
Meta-Learning Priors for Safe Bayesian Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract: In robotics, optimizing controller parameters under safety constraints1

is an important challenge. Safe Bayesian optimization (BO) quantifies uncertainty2

in the objective and constraints to safely guide exploration in such settings. Hand-3

designing a suitable probabilistic model can be challenging however. In the pres-4

ence of unknown safety constraints, it is crucial to choose reliable model hyper-5

parameters to avoid safety violations. Here, we propose a data-driven approach to6

this problem by meta-learning priors for safe BO from offline data. We build on7

a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty8

quantification in settings of data scarcity. As core contribution, we develop a novel9

framework for choosing safety-compliant priors in a data-riven manner via empir-10

ical uncertainty metrics and a frontier search algorithm. On benchmark functions11

and a high-precision motion system, we demonstrate that our meta-learnt priors12

accelerate convergence of safe BO approaches while maintaining safety.13

Keywords: Meta-learning, Safety, Controller tuning, Bayesian Optimization14

1 Introduction15

Optimizing a black-box function with as few queries as possible is a ubiquitous problem in science16

and engineering. Bayesian Optimization (BO) is a promising paradigm, which learns a probabilistic17

surrogate model (often a Gaussian process, GP) of the unknown function to guide exploration. BO18

has been successfully applied for optimizing sensor configurations [1, 2] or tuning the parameters of19

robotic controllers [3, 4, 5, 6, 7]. However, such real-world applications are often subject to safety20

constraints which must not be violated in the process of optimization, e.g., the robot not getting dam-21

aged. Often, the dependence of the safety constraints on the query inputs is a priori unknown and22

can only be observed by measurement. To cope with these requirements, safe BO methods [8, 9, 10]23

model both the objective and constraint functions with GPs. The uncertainty in the constraint is24

used to approximate the feasible region from within, to guarantee that no safety violations occur.25

Therefore, a critical requirement for safe BO is the reliability of the uncertainty estimates of our26

models. Typically, it is assumed that a correct GP prior, upon which the uncertainty estimates hinge,27

is exogenously given [e.g., 8, 9, 10]. In practice, however, appropriate choices for the kernel variance28

and lengthscale are unknown and typically have to be chosen very conservatively or hand-tuned by29

trial and error, a problematic endeavour in a safety-critical setting. A too conservative choice dra-30

matically reduces sample efficiency, whereas overestimating smoothness may risk safety violations.31

Addressing these shortcomings, we develop an approach for meta-learning informative, but safe,32

GP priors in a data-driven way from related offline data. We build on the F-PACOH meta-learning33

method [11] which is capable of providing reliable uncertainty estimates, even in the face of34

data-scarcity and out-of-distribution data. However, their approach still relies on an appropriate35

kernel choice on which it falls back in the absence of sufficient data. We propose a novel framework36

for choosing safety-compliant kernel hyper-parameters in a data-driven manner based on calibration37

and sharpness metrics of the confidence intervals. To optimize these uncertainty metrics, we devise a38

frontier search algorithm that efficiently exploits the monotone structure of the problem. The result-39

ing Safe Meta-Bayesian Optimization (SAMBO) approach can be instantiated with existing safe BO40

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.

methods and utilize the improved, meta-learned GPs to perform safe optimization more efficiently.41

In our experiments, we evaluate and compare our proposed approach on benchmark functions as42

well as controller tuning for a high-precision motion system. Throughout, SAMBO significantly43

improves the query efficiency of popular safe BO methods, without compromising safety.44

2 Related Work45

Safe BO aims to efficiently optimize a black-box function under safety-critical conditions, where un-46

known safety constraints must not be violated. Constrained variants of standard BO methods [12, 13,47

14] return feasible solutions, but do not reliably exclude unsafe queries. In contrast, SAFEOPT [8, 9]48

and related variants [15] guarantee safety at all times and have been used to safely tune controllers49

in various applications [e.g., 16, 17]. While SAFEOPT explores in an undirected manner, GOOSE50

[10, 18] does so by expanding the safe set in a goal-oriented fashion. All mentioned methods rely on51

GPs to model the target and constraint function and assume that correct kernel hyper-parameters are52

given. Our work is complementary: We show how to use related offline data to obtain informative53

and safe GP priors in a data-driven way that makes the downstream safe BO more query efficient.54

Meta-Learning. Common approaches in meta-learning amortize inference [19, 20, 21], learn a55

shared embedding space [22, 23, 24, 25] or a good neural network initialization [26, 27, 28, 29].56

However, when the available data is limited, these approaches a prone to overfit on the meta-57

level. A body of work studies meta-regularization to prevent overfitting in meta-learning58

[30, 31, 32, 33, 34, 35]. Such meta-regularization methods prevent meta-overfitting for the mean59

predictions, but not for the uncertainty estimates. Recent meta-learning methods aim at providing60

reliable confidence intervals even when data is scarce and non-i.i.d [11, 36, 37]. These methods ex-61

tend meta-learning to interactive and life-long settings. However, they either make unrealistic model62

assumptions or hinge on hyper-parameters whose improper choice is critical in safety constraint set-63

tings. Our work uses F-PACOH [11] to meta-learn reliable GP priors, but removes the need for hand-64

specifying a correct hyper-prior by choosing its parameters in a data-driven, safety-aware manner.65

3 Problem Statement and Background66

3.1 Problem Statement67

We consider the problem of safe Bayesian Optimization (safe BO), seeking the global minimizer68

x∗ = argmin
x∈X

f(x) s.t. q(x) ≤ 0 (1)

of a function f : X → R over a bounded domain X subject to a safety constraint q(x) ≤ 0 with69

constraint function q : X → R. For instance, we may want to optimize the controller parameter of a70

robot without subjecting it to potentially damaging vibrations or collisions. During the optimization,71

we iteratively make queries x1, ...,xT ∈ X and observe noisy feedback f̃1, ..., f̃T and q̃1, ..., q̃T ,72

e.g., via f̃t = f(xt) + ϵf and q̃t = q(xt) + ϵq where ϵf , ϵq is σ2 sub-Gaussian noise [38, 39].73

In our setting, performing a query is assumed to be costly, e.g., running the robot and observing74

relevant measurements. Hence, we want to find a solution as close to the global minimum in as few75

iterations as possible without violating the safety constraint with any query we make.76

Additionally, we assume to have access to datasets D1,T1
, ...,Dn,Tn

with observations from n sta-77

tistically similar but distinct data-generating systems, e.g., data of the same robotic platform under78

different conditions. Each dataset Di,Ti = {(xi,1, f̃i,1, q̃i,1), ..., (xi,Ti , f̃i,Ti , q̃i,Ti)} consists of Ti79

measurement triples, where f̃i,t = fi(xi,t) + ϵfi and q̃i,t = qi(xi,t) + ϵqi are the noisy target and80

constraints observations. We assume that the underlying functions f1, ..., fn and q1, ..., qn which81

generated the data are representative of our current target and constraint functions f and q, e.g., that82

they are all i.i.d. draws from the same stochastic process. However, the data within each dataset83

may be highly dependent (i.e., non-i.i.d.). For instance, each Di,Ti may correspond to the queries84

and observations from previous safe BO sessions with the same robot under different conditions.85

In this paper, we ask the question of how we can harness such related data sources to make safe BO86

on our current problem of interest more query efficient, without compromising safety.87

2

3.2 Safe Bayesian Optimization Methods88

Safe BO methods construct a Bayesian surrogate model of the functions f and q based on previous89

observations Dt = {(xt′ , f̃t′ , q̃t′)}t′<t. Typically, a Gaussian Process GP(f(x)|m(x), k(x,x′))90

with mean m(x) and kernel function k(x,x′) is employed to form posterior beliefs p(f(x)|Dt) =91

N (µf
t (x), (σ

f
t (x))

2) and p(q(x)|Dt) = N (µq
t (x), (σ

q
t (x))

2) over function values [40]. Based on92

the predictive posterior, we can form confidence intervals (CIs) to the confidence level α ∈ [0, 1]93

CIfα(x|Dt) :=
[
µf
t (x)± βf (α)σf

t (x)
]

(2)

where βf (α), the scaling of the standard deviation, is set such that f(x) is in the CI with probability94

α. For BO, we often employ a shift invariant kernel k(x,x′) = νϕ(||x−x′||/l), where ν is its vari-95

ance, l the lengthscale and ϕ a positive function, e.g., squared exponential (SE) ϕ(z) = exp(−z2).96

BO methods typically choose their query points by maximizing an acquisition function based on97

p(f(x)|Dt), trading-off exploration and exploitation [41, 42, 43, 44]. When we have safety con-98

straints, we need to maintain a safe set St(α) = {x ∈ X |µq
t (x)+ βq(α)σq

t (x) < 0} which contains99

parts of the domain we know to be safe with high-probability α. To maintain safety, we can only100

query points within the current St(α). In addition, we need to explore w.r.t. q so that we can expand101

St. E.g., SAFEOPT [8, 9, 16] computes a safe query candidate that optimizes the acquisition function102

for f as well as a query candidate that promises the best expansion of St. Then, it selects the one103

with the highest uncertainty. While SAFEOPT expands St undirectedly, GOOSE [10, 18] does so in104

a more directed manner to avoid unnecessary expansion queries, irrelevant for minimizing f . In ad-105

dition to the pessimistic St, it also maintains an optimistic safe set which is used to calculate a query106

candidate xopt
t that maximizes the acquisition function for f . If xopt

t is outside of St, it chooses safe107

query points aiming at expanding St in the direction of xopt
t . See Appx. A for more details.108

3.3 Meta-Learning GP Priors109

In meta-learning [45, 46], we aim to extract prior knowledge (i.e., inductive bias) from a set of110

related learning tasks. Typically, the meta-learner is given such learning tasks in the form of n111

datasets D1,T1
, ...,Dn,Tn

with Di,Ti
= {(xi,t, yi,t)}Ti

t=1 and outputs a refined prior distribution or112

hypothesis space which can then be used to accelerate inference on a new, but related, learning task.113

