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ABSTRACT

In dynamic graph environments, structure-based anomaly detection is essential
for applications such as identifying fraudulent calls, fake accounts, and social
bots. While existing methods typically monitor changes in structural features
to detect anomalies, they often fail to account for concept drift—where natu-
ral, gradual changes in network structure are incorrectly flagged as anomalies.
To address this limitation, we introduce Temporal Anomaly Detection NETwork
(TAD-NET), a framework specifically designed to reduce the impact of concept
drift and improve anomalous node detection. TAD-NET consists of three main
components: (i) temporal feature extractor; (ii) reinforced anomaly generator;
and (iii) wavelet-enhanced fusion predictor. The temporal feature extractor identi-
fies changes in node features via dynamic behavior projection, distinguishing be-
tween normal network evolution and true anomalies. Working in tandem with the
anomaly detector, it leverages structural-difference attention to learn robust rep-
resentations for abnormal node detection. To address limited labeled anomalies,
the reinforced anomaly augmenter generates synthetic anomalous samples using
reinforced generative adversarial networks. The wavelet-enhanced fusion pre-
dictor improves adaptability to structural changes by integrating high-frequency
features, maintaining anomaly sensitivity as the network evolves. Experiments
on real-world datasets show that TAD-NET outperforms state-of-the-art methods,
achieving over 6% AUC improvement under concept drift. The code is available
at https://anonymous.4open.science/r/TAD-Net-B26A.

1 INTRODUCTION

Many real-world systems—such as financial transaction networks (Choi et al., 2019), social me-
dia platforms (Mancino et al., 2025), and internet communication infrastructures (Al-Heety et al.,
2025)—are inherently dynamic, with structures and interactions that evolve over time. These sys-
tems are commonly represented as dynamic graphs to capture their temporal evolution. Within
such networks, certain nodes may exhibit behaviors that deviate markedly from the norm; these
anomalous nodes can disrupt normal operations and compromise user security. For example, in fi-
nancial networks, fraudsters exploit system vulnerabilities to conduct illicit transactions. On social
platforms, malicious bots disseminate misinformation and generate fake engagement. In internet
communications, cyberattacks can result in privacy breaches and substantial financial losses. Con-
sequently, robust anomaly detection methods are essential to identify and mitigate the risks posed
by anomalous nodes in dynamic network environments.

As illustrated in Figure 1, dynamic graphs are subject to concept drift, where natural and expected
changes in node behavior or network structure are mistakenly flagged as anomalies. For example,
a classifier trained on transaction frequencies from the previous week may fail to detect current
fraudulent activity in a financial network. On special occasions such as shopping days, a surge in
transaction frequency can cause regular users to be misclassified as fraudsters, simply because the
model has not adapted to the new distribution. Recent works such as Hong et al. (2025) have com-
bined generative adversarial mechanisms with meta-learning to synthesize additional anomalies and
facilitate rapid adaptation. These approaches indeed enrich the training space and enhance robust-
ness under varying conditions. However, conventional GAN-based generators inherently produce
anomalies that remain close to the observed training distribution. As a result, they are ineffective in
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capturing emerging or previously unseen anomalies induced by concept drift, where the underlying
graph distribution evolves over time.

Figure 1: This figure illustrates a fi-
nancial network’s fraud detection using
transaction frequency from last week to
today. The dashed black line repre-
sents the anomaly classifier trained on
the graph data from last week.

Addressing concept drift in dynamic graph anomaly de-
tection presents two primary challenges. First, anomaly
samples are inherently scarce, as anomalous behaviors
are rare and labeled data is extremely limited Liu et al.
(2025); Ma et al. (2023). In dynamic graphs, nodes and
edges evolve over time, and anomalies may appear only
transiently or in subtle forms, making it difficult for mod-
els to capture diverse anomaly patterns from limited ob-
servations. Generative approaches, such as GAN-based
mechanisms, have been explored to mitigate this scarcity
by synthesizing additional anomalies. However, conven-
tional generators inherently produce samples that remain
close to the observed training distribution, rendering them
ineffective in capturing emerging or previously unseen
anomalies induced by concept drift, where the underly-
ing graph distribution evolves over time. This limitation
highlights the necessity for a generation mechanism that
not only alleviates sample scarcity but also adapts to temporal dynamics, thereby producing anoma-
lies consistent with evolving graph patterns. Second, dynamic graphs are subject to concept drift,
where natural changes in node behavior and network structure may resemble anomalous patterns,
making them difficult to distinguish. While intuitively, abrupt or localized anomalies often corre-
spond to high-frequency components in the graph spectrum, natural evolution tends to be smooth and
concentrated in low-frequency bands Ortega et al. (2018). Existing graph neural networks inherently
perform low-pass filtering Zhang et al. (2025), which suppresses these high-frequency components
and diminishes sensitivity to subtle anomalies. Furthermore, prior wavelet-based methods Lu &
Ghorbani (2008); Donnat et al. (2018) have not been systematically integrated with temporal model-
ing to explicitly separate anomalies from natural evolution. These observations highlight the neces-
sity of a framework that can preserve high-frequency anomaly-relevant information while adapting
to evolving network dynamics under concept drift.

To address these challenges, we propose Temporal Anomaly Detection NETwork (TAD-NET), a
novel framework designed to detect anomalies in dynamic graphs under concept drift and limited
anomaly samples. TAD-NET comprises three complementary modules: (i) a projection-based
temporal feature extractor that captures relative changes in node features over time, helping to
disentangle natural evolution from anomalous deviations and providing meaningful inputs for sub-
sequent anomaly generation; (ii) a reinforced anomaly generator, which integrates generative ad-
versarial networks with reinforcement learning principles to synthesize realistic anomaly samples.
Here, the generator acts as the agent, the discriminator serves as the environment, the generated
features form the state, and the discriminator’s output probability serves as the reward, guiding the
generator to produce high-quality anomalies consistent with temporal dynamics. The reinforcement
learning framework, including discount factors and separate optimizers for generator and discrimi-
nator, ensures effective exploration and stable adversarial training; (iii) a wavelet-enhanced fusion
predictor that explicitly preserves high-frequency signals in node features, allowing the model to
distinguish abrupt, anomalous changes from smooth concept drift in evolving graph structures. By
jointly leveraging temporal feature extraction, reinforced anomaly generation, and high-frequency
signal preservation, TAD-NET effectively mitigates sample scarcity, maintains sensitivity to subtle
anomalies, and adapts robustly to dynamic graph evolution. We summarize our key contributions as
follows:

• We introduce TAD-NET, a modular framework for dynamic graph anomaly detection that
explicitly addresses concept drift while preserving sensitivity to genuine anomalies.

• We design a reinforced anomaly generator combining adversarial learning with reinforce-
ment learning principles to synthesize realistic anomalies under evolving graph conditions,
addressing the scarcity of labeled anomaly samples.

• We incorporate a wavelet-enhanced fusion predictor to capture high-frequency structural
and feature changes, allowing robust separation of abrupt anomalies from smooth temporal
evolution.
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• Extensive experiments on multiple real-world dynamic graph datasets demonstrate that
TAD-NET consistently outperforms state-of-the-art baselines, validating the effectiveness
of our integrated approach.

2 RELATED WORK

Anomaly node detection in dynamic networks. Dynamic graph anomaly detection has focused
on structural changes in networks. Methods like NetWalk Yu et al. (2018) use random walks
and autoencoders to detect anomalies through node clustering. NFGCN Wang et al. (2022) and
STGCNs Mu et al. (2022) apply GCNs to capture both spatial and temporal dependencies, aiding
detection in recommender systems and video segments.

Other methods include TBCCA Zhang et al. (2023), which detects fraud by modeling temporal and
structural dependencies, and JODIE Kumar et al. (2019), which predicts anomalies by updating
node embeddings via recurrent networks. APAN Wang et al. (2021a) enables real-time anomaly
detection by decoupling graph computation from inference, while TGAT Xu et al. (2020b) uses
self-attention for temporal edge information. Recent works like GDN Ding et al. (2021a) enhance
anomaly detection using minimal labeled data, and SAD Tian et al. (2023) integrates memory and
pseudo-label contrastive learning for better performance on large unlabeled datasets. Despite ad-
vancements, these methods face challenges with concept drift, where natural changes in network
structure may be misidentified as anomalies, highlighting the need for more robust methods.

High-Frequency Feature Processing with Discrete Wavelet Transform. Recent work has shown
that high-frequency feature extraction using DWT is highly effective for anomaly detection in dy-
namic environments, such as financial networks (Wang et al., 2021b) and IoT systems. By ap-
plying DWT, models can isolate fine-grained frequency components that are often indicative of
anomalous behavior. For instance, EawT (Zhou et al., 2020) combines wavelet transforms with
convolutional operations and introduces a wavelet-based loss to refine feature representations for
anomaly detection. DWT is also computationally efficient, making it suitable for real-time and
resource-constrained scenarios (Li et al., 2022). Other approaches, such as MWNet (Shang et al.,
2024) and Meta-MWDG (Xie et al., 2024), further leverage DWT to model frequency differences
and capture both frequency-domain and temporal dependencies. AutoWave (Liu et al., 2020) uses
autoencoders with DWT to reconstruct time series in both time and frequency domains, improving
sequence anomaly detection. Collectively, these studies demonstrate the versatility and effectiveness
of DWT-based methods for robust anomaly detection.

