
GiFT: Gibbs Fine-Tuning for Code Generation

Anonymous ACL submission

Abstract

Training Large Language Models (LLMs) with001
synthetic data is a prevalent practice in code002
generation. A key approach is self-training,003
where LLMs are iteratively trained on self-004
generated correct code snippets. In this case,005
the self-generated codes are drawn from a con-006
ditional distribution, conditioned on a specific007
seed description. However, the seed descrip-008
tion is not the only valid representation that009
aligns with its intended meaning. With all010
valid descriptions and codes forming a joint011
space, codes drawn from the conditional distri-012
bution would lead to an underrepresentation of013
the full description-code space. As such, we014
propose Gibbs Fine-Tuning (GiFT), a novel015
self-training method inspired by Gibbs sam-016
pling. GiFT allows self-generated data to be017
drawn from the marginal distribution of the018
joint space, thereby mitigating the biases in-019
herent in conditional sampling. We provide a020
theoretical analysis demonstrating the potential021
benefits of fine-tuning LLMs with code derived022
from the marginal distribution. Furthermore,023
we propose a perplexity-based code selection024
method to mitigate the imbalanced long-tail dis-025
tribution of the self-generated codes. Empirical026
evaluation of two LLMs across four datasets027
demonstrates that GiFT achieves superior per-028
formance, particularly on more challenging029
benchmarks1.030

1 Introduction031

Code generation, the automated synthesis of code032

snippets from natural language specifications, sig-033

nificantly enhances software development produc-034

tivity (Han et al., 2024; Jiang et al., 2024b). Recent035

advances in large language models (LLMs), trained036

on massive web-derived code and text corpora, ex-037

hibit notable capabilities for code understanding038

and generation (Jiang et al., 2024a; Wang et al.,039

1Source code is available at https://anonymous.4open.
science/r/GiFT.

d0d (Description)

c (
Cod

e)
Pr

ob
.

P(c)
P(c|d = d0)

Figure 1: For the intention of d0, the set of all valid
descriptions and codes forms a space. The distribution
gap between conditional distribution (Red) and marginal
distribution (Blue) indicates the bias introduced when
fine-tuned LLMs with codes conditional on d0, as some
codes are rarely sampled.

2024; Liu et al., 2024b). While scaling training 040

data is beneficial, high-quality data has been found 041

to play a more important role in boosting LLM 042

performance (Wei et al., 2023, 2024). 043

However, curating large-scale, high-quality 044

datasets by manual annotation is challenging due to 045

substantial costs. Consequently, researchers switch 046

gears to synthetic data. Two principal approaches 047

to generate data are: a) knowledge distillation from 048

stronger LLMs (Wei et al., 2023; Yu et al., 2024; 049

Luo et al., 2023), and b) self-training, wherein mod- 050

els generate their own training data (Yuan et al., 051

2023; Zelikman et al., 2022; Wei et al., 2024). The 052

prerequisite of stronger LLMs for distillation re- 053

stricts its general applicability, thus many works 054

focus more on self-training, as we studied in this 055

paper. 056

The self-training process utilizes a seed dataset, 057

denoted as {di}Ni=1. For each description di, an 058

LLM generates multiple candidate code snippets, 059

which are evaluated against test cases. Snippets 060

passing all tests are used to fine-tune the same LLM. 061

1

https://anonymous.4open.science/r/GiFT
https://anonymous.4open.science/r/GiFT

Step 1. Gibbs Sampling

……

Calculate
Perplexity

Weighted
Random
Sampling

Step 2. Perplexity-guided Data Selection

{𝑐𝑖0, 𝑐𝑖2, … , 𝑐𝑖k}

Original Description 𝑑𝑖

Write a function to search a
string for a regex pattern.

Code 𝑐𝑖0
def func(text, pattern):
 match = re.search(pattern,
text)
 …

Description 𝑑𝑖1

Take a text and a pattern as input and searches
for the first occurrence of the pattern.

Code 𝑐𝑖1
def func(text, pattern):
 regex = re.compile(pattern)
 match = regex.search(text)
 …

Description 𝑑𝑖𝑛

Find a substring within a larger string
that matches a given expression pattern.

Code 𝑐𝑖𝑛
def func(text, pattern):
 for m in re.finditer(
 pattern, text):
 …

Temperature
Scaling

……

LLMLLM

Step 3. Fine-tuning

Code->Description

Description->code

Frozen Weight

Trainable Weight

Figure 2: Overview of GiFT. For each description di in the seed dataset, we first translate it between descriptions
and codes iteratively to draw codes from the marginal distribution based on the intention of di. Then, we calculate
the perplexity of each generated code and employ weighted random sampling to select codes with codes from the
tail being more likely to be selected for fine-tuning. Finally, all selected codes are paired with di for fine-tuning.