Prior work proposes to meta-learning GP priors [47, 48, 34], tough, fails to maintain reliable114

uncertainty estimates when data is scarce and/or non-i.i.d.. The recently introduced F-PACOH115

method [11] overcomes this issue, by using a regularization approach in the function space. As116

previous work [e.g., 49, 48], they use a learnable GP prior ρθ(h) = GP(h(x)|mθ(x), kθ(x,x
′))117

where the mean and kernel function are neural networks with parameters θ and employ the marginal118

log-likelihood to fit the ρθ(h) to the meta-training data. However, during the meta-learning, they119

regularize ρθ(h) towards a Vanilla GP hyper-prior ρ(h) = GP(h(x)|0, k(x,x′)) with the SE kernel.120

To do so, they uniformly sample random measurement sets X = [x1, ...,xm]
i.i.d.∼ U(X) from the121

domain and compare the GPs finite marginals ρθ(hX) = pθ(h(x1),, h(xm)) and ρ(hX) through122

their KL-divergence. The resulting meta-learning loss with the functional KL regularizer123

L(θ):= 1

n

n∑
i=1

(
− 1

Ti
lnZ(Di,Ti , ρθ)︸ ︷︷ ︸

marginal log-likelihood

+

(
1√
n
+

1

nTi

)
EX

[
KL[ρθ(h

X)||ρ(hX)]
]︸ ︷︷ ︸

functional KL-divergence

)
(3)

makes sure that, in the absence of sufficient meta-training data, the learned GP behaves like a Vanilla124

GP. Overall, this allows us to meta-learn a more informative GP prior which still yields reliable125

confidence intervals, even if the meta-training data was collected via safe BO and is thus not i.i.d.126

4 Choosing the Safe Kernel Hyper-Parameters127

Important for safe BO is the reliability of the uncertainty estimates of our objective and constraint128

models. For GPs, the kernel hyper-parameters with the biggest influence on the CIs. If the kernel129

variance ν is chosen too small and/or the lengthscale l to large, our models become over-confident130

3

and the corresponding BO unsafe. In the reverse case, the CIs become too conservative and safe BO131

requires many queries to progress. Despite the assumption commonly made in earlier work, [e.g., 8,132

9, 10], appropriate choices for ν and l are unknown. In practice, they are typically chosen conserva-133

tively or hand-tuned by trial and error, problematic in safety-critical settings. Aiming to address this134

issue, we develop a framework for choosing the kernel hyper-parameters in a data-driven manner.135

4.1 Assessing kernel hyper-parameters: Calibration and sharpness136

Our approach is based on the calibration and sharpness of uncertainty estimates [see e.g. 50, 51, 52,137

53]. Naturally, if we construct CIs to the confidence level α, we want that at least an α percentage of138

(unseen) observations to fall within these CIs. If this holds in expectation, we say that the uncertainty139

estimates are calibrated. If the empirical percentage is less than α, it indicates that our model’s un-140

certainty estimates are over-confident and we are likely to underestimate the risk of safety violations.141

To empirically assess how calibrated a probabilistic regression model with hyper-parameters ω, con-142

ditioned on a training dataset Dtr, is, we compute its calibration frequency on a test dataset Dtest:143

calib-freq(Dtr,Dtest,ω) :=
1

|A|
∑
α∈A

1

 1

|Dtest|
∑

(x,y)∈Dtest

[
1
(
y ∈ CIfα

(
x|Dtr,ω

))]
≥ α

 . (4)

Here, A ⊂ [0, 1] is a set of relevant confidence levels (in our case 20 values equally spaced between144

0.8 and 1.0). Since the CIs of our model need to be calibrated at any iteration t during the BO145

and for any task we may face, we choose the best empirical estimate we can. We compute the146

average calibration frequency across all meta-training datasets and for any sub-sequence of points147

within a dataset. In particular, for any task i = 1, ..., n and t = 1, ..., Ti − 1 we condition/train148

our model on the data points Di,≤t = {(xi,t′ , yi,t′)}tt′=1 and use the remaining data points149

Di,>t = {(xi,t′ , yi,t′)}Ti

t′=t+1 to compute the calibration frequency. Overall, this gives us150

avg-calib({Di,Ti
}ni=1,ω) :=

1

n

n∑
i=1

1

Ti − 1

Ti−1∑
t=1

calib-freq(Di,≤t,Di,>t,ω) . (5)

While the calibration captures how reliable the uncertainty estimates are, it does not reflect how151

useful the confidence intervals are for narrowing down the range of possible function values. For152

instance, a predictor that always outputs a mean with sufficiently wide confidence intervals is153

calibrated, but useless for BO. Hence, we also consider the sharpness of the uncertainty estimates154

which we empirically quantify through the average predictive standard deviation. Similar to (5),155

we average over all tasks and data sub-sequences within each task:156

avg-std({Di,Ti}ni=1,ω) :=
1

n

n∑
i=1

1

Ti − 1

Ti−1∑
t=1

1

|Di,>t|
∑

(x,y)∈Di,>t

σ(x|Di,≤t,ω) . (6)

The avg-std measures how concentrated the uncertainty estimates are and, thus, constitutes a natural157

complement to calibration which can be simply achieved by wide/loose confidence intervals.158

4.2 Choosing good hyper-parameters via Frontier search159

Based on the two empirical quantities introduced above, we can optimize the hyper-parameters ω of160

our model as to maximize sharpness (i.e., minimize the avg-std) subject to calibration [50]:161

min
ω

avg-std({Di,Ti
}ni=1,ω) s.t. avg-calib({Di,Ti

}ni=1,ω) ≥ 1 (7)

Since computing avg-std({Di,Ti
}ni=1,ω) and avg-calib({Di,Ti

}ni=1,ω) requires solving the the GP162

inference problem many times, each query is computationally demanding. Hence, we need an opti-163

mization algorithm for (7) that requires as few queries as possible to get close to the optimal solution.164

We develop an efficient frontier search (FS) algorithm that exploits the monotonicity properties165

of this optimization problem. Both avg-std and avg-calib are monotonically increasing in the166

kernel variance ν and decreasing in the lengthscale l1. By setting z = (−l, ν) and writing167

1Note that the monotonicity of the calibation frequency in l is only an empirical heuristic that holds in
almost all cases if ν is at least as big as the variance of the targets y in a dataset.

4

Algorithm 1 FRONTIERSEARCH (details in Appendix C)
Input: Domain bounds zl, zu s.t. zl ≤ z∗ ≤ zu

1: Qu ← {zu},Ql ← {zl}
2: for k = 1, ...,K do
3: (zr, z

′
r)← LARGESTMAXMINRECT(Ql,Qu) // Largest max-min rect betw. frontiers

4: zq ← BESTWORSTCASEQUERY(zr, z
′
r,Ql,Qu) // Best query point to split rectangle

5: if c(zq) ≥ 1 then
6: Qu ← PRUNE(Qu ∪ {zq})
7: else
8: Ql ← PRUNE(Ql ∪ {zq})

Return: argminz∈Qu s(z)

0.10 1.00
kernel lengthscale

1.0

2.0

4.0

ke
rn

el
 v

ar
ia

nc
e

iter 2

0.10 1.00
kernel lengthscale

1.0

2.0

4.0
iter 5

0.10 1.00
kernel lengthscale

1.0

2.0

4.0
iter 10

0.10 1.00
kernel lengthscale

1.0

2.0

4.0
iter 20

upper front.
lower front.
safety border
best solution
optimum

Figure 1: Frontier search (FS) on the kernel lengthscale and variance for the constraint model Argus
robot. Red: areas ruled out, because unsafe. Green: Safe areas that are ruled out since dominated by
better safe queries. After a few iterations, FS has already shrunk the set of possible optima (white
area between fronts) to points close to the safety boarder and picked nearly optimal solution (cross).

s(z) = avg-std({Di,Ti
}ni=1, l, ν) and c(z) = avg-calib({Di,Ti

}ni=1, l, ν), we can turn (7) into168

min
z

s(z) s.t. c(z) ≥ 1 where s(z) : R2 7→ R and c(z) : R2 7→ R are monotone. (8)

We presume an upper and lower bound (zu, zl) such that resulting search domain Z = [zl1, z
u
1] ×169

[zl2, z
u
2] contains the optimal solution z∗ = argminz:c(z)≥1 s(z). Since both s(z) and c(z) are mono-170

tone we know that z∗ must lie on or directly above the constraint boundary c(z) = 1 (see Lemma 2).171

In each iteration k of Algorithm 1 we query a point zqk ∈ Z and observe the corresponding objective172

and constraint values s(zqk) and c(zqk). We separate the queries into two sets Qu and Ql based on173

whether they lie above or below the constraint boundary. That is, we add zqk to Qu if c(zqk) ≥ 1 and174

to Ql otherwise. Since the optimal solution lies on the constraint boundary and c(z) is monotone,175

we can rule out entire corners of the search domain: For each zq ∈ Qu we can rule all points z′ > zqk176

as candidates for the optimal solution and, similarly for all zq ∈ Ql, we can rule out all z′ ≤ zqk.177

This also allows us to prune the sets Qu and Ql by removing all the points from them that can be178

ruled out by a new query results. To keep track which parts of Z have not been ruled out yet, we179

construct an upper and lower frontiers, here expressed as functions z1 7→ z2 and z2 7→ z1,180

Fu
2 (z1;Qu) = min{z′2 | z1 ≥ z′1, z

′ ∈ Qu}, Fu
1 (z2;Qu) = min{z′1 | z2 ≥ z′2, z

′ ∈ Qu} (9)

F l
2(z1;Ql) = max{z′2 | z1 ≤ z′1, z

′ ∈ Ql}, F l
1(z2;Ql) = max{z′1 | z2 ≤ z′2, z

′ ∈ Ql} (10)

such that the points Γ = {(z1, z2) ∈ Z | F l
2(z1;Ql) ≤ z2 ≤ Fu

2 (z1;Qu)} ⊆ Z between the181

frontiers are still plausible candidates for the optimal solution. For notational brevity, we define182

