialized instead of utilizing the demonstration pairs D.
Therefore, they are not instances of ICO. ICL is also not
ICO by not performing gradient-based optimization.

3.2 Test-Time Training as ICO

TTT (Akyürek et al., 2024) can be viewed as an instance
of ICO. Specifically, TTT minimizes Equation 1 by first
initializing the model weights ω from a pretrained model,
then updating them with LoRA layers for parameter
efficiency. At each optimization iteration, TTT dynamically
sets ε(i)context = C↑i where C↑i represents the concatenated
tokens of a random permutation of demonstration pairs
except for the i-th pair. The optimization equation becomes:

ω
→ = argmin

ω

k∑

i=1

→ log pω
(
yi

∣∣ [ C↑i ;xi ]
)
.

To perform inference on the query input xq, TTT uses
the optimized model weights and the concatenation of all
demonstration pairs as context:

ŷq = argmax
y

pω→
(
y
∣∣ [ C ;xq ]

)
.
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Figure 2: CT-KV, the variant of Context Tuning that optimizes the key-value prefixes derived from in-context demonstration
pairs. CT-KV (left) first initializes a prefix {Ki, Vi}ki=1 from demonstration pairs {(xi, yi)}ki=1, then trains it to solve each
pair. To prevent the model from simply retrieving the demonstration pair from the prefix, Leave-One-Out Masking prevents
the model from attending to Ki, Vi when solving pair i. At generation time (right), the model conditions on all optimized
prefixes {K→

i , V
→
i }ki=1 to solve query xq .

3.3 Context Tuning

We design our Context Tuning approach to be an instanti-
ation of the ICO framework. In contrast to TTT, Context

Tuning freezes model parameters ω and instead directly
optimizes the lightweight context representation εcontext

of the demonstration pairs.

• CT-Prompt initializes εcontext = PCT as the model’s
prompt embeddings on C, the concatenation of demon-
stration pairs.

• CT-KV initializes εcontext = !CT as a key-value prefix
!CT = {Kj , Vj}Lj=1 obtained from the model’s layer-
wise activations on C.

We also introduce two design choices for Context Tuning.

Leave-One-Out Masking. To prevent the model from
simply retrieving the answer yi of the ith demonstration
pair embedded in εcontext when predicting the output for
xi, we construct

ε
(i)
context =

{
P

↑i
CT for CT-Prompt,

!↑i
CT for CT-KV,

and use it instead of εcontext in optimization. When con-
ditioning on P

↑i
CT or !↑i

CT, the trainable soft prompt tokens
in CT-Prompt or prefix tokens in CT-KV corresponding to
the in-context demonstration pair (xi, yi) are masked out
from the attention view of the model.

Token Dropout. Since Context Tuning generally introduces
a larger number of prompt or prefix tokens than traditional
prompt-based adaptation techniques, we regularize training
by randomly dropping tokens in ε

(i)
context with a fixed

probability, denoted as TokenDrop.

Altogether, we arrive at the optimization (top) and inference
(bottom) equations for CT-KV:

!→
CT = argmin

!CT

k∑

i=1

→ log pω
(
yi

∣∣ [ TokenDrop
(
!↑i

CT

)
;xi]

)
,

ŷq = argmax
y

pω
(
y
∣∣ [!→

CT ;xq ]
)
.

CT-Prompt’s optimization and inference equations are
analogous to CT-KV but with PCT instead of !CT. In
practice, CT-Prompt requires recomputing layer-wise keys
and values corresponding to PCT, while CT-KV does not
for !CT. In the Appendix, we formally prove that for each
optimization step, CT-KV has lower time complexity than
both TTT and CT-Prompt with respect to the number of
demonstration pairs. Finally, we introduce TTT+CT-KV,
which first performs TTT to update model weights ω, then
applies CT-KV to refine the model’s demonstration context
for improved performance.

4 Experiments
4.1 Experiment Setup

Datasets. We evaluate on a diverse set of challenging
datasets: NLP-LR by Min et al. (2022a) (subsets of
CrossFit (Ye et al., 2021) and UnifiedQA (Khashabi
et al., 2020)), MMLU (Hendrycks et al., 2021), and the
Abstraction and Reasoning Corpus (ARC) (Chollet, 2019).

Models. Following Min et al. (2022a) and Akyürek et al.
(2024), we use GPT-2 for NLP-LR and Llama3-8B for BBH.
We select Llama3.2-3B for MMLU and Llama3.2-1B for
ARC to handle ARC’s long sequences. Since the pretrained
Llama3.2-1B model cannot solve any ARC evaluation tasks,
we follow Akyürek et al. (2024) and Franzen et al. (2024)

3



Context Tuning for In-Context Optimization

Method NLP-LR MMLU BBH ARC
Acc. (%) T (s) Acc. (%) T (s) Acc. (%) T (s) Acc. (%) T (s)