3 PRELIMINARIES

In this section, we introduce the notations and problem definition for dynamic graph anomaly detec-
tion. A quick background on the core concepts is provided in the Appendix B.

Notations. We represent a dynamic graph as G = (V, E ,X ), where V denotes the set of nodes
E denotes the set of temporal edges and X ∈ RV×d denotes the set of node features. Each edge
ei = (vi, vj , ti) ∈ E indicates an interaction or event from node vi to node vj at time ti. The set of
temporal edges is denoted as E = {e1, e2, . . . , em}, where m is the total number of temporal edges.
We partition the dynamic graph G into two subgraphs based on the time dimension: the historical
graph Ghistory (containing earlier interactions) and the newly emerged graph Gnew (containing recent
interactions). For each node vi at time t, we define its anomaly label as yti , where yti = 0 indicates a
normal node and yti = 1 indicates an anamolous node. We also present list of widely used notations
in Appendix (Table 3).

Problem Definition. Given a historical subgraph Ghistory (with many labeled nodes) and a new
subgraph Gnew (with few labeled nodes), the objective is to detect anomalous nodes in Gnew in the
presence of concept drift—that is, when the underlying graph structure and data distribution evolve
over time, reducing the reliability of models trained solely on historical data. Formally, let Gnew =
(Vnew, Enew), where each node vi ∈ Vnew is associated with a feature vector xi and an anomaly label
yi ∈ {0, 1}. The goal is to learn a function f that, for each vi, predicts ŷi = f(xi,Gnew), assigning
a label of normal (0) or anomalous (1) to each node in the new subgraph.

4 TAD-NET

Overview. In this section, we introduce Temporal Anomaly Detection NETwork (TAD-NET), an
end-to-end framework designed to improve anomaly detection in dynamic graphs under concept
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Figure 2: The TAD-NET framework integrates: dynamic behavior projection to quantify node fea-
ture differences across temporal states, reinforced adversarial training for realistic anomaly synthe-
sis, and wavelet-based high-frequency analysis to sustain sensitivity under structural evolution. This
unified architecture enables robust anomaly detection in concept drift scenarios through coordinated
feature learning and distribution adaptation.

drift. As illustrated in Figure 2, TAD-NET is composed of three key modules: (i) Temporal Feature
Extractor, which captures evolving node characteristics by modeling temporal feature changes; (ii)
Reinforced Anomaly Generator, which leverages generative and reinforcement learning techniques
to synthesize diverse anomalous samples and address the scarcity of labeled anomalies; and (iii)
Wavelet-Enhanced Fusion Predictor, which integrates high-frequency features via wavelet trans-
form to enhance sensitivity to subtle anomalies amid structural changes. Together, these modules
enable TAD-NET to effectively differentiate genuine anomalies from normal patterns of network
evolution, ensuring robust performance in dynamic environments.

4.1 TEMPORAL FEATURE EXTRACTOR

The temporal feature extractor module is designed to capture evolving patterns in dynamic graphs
by processing a sequence of graph snapshots Gt and their associated node features Xt ∈ RNt×d,
where Nt denotes the number of nodes at time t and d is the feature dimension. The temporal
feature extractor outputs two key matrices: the node embedding matrix Ht ∈ RNt×d′

, and the
temporal change matrix ∆Ht ∈ RNt×d′

, which quantifies feature variations across consecutive time
steps.

At the first time step (t = 1), node embeddings are initialized using a graph convolutional network
Zhang et al. (2019), as follows:

H1 = σ
(
D̃−1/2ÃD̃−1/2X1W

)
(1)

where Ã = A + I is the adjacency matrix with self-loops, D̃ is its degree matrix, W is a learnable
weight matrix, and σ is a nonlinear activation function. For each subsequent time step (t > 1), the
feature matrix Xt is updated by replacing the first Nt−1 rows with the previous embeddings Ht−1:

Xt[0 : Nt−1] = Ht−1 (2)
The updated features are then passed through the graph convolutions to obtain the current embed-
dings:

Ht = σ
(
D̃−1/2ÃD̃−1/2XtW

)
(3)

To capture temporal dynamics, the difference between embeddings at consecutive time steps is com-
puted. Specifically, we unify the two cases of node number variation into a single definition:

∆Ht =

{
Ht −Ht−1[0:Nt, :], Nt ≤ Nt−1,

Ht − Pad(Ht−1, Nt), Nt > Nt−1,
(4)

where Pad(Ht−1, Nt) pads Ht−1 (e.g., with zeros) to have Nt rows. This unified formulation
eliminates the need to separately write equations (5) and (6). This mechanism ensures that ∆Ht

accurately reflects temporal changes in the network, even as the node set evolves, thereby providing
rich temporal representations for downstream anomaly detection.
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Theoretical Motivation. When the graph-derived representation evolves smoothly over time, the
temporal difference of node embeddings ∆Ht defined in Eq. equation 4 remains within a predictable
range. In contrast, anomalies introduce abrupt changes in the inputs, which propagate through
the encoder and manifest as larger ∥∆Ht∥F . Therefore, temporal differencing naturally amplifies
anomalies, which underpins the design of our Temporal Feature Extractor. Let Xt ∈ RNt×d be the
node-feature matrix at time t, and let Ht = f(A,Xt) ∈ RNt×h denote the output of one graph-
convolution layer applied to Xt with a (possibly self-loop augmented) adjacency A fixed at time t
(extensions to time-varying At are discussed in the remarks). Based on Eq. equation 4, the temporal
difference ∆Ht directly captures variations in representations while adapting to dynamic node sets,
thus providing a mathematically consistent basis for subsequent anomaly detection.
Assumption 4.1 (Lipschitz temporal evolution and non-expansive padding). For normal evolution
the feature sequence is LX -Lipschitz in time: ∥Xt − Xt−1∥F ≤ LX . Let one GCN layer be
f(A,X) = σ

(
D̃−1/2Ã D̃−1/2 XW

)
, where σ is Lσ-Lipschitz, ∥D̃−1/2Ã D̃−1/2∥2 ≤ LA, and

W is a trainable weight matrix. The padding operator is non-expansive: for any U, V and any n,
∥Pad(U, n)− Pad(V, n)∥F ≤ ∥U − V ∥F .
Lemma 4.1 (Stability of one-step embedding). Under the above assumption, the mapping X 7→
H = f(A,X) is Lf -Lipschitz in Frobenius norm with Lf ≤ Lσ LA ∥W∥2. That is, for any X,X ′,

∥f(A,X)− f(A,X ′)∥F ≤ Lf ∥X −X ′∥F .
Theorem 4.1 (Detection margin under anomaly perturbation). Suppose an anomaly increases the
input temporal jump by at least δ > 0, i.e., ∥Xt − Xt−1∥F ≥ LX + δ. If, moreover, the encoder
satisfies the local gain condition in Assumption F.2, then ∥∆Ht∥F ≥ µf (LX + δ) − Rt.
Therefore the excess over the normal bound τt = LfLX + Rt obeys ∥∆Ht∥F − τt ≥ µf δ −
(Lf − µf )LX − 2Rt. In particular, a sufficient condition for a positive detection margin is:
µf δ > (Lf − µf )LX + 2Rt.

Corresponding proofs and in-depth analyses are provided in Appendix F.1.

4.2 REINFORCED ANOMALY GENERATOR

Theoretical Motivation. Standard GAN-based anomaly synthesis often suffers from mode col-
lapse, concentrating on high-density regions of the empirical anomaly distribution. To address this,
we integrate reinforcement learning: the generator explores the anomaly feature space, while the
discriminator provides a reward encouraging both realism and diversity. The generator is trained
with policy-gradient updates (Lemma F.2, Appendix F.2) and entropy-regularized rewards, promot-
ing exploration of low-density regions. Theoretical results (Theorems F.2 and F.3, Appendix F.2)
ensure non-zero probability for all data modes and allow support expansion beyond the observed
anomalies, enabling adaptation to unseen patterns. Detailed proofs are in the appendix F.2.

Generator-Discriminator Interaction. At each time step t, the reinforced anomaly generator
receives the anomaly-related feature matrix ∆Ht ∈ RNt×d′

and selects a subset of anomalies
Xa ∈ RM×d. The generator G produces synthetic anomalies X̂a = G(Z), with noise Z ∼ Pz ,
while the discriminator D evaluates both real and generated anomalies. The reward from D forms a
reinforcement learning loop, naturally integrating the theoretical guarantees mentioned above.

Training Objective and Parameter Updates. The discriminator loss is
LD = −EXa∼Pdata

[logD(Xa)]− EZ∼Pz
[log(1−D(G(Z)))] (5)

The generator loss incorporates adversarial and reward terms:
LG = −EZ∼Pz

[logD(G(Z))] + γ logD(G(Z)) (6)

Parameters are updated via gradient descent:
θd ← θd − ηd∇θdLD (7)

θg ← θg − ηg∇θgLG (8)

This strategy allows the generator to explore underrepresented anomaly regions while maintaining
realism, with theoretical backing ensuring coverage and adaptation to evolving anomalies (see Ap-
pendix F.2 for detailed lemmas, theorems, and proofs).
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4.3 WAVELET-ENHANCED FUSION PREDICTOR

The wavelet-enhanced fusion predictor improves anomaly detection by explicitly capturing high-
frequency deviations in node features (Lemma F.4, Proposition F.3). While concept drift in dynamic
graphs typically manifests as smooth, low-frequency changes, true anomalies induce abrupt, lo-
calized deviations Lu & Ghorbani (2008); Iqbal et al. (2025). By leveraging the discrete wavelet
transform (DWT) to separate high- and low-frequency components, the module enables more robust
detection of genuine anomalies (Theorem F.4); see Appendix F.3 for detailed theoretical justifica-
tion.