Fu = {z ∈ Z|Fu
1 (z2;Qu) = z1 ∨ Fu

2 (z1;Qu) = z2} and F l analogously as the set of points that183

lie on the upper and lower frontier respectively.184

At any point, the best solution to (8) that we can give, is the best query we have made so far that185

fulfills the constraint, i.e., ẑ = argminz∈Qu s(z). If we assume Lipschitz continuity for s, which186

holds in our case holds since Z is bounded and the avg-std is differentiable in l and ν, we can bound187

how much our best solution is away from the optimum, i.e., s(z∗):188

Lemma 1. Let s(z) be L Lipschitz and d(Γ,Fu) := maxz′∈Γ minz∈Fu ||z − z′|| the max-min189

distance between the frontiers. Then, the sub-optimality is bounded by s(ẑ)− s(z∗) ≤ L d(Γ,Fu) .190

5

Algorithm 2 Safe Meta-BO (SAMBO)

Input: Safe BO problem with f tar and qtar, set of datasets {Df
i,Ti
}ni=1, {D

q
i,Ti
}ni=1

1: for h ∈ {f, q} do
2: (lh, νh)← FRONTIERSEARCH({Dh

i,Ti
}ni=1)

3: ρθh
(h)← F-PACOH({Dh

i,Ti
}ni=1, ρlh,νh

(h))

Return: ẑ∗ ← SAFEBO(f tar, qtar, ρθf
(f), ρθq

(q))

Here, the key insight is that we can bound the sub-optimality s(ẑ) − s(z∗) with the maximum191

distance of any point between the frontiers from its closest point on the upper frontier instead of ẑ.192

This is the case because ẑ dominates any point on the upper frontier (i.e., s(ẑ) ≤ s(z′) ∀z ∈ Fu).193

Hence, we want to choose the next query so that we can shrink the max-min distance d(Γ,Fu)194

between the frontiers the most. For this purpose, we select the largest max-min rectangle between195

the frontiers (see Definition 5). Then, we choose the query point, that reduce the max-min distance196

within the rectangle the best. For this we need to consider two scenarios that will affect the max-min197

distance differently: either the query point satisfies the constraint (c(zq) ≥ 1) or it does not (c(zq) <198

1). We compute the rectangle’s max-min distance for both scenarios and choose the query-point that199

gives us the lowest max-min distance in the less-favorable (worst-case) scenario. For more details we200

refer to Appendix C. Finally, we provide worst-case rates for the proposed frontier search algorithm:201

Theorem 1. Under the assumptions of Lemma 1, Algorithm 1 needs no more than k ≤ 3⌈log2(1/ϵ)⌉ =202

O
(
(1/ϵ)1.59

)
iterations to have a sub-optimality of less than s(ẑ)− s(z∗) ≤ L||zu − zl|| (1/ϵ).203

The O
(
(1/ϵ)1.59

)
query complexity is more efficient than those of similar algorithms that do not204

make use of the monotonicity properties, e.g., that of grid search: O
(
(1/ϵ+ 1)2

)
.205

5 Safe BO with meta-learned GP priors206

In Sec. 4 we discuss how to efficiently choose the kernel variance and lengthscale, so that we obtain207

calibrated and yet sharp uncertainty estimates. Now, we go one step further and use the related208

datasetsD1,T1 , ...,Dn,Tn to meta-learn GP priors, aiming to give the downstream safe BO algorithm209

more prior knowledge about the optimization problem at hand so that it can be more query efficient.210

For this, we use the F-PACOH [11] meta-learning approach, introduced in Sec 3. We choose211

this method since it regularizes the meta-learned model in the function space and, thus, is able212

to maintain reliability of the uncertainty estimates, even for out-of-distribution data. F-PACOH213

requires a Vanilla GP ρ(h) = GP(h(x)|0, k(x,x′)) as a hyper-prior, towards which it regularizes214

the meta-learned GP ρθ(h) = GP(h(x)|mθ(x), kθ(x,x
′). Hence, we face a similar kernel hyper-215

parameter choice problem as addressed in Section 4: If the kernel parameters of the hyper-prior are216

chosen such that the Vanilla GP itself yields over-confident uncertainty estimates, safe BO with the217

meta-learned prior will most likely turn out to be unsafe as well. Hence, we use the calibration-218

sharpness based frontier search to choose the kernel variance and lengthscale of the hyper-prior.219

Since safe BO maintains separate models for the target f(x) and constraint q(x), we meta-learn220

a prior for each of the functions. We split the sets of data triplets Di,Ti
= {(xi,t, f̃i,t, q̃i,t)}Ti

i=1221

into separate datasets Df
i,Ti

= {(xi,t, f̃i,t)}Ti
t=1 and Dq

i,Ti
= {(xi,t, q̃i,t)}Ti

t=1. First, we use frontier222

search to find kernel parameters (lf , νf) and (lq, νq) that give good sharpness subject to calibration223

on the respective set of datasets. Then, we meta-learn GP priors ρθf
(f) and ρθq

(q) for f and q224

with F-PACOH, while using the Vanilla GPs ρlf ,νf
(f)) and ρlq,νq (q)) with the chosen kernel225

hyper-parameters as hyper-prior. Finally, we run a safe BO algorithm (either SAFEOPT or GOOSE)226

with the meta-learned GP priors and perform safe Bayesian optimization on our target problem of227

interest. This procedure is summarized in Algorithm 2. We refer to our Safe Meta-BO (SaMBO)228

algorithm with GOOSE, as SAMBO-G and, when instantiated with SAFEOPT as SAMBO-S.229

6

0.5 1.0
kernel lengthscale

2

3

4

ke
rn

el
 v

ar
ia

nc
e

calibration-freq.

0.5 1.0
kernel lengthscale

2

3

4

ke
rn

el
 v

ar
ia

nc
e

avg-std

0.5 1.0
kernel lengthscale

2

3

4

ke
rn

el
 v

ar
ia

nc
e

max. safety constr. value

0.5 1.0
kernel lengthscale

2

3

4

ke
rn

el
 v

ar
ia

nc
e

cum. inference regret
FS solution
safety border

100

50

0

50

2

3

4

5

0.9980

0.9985

0.9990

0.9995

1.0000

25

50

75

100

125

Figure 2: Left: calib and avg-std across a grid of kernel lengthscales lq and variances νq for the
constraint model. Right: max safety constraint value and cumulative regret for 200 iterations of safe
BO. Calibration and sharpness are good proxies for safety and efficiency of the downstream safe BO.

6 Experiments230

First, we investigate if the calibration-/sharpness-based frontier search chooses good and safe kernel231

parameters. Second, we evaluate the the full SAMBO algorithm in a range of safe BO environments.232

6.1 Experiment Setup233

In the following, we describe our experiment setup and methodology. See Appx. F for more details.234

Synthetic safe BO benchmark environments. We consider two synthetic environments, based on235

popular benchmark functions with a two-dimensional domain. The first is based on the Camelback236

function [54] overlaid with products of sinusoids of varying amplitude, phase and shifts. The237

constraint function is similar, with an additional random quadratic component to ensure connection238

between most of the safe regions of the domain. The second environment is based on the challenging239

Eggholder function [55] with many local minima. The function’s shape can be varied by random240

sampling of three parameters. The constraint is a quadratic function, overlayed with sinusoids of241

varying frequencies. A task corresponds to a pair of randomly drawn target and constraint functions.242

Controller Tuning for a high-precision linear robot. As robotic case study, we tune the243

controller of a linear axis in an Argus linear motion system by Schneeberger Linear Technology,244

a high-precision/speed robot for wafer inspection. To goal is to tune the three gain parameters245

of a cascaded PI controller to achieve minimal position error. We minimize the total variation246

(TV) of the position error signal, while constraining its maximum frequency in the FFT which247

measures (potentially damaging) instabilities/vibrations in the system. Different tasks correspond to248

different step sizes, ranging from 10µm to 10mm. At different scales, the robot behaves differently249

in response to the controller parameters, resulting in different target and constraint functions.250

The experiments are conducted with a simulation of the robot, so we can explore unsafe kernel251

hyper-parameters – a key element for finding and visualizing the safety boundary in Figure 2.252

Meta-training data. We generate the benchmark meta-training by running SAFEOPT with conser-253

vative kernel hyper-parameters choices on each task. The resulting datasets are non-i.i.d. and only254

consist of observations where q(z) < 0, much more realistic than sampling data uniformly and i.i.d..255

With this, we aim to mimic a practical scenario where we have performed various safe BO on related256

tasks in the past and now want to harness the corresponding data. For the synthetic environments,257

we use n = 40 tasks with Ti = 100 samples in case of the Camelback-Sin and Ti = 200 samples for258

the Random Eggholder environment. For the Argus controller tuning, we use n = 20 and Ti = 400.259

Evaluation metrics. To evaluate the performance of various methods, we run safe BO with them on260

at least 4 unseen test tasks with each 5 seeds. To measure a method’s query efficiency, we report the261

(safe) inference regret rt = f(x̂∗
t)−f(x∗) where x̂∗

t = argminz∈St
µt(x) is a method’s best current262

guess for the safe minimizer of (1). In Fig. 2, we also report the cumulative regret RT :=
∑T

t=1 rt.263

6.2 Choosing the kernel parameters via calibration & sharpness based frontier search264

We investigate how well the calibration and sharpness based frontier search (FS) for finding kernel265

hyper-parameters works in practice. For that, we consider the Argus controller tuning problem.266

Generally, we perform FS in the log-space of l and ν since we found this to work better in practice.267

7

0 50 100
iteration

10 3

10 2

10 1

100

in
fe

re
nc

e
re

gr
et

0 50 100
3

2

1

0

sa
fe

ty
 c

on
st

ra
in

t

0 100 200
101

102

103

in
fe

re
nc

e
re

gr
et

0 100 200
400

300

200

100

0

sa
fe

ty
 c

on
st

ra
in

t

Camelback Function + Random Sinusoids Random Eggholder Functions

SaMBO-G SaMBO-S GoOSE SafeOpt safety constr.

Figure 3: Safe BO regret and safety constraint on the synthetic benchmarks. SAMBO converges
significantly faster towards the global optimum than the baselines, without violating the constraints.