This process iterates until performance plateaus or062

degrades. However, the natural language descrip-063

tion di represents only one possible articulation064

of the underlying intention. Consider the goal of065

matching a pattern within a string. This underly-066

ing goal—what we refer to as the “intention”—can067

be expressed through various descriptions such as068

“Write a function to search a string for a regex pat-069

tern” or “Find a substring within a larger string070

that matches a given regular expression pattern”.071

Considering the set of all valid descriptions and072

corresponding code implementations that satisfy073

the underlying intention of di as a description-code074

space, generating code exclusively from di can be075

viewed as sampling from the conditional distribu-076

tion P (c|di). We argue that this approach is sub-077

optimal. Instead, we propose that sampling from078

the marginal distribution of codes within the joint079

description-code space, denoted as P (c), would080

yield superior results. Figure 1 illustrates the poten-081

tial benefit of sampling from the marginal distribu-082

tion compared to the conditional distribution. The083

figure highlights the possibility of oversampling084

certain code implementations and undersampling085

others when relying solely on the conditional prob-086

ability P (c|di).087

In this paper, we first theoretically justify the088

benefit of fine-tuning LLMs with samples drawn089

from the marginal distribution, by showing that an090

additional expectation of loss is implicitly taken091

to reduce the bias introduced by samples from the092

conditional distribution. Direct sampling from the093

marginal distribution is intractable in practice. We094

gain inspiration from Gibbs sampling (Geman and095

Geman, 1984), an MCMC algorithm, that itera-096

tively samples each variable from its conditional097

distribution while keeping the others fixed, grad- 098

ually approximating the joint distribution. Simu- 099

lating the Gibbs sampling in the context of code 100

generation, we propose Gibbs Fine-Tuning (GiFT). 101

From a seed description, code is generated and then 102

summarized into a new description, used for subse- 103

quent code generation. This process is repeated to 104

get a set of self-generated description-code pairs, 105

which could be considered drawn from the joint 106

distribution. The code components in pairs can be 107

considered drawn from the marginal distribution 2. 108

Self-generated code often suffers from data im- 109

balances detrimental to LLM fine-tuning. One 110

source of imbalance is the varying number of 111

generated codes for descriptions of differing dif- 112

ficulty. We address this by selecting a fixed num- 113

ber of codes per description. The other more fun- 114

damental imbalance arises from the long-tailed 115

nature of the marginal distribution from which 116

code is sampled (Ding et al., 2024; Dohmatob 117

et al., 2024). High-probability (head) codes are 118

over-sampled, while low-probability (tail) codes 119

are under-sampled. This disparity can lead to 120

model collapse during iterative self-training (Shu- 121

mailov et al., 2023). To address this, we use 122

perplexity as a proxy for the likelihood of being 123

sampled: higher perplexity indicates rarer, tail- 124

distributed code. During training, we select more 125

high-perplexity codes from the tail. Figure 2 illus- 126

trates the GiFT overview. 127

We evaluate GiFT on DeepSeek-Coder-6.7B 128

(Guo et al., 2024) and CodeLlama-7B (Roziere 129

2In this paper, we primarily study the impact of using code
samples from either conditional or marginal distributions on
fine-tuning. The incorporation of self-generated descriptions
is discussed in Section 5.