Baselines
Zero-Shot 34.9± 0.62 0 35.8± 0.71 0 40.9± 0.43 0 1.0 0
ICL 35.6± 0.65 0 41.2± 0.57 0 50.4± 0.78 0 13.3 0
Prompt Tuning (m = 32) 41.4± 1.02 147 39.2± 1.04 15 50.8± 1.59 7 12.0 13
Prompt Tuning (m = # demo) 38.8± 1.23 231 37.3± 1.23 29 47.5± 1.84 16 14.5 49
Prefix Tuning (m = 32) 42.0± 0.85 123 39.9± 0.94 5 52.7± 1.12 7 9.3 14
Prefix Tuning (m = # demo) 41.1± 0.89 144 38.8± 0.81 8 52.8± 1.15 9 20.5 24
TTT 44.1± 0.65 342 43.6± 0.55 30 57.8± 1.13 14 23.8 56

Our Methods
CT-Prompt 43.2± 0.61 228 43.6± 0.67 33 56.3± 0.98 14 22.5 52
CT-KV 44.2± 0.55 145 43.7± 0.54 9 57.9± 0.78 7 23.8 26
TTT + CT-KV 47.6± 0.53 372 44.1± 0.38 34 58.2± 0.73 17 25.8 63

Table 1: Few-shot learning performance on NLP-LR, MMLU, BBH, and ARC benchmarks. Each cell contains the accuracy
(%) and training time per task (seconds), delimited by /. We show the means and standard deviations of accuracies over
5 seeds with different sets of demonstration pairs per task (except for ARC because it has fixed demonstration pairs). The
best accuracy is bolded and second best is underlined for each benchmark.

by fine-tuning it on the ARC training split.

Implementation. We run all experiments in Table 1 over
5 sets of randomly selected demonstration pairs, except
ARC because it has a fixed set of demonstration pairs for
every task. We initialize trainable prompts and prefixes with
sampled token embeddings from the model for their best
performance. For Context Tuning, we apply Leave-One-Out
Masking for all datasets but ARC. Details on this decision,
datasets, models, and hyperparameters are in the Appendix.

4.2 Comparing Context Tuning to Baselines

Table 1 reports the performance and training time per
task of our baselines and methods on our benchmarks. To
fairly compare Prompt and Prefix Tuning with Context

Tuning, “Prompt Tuning (m = # demo)” and “Prefix Tuning
(m = # demo)” match the number of trainable parameters of
CT-Prompt and CT-KV respectively by setting the number of
prompt/prefix tokens m to the length of demonstration pairs.

Context Tuning outperforms Prompt and Prefix Tuning.
CT-Prompt outperforms Prompt Tuning (m = 32), and
CT-KV outperforms Prefix Tuning (m = 32), both by a
wide margin across all benchmarks. Despite increasing m

to match the number of trainable parameters of Context

Tuning, Prompt and Prefix Tuning still underperform. This
highlights the effectiveness of leveraging the model’s
ICL capabilities by initializing the prompt or prefix with
demonstration tokens.

CT-KV is more efficient than CT-Prompt. CT-KV has
lower training time than CT-Prompt. This observation
aligns with the time complexity discussion in the Appendix:
CT-Prompt incurs quadratic time to k, while CT-KV scales
linearly. CT-KV also outperforms CT-Prompt in accuracy
by conditioning each transformer layer’s activations with

layer-specific key and value vectors, rather than relying
solely on input-level soft prompts.

CT-KV offers an efficient alternative to TTT, and the
two are complementary. CT-KV achieves competitive
performance to TTT but uses at most half the training time.
Furthermore, CT-KV can be applied for a few training iter-
ations after TTT training of model weights to attain higher
performance by adding minimal training time, suggesting
that context and model adaptation methods under ICO can
be combined for strong few-shot learning performance.

CT-KV outperforms MetaICL on NLP-LR. CT-KV

achieves 44.2% accuracy on NLP-LR, surpassing the
reported 43.3% accuracy of MetaICL (Min et al., 2022a).
This demonstrates that inference-time, single-task optimiza-
tion with CT-KV can rival the performance of approaches
that fine-tune model weights across many tasks.

5 Conclusion
We introduced Context Tuning, a lightweight approach to
language model few-shot adaptation that optimizes a prompt
or prefix initialized from demonstration tokens, combining
the strengths of ICL and prompt-based adaptation. We pro-
pose two variants: CT-Prompt and CT-KV, tuning prompts
and layer-wise prefix initialized from demonstration to-
kens, respectively. Experiments on NLP-LR, MMLU, BBH
and ARC benchmarks show both variants outperform ICL
and Prompt/Prefix Tuning, with CT-KV offering the best
performance-efficiency trade-off. Framed within the In-

Context Optimization framework, our results demonstrate
that optimizing the context itself is a powerful, scalable alter-
native to model-weight updates. Moreover, applying CT-KV

after TTT yields further gains, suggesting that context and
model adaptation can be effectively combined.
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Societal Impacts
Context Tuning enables language models to make more
accurate predictions on novel tasks using only a few task-
specific examples. This adaptability can help researchers
and practitioners rapidly tailor their models to new domains.
However, there is a potential risk if the method is used
to adapt models to harmful content. For example, using
Context Tuning to generate medical advice from unreliable
or biased examples could result in misleading or dangerous
outputs. We recommend taking extra care to verify, correct,
and filter demonstration examples when applying Context

Tuning.
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