Fig. 1 displays the frontier search at various iterations. FS quickly shrinks the set of possible safe268

optima (area between upper frontier (green) and lower frontier (red)) to points close to the safety269

border. After only 20 iterations, it already found a solution that is very close to the safe optimum.270

This showcases the efficiency we gain thanks to taking into account the monotonicity of the problem.271

Furthermore, we investigate how well calibration and sharpness reflect what we care about: 1) No272

safety constraint violations and 2) query efficiency. We compute the maximum constraint value273

across 200 iterations with GOOSE as well as the cumulative regret across a grid of kernel length-274

scales and variances. Fig. 2 holds the results, together with the calib and avg-std. Overall, calibration275

and sharpness of the GPs’ uncertainty estimates are a good proxy for the downstream safety during276

BO and, respectively, the regret. Importantly, all parameters that fulfill the calibration constraint277

calib({Di,Ti
}ni=1, ω) ≥ 1 lead to safe BO runs without constraint violations. Finally, the kernel pa-278

rameters, chosen by FS, are both safe and lead to a small cumulative regret. Overall, this empirically279

supports the validity of our data-driven approach for choosing good, but safe, kernel parameters.280

6.3 Safe Bayesian Optimization Benchmark & Controller Tuning281

0 100 200
iteration

0.02

0.03

0.04

in
fe

re
nc

e
re

gr
et

0 100 200
iteration

150

100

50

0
sa

fe
ty

 c
on

st
ra

in
t

SaMBO-G SaMBO-S GoOSE SafeOpt

Figure 4: Safe controller tuning for the Argus
robot. SAMBO safely finds good controller pa-
rameters faster than safe BO baselines.

We compare the two SAMBO instantiations,282

SAMBO-S and SAMBO-G, with their corre-283

sponding safe BO baseline methods SAFEOPT284

and GOOSE. For the baselines, we use the GP285

kernel parameters found by FS. Fig. 3 displays286

the results for the synthetic benchmark func-287

tions and Fig. 4 for the Argus controller tuning.288

Note that, in case of the regret, the shaded areas289

correspond to confidence intervals while for the290

safety constraint values they correspond to the291

entire range of values (i.e., max - min). Overall,292

SAMBO converges to near optimal solutions much faster than the baselines without meta-learning.293

Across all environments, there are no safety violations which demonstrates that 1) the kernel pa-294

rameters by FS are safe and 2) SAMBO maintains safety thanks to principled regularization in the295

function space during meta-learning. The improved query efficiency without compromising safety296

in the controller tuning setting, where the constraint (maximum frequency in the signal) is highly297

non-smooth, demonstrates the applicability of SAMBO to challenging real-world robotics problems.298

7 Summary and Discussion of Limitations299

We have introduced a data-driven framework for choosing kernel parameters or even meta-learning300

GP priors that are both informative and reliable. When combined with a safe BO algorithm, the301

resulting SAMBO speeds up the optimization of, e.g., controller parameters, without compromising302

safety. Except for the observation noise variance, which is often known or easy to estimate, our303

framework makes safe BO free of hyper-parameters and, thus, more robust and practical. However,304

it relies on the availability of offline data that is both sufficient in quantity and representative of the305

target task. As our approach relies on empirical estimates of the calibration, it may fail to ensure306

safety when given too little data or tasks that are systematically different to the target task.307

8

References308

[1] R. Garnett, M. A. Osborne, and S. J. Roberts. Bayesian optimization for sensor set selection.309

In Proceedings of the 9th ACM/IEEE international conference on information processing in310

sensor networks, pages 209–219, 2010.311

[2] E. Cisbani, A. Del Dotto, C. Fanelli, M. Williams, M. Alfred, F. Barbosa, L. Barion, V. Berd-312

nikov, W. Brooks, T. Cao, et al. Ai-optimized detector design for the future electron-ion col-313

lider: the dual-radiator rich case. Journal of Instrumentation, 15(05):P05009, 2020.314

[3] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe. Automatic lqr tuning based on315

gaussian process global optimization. In 2016 IEEE international conference on robotics and316

automation (ICRA), pages 270–277. IEEE, 2016.317

[4] M. Neumann-Brosig, A. Marco, D. Schwarzmann, and S. Trimpe. Data-efficient autotuning318

with bayesian optimization: An industrial control study. IEEE Transactions on Control Systems319

Technology, 28(3):730–740, 2019.320

[5] M. Rowold, A. Wischnewski, and B. Lohmann. Constrained bayesian optimization of a linear321

feed-forward controller. IFAC-PapersOnLine, 52(29):1–6, 2019. ISSN 2405-8963. 13th IFAC322

Workshop on Adaptive and Learning Control Systems ALCOS 2019.323

[6] M. Khosravi, V. Behrunani, R. S. Smith, A. Rupenyan, and J. Lygeros. Cascade control: Data-324

driven tuning approach based on bayesian optimization. IFAC-PapersOnLine, 53(2):382–387,325

2020.326

[7] A. Rupenyan, M. Khosravi, and J. Lygeros. Performance-based trajectory optimization for327

path following control using bayesian optimization. In 60th IEEE conference on Decision and328

Control (CDC 2021), 2021.329

[8] Y. Sui, A. Gotovos, J. W. Burdick, and A. Krause. Safe exploration for optimization with330

Gaussian processes. In ICML, 2015.331

[9] F. Berkenkamp, A. P. Schoellig, and A. Krause. Safe controller optimization for quadro-332

tors with gaussian processes. In IEEE International Conference on Robotics and Automation333

(ICRA), pages 491–496, 2016.334

[10] M. Turchetta, F. Berkenkamp, and A. Krause. Safe exploration for interactive machine learn-335

ing. In Advances in Neural Information Processing Systems, 2019.336

[11] J. Rothfuss, D. Heyn, J. Chen, and A. Krause. Meta-learning reliable priors in the function337

space. Advances in Neural Information Processing Systems, 34, 2021.338

[12] J. M. Hernández-Lobato, M. A. Gelbart, M. W. Hoffman, R. Adams, and Z. Ghahramani.339

Predictive entropy search for Bayesian optimization with unknown constraints. In ICML, 2015.340

[13] M. Khosravi, C. Koenig, M. Maier, R. S. Smith, J. Lygeros, and A. Rupenyan. Safety-aware341

cascade controller tuning using constrained bayesian optimization. IEEE Transactions on In-342

dustrial Electronics, 2022.343

[14] M. Fiducioso, S. Curi, B. Schumacher, M. Gwerder, and A. Krause. Safe contextual bayesian344

optimization for sustainable room temperature pid control tuning. In Proceedings of the 28th345

International Joint Conference on Artificial Intelligence, pages 5850–5856. AAAI Press, De-346

cember 2019.347

[15] Y. Sui, vincent Zhuang, J. Burdick, and Y. Yue. Stagewise safe Bayesian optimization with348

Gaussian processes. In ICML, volume 80 of Proceedings of Machine Learning Research,349

pages 4781–4789. PMLR, 10–15 Jul 2018.350

9

[16] F. Berkenkamp, A. Krause, and A. P. Schoellig. Bayesian optimization with safety constraints:351

safe and automatic parameter tuning in robotics. Machine Learning, pages 1–35, 2021.352

[17] M. Khosravi, A. Eichler, N. A. Schmid, R. S. Smith, and P. Heer. Controller tuning by bayesian353

optimization an application to a heat pump. 2019 18th European Control Conference (ECC),354

pages 1467–1472, 2019.355

[18] C. König, M. Turchetta, J. Lygeros, A. Rupenyan, and A. Krause. Safe and efficient model-356

free adaptive control via bayesian optimization. In 2021 IEEE International Conference on357

Robotics and Automation (ICRA), pages 9782–9788. IEEE, 2021.358

[19] S. Hochreiter, A. S. Younger, and P. R. Conwell. Learning To Learn Using Gradient Descent.359

In International Conference on Artificial Neural Networks, 2001.360

[20] M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman, D. Pfau, T. Schaul,361

B. Shillingford, and N. De Freitas. Learning to learn by gradient descent by gradient descent.362

arXiv, 2016.363

[21] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap, M. Botvinick, and364

N. De Freitas. Learning to Learn without Gradient Descent by Gradient Descent. In Interna-365

tional Conference on Machine Learning, 2017.366

[22] J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research, 2000.367

[23] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In Advances368

in Neural Information Processing Systems, 2017.369

[24] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot370

learning. In Advances in Neural Information Processing Systems, 2016.371

[25] J. Harrison, A. Sharma, and M. Pavone. Meta-learning priors for efficient online bayesian372

regression. In International Workshop on the Algorithmic Foundations of Robotics, pages373

318–337. Springer, 2018.374

[26] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep375

networks. In International Conference on Machine Learning, 2017.376

[27] J. Rothfuss, D. Lee, I. Clavera, T. Asfour, and P. Abbeel. ProMP: Proximal Meta-Policy Search.377

In International Conference on Learning Representations, 2019.378

[28] A. Nichol, J. Achiam, and J. Schulman. On First-Order Meta-Learning Algorithms. arXiv,379

2018.380

[29] T. Kim, J. Yoon, O. Dia, S. Kim, Y. Bengio, and S. Ahn. Bayesian model-agnostic meta-381

learning. In Advances in Neural Information Processing Systems, 2018.382

[30] A. Pentina and C. Lampert. A PAC-Bayesian bound for lifelong learning. In International383

Conference on Machine Learning, 2014.384

[31] R. Amit and R. Meir. Meta-learning by adjusting priors based on extended PAC-Bayes theory.385

In International Conference on Machine Learning, 2018.386

[32] Y. Balaji, S. Sankaranarayanan, and R. Chellappa. Metareg: Towards domain generalization387

using meta-regularization. In Advances in Neural Information Processing Systems, volume 31,388

2018.389

[33] M. Yin, G. Tucker, M. Zhou, S. Levine, and C. Finn. Meta-learning without memorization. In390

International Conference on Learning Representations, 2020.391

[34] J. Rothfuss, V. Fortuin, M. Josifoski, and A. Krause. PACOH: Bayes-optimal meta-learning392

with PAC-guarantees. In International Conference for Machine Learning (ICML), 2021.393

10

[35] A. Farid and A. Majumdar. Generalization bounds for meta-learning via pac-bayes and uniform394

stability. In Advances in Neural Information Processing Systems, volume 34, pages 2173–395