For each feature vector v in the temporal difference set ∆Ht or the synthetic anomalies X̂a, DWT
decomposes v into low- and high-frequency components C = DWT(v), and the high-frequency
component is extracted as Hv

high = C[1]. These are fused with the original features via a weighted
sum:

Hv
fusion = v + αHv

high, (9)

where α controls the influence of high-frequency components. The fused feature is then input to a
neural network classifier, trained with cross-entropy loss:

LCE = −
∑

v∈Ht∪Xa

[yv log(ŷv) + (1− yv) log(1− ŷv)]. (10)

Theoretical Motivation. The high-frequency fusion in Eq. 9 amplifies anomaly-induced deviations
relative to smooth temporal evolution. Intuitively, smooth concept-drift changes lie in low-frequency
DWT coefficients, while abrupt anomalies appear in high-frequency components. Formally, if v =
st + at with st smooth and at anomalous, the fused feature satisfies

Hv
fusion = st + (1 + α)at,

which increases the signal-to-noise ratio of anomalies:

∥(1 + α)at∥2
∥st∥2

>
∥at∥2
∥st∥2

.

This justifies the design choice. Rigorous derivations and proofs are provided in Appendix F.3.

4.4 MODEL TRAINING

Training of TAD-NET follows a three-phase procedure coordinating temporal feature extraction,
reinforced anomaly generation, and wavelet-enhanced prediction, operating on dynamic graph snap-
shots {Gt}Tt=1 with node features {Xt}Tt=1. Separate learning rates ηd, ηg , and η are used for the
discriminator, generator, and predictor, respectively. A detailed algorithm is provided in Appendix D
(Algorithm 1).

Phase 1: Temporal Feature Extraction. Node embeddings Ht are updated using the graph convo-
lution (Eq. 3), and temporal differences ∆Ht are computed with the padding/truncation mechanism
(Eq. 4). This ensures that the embeddings capture evolving patterns while handling dynamic node
sets.

Phase 2: Reinforced Anomaly Generation. The generator produces synthetic anomalies X̂a from
noise inputs, and the discriminator evaluates real versus generated anomalies. Training follows the
adversarial-reinforcement framework, optimizing LD and LG (Eqs. 5–6) with alternating updates of
parameters θd and θg (Eqs. 7–8).

Phase 3: Wavelet-Enhanced Prediction. The predictor fuses the original features with high-
frequency components (Eq. 9) and is trained using the cross-entropy loss LCE (Eq. 10). This
amplifies subtle anomaly signals while remaining robust to low-frequency, concept-drift-induced
changes.

5 EXPERIMENTATION

In this section, we evaluate the performance of our proposed framework on three real-world social
media datasets. We first introduce the datasets and the experimental settings. Then, we present the
results and discuss the performance of our framework. Owing to lack of space, we report additional
results in the Appendix H.
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Table 1: Statistics of the real-world datasets

Datasets Nodes Edges Anomalies Timespan

Wikipedia 9,227 157,474 217 30 days
Reddit 10,984 672,447 366 30 days
Mooc 7,074 333,734 4,066 30 days

5.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments on three widely used real-world social media datasets: (i)
Wikipedia Wang et al. (2020), (ii) Reddit Nguyen et al. (2020), and (iii) Mooc Toghani et al. (2022),
each exhibiting unique structural properties and anomaly patterns. For all datasets, we follow a con-
sistent data split: 70% for training, 10% for validation, and 20% for testing. To capture temporal
dynamics, we extract 5 network snapshots per dataset based on their respective timestamps. Key
dataset statistics are presented in Table 1, with additional details available in Appendix G.2.

Baselines. To evaluate the performance of TAD-NET we use following state-of-the-art methods as
baselines: (i) TGAT Xu et al. (2020a), (ii) GDN Ding et al. (2021b), (iii) SAD Tian et al. (2023),
(iv) TADDY Liu et al. (2021), (v) MAMF Hong et al. (2025). Further details about the baselines are
provided in Appendix G.3.

Evaluation Metrics. We assess model performance using AUC-ROC, Precision, F1-Score and
AUPR, which are standard metrics for anomaly detection in dynamic graphs. We use AUC as the
primary metric following baseline comparisons Xu et al. (2020a); Tian et al. (2023), with other
metrics providing complementary analysis. Further details and mathematical formulation of these
metrics are detailed in Appendix G.4.

Experimental Setup. For TAD-NET, the node embedding dimension in the temporal feature ex-
tractor is set to k = 128. The reinforced anomaly generator synthesizes realistic anomalous features
from training snapshots to augment data and improve detection. The wavelet-enhanced fusion pre-
dictor uses a four-layer MLP to extract features effectively while mitigating overfitting. All models,
including TADNet and baselines, are trained for 100 epochs with a learning rate of 5× 10−5. Base-
lines follow the hyperparameters reported in their original papers. Each experiment is repeated 20
times to ensure statistical robustness.

5.2 MAIN RESULTS

The performance comparison between our method, TAD-NET, and baseline models is shown in Ta-
ble 2. TAD-NET consistently outperforms all baselines across datasets and metrics. On Wikipedia,
it achieves 97.87% AUC (6.66% higher than MAMF), 90.11% precision, 90.10% F1, and 83.75%
AUPR. Similar gains appear on Reddit and Mooc, especially in F1 and AUPR.

Table 2: Performance comparisons of different methods on all datasets in terms of AUC (%), Preci-
sion (%), F1 (%), and AUPR (%). Bold values indicate the best performance.

Wikipedia Reddit Mooc

Method AUC Precision F1 AUPR AUC Precision F1 AUPR AUC Precision F1 AUPR

TGAT 83.23 1.84 1.05 0.92 67.06 3.23 0.95 0.33 66.88 6.23 2.01 1.11
GDN 85.12 6.78 3.90 1.78 67.02 0.75 0.49 0.16 66.21 3.86 2.65 3.28
SAD 86.77 1.67 4.26 1.98 68.77 0.16 0.59 0.23 69.44 3.29 2.34 2.81
TADDY 84.72 8.31 15.30 8.72 67.95 8.16 15.00 8.06 68.47 10.97 19.74 11.17
MAMF 91.21 89.36 77.31 69.83 71.35 56.59 65.67 61.88 75.64 78.42 53.48 55.69
TAD-NET 97.87 90.11 90.10 83.75 93.31 89.95 83.19 83.75 81.41 82.32 74.39 66.64

Baselines like TGAT, GDN, and SAD face clear limitations. TGAT’s self-attention misses subtle
behaviors, resulting in low AUC and F1. GDN struggles with complex temporal variations despite
labeled anomalies, causing low precision and AUPR. SAD’s pseudo-label contrastive learning is
less effective on imbalanced datasets like Reddit. TADDY’s single-transformer limits behavior di-
versity modeling. MAMF uses GAN-generated anomalies but lacks effective high-frequency feature
extraction, reducing performance on complex data.

TAD-NET’s strength lies in integrating multi-scale feature fusion, attention mechanisms, DWT-
based high-frequency extraction, and adversarial sample generation via GANs and reinforcement
learning. This combination captures fine details, isolates key behaviors, emphasizes transient sig-
nals, and enriches training data, enhancing robustness and generalization.
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5.3 ABLATION STUDIES

To evaluate the contribution of key components in TAD-NET, we perform ablation studies by se-
lectively removing specific modules. The goal is to quantify the impact of each module on the
model’s AUC, a key metric for distinguishing normal and anomalous instances in dynamic graphs.
We investigate three configurations:

• TAD-NET(–H): removing the high-frequency feature amplification.
• TAD-NET(–R): removing the reinforcement learning rewards mechanism.
• TAD-NET(–B): removing both high-frequency amplification and reinforcement learning.

Figure 3 presents the AUC results for each ablation configuration. The full version of TAD-
NET, which includes both high-frequency feature amplification and reinforcement learning rewards,
achieves the highest AUC across all datasets. This demonstrates that the combination of these two
components enables the model to capture subtle, fine-grained anomalies while adapting to evolving
data distributions in dynamic graphs.

(a) Wikipedia (b) Reddit (c) Mooc

Figure 3: AUC values of ablation study on different datasets.
To isolate the effect of high-frequency features, we remove the high-frequency amplification module,
i.e., TAD-NET(–H). This leads to a substantial decrease in AUC on all datasets, confirming that
high-frequency information is critical for detecting subtle and short-term anomalies. Without this
module, the model becomes less sensitive to rapid or minor changes, resulting in reduced detection
accuracy.

Next, we evaluate the impact of removing the reinforcement learning rewards mechanism, i.e., TAD-
NET(–R). While the drop in AUC is less pronounced than when removing high-frequency ampli-
fication, it still indicates that reinforcement learning is important for helping the model adapt to
temporal changes. Without this adaptive feedback, the model’s ability to track evolving patterns is
diminished.

The lowest AUC values are observed when both high-frequency amplification and reinforcement
learning are removed, i.e., TAD-NET(–B), highlighting the necessity of both components. The
absence of high-frequency features limits the detection of transient anomalies, and the lack of rein-
forcement learning reduces adaptability, leading to the greatest performance degradation.