2

et al., 2023) over APPS+ (Introductory-level and130

Interview-level) (Dou et al., 2024), MBPP+ (Liu131

et al., 2024a), and CodeInsight (Beau and Crabbé,132

2024) datasets. Experimental results demonstrate133

the superiority of drawing codes from the marginal134

distribution instead of the conditional distribution,135

and perplexity-guided data selection benefits self-136

training over iterations.137

2 Related Work138

We classify related works into distillation and self-139

training based on whether the synthetic data is gen-140

erated by stronger LLMs or the LLM undergoing141

training itself.142

Distillation Code Alpaca (Chaudhary, 2023),143

similar to Self-Instruct (Wang et al., 2023), lever-144

ages the in-context learning ability of ChatGPT145

to generate new description-code pairs. Wizard-146

Coder (Luo et al., 2023) prompts ChatGPT with147

five tailored heuristics to improve the difficulty148

of existing descriptions in Code Alpaca. Magi-149

coder (Wei et al., 2023) and WaveCoder (Yu et al.,150

2024) highlight the importance of data diversity151

and quality by prompting ChatGPT to create new152

pairs based on open-sourced codes on the web in-153

stead of LLM-generated Code Alpaca. MathGe-154

nie (Lu et al., 2024) improves from the solution155

side where it augments the solutions by prompting156

an external LLM with heuristics and then back-157

translates augmented solutions into math problems158

in order to create new problems. However, stronger159

LLMs are not always available, which limits the160

generalizability of distillation methods.161

Self-training Self-training refers to making162

LLMs learn from their own outputs based on a163

set of seed descriptions. Self-training approaches164

can be categorized into two directions based on165

whether additional data is synthesized on the de-166

scription side or the code side. On the description167

side, Instruction Backtranslation (Li et al., 2023b)168

and InverseCoder (Wu et al., 2024) ask an LLM169

to generate synthesized descriptions for unlabeled170

codes for instruction tuning. On the code side, Self-171

Taught Reasoner (STaR) (Zelikman et al., 2022) is172

a pioneering work that generates a single rationale173

for each reasoning problem. LMSI (Huang et al.,174

2022) and Rejection Fine-tuning (RFT) (Yuan et al.,175

2023) enhance STaR by generating multiple ratio-176

nales per problem. While STaR, LMSI, and RFT177

rely on the ground truth answer to filter out incor-178

rect rationales, SelfCodeAlign (Wei et al., 2024) 179

additionally asks LLMs to generate test cases for 180

synthesized codes to conduct self-validation. Rein- 181

forced Self-Training (ReST) (Gulcehre et al., 2023) 182

and ReSTEM (Singh et al., 2023) expand the RFT 183

process into an iterative one, where the generate- 184

then-fine-tune process is repeated multiple times 185

until no further improvement is observed. 186

Though there are intermediate descriptions gen- 187

erated in GiFT, we do not use those intermediate 188

descriptions for fine-tuning, as GiFT is mainly pro- 189

posed to improve the data quality on the code side. 190

GiFT is orthogonal to the self-training methods on 191

the code side as each synthetic description can ben- 192

efit from higher-quality codes generated in GiFT. 193

Besides, GiFT is beneficial under the distillation 194

setting. We empirically demonstrate the effective- 195

ness of data from GiFT in Section 5. 196

3 Gibbs Fine-Tuning 197

Preliminaries We first introduce how iterative 198

self-training works. Given a seed dataset D = 199

{di}Ni=1, an LLM M is used to generate n code 200

snippets for each di: 201

{cij}nj=1 ∼ PM(c|di) (1) 202

Then correct codes that pass all the test cases are 203

selected as C for supervised fine-tuning (SFT). The 204

SFT loss L for di could be written as: 205

L(d∗i) = −EC∼PM(c|d∗i) logPM(c|di) 206

= −
∑
c∈C

PM(c|d∗i) logPM(c|di) (2) 207

Here d∗i refers to the description source that cij is 208

generated from. In this case, d∗i = di. The SFT 209

loss is calculated over the seed dataset D to update 210

M, and the updatedM will be used to generate 211

codes in the next iteration. This process is repeated 212

until no further improvement in performance is 213

observed. 214

Theoretical Insight The problem in the code 215

generation process is that all the self-generated 216

codes are drawn from a conditional distribution 217

cij ∼ P (c|di) instead of the joint space of descrip- 218

tions and codes based on the intention behind di. 219

We argue that it is better to draw codes from the 220

marginal distribution of that space. If we fine-tune 221

LLMs with codes from marginal distribution, we 222

3

have:223

Lmarg224

= −Ec∼Pc logPM(c|di)225

= −
∑
c

Pc(c) logPM(c|di)226

= −
∑
c

∑
dij

PM(c|dij)P (dij) logPM(c|di)227

= −
∑
dij

[∑
c

PM(c|dij) logPM(c|di)
]
P (dij)228

= −
∑
dij

L(dij)P (dij) (3)229

= −Edij∼Pd
L(dij) (4)230

According to the law of total expectation, we could231

find that Lmarg is estimated over all possible de-232

scriptions dij in the joint space, instead of only233

di in Eq. 2. The additional expectation in Lmarg234

reduces the bias of L(di) in learning to generate235

codes for the intention behind di.236

Besides, we analyze the variance of self-237

generated codes c from either the marginal dis-238

tribution or the conditional distribution. According239

to the law of total variance, we have:240

V ar(c) = Edij [V ar(c|dij)] + V ar(Edij [c|dij])241

Since V ar(Edij [c|dij]) ≥ 0, the variance of codes242

drawn from the marginal distribution is greater than243

or equal to the expected variance of codes drawn244

from the conditional distribution conditioned on a245

certain dij (e.g. the seed description di). Here the246

variance of c reflects the diversity of self-generated247

codes. More diverse codes are found to benefit248

LLM fine-tuning (Yuan et al., 2023).249

Gibbs Sampling Though we have demonstrated250

that marginal distribution is better than conditional251

distribution, direct sampling from marginal distri-252

bution is not straightforward, as we only have one253

certain di in the seed dataset. We gain inspiration254

from Gibbs sampling (Geman and Geman, 1984),255

a Markov chain Monte Carlo algorithm, that is256

commonly used to approximate joint distributions257

based on conditional distributions. Take a bivariate258

distribution as an example. It approximates joint259

distributions by drawing an instance of one variable260

conditional on the current value of the other vari-261

able, then drawing an instance of the other variable262

conditional on the new value of the first variable,263

and repeating this process for several rounds.264

In GiFT, we consider the code-to-text translation 265

and text-to-code translation as the conditional sam- 266

pling process. We keep translating between descrip- 267

tions and codes to simulate Gibbs sampling. Dur- 268

ing this process, all the intermediate description- 269

code pairs could be considered as being drawn from 270

the joint distribution. If we take all codes from the 271

pairs, those codes can be considered drawn from 272

the marginal distribution of the joint space. Specif- 273

ically, for each description di in the seed dataset, 274

we start from the description side to generate cor- 275

responding codes ci1, and then summarize ci1 into 276

description di1. We repeat this process for n times. 277

The whole process could be formulated as: 278

ci1 =M(di) di1 =M(ci1) 279

... (5) 280

din−1 =M(cin−1) cin =M(din−1) 281

The prompting templates for code generation and 282

summarization are shown in Appendix A. To im- 283

prove the efficiency of the Gibbs sampling, we gen- 284

erate 3 codes in each code generation step but only 285

select one correct code for the following rounds. 286

If none of the 3 codes passes all the test cases, we 287

use the code from the last round for the next code 288

summarization step. 289

Perplexity-guided Data Selection After the 290

Gibbs sampling process, for each di, we have a 291

set of codes that could be paired with it for fine- 292

tuning. As shown in Eq. 3, P (dij) plays a pivotal 293

role in the estimation of Lmarg. In practice, P (dij) 294

is reflected in the selection of codes. 295

Simply selecting all correct codes is detrimen- 296

tal. On the one hand, we are more likely to sample 297

more codes for easy descriptions in the seed dataset 298

and less for harder ones. Fine-tuning with all codes 299

will bias LLMs towards easy descriptions, so we 300

only select K codes for each description. For de- 301

scriptions with fewer than K codes, we resample 302

existing codes to ensure balance. On the other hand, 303

there is data imbalance in the code set of each di. 304

According to Ding et al. (2024), the marginal dis- 305

tribution within each code set is found to follow a 306

long-tail distribution. Employing random sampling 307

to select K codes makes codes from the tail occupy 308

only a small proportion of the training data since 309

they are seldom generated, which bias Lmarg to- 310

wards the head. In iterative self-training, this bias 311

will be exacerbated where the knowledge distribu- 312

tion of the LLM shifts to be more peaked. 313

4

We propose to use perplexity (Brown et al.,314

1990) as a measurement to guide data selection.315

As we know, LLMs prefer tokens with higher prob-316

abilities in each generation step, despite using tem-317

perature to flatten the probability distribution. The318

probability of generating a code c with l tokens319

given d could be formulated as:320

PM(c|d) =
l∏

t=1

PM(ct|c<t, d)321

And the perplexity (ppl) is calculated by:322

ppl(c|d,M) = exp
(
− 1

l

l∑
t=1

logPM(ct|c<t, d)
)

323

We could find that the perplexity of c and the prob-324

ability of generating c have a strong negative corre-325

lation. In other words, codes with lower perplexity326

are more likely to come from the head. Thus, to327

mitigate imbalance during data selection, we em-328

ploy weighted random sampling and assign more329

weights for high perplexity (i.e. tail) codes:330

wij =
eppl(cij)/T∑ni
j=1 e

ppl(cij)/T
331

where ni is the number of correct codes for di and332

T is the scaling temperature. Finally, the selected333

codes {cij}Kj=1 are paired with di for fine-tuning334

LLMs with the SFT loss. The workflow of GiFT in335

each iteration is shown in Appendix B Algorithm 1.336

4 Experimental Setups337

Datasets We evaluate GiFT on three datasets,338

APPS+ (Dou et al., 2024), MBPP (Austin et al.,339

2021), and CodeInsight (Beau and Crabbé, 2024).340

APPS+ is a sanitized version of APPS (Hendrycks341

et al., 2021) where wrong descriptions or test342

cases are removed from the original dataset. For343

MBPP, we use MBPP-sanitized for training and344

MBPP+ (Liu et al., 2024a) for testing. The APPS345

dataset consists of problems collected from differ-346

ent open-access coding websites, MBPP is full of347

general programming problems, and CodeInsight348

is collected from StackOverflow focusing on stan-349

dard library usage. In this paper, we consider the350

problems in APPS+ with the difficulty of “introduc-351

tory” and “interview” as two independent datasets.352

All four datasets are written in Python and their353

statistics are shown in Appendix C.1. We take the354

widely adopted Pass@1 as the evaluation metric.355

Baselines We compare GiFT with two baseline 356

methods. (1) Rejection Fine-Tuning (RFT) (Yuan 357

et al., 2023) uses rejection sampling that generates 358

multiple codes depending on each seed description. 359

As ReST (Gulcehre et al., 2023) could be consid- 360

ered as iterative RFT, we denote this baseline as 361

RFT in our experiments. (2) In RFT+Rewriting De- 362

scription (RFT+RD), we first ask LLMs to rewrite 363

the seed description and then apply RFT to both 364

the original description and rewritten descriptions. 365

Though no related works employ this method, we 366

consider it as an alternative way to approximate the 367

marginal distribution. We apply these three meth- 368

ods to DeepSeek-Coder-6.7B (Guo et al., 2024) 369

and CodeLlama-7B (Roziere et al., 2023). 370

Implementation Details For GiFT, we repeat the 371

description-to-code and code-to-description pro- 372

cess for 20 times, and we generate 3 codes from 373

each description and only select at most one correct 374

code for the next round. To ensure fair generation 375

times, for RFT, we generate 20×3 codes for each 376

seed description. And for RFT+RD, we rewrite 377

the seed description into 5 new descriptions and 378

generate 10 codes for each new description and 379

the original description. For all the generation pro- 380

cesses of LLMs, we set a temperature of 1.0. We 381

set the temperature T = 2 in weights calculation 382

for random sampling. For three methods, we se- 383

lect K = 8 codes per description for fine-tuning 384

and employ resampling for descriptions with fewer 385

than 8 codes. More details can be found in Ap- 386

pendix C.2. 387

5 Experiments 388

Overall Results We apply RFT, RFT+RD, and 389

GiFT to DeepSeek-Coder-6.7B and CodeLlama-7B 390

across four datasets with a 3-iteration self-training, 391

the results are shown in Figure 3. Note that for 392

RFT+RD and GiFT, we also consider codes gen- 393

erated from RFT as candidates for being selected, 394

since we find that incorporating codes from RFT 395

could further boost the performance of GiFT, even 396

though merely using GiFT data has already outper- 397

formed baseline methods. We discuss the impact 398

of these RFT-generated codes in Appendix D.1. 399

We could see that GiFT outperforms RFT and 400

RFT+RD with a significant margin on all evaluated 401

datasets, which indicates the effectiveness of GiFT. 402

Generally, the improvement brought by GiFT is 403

more significant on more challenging datasets like 404

APPS+. We think this is because LLM’s output 405

5

1 2 3
40

60

80
De

ep
Se

ek
-C

od
er

-6
.7

B
APPS+ (Introductory)