2186, 2021.396

[36] L. Cella, K. Lounici, and M. Pontil. Meta representation learning with contextual linear ban-397

dits. arXiv preprint arXiv:2205.15100, 2022.398

[37] P. Kassraie, J. Rothfuss, and A. Krause. Meta-learning hypothesis spaces for sequential399

decision-making. In International Conference on Machine Learning, 2022.400

[38] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the Human Out401

of the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE, 104(1):148–175,402

2016. doi:10.1109/JPROC.2015.2494218.403

[39] P. I. Frazier. A Tutorial on Bayesian Optimization. arXiv preprint arXiv:1807.02811, 2018.404

[40] C. E. Rasmussen and C. K. I. Williams. Gaussian processes in machine learning. MIT Press,405

2006.406

[41] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit prob-407

lem. Machine learning, 47(2):235–256, 2002.408

[42] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian Process Optimization in the409

Bandit Setting: No Regret and Experimental Design. In International Conference on Machine410

Learning, pages 1015–1022, 07 2010.411

[43] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view412

of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933. ISSN 00063444. URL413

http://www.jstor.org/stable/2332286.414

[44] Z. Wang and S. Jegelka. Max-value entropy search for efficient bayesian optimization. In415

International Conference on Machine Learning, pages 3627–3635. PMLR, 2017.416

[45] J. Schmidhuber. Evolutionary principles in self-referential learning. On learning how to learn:417

The meta-meta-... hook. PhD thesis, Technische Universitaet Munchen, 1987.418

[46] S. Thrun and L. Pratt, editors. Learning to Learn. Kluwer Academic Publishers, 1998.419

[47] V. Perrone, R. Jenatton, M. W. Seeger, and C. Archambeau. Scalable Hyperparameter Trans-420

fer Learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and421

R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31, 2018.422

[48] V. Fortuin and G. Rätsch. Deep mean functions for meta-learning in gaussian processes. arXiv423

preprint arXiv:1901.08098, 2019.424

[49] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Deep kernel learning. In International425

Conference on Artificial Intelligence and Statistics, pages 370–378. PMLR, 2016.426

[50] T. Gneiting, F. Balabdaoui, and A. E. Raftery. Probabilistic forecasts, calibration and sharp-427

ness. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2):243–428

268, 2007.429

[51] T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal430

of the American Statistical Association, 102(477):359–378, 2007.431

[52] V. Kuleshov, N. Fenner, and S. Ermon. Accurate Uncertainties for Deep Learning Using Cali-432

brated Regression. In International Conference on Machine Learning, 2018.433

[53] M.-O. Pohle. The murphy decomposition and the calibration-resolution principle: A new434

perspective on forecast evaluation. arXiv preprint arXiv:2005.01835, 2020.435

11

http://dx.doi.org/10.1109/JPROC.2015.2494218
http://www.jstor.org/stable/2332286

[54] M. Molga and C. Smutnicki. Test functions for optimization needs. Test functions for opti-436

mization needs, 101:48, 2005.437

[55] M. Jamil and X.-S. Yang. A literature survey of benchmark functions for global optimisation438

problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4439

(2):150–194, 2013.440

[56] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang, W. Paul,441

M. I. Jordan, and I. Stoica. Ray: A distributed framework for emerging ai applications. In Pro-442

ceedings of the 13th USENIX Conference on Operating Systems Design and Implementation,443

OSDI’18, page 561–577, 2018.444

12

A Safe Bayesian Optimization Algorithms445

A.1 SafeOpt446

SAFEOPT [9, 16] make use of the GP confidence intervals, by defining a safe set on a discretized447

domain X :448

St(α) = {x ∈ X | µq
t (x) + β(α)σq

t (x) < 0}. (11)
where we write µq

t (x) and σq
t (x) short for µq(x|Dt) and σq(x|Dt). Based on the safe set, SAFEOPT449

constructs two additional sets. First, the set of potential optimizers450

Mt(α) = {x ∈ St(α) | µf
t (x)− β(α)σf

t (x) < µf
t (x

†) + β(α)σf
t (x

†)}, (12)

where x† is the best observed input so far. Second, the set of possible expanders451

Gt(α) = {x ∈ St(α) | g(x) > 0}, (13)

where gt(x) is defined as the additional number of inputs that become safe if we would query x and452

observe an hypothetical optimistic constraint value q̃ = µq
t (x

′)− β(α)σq
t (x

′).453

gt(x) = |{x ∈ X \ St(α) | µq(x′|Dt ∪ (x, q̃)) + β(α)σq(x′|Dt ∪ (x, q̃)) < 0}|. (14)

In each iteration of the optimization the sets are updated, w.r.t. the posterior belief of the underlying454

GPs a query candidate is selected from each the set of optimizers and the set of expanders. From the455

set of optimizers the GP-LCB sample456

x∗
opt = argmin

z∈Mt(α)

µf
t (x)− β(α)σf

t (x) (15)

is selected. From the set of possible expanders457

x∗
exp = argmax

x∈Gt(α)

gn(x) (16)

is selected. Finally, SAFEOPT selects458

x∗ = argmax
x∈{x∗

opt,x
∗
exp}

max{σf
t (x), σ

q
t (x)} (17)

as the next query.459

A.2 GoOSE460

In SAFEOPT the expansion of the safe set is traded off against the optimization by the uncertainty461

of the prediction. This can lead to part-wise exploration of the safe set without consideration of462

the objective function. To cope with this [10] proposes a goal oriented safe exploration (GoOSE)463

algorithm. The idea is that the safe set is expanded only if it is also beneficial to the optimizaton464

of the objective. Like SAFEOPT it builds a GP model of the objective and constraints from noisy465

evaluations based on GP regression. The models of the constraints are used to construct two sets:466

First, the pessimistic safe set467

Spt (α) = {x ∈ X | µ
q
t (x) + βq(α)σq

t (x) < 0} , (18)

which only contains domain points that are with high probability fulfilling the constraint. Sec-468

ond, we construct an optimistic safe set which includes all points we can optimistically expand the469

pessimistic safe set to. Rather than the version of Turchetta et al. [10] which requires an a-priori470

known Lipschitz constant, we use the version of König et al. [18] which only uses quantities that471

are provided by our GP model of the constraint function. For instance, the Lipschitz constant is ap-472

proximated by the sup-norm ∥∇xµt(x)∥∞ of the gradient of the GP’s posterior mean. This nicely473

accommodates non-stationary kernels which might are arise during meta-learning. We first make474

sure that we don’t query the same point over and over by excluding all points within Spt (α) whose475

confidence intervals for q standard deviation become narrower than a alleatoric noise threshold ϵ.476

The remaining points are:477

Wt = {x ∈ Spt (α) : 2βq(α)σq
t (x) > ϵ} (19)

13

Then, we check for any x ∈ X whether we still fulfill the safety constraint when we add the distance478

times the Lipschitz constant estimate to the optimistic lower bound µq
t (x) − βq(α)σq

t (x) of the479

constraint CI, formally:480

gt(x, z) = I [µq
t (x)− βq(α)σq

t (x) + ∥∇xµt(x)∥∞∥x− z∥2 < 0] . (20)

Based on this indicator function, we can construct the optimistic safe set:481

Sot (α) = {x ∈ X | ∃ z ∈Wt : gt(x, z) = 1} (21)

Within the optimistic safe set Sot (α), we now find the optimizer of a (standard) BO acquisition482

function. We use the the UCB aquisition function [42], i.e. aq(x) := µf
t (x)− βf (α)σf

t (x), to find483

the next query candidate x̃∗ = argminx∈So
t (α)

aq(x).484

If x̃∗ is inside Spt (α), it is evaluated. If not we query the point in Wt which is closest to x̃∗ and485

fulfills the expander criterion in (20). After querying a point and observing the corresponding f̃t and486

q̃t, the posteriors of the GPs are updated and thus the sets which we defined above. This is repeated487

until x̃∗ is inside Spt (α) and can be evaluated or x̃∗ is no longer in Sot (α) and we compute a new488

query candidate.489

The described procedure is summarized in Algorithm 3. Note that in comparison to Turchetta et al.490

[10], König et al. [18], Algorithm 3 not exclude points from Wt that lie at the periphery of the491

domain because checking whether a point lies at the periphery is hard when working with uniformly492

sampled domain points instead of a grid.493

Algorithm 3 GoOSE algorithm
Input: Initial safe set S0
Input: GP models f ∼ GP(µf , kf), q ∼ GP(µq, kq)

1: for t = 1, ..., T do
2: Spt (α)← {x ∈ X | µ

q
t (x) + β(α)σq

t (x) < 0} // pessimistic safe set
3: Wt ← {x ∈ Spt (α) | 2β(α)σ

q
t (x) > ϵ} // expanders

4: Sot (α)← {x ∈ X | ∃ z ∈Wt : gt(x, z) = 1} // optimistic safe set
5: x̃∗ ← argminx∈So

t (α)
aq(x) // UCB candidate within optimistic safe set

6: if x̃∗ ∈ Spt (α) then
7: evaluate f(x̃∗), q(x̃∗),
8: else
9: x̃w ← argminx∈Wt

||x− x̃∗||2 s.t. gt(x, x̃∗) = 1 // expand S in direction of x̃∗

10: evaluate f(x̃w), q(x̃w),

Return: x̂∗ ← argminx∈Sp
t (α)

µf
t (x) // return safe point with best posterior mean

B Meta-Learning reliable priors with F-PACOH494

The F-PACOH method of Rothfuss et al. [11] uses a set of datasets D1,T1
, ...,Dn,Tn

to meta-495

learn a GP prior. For that, it requires a parametric family {ρθ|θ ∈ Θ} of GP priors ρθ(h) =496