In summary, these ablation results show that both high-frequency amplification and reinforcement
learning are essential for robust dynamic anomaly detection. Each component addresses a differ-
ent aspect of the problem—capturing fine-grained changes and adapting to non-stationary environ-
ments—and their combination is crucial for achieving high AUC in dynamic graph scenarios.

5.4 PARAMETER SENSITIVITY STUDY

We analyze the sensitivity of TADNet to the hyperparameter α, which controls the contribution
of wavelet-based high-frequency features in node embeddings (Equation 9). We report AUC as α
varies from 0 to 1 (Figure 4).

Results show that datasets respond differently: on WIKIPEDIA, larger α steadily improves AUC,
indicating the benefit of emphasizing wavelet components. On REDDIT, performance rises quickly
at small α then stabilizes, suggesting that moderate weighting is most effective. On MOOC, AUC
remains flat, implying robustness to this parameter. Overall, TADNet is stable on most datasets,

8
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(a) Mooc (b) Reddit (c) Wikipedia

Figure 4: Comparison of AUC values for different α across datasets

with only REDDIT requiring mild tuning at low α. Additional sensitivity studies and theoretical
analysis are provided in Appendix J.

5.5 CONCEPT DRIFT RESISTANCE ANALYSIS

(a) Before (Wiki) (b) Before (Reddit) (c) Before (Mooc)

(d) After (Wiki) (e) After (Reddit) (f) After (Mooc)

Figure 5: Node feature distributions using t-SNE clustering. Different colors correspond to different
snapshots.
To examine TAD-NET’s robustness against concept drift in dynamic graphs, we visualize node em-
beddings across multiple time snapshots using t-SNE. Different colors denote temporal snapshots.
Before Training. Figures 5a, 5b, and 5c show that embeddings from different time steps are well
separated, indicating the model initially lacks temporal invariance and is vulnerable to distribu-
tion shifts. After Training. With temporal feature extraction, reinforced anomaly generation, and
wavelet-based fusion, the embeddings (Figures 5d, 5e, 5f) become much more intermixed across
time. This demonstrates that TAD-NET aligns node representations over time, capturing temporally
robust features and mitigating drift effects. Overall, temporal extraction enhances stability, anomaly
generation improves adaptability, and wavelet fusion preserves anomaly-relevant signals—together
enabling effective resistance to concept drift.

6 CONCLUSION

We addressed anomaly detection in dynamic graphs under concept drift by proposing TAD-NET, a
framework that combines temporal feature extraction, reinforced anomaly generation, and wavelet-
based feature fusion. These modules enable TAD-NET to adapt to evolving networks and reli-
ably detect anomalies, even with limited labeled data. Experiments on real-world datasets show
that TAD-NET outperforms existing methods and remains robust as network conditions change.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our research focuses on anomaly detection in dynamic graph networks, such as social or com-
munication networks, with the goal of identifying abnormal behaviors (e.g., fraud, fake accounts).
We only use publicly available datasets and synthetic data for experiments, ensuring no personally
identifiable information is exposed. The methods developed are intended to improve security and
reliability of networked systems. We acknowledge that misuse of anomaly detection techniques
may raise privacy or fairness concerns, and we encourage responsible application and adherence to
relevant laws and regulations.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of our results. All datasets used in our experiments
are publicly available, and the main text provides detailed descriptions of data preprocessing, model
architectures, hyperparameters, and training procedures. The code for our experiments is publicly
available at https://anonymous.4open.science/r/TAD-Net-B26A.
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A APPENDIX: USE OF LARGE LANGUAGE MODELS (LLMS)

ChatGPT (GPT-4) was utilized only as an auxiliary tool for improving English grammar, enhancing
readability of the text, and debugging minor coding issues. It played no role in the design of the
research, development of algorithms, or interpretation of results, which were fully conducted by the
authors.

B BACKGROUND: PRELIMINARY CONCEPTS

B.1 CONCEPT DRIFT IN DYNAMIC GRAPHS

Dynamic graphs, such as social networks, often experience evolving node attributes and structural
patterns over time—a phenomenon known as concept drift. This presents a major challenge for
anomaly detection, as models trained on historical data may become less effective when the under-
lying data distribution shifts.

In social networks, concept drift can arise from:

• Behavioral Change: Users change their interaction patterns (e.g., shifting from text to
video posts).

• Community Evolution: Groups merge, split, or change membership, altering group char-
acteristics.

• Emergence of New Topics: Trending topics or events cause sudden changes in user activ-
ity.

• Platform Changes: New features or policies shift user behavior (e.g., introduction of short
videos).

• Account Hacking: Compromised accounts exhibit abrupt, atypical behavior.

These changes can degrade model performance, increasing false positives or negatives, and compli-
cate model maintenance due to the need for frequent retraining and adaptation. Ignoring concept
drift risks misidentifying normal or abnormal behaviors, undermining detection reliability.

B.2 ADDRESSING CONCEPT DRIFT

To address concept drift in dynamic graphs, we combine two strategies: reinforced adversarial
anomaly generation and high-frequency feature processing via discrete wavelet transform (DWT).

Reinforced Adversarial Anomaly Generation

Anomalies in dynamic graphs are rare and diverse, making them hard to model. Standard GANs of-
ten suffer from mode collapse, generating insufficiently varied anomalies. By integrating reinforce-
ment learning into the GAN framework, the generator is incentivized to explore a broader range of
outputs, improving diversity and realism. The generator receives feedback from the discriminator,
guiding it to produce more representative anomalies.

Key benefits of reinforced GANs for anomaly generation:

• Improved Exploration: Reinforcement learning encourages discovery of diverse anomaly
patterns.

• Adaptive Generation: The generator adapts to evolving data distributions.
• Greater Diversity: A wider variety of synthetic anomalies enhances detection of different

anomaly types.

This approach helps overcome the scarcity of labeled anomalies by generating synthetic samples
that augment the training set, improving model robustness.

Discrete Wavelet Transform for Feature Fusion Concept drift can be gradual, abrupt, recurring,
or incremental. To capture these, we use the Discrete Wavelet Transform (DWT), which decomposes
time-series data into:

13
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• Low-Frequency Components: Long-term, stable trends.
• High-Frequency Components: Short-term, abrupt changes or anomalies.

DWT is effective for concept drift because it separates slow, gradual shifts (low-frequency) from
sudden changes (high-frequency), allowing the model to:

• Detect rapid changes without interference from long-term trends.
• Preserve stable patterns while remaining sensitive to new or rare anomalies.

Feature Fusion: We combine high-frequency features from DWT with original features, enabling:

• Adaptive Learning: Robustness to sudden changes while retaining long-term knowledge.
• Enhanced Sensitivity: Improved detection of abrupt behavioral changes.
• Long-Term Stability: Retention of persistent patterns.

In summary, our approach integrates reinforced adversarial anomaly generation and DWT-based
feature fusion to effectively address concept drift, enabling reliable detection of both gradual and
sudden changes in dynamic graphs.

C NOTATIONS

Table 3 lists the notations used in this paper.

D TAD-NET WORKFLOW

Algorithm 1 summarizes the TAD-NET workflow. At each time step t, the model receives a dy-
namic graph snapshot (Xt, At), where Xt is the node feature matrix and At the adjacency matrix.
The Temporal Feature Extraction (TFE) module encodes temporal dynamics by computing node rep-
resentations Ht and their temporal differences ∆Ht, highlighting abrupt behavioral changes. The
Reinforced Anomaly Generation (RAG) module augments the training set with synthetic anomalies,
improving detection of diverse patterns. The Wavelet-Enhanced Fusion Predictor (WFP) applies
DWT to both real and synthetic features, fuses original and high-frequency components, and uses a
neural network classifier to assign anomaly scores. The model is trained end-to-end on both real and
generated data. During inference, the trained WFP outputs anomaly scores for each node, enabling
robust anomaly detection as the graph evolves.

E TIME COMPLEXITY ANALYSIS

We analyze the time complexity of each module in the Temporal Anomaly Detection Network
(TADNet): Temporal Feature Extractor (TFE), Reinforced Anomaly Generator (RAG), and Wavelet-
Enhanced Fusion Predictor (WFP).

Table 3: Notations

Symbol Description
LD Discriminator loss function
LG Generator loss function
γ Discount factor in RL
LCE Cross-entropy loss
ηd Learning rate of the discriminator
ηg Learning rate of the generator
Ngen The number of generated anomalous samples
Nt The number of nodes at time step t
Et Edges in the graph at time step t

14
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Algorithm 1 TADNet Training Procedure

Require: Dynamic graph sequence {Gt}Tt=1, node features {Xt}Tt=1, learning rates ηd, ηg, η, iter-
ations I

Ensure: Trained model parameters W, θg, θd, θf
1: Phase 1: Temporal Feature Extraction
2: for t = 1 to T do
3: Compute Ht = σ(D̃−1/2ÃD̃−1/2XtW ) {Corresponds to Eq. 3}
4: if t = 1 then
5: Initialize ∆H1 ← 0 {No temporal difference for first snapshot}
6: else
7: Calculate ∆Ht using padding/truncation {Implements Eq. 4}
8: end if
9: Update W via gradient descent on Ht

10: end for
11: Phase 2: Reinforced Anomaly Generation
12: for epoch = 1 to I do
13: Sample minibatch of real anomalies Xa ⊆ {∆Ht}Tt=1

14: Generate synthetic anomalies X̂a = G(Z) where Z ∼ N (0, I)
15: Compute discriminator loss LD via Eq. 5
16: Update θd ← θd − ηd∇θdLD

17: Compute generator loss LG via Eq. 6
18: Update θg ← θg − ηg∇θgLG

19: end for
20: Phase 3: Wavelet-Enhanced Prediction
21: for epoch = 1 to I do
22: For each v ∈ {∆Ht}Tt=1 ∪ X̂a:
23: Apply DWT: C← DWT(v)
24: Extract Hv

high ← C[1]
25: Compute Hv

fusion = v + αHv
high {Implements Eq. 9}

26: Compute LCE over fused features {Using Eq. 10}
27: Update θf via gradient descent on LCE

28: end for

E.1 TEMPORAL FEATURE EXTRACTOR

The TFE processes a sequence of graph snapshots. Main operations:

• GCN Layer: For each time step, processing Xt and Gt takes O(|Et| + NtFd), where |Et| is
the number of edges, Nt nodes, F feature dimension, d embedding dimension.