RFT
RFT+RD
GiFT

1 2 3
40

50

60

70

APPS+ (Interview)

RFT
RFT+RD
GiFT

1 2 3
64

66

68

70

MBPP+

RFT
RFT+RD
GiFT

1 2 3
70

72

74

CodeInsight

RFT
RFT+RD
GiFT

1 2 3

20

40

60

80

Co
de

Lla
m

a-
7B

APPS+ (Introductory)

RFT
RFT+RD
GiFT

1 2 3

20

30

40

50

APPS+ (Interview)

RFT
RFT+RD
GiFT

1 2 3
52

54

56

58

60
MBPP+

RFT
RFT+RD
GiFT

1 2 3

62.5

65.0

67.5

70.0

CodeInsight

RFT
RFT+RD
GiFT

Figure 3: Pass@1 (%) of applying RFT, RFT+RD, and GiFT to Deepseek-Coder-6.7B and CodeLlama-7B on 4
code generation datasets. The x-axis represents the iteration number and the shaded area represents the standard
deviation.

distribution for complicated descriptions is more406

peaked, which exacerbates the bias in loss calcula-407

tion. This speculation is supported by the results408

shown at the bottom of Figure 4. We can find that409

the perplexity distribution of self-generated codes410

of APPS+ Introductory is much more peaked com-411

pared to that of MBPP+.412

Given the fact that GiFT is superior compared413

to RFT, and RFT+RD outperforms RFT on most414

of the datasets, we demonstrate that drawing self-415

generated codes based on multiple possible descrip-416

tions that represent the intention of the seed de-417

scription is better than drawing solely based on the418

seed description. In other words, mitigating the419

bias introduced in the loss calculation of examples420

from conditional distribution is beneficial for LLM421

fine-tuning.422

Analysis for RFT+RD Though RFT+RD outper-423

forms RFT on most of the datasets, drawing codes424

based on multiple rewritten descriptions is still not425

comparable with GiFT.426

We find the reason is that the rewriting ability of427

LLMs is not satisfiable. There are often errors and428

information loss in rewritten descriptions, which429

makes the codes translated from rewritten descrip-430

tions often wrong. We calculate the pass rate of431

self-generated codes in the first iteration to indicate432

the correctness of self-generated descriptions. For433

RFT+RD, we separately calculate the pass rate of434

codes from the seed description and five rewritten435

descriptions. The results are shown in Table 1. We436

can see that the pass rate of codes generated from 437

rewritten descriptions is significantly lower, which 438

indicates that the rewritten descriptions are often 439

incorrect. Since we do not train LLMs to rewrite 440

descriptions, this phenomenon is expected to exist 441

in the following iterations of self-training. Given 442

this reason, we believe that there will be no sig- 443

nificant improvement despite scaling the RFT+RD 444

method with more rewritten descriptions. 445

Datasets RD GiFT
Seed Rewritten

APPS+ (Intro.) 17.79 4.8 >10.31
APPS+ (Inter.) 3.22 0.38 >2.28
MBPP+ 53.71 24.6 >24.07
CodeInsight 43.87 9.84 >24.18

Table 1: Pass rate (%) of self-generated codes from the
seed description, rewritten description, and GiFT. In
GiFT, we generate 3 codes per description and save at
most 1 for the next round. Thus, the true pass rate of
GiFT is higher than the value in this table.

Impact of T in Data Selection Recall that in 446

perplexity-guided data selection, we set T = 2 to 447

encourage the selection of more codes from the 448

tails of the distribution to mitigate the tail narrow- 449

ing problem (Ding et al., 2024). On the contrary, 450

we could set T as a negative value to select more 451

codes from the head. By setting T = ±2, we ex- 452

plore the impact of data source (head or tail) for 453

LLM fine-tuning. Note that we conduct extended 454

experiments by setting T = ±5 in Appendix D.2. 455

6

1 2 3
Iteration

60

70

80

De
ep

Se
ek

-C
od

er
-6

.7
B APPS+ (Introductory)

T=2
T=-2

1 2 3
Iteration

64

66

68

70

MBPP+

T=2
T=-2

1.0 1.5 2.0 2.5 3.0

Perplexity@Iteration 3

Pe
rc

en
ta

ge

APPS+ (Introductory)
T=2
T=-2

1.00 1.25 1.50 1.75 2.00 2.25 2.50

Perplexity@Iteration 3

Pe
rc

en
ta

ge
MBPP+

T=2
T=-2

Figure 4: Top: Pass@1 (%) of applying GiFT to
Deepseek-Coder-6.7B on APPS+ (Introductory) and
MBPP+ with T = ±2. Bottom: Perplexity distribution
of self-generated codes at the 3rd iteration for APPS+
(Introductory) and MBPP+.

We show the performance of DeepSeek-Coder-456

6.7B on APPS+ Introductory and MBPP+ in Fig-457

ure 4. Furthermore, we visualize the perplexity458

distribution of self-generated codes at the third it-459

eration for APPS+ Introductory and MBPP+. We460

could find that selecting more codes from the head461

outperforms the tail at the first several iterations,462

but is surpassed from the third iteration. We specu-463

late that selecting more codes from the head rein-464

forces LLM’s knowledge at the head hence acceler-465

ating training at the beginning, but with the expense466

of discarding or forgetting knowledge at the tail.467

Over iterations, the tail-narrowing phenomenon468

is exacerbated and hinders further improvement.469

When selecting more codes from the tail, LLMs470

could achieve an overall better performance though471

they improve slower. As we show at the bottom of472

Figure 4, after three iterations, LLM could generate473

more low-perplexity codes on two datasets if we474

set T = 2.475

Similarity Analysis for Self-generated Code476

We use BLEU as a measurement of code diver-477

sity to show that one of the benefits of using GiFT478

is the increase in data diversity. For each seed de-479

scription, we calculate the BLEU score between480

any two self-generated codes and average them to481

indicate one code’s similarity to others. We show482

the BLEU results of MBPP+ at the 2nd and 3rd iter-483

ation of DeepSeek-Coder-6.7B in Figure 5. We can484

observe that generating codes from various descrip-485

RFT RFT+RD GiFT
Method

0.0

0.2

0.4

0.6

0.8

BL
EU

Iteration 2

RFT RFT+RD GiFT
Method

0.0

0.2

0.4

0.6

0.8

Iteration 3

Figure 5: Boxplot of BLEU for self-generated codes
from DeepSeek-Coder-6.7B on MBPP+ at the 2nd and
3rd iteration.