GP(h(x)|mθ(x), kθ(x,x
′)). Typically the mean and kernel function of the GP are parameterized497

by neural networks. In addition, it presumes a Vanilla GP ρ(h) = GP(h(x)|0, k(x,x′)) as stochas-498

tic process hyper-prior. In our case, the hyper-prior GP has a zero-mean and a SE kernel. During499

the meta-training the marginal log-likelihood lnZ(Di,Ti , ρθ) = ln p(yD
i |XD

i ,θ) is used to fit the500

ρθ(h) to the meta-training data. Here we write Di,Ti
= (XD

i ,y
D
i) for the matrix of function inputs501

and vector of targets of the respective dataset. Since we use GPs, the marginal log-likelihood can be502

computed in closed form as503

ln p(yD|XD,θ) = −1

2

(
yD −mXD,θ

)⊤
K̃−1

XD,θ

(
yD −mXD,θ

)
− 1

2
ln |K̃XD,θ|−

T

2
ln 2π (22)

where K̃XD,θ = KXD,θ+σ2I , with kernel matrix KXD,θ = [kθ(xl,xk)]
Ti

l,k=1, likelihood variance504

σ2, and mean vector mXD,θ = [mθ(x1), ...,mθ(xTi
)]⊤.505

14

Algorithm 4 F-PACOH [11]
Input: Datasets D1,T1 , ...,Dn,Tn , parametric family {ρθ|θ ∈ Θ} of priors, learning rate α
Input: Stochastic process hyper-prior with marginals ρ(·)

1: Initialize the parameters θ of prior ρθ
2: while not converged do
3: for i = 1, ..., n do
4: Xi = [XD

i,s,X
M
i],where XD

i,s ⊆ XD
i ,X

M
i

iid∼ U(X) // Sample measurement set
5: Estimate or compute∇θ lnZ(XD

i , ρθ) and∇θKL[ρθ(h
Xi)||ρ(hXi)]

6: ∇θJF,i = − 1
Ti
∇θ lnZ(Di,Ti

, ρθ) +
(

1√
n
+ 1

nTi

)
∇θKL[ρθ(h

Xi)||ρ(hXi)]

7: θ ← θ − α 1
n

∑n
i=1∇θJF,i // Update prior parameter

At the same time, during meta-training, ρθ(h) is regularized towards the hyper-prior ρ(h). We506

can only tractably assess the stochastic processes ρθ(h) and ρ(h) in a finite set of (measurement)507

points X := [x1, ...,xk] ∈ X k, k ∈ N through their finite marginal distributions of function values508

ρ(hX) := ρ(h(x1), ..., h(xk)) and ρθ(h
X) := ρθ(h(x1), ..., h(xk)) respectively. In particuar, for509

earch task, we construct measurement sets Xi = [XD
i,s,X

M
i] by selecting a random subset XD

i,s510

of the meta-training inputs XD
i as well as random points XM

i
iid∼ U(X) sampled independently511

and uniformly from the bounded domain X .2 In each iteration, we compute the KL-divergence be-512

tween the marginal distributions of the stochastic processes in the sampled measurement sets. Since513

both stochastic processes are GPs, their finite marginals are Gaussians ρ(hX
i) = N (0,KXi) and514

ρθ(h
X
i) = N (mXi,θ,KXi,θ) and thus the KL-divergence available in close form. In expectation,515

over many iteration, we effectively minimize EXi
[KL

[
q(hXi)||ρ(hXi)

]
].516

Overall, the loss with the functional KL regularizer which we minimize in F-PACOH reads as:517

L(θ)= 1

n

n∑
i=1

(
− 1

Ti
lnZ(Di,Ti

, ρθ)︸ ︷︷ ︸
marginal log-likelihood

+

(
1√
n
+

1

nTi

)
EXi

[
KL[ρθ(h

X)||ρ(hX)]
]︸ ︷︷ ︸

functional KL-divergence

)
. (23)

The stochastic minimization procedure for (23) which we have described is summarized in Algo-518

rithm 4.519

C Frontier Search520

We aim to solve the constraint optimization problem521

min
ω

s(z) s.t. c(z) ≥ 1 (24)

where s : R2 7→ R and c : R2 7→ R are monotonically increasing functions. Formally, we define the522

monotonicity w.r.t. to the partial order on R2:523

Definition 1 (Monotone Function). A function h(z) : R2 7→ R is said to be monotone if for all524

(z1, z2), (z
′
1, z

′
2) ∈ R2525

z1 ≤ z′1 ∧ z2 ≤ z′2 ⇒ h(z1, z2) ≤ h(z′1, z
′
2) . (25)

For brevity we write z ≤ z′ short for z1 ≤ z′1 ∧ z2 ≤ z′2 and z ≥ z′ ⇔ z1 ≥ z′1 ∧ z2 ≥ z′2.526

For our algorithm, we assume knowledge of an upper bound zu and lower bound zl of the optimal so-527

lution z∗ such that the rectangleZ = [zl1, z
u
1]×[zl2, zu2] that is spanned by the bounds and contains z∗.528

Assumption 1 (Valid Search Domain). The search domain Z = [zl1, z
u
1] × [zl2, z

u
2] is valid if it529

contains the optimum z∗ = argminz:c(z)≥1 s(z) of the constraint optimization problem.530

2In Section 3.3, we have portrayed the measurement sets as only the uniform domain points XM
i for brevity

of the exposition. However, our implementation uses Xi = [XD
i,s,X

M
i], as described here in the appendix.

15

Due to the monotonicity of s(z) and c(z) we know that the optimal solution must lie on or imme-531

diately above the constraint boundary. The latter case is rather a technical detail which is due to the532

fact that we do not assume continuity of c. Formally we have:533

Lemma 2 (z∗ lies on or directly above the constraint boundary). Let z∗ = argminz:c(z)≥1 s(z) be534

the unique minimizer, then there exists no z2 ∈ [zl2, z
u
2] with 1 ≤ c(z∗1 , z2) < c(z∗).535

Proof. The proof of Lemma 2 follows by reduction: Assume ∃z2 ∈ [zl2, z
u
2] with 1 ≤ c(z∗1 , z2) <536

c(z∗). Since c is monotonically increasing c(z∗1 , z2) < c(z∗) implies that z2 < z∗2 . Thus, by537

the monotonicity of s, we have that s(z∗1 , z2) ≤ s(z∗) and z∗ cannot be the unique constrained538

minimizer.539

In each iteration k of Algorithm 1 we query a point zqk ∈ Z and observe the corresponding objective540

and constraint values s(zqk) and c(zqk). Due to Lemma 2 and the monotonicity of q we can rule out541

an entire corner of the search domain. In particular, if c(zqk) ≥ 0, we can rule all points z′ > zqk as542

candidates for the optimal solution and, similarly, if c(zqk) < 0, we can rule out all z′ ≤ zqk.543

To keep track of all the areas of the search domain we can rule out, we construct an upper and a544

lower frontier such that all ruled-out points lie either above the upper and below the lower frontier.545

To construct these frontiers, we separate all queries based on whether they fulfill the constraint or546

not. Initially, we set Qu = {zu} and Ql = {zl}, since Assumption 1 together with Lemma 2 imply547

that c(zu) ≥ 1 and c(zl) ≤ 1. Then, for every query, we add zqk to Qu if c(zq) ≥ 1 and to Ql548

otherwise.549

We define the upper and lower frontiers as maps z1 7→ z2 and z2 7→ z1:550

Fu
2 (z1;Qu) = min{z′2 | z1 ≥ z′1, z

′ ∈ Qu}, Fu
1 (z2;Qu) = min{z′1 | z2 ≥ z′2, z

′ ∈ Qu} (26)

F l
2(z1;Ql) = max{z′2 | z1 ≤ z′1, z

′ ∈ Ql}, F l
1(z2;Ql) = max{z′1 | z2 ≤ z′2, z

′ ∈ Ql} (27)

For convenience, we define the sets of points that lie on the frontiers as551

Fu(Qu) = {z ∈ Z|Fu
1 (z2;Qu) = z1 ∨ Fu

2 (z1;Qu) = z2} , (28)

F l(Ql) = {z ∈ Z|F l
1(z2;Ql) = z1 ∨ F l

2(z1;Ql) = z2} . (29)

If we assume Lipschitz continuity for s, we can bound how much our best solution is away from the552

optimum, i.e., s(z∗):553

Lemma 3 (Long version of Lemma 1). Let z∗ = argminz:c(z)≥1 s(z) be the solution of the con-554

straint optimization problem where s : R2 7→ R is monotone and L Lipschitz, and c : R2 7→ R is555

monotone constraint. Let556

Γ(Ql,Qu) = {(z1, z2) ∈ Z | F l(z1;Ql) ≤ z2 ≤ Fu(z1;Qu)} (30)

be the set of points that lie between the frontiers and ẑ = argminzq∈Ql s(zq) the current best557

solution. Then, we always have that558

s(ẑ)− s(z∗) ≤ Lmax
z′∈Γ

min
z∈Fu

||z− z′||︸ ︷︷ ︸
d(Γ,Fu)

. (31)

where d(Γ,Fu) := maxz′∈Γ minz∈Fu ||z− z′|| is the max-min distance between the frontiers.559

Proof. By Assumption 1, we know that z∗ ∈ Z . Due to Lemma 2, and the construction of the upper560

and lower Frontiers (i.e. Fu(z1) < z2 ⇒ c(z1, c2) ≥ 1 and Fu(z1) > z2 ⇒ c(z1, c2) ≥ 1) we561

always have that F l(z∗1) ≤ z∗2 ≤ Fu(z∗1), that is, z∗ ∈ Γ. Due to the monotonicity of s, we have562

∀z ∈ Fu that563

s(ẑ)− s(z∗) = (s(ẑ)− s(z))︸ ︷︷ ︸
≤0

−(s(z∗)− s(z)) (32)

≤ s(z)− s(z∗) (33)
≤ L||z− z∗|| (34)

16

where the last step follows from the Lipschitz property of s. Finally, as z∗ ∈ Γ we have take the564

maximum over z′ ∈ Γ so that the bound holds in the worst case. However, at the same time, we can565

take the minimum over z ∈ Fu since (34) holds for all points z on the upper frontier. Both steps566

yield the final result567

s(ẑ)− s(z∗) ≤ Lmax
z′∈Γ

min
z∈Fu

||z− z′|| , (35)

which concludes the proof.568

The key insight of Lemma 3 is that we can bound the sub-optimality s(ẑ)−s(z∗) with the maximum569

distance of any point between the frontiers from its closest point on the upper frontier instead of ẑ.570

This is the case because ẑ dominates any point on the upper frontier (i.e., s(ẑ) ≤ s(z′) ∀z ∈ Fu). In571

fact, we can further reduce the set of points which we have to consider for computing the max-min572

distance d(Γ,Fu) to the outer corner points of Γ, as defined in the following:573