• Feature Update: Updating Xt with Ht−1: O(Nt−1d).
• Relative Change: Computing Ht −Ht−1: O(Ntd).

For T time steps, total complexity:

O

(
T∑

t=1

(|Et|+NtFd+Nt−1d)

)
. (11)

E.2 REINFORCED ANOMALY GENERATOR

RAG combines GAN and reinforcement learning:

• Generator Forward Pass: O(Ngend), where Ngen is the number of generated anomalies.
• Discriminator Training: O(Md), M is the number of real anomalies.
• Backpropagation: O(Ngend+Md).

Total for I iterations:
O (I(M +Ngen)d) . (12)
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E.3 WAVELET-ENHANCED FUSION PREDICTOR

WFP applies wavelet transforms and classification:

• DWT: O((Nt +M)d log d) for all feature vectors.
• Feature Fusion: O((Nt +M)d).
• Classification: O((Nt +M)dC), C is the number of classifier layers.

Total complexity:
O((Nt +M)d log d+ (Nt +M)dC). (13)

E.4 OVERALL COMPLEXITY OF TAD-NET

Summing all modules, the total time complexity over T time steps is:

O

(
T∑

t=1

(
|Et|+Ntd(F + 1) +Nt−1d

)
+ I(M +Ngen)d

+(Nt +M)d log d+ (Nt +M)dC

)
.

(14)

Typically:

• TFE dominates for large graphs with many nodes/edges.
• RAG and WFP may dominate for smaller graphs or when generating many synthetic

anomalies or applying large DWTs.
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F THEORETICAL ANALYSES

In this section, we provide a theoretical justification for the core components of TAD-NET.

F.1 TEMPORAL FEATURE EXTRACTOR

This section provides a clear theoretical justification for the Temporal Feature Extractor (TFE) mod-
ule of TAD-NET. We show that temporal differencing suppresses smooth (normal) variations in
dynamic graphs while amplifying anomaly-induced deviations, thus enabling robust anomaly detec-
tion.

Motivation. When node representations in a dynamic graph evolve smoothly, the temporal differ-
ence of node embeddings, ∆Ht, remains bounded. In contrast, anomalies cause abrupt changes in
the input, which propagate through the encoder and result in significantly larger values of ∥∆Ht∥F .
Thus, temporal differencing naturally highlights anomalous behavior.

Let Xt ∈ RNt×d be the node feature matrix at time t, and Ht = f(A,Xt) ∈ RNt×h the output of a
graph convolution layer, where A is the (possibly self-loop augmented) adjacency matrix at time t.
If Nt ̸= Nt−1, we compare Ht and Ht−1 over the first min(Nt, Nt−1) rows. For a full-dimension
difference, we use a non-expansive padding operator Pad(·, n) and define:

∆Ht :=

{
Ht −Ht−1[1:Nt, :], if Nt ≤ Nt−1,

Ht − Pad(Ht−1, Nt), if Nt > Nt−1.

Assumption 4.1 (Lipschitz temporal evolution and non-expansive padding). For normal evolution,
the feature sequence is LX -Lipschitz in time: ∥Xt − Xt−1∥F ≤ LX . Let one GCN layer be
f(A,X) = σ

(
D̃−1/2Ã D̃−1/2 XW

)
, where σ is Lσ-Lipschitz, ∥D̃−1/2Ã D̃−1/2∥2 ≤ LA, and W

is a trainable weight matrix. The padding operator is non-expansive: for any U, V and any n,
∥Pad(U, n)− Pad(V, n)∥F ≤ ∥U − V ∥F .

Assumption F.2 (Optional local gain (for lower bounds)). There exists a local constant µf > 0
(possibly data-dependent) such that for inputs on the line segment between Xt−1 and Xt,

∥f(A,U)− f(A, V )∥F ≥ µf ∥U − V ∥F , U, V ∈ {Xt−1 + s(Xt −Xt−1) : s ∈ [0, 1]}.

This holds, for example, when σ is piecewise linear (e.g., ReLU) and the segment stays in one linear
region so that f reduces to a linear map with smallest singular value at least µf .

Lemma 4.1 (Stability of one-step embedding). Under Assumption 4.1, the mapping X 7→ H =
f(A,X) is Lf -Lipschitz in Frobenius norm with Lf ≤ Lσ LA ∥W∥2. That is, for any X,X ′,

∥f(A,X)− f(A,X ′)∥F ≤ Lf ∥X −X ′∥F .

Proof. By submultiplicativity and Lipschitzness of σ,

∥f(A,X)−f(A,X ′)∥F = ∥σ(S̃XW )−σ(S̃X ′W )∥F ≤ Lσ ∥S̃(X−X ′)W∥F ≤ Lσ ∥S̃∥2 ∥W∥2 ∥X−X ′∥F ,

where S̃ = D̃−1/2Ã D̃−1/2 and ∥S̃∥2 ≤ LA. Set Lf := LσLA∥W∥2.

Proposition F.1 (Bounded temporal difference for normal evolution). Under Assumption 4.1, the
temporal difference of embeddings satisfies

∥∆Ht∥F ≤ Lf LX +Rt,

where Rt = 0 if Nt ≤ Nt−1, and otherwise

Rt ≤ Lf ∥Pad(Xt−1, Nt)−Xt−1∥F .

Proof. If Nt ≤ Nt−1, then for the first Nt rows,

∥∆Ht∥F = ∥f(A,Xt)− f(A,Xt−1)∥F ≤ Lf ∥Xt −Xt−1∥F ≤ LfLX .
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If Nt > Nt−1, add and subtract f(A,Pad(Xt−1, Nt)) and apply Lemma 4.1 and the non-
expansiveness of padding:

∥∆Ht∥F = ∥f(A,Xt)− f(A,Pad(Xt−1, Nt)) + f(A,Pad(Xt−1, Nt))− f(A,Pad(Ht−1, Nt))∥F
≤ Lf ∥Xt − Pad(Xt−1, Nt)∥F + ∥f(A,Pad(Xt−1, Nt))− Pad(Ht−1, Nt)∥F︸ ︷︷ ︸

=0

≤ Lf

(
∥Xt −Xt−1∥F + ∥Pad(Xt−1, Nt)−Xt−1∥F

)
≤ LfLX +Rt.

Theorem 4.1 (Detection margin under anomaly perturbation). Suppose an anomaly increases the
input temporal jump by at least δ > 0, i.e., ∥Xt − Xt−1∥F ≥ LX + δ. If, moreover, the encoder
satisfies the local gain condition in Assumption F.2, then ∥∆Ht∥F ≥ µf (LX + δ) − Rt.
Therefore the excess over the normal bound τt = LfLX + Rt obeys ∥∆Ht∥F − τt ≥ µf δ −
(Lf − µf )LX − 2Rt. In particular, a sufficient condition for a positive detection margin is:
µf δ > (Lf − µf )LX + 2Rt.

Proof. If Nt ≤ Nt−1, Assumption F.2 on the segment [Xt−1, Xt] implies

∥∆Ht∥F = ∥f(A,Xt)− f(A,Xt−1)∥F ≥ µf ∥Xt −Xt−1∥F ≥ µf (LX + δ).

If Nt > Nt−1, insert and subtract f(A,Pad(Xt−1, Nt)) and use triangle inequality, local gain on
the segment [Pad(Xt−1, Nt), Xt ], and non-expansiveness of padding to get

∥∆Ht∥F ≥ µf ∥Xt−Pad(Xt−1, Nt)∥F−Rt ≥ µf

(
∥Xt−Xt−1∥F−∥Pad(Xt−1, Nt)−Xt−1∥F

)
−Rt,

which yields the stated inequality since ∥Xt −Xt−1∥F ≥ LX + δ. Subtracting τt = LfLX + Rt

and rearranging gives the claimed margin bound.

Remark F.1 (What each assumption provides). Assumption 4.1 is sufficient to obtain an upper bound
for normal evolution and thus a sound threshold test. Any lower bound (i.e., a guaranteed margin
under anomalies) requires additional structure such as Assumption F.2 (a local bi-Lipschitz prop-
erty).
Remark F.2 (Multilayer encoders). For L stacked layers with Lipschitz constants Lf,ℓ, the composite
map is L

(stack)
f ≤

∏L
ℓ=1 Lf,ℓ. The proofs carry over verbatim by replacing Lf with L

(stack)
f and

adjusting µf accordingly (e.g., the smallest local gain along the stack).
Remark F.3 (Time-varying graphs). If At varies with t but the operator norm of the normalized
adjacency is uniformly bounded ∥D̃−1/2

t Ãt D̃
−1/2
t ∥2 ≤ LA, the stability lemma and proposition

remain valid with the same Lf ; an extra term involving ∥S̃t− S̃t−1∥2 can be included if one wishes
to account explicitly for graph dynamics.
Remark F.4 (On padding term Rt). If Nt ≤ Nt−1, then Rt = 0. If Nt > Nt−1, Rt scales with how
many new rows are padded and the magnitude of padding values. Using zero-padding or duplicated
last-observation padding preserves non-expansiveness.
Remark F.5 (Practical thresholds). In practice, one can estimate LfLX + Rt from a calibration
window via high quantiles (e.g., 95%) of ∥∆Ht∥F during known-normal periods, and then flag
∥∆Ht∥F above that empirical threshold.