tions leads to more diverse codes for fine-tuning. 486

Besides, as the number of iterations increases, RFT 487

tends to generate more similar code, while the di- 488

versity holds for GiFT. 489

1 2 3
Iteration

72

73

74

75
De

ep
Se

ek
-C

od
er

-6
.7

B CodeInsight

GiFT
GiFT+1pair
GiFT+mixpair

1 2 3
Iteration

64

66

68

70

72
MBPP+

GiFT
GiFT+1pair
GiFT+mixpair

Figure 6: Comparison of incorporating self-generated
descriptions and vanilla GiFT on DeepSeek-Coder-6.7B
over CodeInsight and MBPP+.

Incorporating Self-generated Descriptions into 490

Fine-tuning In GiFT, we only take the self- 491

generated codes for fine-tuning after Gibbs sam- 492

pling. Here we investigate the impact of incorpo- 493

rating self-generated descriptions into fine-tuning. 494

Theoretically, if self-generated descriptions can 495

match self-generated codes, LLMs are expected 496

to achieve an even better performance, since LLMs 497

benefit from not only diverse codes but also diverse 498

descriptions as inputs. 499

We discover two alternatives, for each seed de- 500

scription, we add 8 self-generated descriptions, and 501

1) each one is paired with the code generated from it 502

(denoted as GiFT-1pair). 2) each one is paired with 503

8 codes randomly sampled from the self-generated 504

code set of the seed description (denoted as GiFT- 505

mixpair). Note that not all self-generated descrip- 506

tions are correct. We only select self-generated 507

descriptions that can result in correct codes. We 508

compare these two settings with the vanilla GiFT 509

on DeepSeek-Coder-6.7B over CodeInsight and 510

MBPP+ and the results are shown in Figure 6. It 511

was observed that incorporating self-generated de- 512

7

scriptions into fine-tuning leads to better perfor-513

mance at the first iteration, yet is outperformed by514

GiFT in subsequent iterations.515

We suspect that this is because LLMs are rela-516

tively tolerant of noisy data at the beginning, but517

as they have more expertise, their requirements for518

data quality become increasingly higher. We find519

there are mainly two sources of noisy pairs. First,520

some self-generated descriptions are just incorrect.521

Since we additionally provide some test cases in522

the docstring, LLMs may generate correct codes523

by inferring through given test cases and ignoring524

the incorrect description. Second, a self-generated525

description may not match all codes in the self-526

generated code set, possibly due to specifications527

on implementation requirements. To filter out noisy528

pairs, we may calculate the similarity between de-529

scription and code using code search models (Li530

et al., 2023a, 2022) or LLM-as-a-Judge (Zheng531

et al., 2023; Gu et al., 2024). Since we mainly532

aim to show the benefit of fine-tuning LLMs using533

the seed description paired with codes from the534

marginal distribution, we leave this as our future535

work.536

1 2 3
Iteration

62

64

66

68

70

72

Co
de

Lla
m

a-
7B

CodeInsight

Distil-RFT
GiFT
Distil-GiFT

1 2 3
Iteration

54

56

58

60

62
MBPP+

Distil-RFT
GiFT
Distil-GiFT

Figure 7: Comparison of using GiFT and RFT data
from DeepSeek-Coder-6.7B to distill CodeLlama-7B
over CodeInsight and MBPP+. The yellow line shows
the performance of self-training with GiFT.