Definition 2 (Outer Corner Points of Γ). Let bl = (F l
1(z

u
2), z

u
2) be the left upper and br =574

(zu1 , F
l
2(z

u
1)) the right outer corner points of Γ. Let Ql

∪b = Ql ∪ {bl,br} and (z1, ..., z|Ql|+2)575

its ordering such that z1,i,≤ z1,i+1. We define576

Γl
out(Ql) := {(zk−1,1, zk,2) | i = 2, ..., |Ql|+ 2} ∪ {bl,br} (36)

as the the outer corner points of Γ.577

This allows to compute the max-min distance d(Γ,Fu) by maximizing over a finite set of outer578

corner points, instead of the whole inter-frontier area Γ:579

Lemma 4 (Version of the max-min distance that is easier to compute). Let Γl
out be the outer corner580

points of Γ, as defined in (40). Then, we have that581

d(Γ,Fu) = max
z∈Γl

out

min
z′∈Fu

||z− z′|| . (37)

Proof. Due the construction of the frontiers, for every tuple (z, z′) ∈ Γ × Fu that is the optimal582

solution of the max-min problem in (31) there must be a (z̃, z′) ∈ Γl
out × Fu that is the optimal583

solution of the max-min problem on the RHS of (37). Again, we can show this by reduction:584

Assume this is not the case, and z ∈ Γ \ Γl
out, then, by the geometrical properties of Γ there exists a585

z̃ ∈ Γl
out which we can obtain by reducing z1 or z2 of z = (z1, z2), such that ||z̃− z′|| > ||z− z′||.586

Thus (z, z′) cannot be the optimal solution of the max-min problem.587

As we only have to consider a finite set of outer corners, instead of the whole Γ, this makes the588

max-min distance easier to implement in practice.589

Since the max-min distance bounds how sub-optimal our current best solution can be, we want to590

choose the next query so that we can shrink the max-min distance d(Γ,Fu) between the frontiers.591

For this purpose, we find a rectangle592

Rz,z′ = {z̃ ∈ Z|min{z1, z′1} ≤ z̃1 ≤ max{z1, z′1} ∧min{z2, z′2} ≤ z̃2 ≤ max{z2, z′2}} (38)

within Γ that has the largest max-min distance593

dRz,z′ (Γ,F
u) = d(Γ ∩Rz,z′ ,Fu ∩Rz,z′) . (39)

To make finding this rectangle tractable, we can narrow down the points on the upper frontier which594

we have to consider to its corner points, defined in the following:595

Definition 3 (Boundary Points of Upper Frontier). LetZ = [zl1, z
u
1]× [zl2, zu2] be the search domain.

Then
buv = (zu1 ,min{z2|(z1, z2) ∈ Fu}) , buh = (min{z1|(z1, z2) ∈ Fu}, zu2)

are the points of the upper frontier that intersect the vertical and horizontal domain boundary.596

17

Definition 4 (Corner Points of Fu). Let (z1, ..., z|Qu|+2) the ordering of Qu ∪ {bu
v , buh} such that597

z1,i,≤ z1,i+1 and z2,i ≥ z2,i+1. Then598

Fu
cor(Qu) := {(zk−1,1, zk,2) | i = 2, ..., |Qu|+ 2} ∪ Qu ∪ {bl,br} (40)

are the corner points of the upper frontier Fu.599

Now, we consider all outer corners of the inter frontier area Γl
out(Ql) and corners of the upper frontier600

Fu
cor(Qu) to find the largest max-min rectangle:601

Definition 5 (Largest Max-Min Rectangle). The largest max-min rectangle, defined by its corner602

points (z, z′) ∈ Γl
out×Fu

cor is the rectangle in Γ with the largest max-min distance such that it fulfills603

condition (3), formally:604

LARGESTMAXMINRECT(Ql,Qu) = argmax
(z,z′)∈Γl

out(Ql)×Fu
cor(Qu)

dRz,z′ (Γ,F
u) s.t. (1) ∧ (2) ∧ (3)

(1) rectangle lies in Γ, i.e. (z1, z′2) ∈ Γ ∧ (z′1, z2) ∈ Γ605

(2) rectangle has a positive area, i.e. |z1 − z′1| · |z2 − z′2| > 0606

(3) we cannot obtain a smaller rectangle (z, z̃) with a upper frontier evaluation z̃ ∈ Qu that607

matches (z, z′) in one side of the rectangle but has a smaller second side, i.e.608

¬ ∃ z̃ ∈ Qu : (z1 < z̃1 < z′1 ∧ z′2 = z̃2) ∨ (z2 < z̃2 < z′2 ∧ z′1 = z̃1) (41)

Given the largest max-min rectangle Rz,z′ , we want to choose the next query point so that we609

can reduce the max-min distance dRz,z′ (Γ,F
u) within this rectangle as efficiently as possible. We610

consider the set of query candidates611

Qz,z′ =
{
(z1/2 + z′1/2, z2/2 + z′2/2)︸ ︷︷ ︸

center of rect.

, (z′1, z2/2 + z′2/2)︸ ︷︷ ︸
middle of right side

, (z1/2 + z′1/2, z
′
2)︸ ︷︷ ︸

middle of upper side

}
, (42)

consisting of the center point, together with the middle points of its right/upper sides. From this612

query set, we choose the candidate that minimizes the worst-case max-min distance. In particular, if613

we query a point zq there are two possible scenarios that will affect the max-min distance differently:614

either the point satisfies the constraint (c(zq) ≤ 1) or it does not (c(zq) < 1). We compute the615

rectangle’s max-min distance for both scenarios and choose the query-point that gives us the lowest616

max-min distance in the less-favorable (worst-case) scenario:617

BESTWORSTCASEQUERY(z, z′,Ql,Qu) =

argmin
zq∈Qz,z′\(Fl∪Fu)

max
{
dRz,z′

(
Γ(Ql ∪ zq,Qu),Fu(Qu)

)
,

dRz,z′

(
Γ(Ql,Qu ∪ zq),Fu(Qu ∪ zq)

)}
.

(43)

If one of the query candidates already lies on one of the frontiers, it cannot expand the frontiers and618

thus also not improve the worst-case distance. Hence, we directly exclude such query candidates by619

removing them from the argmin in (43).620

Theorem 2 (Appendix version of Theorem 1). Under the assumptions of Lemma 3 the Algorithm,621

1 needs no more than k ≤ 3⌈log2(1/ϵ)⌉ = O
(
(1/ϵ)⌉1.59⌉

)
iterations to get622

s(ẑk)− s(z∗) ≤ L||zu − zl|| (1/ϵ) . (44)

close to the optimal solution.623

Proof. In the worst case, it requires Algorithm 1 no more than three queries to half the max-min624

distance within a max-min rectangle. The process of doing so maximally segments the inter frontier625

area Γ within the rectangle into three new max-min rectangles. This can be checked by going though626

the possible cases of how a max-min rectangle is split up by Algorithm 1. When a max-min rectangle627

18

0 1
0

1

iter 1

Case 1

0 1
0

1
Case 2

0 1
0

1
Case 3

0 1
0

1
Case 4

0 1
0

1
Case 5

0 1
0

1

iter 2

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

iter 3

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

max-min rect. upper front. lower front.

Figure 5: All possible cases how Algorithm 1 halfs the max-min distance within a max-min rectangle
when only the upper right corner of the rectangle belongs to the upper frontier.

is split up in three iterations, there are, in principle, 8 = 23 cases since each query can either lie628

above ore below the constraint boundary. However, when the first query fulfills the constraint, it629

immediately halfs the max-min distance. Thus no further queries are necessary and we effectively630

only have to consider 5 cases. Fig. 5 illustrates these five split-up cases for a max-min rectangle631

where only the upper right corner belongs to Fu. Similarly, Fig. 6 and 7 illustrate the split-up cases632

when either half or the entire upper side of the rectangle belongs to Fu. The cases when half or633

the entire right side of the rectangle belong to Fu are analogous. In all of these scenarios, only634

two further queries are necessary to half the max-min distance. Finally, in the case where both the635

upper and the right side of the rectangle belong half or full to Fu is trivial, as it only requires one636

more query. Thus, to shrink the max-min distance of all max-min rectangles by a factor of n, we637

need k ≤ 3⌈log2(n)⌉ iterations at most. If we set n = 1/ϵ it follows by Lemma 3 that we need638

k ≤ 3⌈log2(1/ϵ)⌉ to obtain d(Γ,Fu) ≤ ||zu − zl|/ϵ. Finally, the result in the theorem follows from639

combining this with Lemma 3.640

D Implementation Details of SaMBO641

Calibration & Sharpness based Frontier Search. To compute the calibration (5) and sharpness642

(6) across multiple datasets efficiently, we distribute the computation across individual processes643

for each datasets, using the ray distributed computing framework [56]. A model that always gives644

valid confidence intervals should always be calibrated, no matter what is the ordering of the datasets645

Di which we split into train sets Di,≤t and test sets Di,>t to compute (5). Based on this principle,646

we compute avg-std and calib based on the given ordering as well as the reversed ordering of each647

dataset, and average both results. In principle, more permutations can be done, but come with648

additional computational cost.649

We perform frontier search to search for the kernel lengthscale l and variance ν parameter for650

both the target and constraint function model. For the constraint function model, we use the651

safety constraint calib({Dq
i,Ti
}ni=1, lq, νq) ≥ 1 (i.e. calib = 1 since calib ∈ [0, 1]. For the652

19

0 1
0

1

iter 1

Case 1

0 1
0

1
Case 2

0 1
0

1
Case 3

0 1
0

1
Case 4

0 1
0

1
Case 5

0 1
0

1

iter 2

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

max-min rect. upper front. lower front.

Figure 6: All possible cases how Algorithm 1 halfs the max-min distance within a max-min rectangle
when the upper side of the rectangle belongs to the upper frontier.

0 1
0

1

iter 1

Case 1

0 1
0

1
Case 2

0 1
0

1
Case 3

0 1
0

1
Case 4

0 1
0

1
Case 5

0 1
0

1

iter 2

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

max-min rect. upper front. lower front.