F.2 THEORETICAL DETAILS OF REINFORCED ANOMALY GENERATOR

This appendix provides detailed theoretical justification for the Reinforced Anomaly Generator
(RAG) introduced in Section 4.2, including policy-gradient updates, entropy-regularized objectives,
and guarantees on anomaly coverage.

F.2.1 NOTATION AND SETUP

• S ⊂ Rd′
: anomaly feature state space extracted from the Temporal Feature Extractor.

• Panom: true (unknown) anomaly distribution.

• Pdata: empirical distribution of observed anomalies used to train the generator.
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• Generator Gθ defines a parameterized policy πθ(a|s) mapping a state s ∈ S to a generated
anomaly a ∈ S.

• Discriminator Dϕ : S → [0, 1] outputs the probability of a sample being real and provides a
reward r(a) = Dϕ(a).

• P̂θ: induced distribution of generated anomalies under policy πθ.

F.2.2 UNBIASED POLICY-GRADIENT

Lemma F.2 (Unbiased policy-gradient, rigorous version). Let a = Gθ(Z) with Z ∼ Pz , and reward
r(a) = logDϕ(a). Then

∇θEa∼πθ
[r(a)] = Ea∼πθ

[∇θ log πθ(a) r(a)].

Proof. Assume r(a) does not depend on θ, and πθ(a) is differentiable with respect to θ with suffi-
cient integrability to allow exchanging gradient and integral. By definition of expectation:

Ea∼πθ
[r(a)] =

∫
A
r(a)πθ(a) da.

Taking the gradient and exchanging it with the integral gives

∇θEa∼πθ
[r(a)] =

∫
A
r(a)∇θπθ(a) da.

Using the identity∇θπθ(a) = πθ(a)∇θ log πθ(a), we obtain∫
A
r(a)∇θπθ(a) da =

∫
A
r(a)πθ(a)∇θ log πθ(a) da = Ea∼πθ

[r(a)∇θ log πθ(a)].

This establishes the lemma.

Remark. In our GAN-RL framework, the reward is defined as r(a) = logDϕ(a). Although Dϕ is
trained concurrently with the generator, at each generator update step Dϕ is treated as fixed. There-
fore, within the gradient computation ∇θEa∼πθ

[r(a)], the reward r(a) is independent of θ. This
ensures that the standard policy-gradient derivation remains valid and yields an unbiased estimate
of the gradient with respect to the generator parameters.

F.2.3 REWARD-REGULARIZED ADVERSARIAL OBJECTIVE

To encourage diversity in generated anomalies, we introduce an entropy-regularized objective for
the generator. Let the generator’s policy be qθ(a) over generated samples a, and define a reward

r(a) = logDϕ(a) + βu(a),

where Dϕ(a) is the discriminator output, β > 0 is a weighting factor, and u(a) = − log qθ(a) is an
entropy-related term. The intuition is that maximizing E[u(a)] encourages the generator to produce
a more diverse set of samples, avoiding mode collapse.
Proposition F.2 (Entropy-regularized GAN objective). Under the above definitions, the generator’s
reward objective can be equivalently written as

max
θ

Ea∼qθ [r(a)] = max
θ

Ea∼qθ [logDϕ(a)] + βH(qθ),

where H(qθ) = −Ea∼qθ [log qθ(a)] is the Shannon entropy of the generator distribution.

Proof. By substituting u(a) = − log qθ(a) into the reward:
Ea∼qθ [r(a)] = Ea∼qθ [logDϕ(a)] + βEa∼qθ [− log qθ(a)] = Ea∼qθ [logDϕ(a)] + βH(qθ),

which establishes the equivalence.

Interpretation. The first term, E[logDϕ(a)], is the standard GAN objective that encourages gen-
erating realistic samples. The second term, βH(qθ), explicitly rewards the generator for main-
taining high entropy in its output distribution, which promotes diversity and prevents the generator
from collapsing to a few high-probability modes. By tuning β, one can balance fidelity to the dis-
criminator with diversity in the generated anomalies. This formulation integrates naturally into our
reinforcement-learning-inspired generator update, providing both realism and coverage in anomaly
synthesis.
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F.2.4 MINIMUM MASS GUARANTEE ON DATA MODES

The reinforced anomaly generator in our framework is expected to produce diverse synthetic anoma-
lies, rather than collapsing onto only a few specific patterns. In dynamic graphs, such diversity
corresponds to covering multiple data modes, each reflecting a distinct type of anomalous feature
deviation. To theoretically ensure that the generator does not neglect any mode, we provide a mini-
mum mass guarantee under the entropy-regularized adversarial objective.

Theorem F.2 (Minimum mass guarantee). Assume Pdata decomposes into disjoint measurable re-
gions {Mk}Kk=1 with Pdata(Mk) ≥ δk > 0. Let β > 0 and assume the discriminator Dϕ is strictly
positive and bounded on eachMk: mk ≤ Dϕ(a) ≤Mk for all a ∈Mk. Then any stationary point
q∗θ of the entropy-regularized objective satisfies

q∗θ(Mk) ≥
β

β + logMk − logmk
δk.

Proof. We analyze the entropy-regularized objective by partitioning qθ across data modes. Define
the mode probability and conditional distribution as

qk := qθ(Mk), qθ(a|Mk) :=
qθ(a)

qk
.

This allows us to decompose the objective into three interpretable terms:

J(qθ) =

K∑
k=1

qkEa∼qθ(·|Mk)[logDϕ(a)] + β

K∑
k=1

qkH(qθ(·|Mk))− β

K∑
k=1

qk log qk,

where the first term reflects discriminator alignment, the second captures within-mode entropy, and
the third penalizes extremely small mode probabilities.

Now consider the stationary condition w.r.t. each qk. Differentiating J with respect to qk yields

∂J

∂qk
= Ea∼qθ(·|Mk)[logDϕ(a)]− β(1 + log qk) = 0,

which gives the closed-form stationary point

q∗k = exp
(Ea∼qθ(·|Mk)[logDϕ(a)]

β
− 1
)
.

Since the discriminator is bounded on eachMk, we use

logmk ≤ Ea∼qθ(·|Mk)[logDϕ(a)] ≤ logMk

to obtain the lower bound

q∗k ≥ exp
( logmk

β
− 1
)
.

Finally, incorporating the data measure δk of each mode, we derive the guaranteed minimum allo-
cation:

q∗θ(Mk) ≥
β

β + logMk − logmk
δk,

ensuring that no data mode is neglected during training.

F.2.5 GENERALIZATION UNDER TEMPORAL EVOLUTION

Lemma F.3 (GAN mode collapse). A standard GAN trained solely on Pdata produces samples con-
centrated in high-density regions, failing to cover rare or unseen anomalies. In particular, if P̂θ is
the generator distribution, then

supp(P̂θ) ⊆ supp(Pdata),

leading to mode collapse and poor anomaly coverage.
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Theorem F.3 (RAG generalization). Assume the generator policy is Gaussian,
πθ(a|s) = N (µθ(s),Σθ(s)),

so that πθ(a|s) > 0 for all a ∈ Rd. Let r(a) = Dϕ(a) be the reward, and suppose there exists a
region Ω such that

Pdata(Ω) = 0, but Panom(Ω) > 0, and r(a) ≥ c > 0 ∀a ∈ Ω.

Then under policy gradient updates
∇θJ(πθ) = Es,a∼πθ

[
∇θ log πθ(a|s) r(a)

]
,

the generator distribution P̂θ assigns strictly positive probability mass to Ω after finitely many up-
dates. Hence, supp(P̂θ) expands beyond supp(Pdata), improving temporal generalization to unseen
anomalies.

Proof. Since πθ(a|s) is Gaussian with non-degenerate covariance Σθ(s), its support is the entire
Rd. Thus, for any measurable Ω ⊆ Rd,

πθ(a ∈ Ω | s) > 0.

By assumption, r(a) ≥ c > 0 for all a ∈ Ω. Therefore the policy gradient satisfies

∇θJ(πθ) = Es,a∼πθ

[
∇θ log πθ(a|s)r(a)

]
≥ cEs,a∼πθ

[
∇θ log πθ(a|s)1Ω(a)

]
.

The expectation is nonzero since πθ(a|s) has positive density in Ω. Thus, gradient ascent increases
πθ(a|s) for a ∈ Ω. Equivalently, the induced generator distribution P̂θ places increasing probability
mass on Ω:

P̂ t+1
θ (Ω) > P̂ t

θ(Ω), ∀t,
until convergence. Consequently, after finitely many updates, P̂θ(Ω) > 0 even though Pdata(Ω) = 0.

Since the reward r(a) is updated over time to reflect evolving anomalies, this expansion property
holds at each timestep, allowing P̂θ to adapt to temporally shifting anomaly distributions.