GiFT for Distillation As we discussed in the537

introduction, since the prerequisite of stronger538

LLMs limits the generalizability of distillation539

methods, we focus on self-training methods, as540

many recent works do. Yet, we are also inter-541

ested in exploring whether drawing codes from542

the marginal distribution is beneficial for distil-543

lation. To simulate the distillation process, we544

use self-generated codes from DeepSeek-Coder-545

6.7B to fine-tune CodeLlama-7B, as we find that546

DeepSeek-Coder is stronger than CodeLlama on547

evaluated datasets. We keep other settings the same548

as they are in the main experiments. The compar-549

ison between distillation with RFT and GiFT on550

MBPP+ and CodeInsight is shown in Figure 7. It 551

is observed that GiFT also outperforms RFT un- 552

der the distillation setting. This superiority meets 553

our expectations because the benefit of fine-tuning 554

LLMs with codes drawing from the marginal dis- 555

tribution is not limited to self-training methods, as 556

we analyzed in the theoretical insights. 557

6 Discussion 558

Here we discuss the generalization of GiFT to other 559

tasks. The applicability of GiFT and its superior- 560

ity over RFT depends on two factors. First, there 561

is a joint input-output sampling space, in which 562

same intention has multiple possible forms of pre- 563

sentation, and such presentation largely decides the 564

self-generated outputs from LLM. GiFT is suitable 565

for code generation because descriptions and codes 566

naturally form such a joint space (Li et al., 2024). 567

On the other hand, take question answering as an 568

example, while there are numerous ways to phrase 569

the same question, the answers tend to be highly 570

similar due to the uniqueness of factual truths. This 571

characteristic naturally mitigates biases introduced 572

by conditional sampling. 573

Second, LLMs should be able to translate accu- 574

rately between inputs and outputs. Since LLMs 575

are found to be good at translating between de- 576

scriptions and codes (Sun et al., 2025; Zan et al., 577

2022; Jiang et al., 2024a), GiFT performs well on 578

code generation. Nevertheless, for mathematical 579

reasoning, whether LLMs can reliably generate a 580

math problem based on the given solution should 581

be carefully evaluated before we apply GiFT. If the 582

translation from solutions to problems lacks preci- 583

sion, the Gibbs sampling process in GiFT may be 584

highly inefficient. 585

7 Conclusion 586

In this paper, we first theoretically demonstrate 587

the benefit of fine-tuning LLMs with codes from 588

the marginal distribution of the joint description- 589

code space instead of the conditional distribution 590

conditioned on the seed description. Then, we 591

propose GiFT, which iteratively translates natu- 592

ral language descriptions and codes between each 593

other to approximate the marginal distribution. Fur- 594

thermore, we leverage perplexity to guide data 595

selection to mitigate the data imbalance problem 596

in Gibbs sampling. Experimental results on two 597

LLMs across four datasets demonstrate the effec- 598

tiveness of GiFT. 599

8

Limitations600

There are mainly three limitations in this work.601

First, GiFT is only evaluated on LLMs with a size602

of around 7B across Python datasets. However, as603

we demonstrated in the theoretical analysis, the loss604

bias from the conditional distribution is indepen-605

dent of model sizes and programming languages.606

Thus, we expect that GiFT is also effective in big-607

ger or smaller LLMs and other programming lan-608

guages. Second, GiFT relies heavily on test cases609

to filter out wrong self-generated codes. In this610

paper, we mainly evaluate GiFT on datasets that611

already provide test cases in the training set. We do612

not evaluate GiFT on the most recent high-quality613

datasets like OSS-Instruct (Wei et al., 2023). A614

possible solution is to ask LLMs to generate test615

cases and codes at the same time, which is stud-616

ied by recent works (Chen et al., 2022, 2024; Liu617

et al., 2024c). Third, GiFT outperforms RFT by618

translating between natural language descriptions619

and codes, which introduces additional code sum-620

marization steps in the self-generation process. In621

our future work, we will focus on improving the622

sampling efficiency of GiFT by introducing a dy-623

namic sampling strategy. For example, we do not624

generate a fixed number of codes and select at most625

one correct code for the next round. Instead, we626

dynamically adjust the number of generated codes627

based on the estimated accuracy to ensure that at628

least one correct code is expected. Thus, LLMs629

tend to generate fewer code candidates for easier630

descriptions in each round.631

References632

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten633
Bosma, Henryk Michalewski, David Dohan, Ellen634
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.635
Program synthesis with large language models. arXiv636
preprint arXiv:2108.07732.637

Nathanaël Beau and Benoît Crabbé. 2024. Codeinsight:638
A curated dataset of practical coding solutions from639
stack overflow. arXiv preprint arXiv:2409.16819.640

Peter F Brown, John Cocke, Stephen A Della Pietra,641
Vincent J Della Pietra, Frederick Jelinek, John Laf-642
ferty, Robert L Mercer, and Paul S Roossin. 1990. A643
statistical approach to machine translation. Compu-644
tational linguistics, 16(2):79–85.645

Sahil Chaudhary. 2023. Code alpaca: An instruction-646
following llama model for code generation. GitHub647
repository.648

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, 649
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022. 650
Codet: Code generation with generated tests. arXiv 651
preprint arXiv:2207.10397. 652

Mouxiang Chen, Zhongxin Liu, He Tao, Yusu Hong, 653
David Lo, Xin Xia, and Jianling Sun. 2024. B4: 654
Towards optimal assessment of plausible code solu- 655
tions with plausible tests. In Proceedings of the 39th 656
IEEE/ACM International Conference on Automated 657
Software Engineering, ASE ’24, page 1693–1705, 658
New York, NY, USA. Association for Computing 659
Machinery. 660

Yiwen Ding, Zhiheng Xi, Wei He, Zhuoyuan Li, Yitao 661
Zhai, Xiaowei Shi, Xunliang Cai, Tao Gui, Qi Zhang, 662
and Xuanjing Huang. 2024. Mitigating tail narrow- 663
ing in llm self-improvement via socratic-guided sam- 664
pling. arXiv preprint arXiv:2411.00750. 665

Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois 666
Charton, and Julia Kempe. 2024. A tale of tails: 667
Model collapse as a change of scaling laws. arXiv 668
preprint arXiv:2402.07043. 669

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, 670
Enyu Zhou, Wei Shen, Junjie Shan, Caishuang 671
Huang, Xiao Wang, Xiaoran Fan, et al. 2024. Step- 672
coder: Improve code generation with reinforcement 673
learning from compiler feedback. arXiv preprint 674
arXiv:2402.01391. 675

Stuart Geman and Donald Geman. 1984. Stochastic re- 676
laxation, gibbs distributions, and the bayesian restora- 677
tion of images. IEEE Transactions on pattern analy- 678
sis and machine intelligence, (6):721–741. 679

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, 680
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen, 681
Shengjie Ma, Honghao Liu, et al. 2024. A survey on 682
llm-as-a-judge. arXiv preprint arXiv:2411.15594. 683

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini- 684
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek 685
Sharma, Aditya Siddhant, Alex Ahern, Miaosen 686
Wang, Chenjie Gu, et al. 2023. Reinforced self- 687
training (rest) for language modeling. arXiv preprint 688
arXiv:2308.08998. 689

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, 690
Kai Dong, Wentao Zhang, Guanting Chen, Xiao 691
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder: 692
When the large language model meets programming– 693
the rise of code intelligence. arXiv preprint 694
arXiv:2401.14196. 695

Hojae Han, Jaejin Kim, Jaeseok Yoo, Youngwon Lee, 696
and Seung-won Hwang. 2024. Archcode: Incorpo- 697
rating software requirements in code generation with 698
large language models. In Proceedings of the 62nd 699
Annual Meeting of the Association for Computational 700
Linguistics (Volume 1: Long Papers), pages 13520– 701
13552. 702

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 703
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 704

9

Samir Puranik, Horace He, Dawn Song, et al. 2021.705
Measuring coding challenge competence with apps.706
arXiv preprint arXiv:2105.09938.707

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,708
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.709
Large language models can self-improve. arXiv710
preprint arXiv:2210.11610.711

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,712
and Sunghun Kim. 2024a. A survey on large lan-713
guage models for code generation. arXiv preprint714
arXiv:2406.00515.715

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang,716
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao. 2024b.717
Self-planning code generation with large language718
models. ACM Transactions on Software Engineering719
and Methodology, 33(7):1–30.720

Haochen Li, Chunyan Miao, Cyril Leung, Yanxian721
Huang, Yuan Huang, Hongyu Zhang, and Yanlin722
Wang. 2022. Exploring representation-level aug-723
mentation for code search. In Proceedings of the724
2022 Conference on Empirical Methods in Natu-725
ral Language Processing, pages 4924–4936, Abu726
Dhabi, United Arab Emirates. Association for Com-727
putational Linguistics.728

Haochen Li, Xin Zhou, Anh Luu, and Chunyan Miao.729
2023a. Rethinking negative pairs in code search.730
In Proceedings of the 2023 Conference on Empiri-731
cal Methods in Natural Language Processing, pages732
12760–12774, Singapore. Association for Computa-733
tional Linguistics.734

Haochen Li, Xin Zhou, and Zhiqi Shen. 2024. Rewrit-735
ing the code: A simple method for large language736
model augmented code search. In Proceedings of the737
62nd Annual Meeting of the Association for Com-738
putational Linguistics (Volume 1: Long Papers),739
pages 1371–1389, Bangkok, Thailand. Association740
for Computational Linguistics.741

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer742
Levy, Luke Zettlemoyer, Jason Weston, and Mike743
Lewis. 2023b. Self-alignment with instruction back-744
translation. arXiv preprint arXiv:2308.06259.745

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and746
Lingming Zhang. 2024a. Is your code generated by747
chatgpt really correct? rigorous evaluation of large748
language models for code generation. Advances in749
Neural Information Processing Systems, 36.750

Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng,751
Zhenpeng Chen, Lingming Zhang, and Yiling Lou.752
2024b. Large language model-based agents for753
software engineering: A survey. arXiv preprint754
arXiv:2409.02977.755

Zhihan Liu, Shenao Zhang, Yongfei Liu, Boyi Liu,756
Yingxiang Yang, and Zhaoran Wang. 2024c. Dstc:757
Direct preference learning with only self-generated758
tests and code to improve code lms. arXiv preprint759
arXiv:2411.13611.760

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, 761
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong- 762
sheng Li. 2024. Mathgenie: Generating synthetic 763
data with question back-translation for enhancing 764
mathematical reasoning of llms. arXiv preprint 765
arXiv:2402.16352. 766

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi- 767
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, 768
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder: 769
Empowering code large language models with evol- 770
instruct. arXiv preprint arXiv:2306.08568. 771

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 772
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 773
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023. 774
Code llama: Open foundation models for code. arXiv 775
preprint arXiv:2308.12950. 776

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, 777
Yarin Gal, Nicolas Papernot, and Ross Anderson. 778
2023. The curse of recursion: Training on gen- 779
erated data makes models forget. arXiv preprint 780
arXiv:2305.17493. 781

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh 782
Anand, Piyush Patil, Xavier Garcia, Peter J Liu, 783
James Harrison, Jaehoon Lee, Kelvin Xu, et al. 784
2023. Beyond human data: Scaling self-training 785
for problem-solving with language models. arXiv 786
preprint arXiv:2312.06585. 787

Weisong Sun, Yun Miao, Yuekang Li, Hongyu Zhang, 788
Chunrong Fang, Yi Liu, Gelei Deng, Yang Liu, and 789
Zhenyu Chen. 2025. Source Code Summariza- 790
tion in the Era of Large Language Models . In 791
2025 IEEE/ACM 47th International Conference on 792
Software Engineering (ICSE), pages 419–431, Los 793
Alamitos, CA, USA. IEEE Computer Society. 794

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xi- 795
angru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song, 796
Bowen Li, Jaskirat Singh, et al. 2024. Openhands: 797
An open platform for ai software developers as gen- 798
eralist agents. arXiv preprint arXiv:2407.16741. 799

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa 800
Liu, Noah A Smith, Daniel Khashabi, and Hannaneh 801
Hajishirzi. 2023. Self-instruct: Aligning language 802
models with self-generated instructions. In Proceed- 803
ings of the 61st Annual Meeting of the Association for 804
Computational Linguistics (Volume 1: Long Papers), 805
pages 13484–13508. 806

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng 807
Ding, Naman Jain, Zachary Mueller, Harm de Vries, 808
Leandro Von Werra, Arjun Guha, and Lingming 809
Zhang. 2024. Selfcodealign: Self-alignment for code 810
generation. arXiv preprint arXiv:2410.24198. 811

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 812
Lingming Zhang. 2023. Magicoder: Source code is 813
all you need. arXiv preprint arXiv:2312.02120. 814

Yutong Wu, Di Huang, Wenxuan Shi, Wei Wang, 815
Lingzhe Gao, Shihao Liu, Ziyuan Nan, Kaizhao 816

10

Yuan, Rui Zhang, Xishan Zhang, et al. 2024. In-817
versecoder: Unleashing the power of instruction-818
tuned code llms with inverse-instruct. arXiv preprint819
arXiv:2407.05700.820

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,821
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng822
Yin. 2024. Wavecoder: Widespread and versatile823
enhancement for code large language models by in-824
struction tuning. In Proceedings of the 62nd Annual825
Meeting of the Association for Computational Lin-826
guistics (Volume 1: Long Papers), pages 5140–5153.827

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting828
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and829
Jingren Zhou. 2023. Scaling relationship on learning830
mathematical reasoning with large language models.831
arXiv preprint arXiv:2308.01825.832

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie833
Lu, Bingchao Wu, Bei Guan, Yongji Wang, and834
Jian-Guang Lou. 2022. Large language mod-835
els meet nl2code: A survey. arXiv preprint836
arXiv:2212.09420.837

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-838
man. 2022. Star: Bootstrapping reasoning with rea-839
soning. Advances in Neural Information Processing840
Systems, 35:15476–15488.841

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan842
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,843
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.844
Judging llm-as-a-judge with mt-bench and chatbot845
arena. Advances in Neural Information Processing846
Systems, 36:46595–46623.847

A Prompting Templates for Code-to-Text848

and Text-to-Code Translation849

An example of a prompt for code generation is850

shown in Tab. 2. We construct a template for code851

completion where we provide a function head and852

a function docstring. The function docstring could853

be replaced with descriptions from previous Gibbs854

sampling results. We additionally provide one855

input-output pair for MBPP-sanitized and CodeIn-856

sight.857

An example of a prompt for code summariza-858

tion is shown in Tab. 3. We provide in-context859

examples to help LLM learn summarization. The860

in-context example is selected from a pool. We861

construct the pool by asking LLMs to summarize862

the same dataset without in-context examples and863

then filter out meaningless or too-long responses.864

The code following “###Code:” could be replaced865

with codes from previous Gibbs sampling results.866

def first_repeated_char(str1):
""" Write a python function to find the

first repeated character in a given string.
>>> first_repeated_char("abcabc")
"a"
"""

Table 2: A prompt example of MBPP-sanitized/1 for
code generation.

###Code:
{example_code}
###Description of the given code:
{example_description}

###Code:
def first_repeated_char(str1):

BEGIN SOLUTION
letters_found = []

for char in str1:
if char in letters_found:

return char
else:

letters_found.append(char)
END SOLUTION

###Description of the given code:

Table 3: A prompt example used of MBPP-sanitized/1
for code summarization. {example_code} and {exam-
ple_description} are randomly selected from a pool.

B Algorithm Workflow 867

The algorithm workflow of GiFT in each iteration 868

is shown in Algorithm 1. This workflow is repeated 869

where the updated LLM M∗ in each iteration is 870

used as the initialization LLM for the next one. 871

C Experimental Setup 872

C.1 Dataset Statistics 873

The dataset statistics are shown in Table 4. Note 874

that we use MBPP sanitized version for training 875

while MBPP+ (a version with more test cases for 876

each problem) for testing. 877

C.2 Implementation Details 878

For the prompting template of generating codes in 879

RFT and RFT+RD, we follow Table 2. An example 880

11

Algorithm 1 Workflow of GiFT in each iteration
Input: A seed dataset D = {di}Ni=1, an LLMM.
Parameter: Gibbs sampling iterations n, selection threshold K, temperature T .
Output: An updated LLMM∗ for next GiFT iteration.

1: C ← ∅.
2: for each description di ∈ D do ▷ Gibbs Sampling
3: ci1 ←M(di)
4: for k ← 1 to n do
5: dik ←M(cik) ▷ Summarize code into description
6: cik+1 ←M(dik) ▷ Generate code from description
7: end for
8: Ci ← {ci1, ci2, . . . , cin}
9: end for

10: C∗ ← ∅
11: for each description di ∈ D do ▷ Perplexity-Guided Selection
12: for each code cij ∈ Ci do
13: ppl(cij)← exp

(
− 1

|cij |
∑|cij |

t=1 logPM(ct|c<t, di)
)

▷ Compute perplexity
14: end for
15: for each code cij ∈ Ci do
16: wij ← eppl(cij)/T∑ni

j=1 e
ppl(cij)/T

▷ Compute weight

17: end for
18: {cij}K ← weighted random sampling({cij , wij})
19: C∗i ← C∗i ∪ {cij}K
20: end for
21: D∗ ← {(di, c)|di ∈ D, c ∈ C∗i } ▷ Construct dataset for SFT
22: M∗ ← SFT (M,D∗) ▷ Supervised Fine-Tuning
23: returnM∗ ▷ Return fine-tuned model

Dataset
APPS+ APPS+

MBPP CodeInsight
Introductory Interview

Train 1,998 3,736 170 1,547
Test 90 367 378 1,856

Table 4: Statistics of the dataset used in our experiment.

of a prompt for rewriting descriptions is shown881

in Table 5. DeepSeek-Coder-6.7B is initialized882

with the checkpoint at https://huggingface.883

co/deepseek-ai/deepseek-coder-6.7b-base.884

CodeLlama-7B is initialized with the checkpoint885

at https://huggingface.co/meta-llama/886

CodeLlama-7b-hf. We fine-tune the LLMs with887

DeepSpeed ZeRO-2 optimization with a batch888

size of 1 for each GPU. The maximum length is889

set to be 1,024 for MBPP and Code Insight and890

1,536 for APPS. We use AdamW as the optimizer891

with a learning rate of 2e-5 and set the gradient892

accumulation steps as 16. We fine-tune LLMs893

for 2 epochs for APPS+ and 1 epoch for MBPP894

and CodeInsight. All experiments are running 895

with 3 random seeds 1234, 12345, and 123456. 896

Experiments are conducted on 8 Nvidia Tesla 897

A100 GPUs. 898

Rewrite the given Description
###Description:
Write a python function to find the first re-
peated character in a given string.
###New Description:

Table 5: A prompt example of MBPP-sanitized/1 for
rewriting description.

D More Experimental Results 899

D.1 Impact of RFT data in GiFT 900

As we mentioned, we find that incorporating RFT 901

data in GiFT could further boost the performance 902

of GiFT, even though merely fine-tuning LLMs 903

with codes from GiFT has already outperformed 904

RFT. We compare the performance of RFT, pure 905

12

https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
https://huggingface.co/meta-llama/CodeLlama-7b-hf
https://huggingface.co/meta-llama/CodeLlama-7b-hf
https://huggingface.co/meta-llama/CodeLlama-7b-hf

1 2 3
Iteration

40

50

60

70

80

90
De

ep
Se

ek
-C

od
er

-6
.7

B APPS+ (Introductory)

RFT
GiFT
GiFT+RFT

1 2 3
Iteration

40

50

60

70

APPS+ (Interview)

RFT
GiFT
GiFT+RFT

1 2 3
Iteration

64

66

68

70

72

MBPP+

RFT
GiFT
GiFT+RFT

1 2 3
Iteration

70

71

72

73

74

75
CodeInsight

RFT
GiFT
GiFT+RFT

Figure 8: Pass@1 (%) of applying RFT, pure GiFT, and GiFT+RFT to Deepseek-Coder-6.7B across four code
generation datasets. The x-axis represents the iteration number and the shaded area represents the standard deviation.

GiFT, and GiFT+RFT on DeepSeek-Coder-6.7B906

across four datasets in Figure 8. We suspect that907

this is due to the lack of correct codes for some908

seed descriptions. As a result, we have to resample909

existing codes to ensure that there are K codes910

for each seed description during fine-tuning. The911

incorporation of RFT data mitigates this drawback912

and improves data diversity. In practice, we can ask913

LLMs to generate several times at the first round914

of GiFT, since in the first round of GiFT, LLMs915

generate codes from the seed description, which is916

the same in input of RFT.917

1 2 3
Iteration

65

70

75

80

85

De
ep

Se
ek

-C
od

er
-6

.7
B APPS+ (Introductory)

T=2
T=-2
T=5
T=-5

1 2 3
Iteration

64

66

68

70

72

MBPP+

T=2
T=-2
T=5
T=-5

Figure 9: Pass@1 (%) of applying GiFT to Deepseek-
Coder-6.7B on APPS+ (Introductory) and MBPP+ with
T = ±2,±5.

D.2 Extended Experiments of T918

We additionally conduct experiments with bigger919

and smaller T values to further study the impact of920

T in data selection. Specifically, we set T = ±5921

and the results are shown in Figure 9. We can922

observe that a larger T which makes codes from the923

tail more likely to be selected leads to even better924

performance. On the contrary, T = −5 leads to925

worse performance. We argue that T should be set926

within a moderate range and specifically tuned for927

each dataset.928

1 2 3
Iteration

60

70

80

De
ep

Se
ek

-C
od

er
-6

.7
B APPS+ (Introductory)

K=6
K=8
K=10

1 2 3
Iteration

50

60

70

80 APPS+ (Interview)

K=6
K=8
K=10

Figure 10: Pass@1 (%) of applying GiFT to DeepSeek-
Coder-6.7B on APPS+ (Introductory) and APPS+ (In-
terview) with K = 6, 8, 10, respectively.

D.3 Impact of K in Data Selection 929

In this paper, we set K = 8 for all the reported 930

experimental results. In this section, we explore 931

the impact of K in GiFT. We set K = 6, 8, 10 932

for DeepSeek-Coder-6.7B on APPS+ Introductory 933

and APPS+ Interview and the results are shown 934

in Figure 10. We can find that pairing each seed 935

description with more codes significantly improves 936

LLM performance at the beginning of iterative self- 937

training. Yet this benefit diminishes as the iter- 938

ation progresses, and finally, LLM performance 939

converges to similar performance. We think that 940

the curves will converge to the upper bound of 941

LLM’s potential. Thus, we argue that increasing 942

K in GiFT accelerates iterative self-training. 943

13

	Introduction
	Related Work
	Gibbs Fine-Tuning
	Experimental Setups
	Experiments
	Discussion
	Conclusion
	Prompting Templates for Code-to-Text and Text-to-Code Translation
	Algorithm Workflow
	Experimental Setup
	Dataset Statistics
	Implementation Details

	More Experimental Results
	Impact of RFT data in GiFT
	Extended Experiments of T
	Impact of K in Data Selection