Remark. This theorem formalizes that combining adversarial learning with RL-guided exploration
guarantees support expansion beyond the training data distribution, thereby mitigating GAN mode
collapse and enhancing robustness to temporal evolution.

F.3 THEORETICAL DETAILS OF WAVELET-ENHANCED FUSION PREDICTOR

This appendix formalizes the theoretical properties of the WFP module introduced in Section 4.3.
Assumption F.3 (Signal model and wavelet separation). Each feature vector v admits a decompo-
sition

v = s+ a,

where s lies in the low-pass subspace and a in the high-pass subspace of an orthonormal DWT
basis.
Lemma F.4 (Energy preservation and separation). Under Assumption F.3, Parseval’s theorem im-
plies

∥v∥22 = ∥s∥22 + ∥a∥22 and Hv
high = a.

Proposition F.3 (SNR amplification). Let Hv
fusion = v + αa with α ≥ 0. Then

∥Projhigh(H
v
fusion)∥2

∥Projlow(H
v
fusion)∥2

=
(1 + α)∥a∥2
∥s∥2

≥ ∥a∥2
∥s∥2

.

Theorem F.4 (Improved detection under linear scoring). Consider a linear detector g(v) = w⊤a,
∥w∥2 = 1. Under Assumption F.3, replacing v by Hv

fusion scales the anomaly score to gα(v) =
(1 + α)g(v), while the low-pass contribution is unchanged. Therefore, for any fixed false-positive
rate, the true-positive rate is non-decreasing in α.

Proof. The high-frequency projection scales linearly with (1+α). For any anomaly with g(v) ̸= 0,
this monotone scaling preserves or improves separability between normal and anomalous samples
under linear scoring.
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G ADDITIONAL EXPERIMENTAL SETTINGS

In this section, we provide additional details about the experimental settings.

G.1 EXPERIMENTAL SETUP

The value of α is varied from 0 to 1 in increments of 0.1, and AUC is measured on three datasets:
Wikipedia, Reddit, and Mooc. Each experiment is conducted three times to mitigate randomness,
and the average AUC is reported. The experiments were conducted using NVIDIA GeForce RTX
4090 (24GB GDDR5X)-GPU. All experiments were run on a single GPU setup with batch sizes op-
timized for the 10GB memory capacity. The implementation leverages PyTorch’s GPU acceleration
for both the GCN operations and GAN training components.

G.2 DATASETS

We use following datasets for the experiments:

(i) Wikipedia Wang et al. (2020): This dataset tracks user edits on wiki pages. Anomalous nodes
represent users who suddenly increase their editing frequency or switch topics, leading to shifts
in editing patterns. Concept drift occurs as users’ behavior changes over time, making anomaly
detection more challenging.

(ii) Reddit Nguyen et al. (2020): This dataset records user interactions in subreddits, including
posts, comments, and voting activities. Anomalous users are those whose posting behavior drasti-
cally changes, such as posting too frequently or shifting focus to new topics. Concept drift occurs
as trends or topics within subreddits evolve.

(iii) Mooc Toghani et al. (2022): This dataset logs student interactions on MOOC platforms.
Anomalous students exhibit unusual engagement patterns, such as increased activity during exams
or reduced participation during breaks. Concept drift arises from changes in student behavior and
course content over time.

G.3 BASELINES

In this section, we introduce the baselines used in the experiments.

(i) TGAT Xu et al. (2020a) utilizes the self-attention mechanism and introduces an innovative time-
encoding technique based on Bochner’s theorem from harmonic analysis.

(ii) GDN Ding et al. (2021b) employs a limited number of labeled anomalies to ensure statistically
significant distinctions between abnormal and normal nodes.

(iii) SAD Tian et al. (2023) is a comprehensive anomaly detection framework tailored for dynamic
graphs. It integrates a time-equipped memory bank with a pseudo-label contrastive learning module,
effectively harnessing large unlabeled samples to identify anomalies within graph streams.

(iv) TADDY Liu et al. (2021) formulates a node encoding that encapsulates both spatial and tem-
poral knowledge. It utilizes a solitary transformer model to grasp the interlinked spatial-temporal
information.

(v) MAMF Hong et al. (2025) leverages Generative Adversarial Models (GANs) to augment the
training with synthetic anomaly samples for learning anomaly patterns and combines meta-learning
to combat concept drift.

These methods serve as baselines for comparison with our proposed framework to assess its effec-
tiveness and performance in anomaly detection. By evaluating our framework against these diverse
techniques, we can demonstrate its superiority and contribution.

G.4 EVALUATION METRICS

We use the following metrics for the experiments:
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Using AUC as the primary metric in the ablation study allows a consistent comparison with base-
line tasks. However, our extended evaluation using F1-score, AUPR, and Precision adds a richer
perspective on TADNet’s performance in different aspects. Specifically:

Precision: Shows the model’s ability to correctly identify anomalies among the predicted anoma-
lies. High precision indicates a lower rate of false positives, suggesting that TADNet is adept at
distinguishing true anomalies from normal data under ablation settings.

The precision metric is mathematically defined as:

Precision =
TP

TP + FP
(15)

where TP (True Positives) is the number of correctly identified anomalies, and FP (False Positives)
is the number of normal instances incorrectly classified as anomalies. High precision indicates that
the model produces few false alarms when predicting anomalies.

F1-Score: The F1-score is the harmonic mean of precision and recall, offering a single metric that
balances the trade-off between detecting true anomalies and avoiding false alarms. It is especially
useful for evaluating performance on imbalanced datasets, where both false positives and false neg-
atives are important. The F1-score is calculated as:

F1 = 2 · Precision× Recall

Precision + Recall
(16)

where recall is defined as:
Recall =

TP

TP + FN
(17)

Here, TP (True Positives) denotes correctly detected anomalies, and FN (False Negatives) denotes
missed anomalies. By summarizing both precision and recall, the F1-score provides a comprehen-
sive assessment of the model’s anomaly detection capability across different ablation settings.

AUPR: The Area Under the Precision-Recall Curve (AUPR) is especially important for evaluating
models on imbalanced datasets, where anomalies are rare. A high AUPR indicates that the model
maintains strong detection performance even when the feature set or reward mechanisms are re-
duced, demonstrating robustness in sparse anomaly scenarios.

AUPR is calculated by plotting precision versus recall at different threshold values and measuring
the area under this curve. For a set of thresholds {ti}, AUPR can be estimated using the trapezoidal
rule as follows:

AUPR =

n−1∑
i=1

(Recalli+1 − Recalli) ·
Precisioni+1 + Precisioni

2
(18)

where Precisioni and Recalli are the precision and recall at threshold ti. This provides a single
value summarizing the trade-off between precision and recall across all thresholds.

H ADDITIONAL ABLATION EXPERIMENT

H.1 WIKIPEDIA DATASET ANALYSIS

• TAD-NET(–H) shows significant drops in precision (Fig. 6a) and AUPR (Fig. 6c), demon-
strating that high-frequency feature amplification is crucial for detecting subtle anomalies
in dynamic graphs.

• TAD-NET(–R) exhibits reduced F1-score (Fig. 6b), confirming that the reinforcement
learning mechanism is essential for generating diverse anomaly samples that improve
model generalization.

• TAD-NET(–B) performs worst across all metrics, highlighting the complementary nature
of these components - their combined removal causes the most severe performance degra-
dation.

The consistent performance hierarchy TAD-NET ¿ (–H), (–R) ¿ (–B) reveals:
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• High-frequency features (WFP module) are particularly effective for precision-oriented
tasks

• Reinforcement-based generation (RAG module) significantly boosts recall and overall bal-
anced performance

• The full model’s synergy between these components provides optimal anomaly detection
in dynamic environments

(a) Precision on Wikipedia (b) F1 on Wikipedia (c) AUPR on Wikipedia

Figure 6: Extended evaluations on Wikipedia dataset

H.2 REDDIT DATASET ANALYSIS

• TAD-NET(–H) shows notable decreases in precision (Fig. 7a) and AUPR (Fig. 7c), prov-
ing that high-frequency feature extraction is vital for identifying nuanced anomalies in
Reddit’s rapidly evolving discussion threads.

• TAD-NET(–R) demonstrates declines in F1-score (Fig. 7b), verifying that the reinforce-
ment learning component is critical for producing varied anomaly examples that enhance
model adaptability to Reddit’s diverse content patterns.

• TAD-NET(–B) exhibits the poorest performance across all metrics, emphasizing the inter-
dependent relationship between these mechanisms - their simultaneous elimination leads
to the most substantial performance deterioration.

The consistent performance ranking TAD-NET ¿ (–H), (–R) ¿ (–B) indicates:

• High-frequency analysis (WFP module) is especially valuable for precise anomaly detec-
tion in Reddit’s volatile content environment

• Reinforcement-augmented sample generation (RAG module) substantially improves com-
prehensive detection capability

• The complete model’s integrated approach delivers superior anomaly identification in Red-
dit’s dynamic interaction networks

(a) Precision on Reddit (b) F1 on Reddit (c) AUPR on Reddit

Figure 7: Extended evaluations on Reddit dataset
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H.3 MOOC DATASET ANALYSIS

• TAD-NET(–H) displays marked reductions in precision (Fig. 8a) and AUPR (Fig. 8c),
confirming that high-frequency feature analysis is essential for detecting subtle anomalous
patterns in Mooc’s complex network structures.

• TAD-NET(–R) reveals decreased F1-score (Fig. 8b), establishing that the reinforcement
learning framework is indispensable for creating comprehensive anomaly samples that
strengthen model robustness on Mooc’s diverse data.

• TAD-NET(–B) shows the weakest performance across all evaluation metrics, underscoring
the synergistic relationship between these components - their joint removal results in the
most significant performance decline.

The consistent performance gradient TAD-NET>(–H)>(–R)>(–B) demonstrates:

• High-frequency feature processing (WFP module) is particularly effective for precise
anomaly identification in Mooc’s specialized network environment

• Reinforcement-enhanced generation (RAG module) dramatically improves overall detec-
tion reliability

• The complete model’s integrated architecture provides optimal anomaly recognition capa-
bilities for Mooc’s unique dataset characteristics

(a) Precision on Mooc (b) F1 on Mooc (c) AUPR on Mooc

Figure 8: Extended evaluations on Mooc dataset.

I DETAILED ANALYSIS OF PARAMETER SENSITIVITY

In this appendix, we present a detailed analysis focusing on the hyperparameter α and its impact
on AUC performance, as a supplementary exploration following the parameter analysis presented
in the main text. While the main text primarily examines the relationship between α and AUC, this
appendix delves deeper into the sensitivity of AUC to variations in α across different datasets. Addi-
tional metrics will be analyzed in subsequent sections to provide a more comprehensive evaluation.

I.1 THEORETICAL MOTIVATION

The hyperparameter α is designed to balance the contribution of wave features in the node embed-
ding process. Intuitively, increasing α enhances the model’s sensitivity to high-frequency features,
which are crucial for detecting fine-grained anomalies. However, excessively large values may in-
troduce noise, while overly small values may fail to capture rapid variations. Hence, identifying the
optimal α is vital for achieving balanced and accurate anomaly detection.

I.2 RESULTS AND INTERPRETATION

Wikipedia Dataset: The AUC shows a steady increase as α rises, peaking at 0.9821 when α = 1.0.
This positive correlation indicates that the model benefits from incorporating more wave features,
which effectively capture fine-grained temporal changes inherent in Wikipedia’s dynamic graph
structure.
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Reddit Dataset: The AUC increases sharply at lower values of α (0.0 to 0.2), reaching a peak
at 0.9261. This trend suggests that while some wave feature incorporation is beneficial, overly
emphasizing them does not further enhance performance, likely due to the noise introduced at higher
values.

Mooc Dataset: The AUC remains stable between 0.7035 and 0.7492 regardless of α, indicating that
the wave feature has a limited impact on anomaly detection in this dataset. This stability implies that
Mooc’s data distribution may inherently lack high-frequency variations, making wave amplification
less useful.

I.3 CORRELATION ANALYSIS

The correlation between α and AUC also varies across datasets. In the Wikipedia Dataset, there is
a weak positive correlation, indicating stable performance as α increases. In contrast, the Reddit
Dataset shows a strong positive correlation at lower values, with a rapid rise in AUC when α is
between 0.0 and 0.2. The Mooc Dataset exhibits almost no correlation, emphasizing the model’s
robustness to α changes in this context.

I.4 CROSS-DATASET COMPARISON

The distinct patterns observed across datasets highlight the importance of contextualizing parameter
tuning. While the Wikipedia and Reddit datasets benefit from incorporating wave features, the Mooc
dataset demonstrates intrinsic stability, making fine-tuning less critical. The observed differences
underline the importance of adaptive tuning strategies when deploying TADNet on diverse data
sources.

I.5 RECOMMENDATIONS

Based on the above analysis, we recommend: 1. Setting α around 0.8 to 1.0 for Wikipedia, as
higher values generally improve performance. 2. Fine-tuning α in the range of 0.0 to 0.2 for Reddit
to achieve optimal results. 3. Choosing a stable value (e.g., 0.8) for Mooc, as performance remains
largely unaffected by variations.

These guidelines ensure that TADNet maintains robust performance across various dynamic graph
scenarios, leveraging wave features where they are most beneficial while avoiding overfitting.

J ADDITIONAL PARAMETER SENSITIVITY ANALYSIS

This appendix presents the complete parameter sensitivity analysis for the proposed model. The
analysis evaluates the model’s performance across four key metrics: AUPR (Area Under Precision-
Recall Curve), F1 Score, and Precision.

J.1 AUPR ANALYSIS

The Area Under the Precision-Recall Curve (AUPR) evaluates the model’s ability to maintain high
precision and recall across thresholds. For the Wikipedia and Reddit datasets, AUPR peaks robustly
between α = 0.6 and 0.7, indicating that moderate emphasis on high-frequency wavelet features
effectively enhances the model’s detection capability. The performance at α = 0.9 is notably lower
for these datasets, showing decreased robustness beyond this range. In contrast, the Mooc dataset
benefits from a higher α around 0.9, where AUPR reaches its maximum, suggesting that in noisier
and more complex environments, stronger reliance on high-frequency components is necessary to
improve anomaly detection.

J.2 F1-SCORE ANALYSIS

The F1-score, which balances precision and recall, reaches its maximum within α = 0.6 to 0.7
for Wikipedia and Reddit, further confirming that this range offers the best trade-off between true
anomaly detection and false alarm avoidance. For Mooc, the optimal F1-score shifts to α near 0.9,
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(a) Mooc (b) Reddit (c) Wikipedia

Figure 9: Comparison of AUPR values for different α across datasets

consistent with the AUPR results and highlighting dataset-dependent sensitivity. These findings
suggest that tuning α based on dataset characteristics is crucial to fully leverage the wavelet-based
high-frequency features for anomaly detection.

(a) Mooc (b) Reddit (c) Wikipedia

Figure 10: Comparison of F1-score values for different α across datasets

J.3 PRECISION ANALYSIS

Precision measures the proportion of correctly identified anomalies among all positive predictions.
For the Wikipedia and Reddit datasets, precision peaks around α = 0.6 ∼ 0.7, indicating that a
moderate weighting of high-frequency details effectively reduces false positives. In contrast, the
Mooc dataset achieves its highest precision near α = 0.9, reflecting its noisier nature that neces-
sitates stronger emphasis on anomaly-sensitive high-frequency components to improve prediction
performance.

(a) Mooc (b) Reddit (c) Wikipedia

Figure 11: Comparison of Precision values for different α across datasets

In summary, the hyperparameter α plays a crucial role in balancing the original node features and
the high-frequency wavelet components extracted by the WFP module. Across multiple evaluation
metrics, α values in the range of 0.6 to 0.7 generally provide the best performance for Wikipedia
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and Reddit datasets, while Mooc requires a slightly higher α (around 0.9) to optimize detection re-
sults. This analysis highlights the importance of selecting an appropriate α to maximize the model’s
robustness and generalizability for dynamic network anomaly detection.

K LIMITATIONS

While TAD-NET demonstrates strong performance in dynamic graph anomaly detection, several
limitations remain. First, the current framework faces scalability challenges when applied to very
large-scale graphs, as both memory and computational requirements increase significantly with
graph size. Second, although TAD-NET is effective for the anomaly types present in our benchmark
datasets, its generalizability to a broader range of anomaly patterns—such as collective, contextual,
or evolving anomalies—requires further investigation and potential methodological enhancements.
Third, the interpretability of the model’s predictions is limited, making it difficult for practitioners
to understand the underlying reasons for detected anomalies or to gain insights into the decision
process.

To address these limitations, future work will focus on: (1) developing more efficient algorithms and
distributed implementations to enable scalability to massive graphs; (2) extending the framework to
better capture and distinguish diverse and complex anomaly types; and (3) incorporating explainable
AI techniques to enhance the interpretability and transparency of anomaly detection results, thereby
facilitating real-time and actionable insights in practical applications.

28


	Introduction
	Related work
	Preliminaries
	TAD-Net
	Temporal Feature Extractor
	Reinforced Anomaly Generator
	Wavelet-enhanced Fusion Predictor
	Model Training

	Experimentation
	Experimental Settings
	Main Results
	Ablation Studies
	Parameter Sensitivity Study
	Concept Drift Resistance Analysis

	Conclusion
	Appendix: Use of Large Language Models (LLMs)
	Background: Preliminary Concepts
	Concept Drift in Dynamic Graphs
	Addressing Concept Drift

	Notations
	TAD-Net Workflow
	Time Complexity Analysis
	Temporal Feature Extractor
	Reinforced Anomaly Generator
	Wavelet-Enhanced Fusion Predictor
	Overall Complexity of TAD-Net

	Theoretical Analyses
	Temporal Feature Extractor
	Theoretical Details of Reinforced Anomaly Generator
	Notation and Setup
	Unbiased Policy-Gradient
	Reward-Regularized Adversarial Objective
	Minimum Mass Guarantee on Data Modes
	Generalization under Temporal Evolution

	Theoretical Details of Wavelet-enhanced Fusion Predictor

	Additional Experimental Settings
	Experimental Setup
	Datasets
	Baselines
	Evaluation Metrics

	Additional Ablation Experiment
	Wikipedia Dataset Analysis
	Reddit Dataset Analysis
	Mooc Dataset Analysis

	Detailed Analysis of Parameter Sensitivity
	Theoretical Motivation
	Results and Interpretation
	Correlation Analysis
	Cross-Dataset Comparison
	Recommendations

	Additional Parameter Sensitivity Analysis
	AUPR Analysis
	F1-score Analysis
	Precision Analysis

	Limitations