Figure 7: All possible cases how Algorithm 1 halfs the max-min distance within a max-min rectangle
when half of the upper side of the rectangle belongs to the upper frontier.

target function model, the calibration requirements are not safety related and thus not as strict653

as in case of the constraint function. Hence, we only use a calibration frequency constraint654

calib({Df
i,Ti
}ni=1, lf , νf) ≥ 0.95 of 95 % when performing frontier search on lf and νf . For both655

models, we run frontier search for 20 iterations as this gives us already a good solution without656

incurring to much computational cost. For the variances, we us an lower and upper boundary of 1.0657

and 6.0 whereas for the lengthscale we consider the range [0.01, 5.0]. The frontier search is per-658

formed in the log-space to the base 10 of both variance and lengthscale, i.e., we transform the both659

variance and lengthscale with t(z) = log1 0(z) during the frontier search and in the end transform660

back the result by t−1(z) = 10z .661

Parallelizing the sharpness and calibration computations. Computing the calibration and sharp-662

ness metrics in (5) and (6) is computationally expensive since it requires computing the calib-freq663

and avg-std over all n tasks and Ti − 1 subsequences within each task. Fortunately, each of these664

computations can be done independently. Thus, we use compute each of the summands in (5) and665

(6) in parallel processes and aggregate the results in the end. This significantly reduces the compu-666

tation time for the calibration and sharpness which allows us to perform 20 steps of frontier search667

relatively fast.668

20

The NN-based GP prior. Following [49, 11], we parameterize the GP prior ρθ(h) =669

GP (h|mθ(x), kθ(x,x
′)), particularly the mean mθ and kernel function kθ, as neural networks670

(NN). Here, the parameter vector θ corresponds to the weights and biases of the NN. To ensure the671

positive-definiteness of the kernel, we use the neural network as feature map Φθ(x) : X 7→ Rd672

that maps to a d-dimensional real-values feature space in which we apply a squared exponential673

kernel. We choose the dimensionality of the feature space the same as the domain. Accordingly, the674

parametric kernel reads as675

kθ(x, x
′) = νP exp

(
−||Φθ(x)− Φθ(x

′)||2/(2lP)
)
. (45)

Both mθ(x) and Φθ(x) are fully-connected neural networks with 3 layers with each 32 neurons676

and tanh non-linearities. The kernel variance νP and lengthscale lP are also learnable parameters677

which are appended to the NN parameters θ. Since lP and σ2
P need to be positive, we represent678

and optimize them in log-space. Unlike Rothfuss et al. [11], we set the variance σ2 of the Gaussian679

likelihood p(y|h(x)) = N (y;h(x), σ2) as a fixed parameter rather than meta-learning it. This is,680

because, in order to ensure safety, the likelihood variance needs to be the same as the one that was681

used during frontier search, when computing then calibration and sharpness.682

The hyper-prior. We use a Vanilla GP GP(0, k(x, x′)) as hyper-prior stochastic process. In that,683

k(x, x′) = ν exp
(
−||x− x′||2/(2l)

)
(46)

is a SE kernel with variance ν and lengthscale l chosen by the frontier search procedure, discussed684

in Sec. 4.2.685

Minimization of the F-PACOH objective. To estimate the F-PACOH objective in (23), we use686

measurement sets of size k = 20, i.e., considering a subset of 10 training points and 10 uniformly687

sampled domain points per iteration. We minimize the loss by performing 5000 iterations with the688

Adam optimizer with a learning rate of 0.001.689

Code and Data. We provide implementations of the SaMBO components as well as the experi-690

ment scripts and data under https://tinyurl.com/safe-meta-bo.691

E Further discussions about SaMBO692

Discussion on the applicability to higher-dimensional problems. Similar to other BO / safe BO693

methods that are based on GPs, the sample complexity grows exponentially with the number of694

dimensions. The meta-learning in our case alleviates this issue to some degree by making the GP695

prior more informed about our environment of tasks in areas where meta-training data is available.696

However, to maintain safety, we regularize the meta-learned GP prior towards a Vanilla GP with SE697

kernel (cf. Eq. 3) in areas without or little meta-training data. The higher-dimensional our safe BO698

problem, the sparser is the meta-training data in the domain. Thus, the areas where our meta-learned699

GP resembles a Vanilla GP become larger in proportion and we face again the general issue of poor700

sample complexity in high dimensions. Generally, without additional assumption that, e.g., there701

exists some lower-dimensional sub-space in which the functions we are optimizing lie, we do not702

believe that the ‘curse of dimensionality’ problem can be solved while, at the same time, assuring703

safety. Generally, we not aware of any safe BO method that has been successfully applied to a704

high-dimensional optimization problem with safety constraint.705

Discussion on the monotonicity of the calibration-sharpness constraint optimization problem.706

As discussed in Section 4.2, the introduced frontier search algorithm aims to exploit the mono-707

tonicity properties of the calibration-sharpness constraint optimization problem in 7. For large708

ranges of l and ν, the avg-std and avg-calib are monotonically increasing in the kernel variance709

ν and decreasing in the lengthscale l. While the monotonicity for the avg-std provably holds across710

the spectrum, the monotonicity of the calibation frequency in l is only an empirical heuristic that711

holds in almost all cases if ν is at least as big as the variance of the targets y in a dataset. If the712

kernel variance is chosen smaller than the variance of the data, significant parts of the function713

21

https://tinyurl.com/safe-meta-bo

0.5 1.0 1.5 2.0
kernel lengthscale (constraint)

0.5

1.0

1.5

2.0

2.5

3.0

ke
rn

el
 v

ar
ia

nc
e

(c
on

st
ra

in
t)

calibration frequency

0.95

0.96

0.97

0.98

0.99

1.00

Figure 8: Calibration frequency for
varying kernel lengthscales l and vari-
ances ν. The data underlying the cal-
ibration computations has been stan-
dardized. While avg-calib is monotone
in l for ν > 1, the monotonicity breaks
down if the kernel variance is smaller
than the variance of the data.

that underlie the data are outside of the high-probability714

regions of the GP prior and the GPs predictive distribution715

systematically underestimates the corresponding variance716

in the absence of close-by data points. In such a cases,717

a larger lengthscale can actually improve the calibration718

by increasing the sphere of local influence of data points719

on the predictive distribution and, thus, slowing down the720

reversion of the posterior towards the prior with too small721

variance.722

Figure 8 displays the calibration frequency in response723

to l and ν in the same setting as Figure 2, but with724

an extended range where the kernel variance ν becomes725

smaller than 1 (data is standardized) and thus smaller than726

the variance of the data. The lower left corner where ν <727

1 illustrates the described breakdown of monotonicity.728

In practice, this is not an issue since we can easily we729

standardize our data and then choose the lower bound of730

kernel variance in the frontier search to be 1. In the re-731

sulting search space, our constraint optimization problem732

is monotone and the frontier search converges as expected.733

F Experiment Details734

F.1 SafeBO environments735

F.1.1 The Camelback + Random Sinusoids environment736

The environment objective/target function corresponds to a Camelback function [54]737

g(x1, x2) = max
(
−(4− 2.1 · x2

1 + x4
1/3) ∗ x2

1 − x1x2 − (4 · x2
2 − 4) ∗ x2

2, − 2.5
)
. (47)

plus random sinusoid functions, defined over the 2-dimensional cube X = [−2, 2] × [−1, 2] as738

domain. Specifically, the target function is defined as739

f(x1, x2) = g(x1, x2) + a sin(ωf ∗ (x1 − ρ)) sin(ωf ∗ (x2 − ρ)) (48)

wherein the parameters are sampled independently as740

a ∼ U(0.3, 0.5), ωf ∼ U(0.2, 2.0), ρ ∼ N (0, 1.0) . (49)

The constraint function q(x) is a linear combination of the camelback function g(x), a product of741

sinusoids along the two dimensions and a quadratic component that ensures that the safe regions are742

sufficiently connected so that they can be reached:743

q(x1, x2) = 3 · sin(0.4 · π · ωq − 2) · sin(2π · ωq)− b · (x2
1 + x2

2) + 1.2 · g(x1, x2)− 0.7 . (50)

Here the parameters ωq and b are sampled as follows:744

ωq ∼ U(0.45, 0.5), b ∼ U(0.3, 0.5) (51)

The optimization domain is X = [−2, 2] × [−1, 1]. As initial safe point we use S0 =745

{(−1.5,−0.5)}. Figure 9 displays an example task of the Camelback + Random Sinusoids en-746

vironment.747

F.1.2 The Random Eggholder environment748

The random Eggolder environemnt is based on the Eggholder function [55], a popular benchmark749

function used in global optimization:750

f(x1, x2) = −(x2 + c) · sin
(√
|ax2 + x1/2 + 47|

)
− b · x1 · sin

(√
|x1 − x2 − 47|

)
(52)

22

2 1 0 1 2
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x 2

target function f(x1, x2)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x 2

constraint function q(x1, x2) 0
Global optimum
Initial safe point

1.8

1.2

0.6

0.0

0.6

1.2

1.8

2.4

3.0

Figure 9: Example task of the Camelback + Random Sinusoids environment. Left: target function.
Right: Safe regions in green and unsafe regions in red.

0 100 200 300 400
x1

0

50

100

150

200

250

300

350

400

x 2

target function f(x1, x2)

0 50 100 150 200 250 300 350 400
x1

0

50

100

150

200

250

300

350

400

x 2

constraint function q(x1, x2) 0
Global optimum
Initial safe point

1000

800

600

400

200

0

200

400

600

800

Figure 10: Example task of the Random Eggholder environment. Left: target function. Right: Safe
regions in green and unsafe regions in red.

We randomly sample its parameters a, b, c as follows:751

a ∼ U(0.6, 1.4), b ∼ U(0.6, 1.4), c ∼ N (47, 52) (53)

to obtain different tasks. The corresponding constraint function is defined as752

q(x1, x2) = 300−
√

x2
1 + 2x2

2 + 50 sin ((ω1x1 + ω2x2)/20) , (54)

where the frequencies are sampled independently as ω1, ω2 ∼ U(0.8, 1.2). The optimization domain753

is X = [0, 400] × [0, 400]. As initial safe point we use S0 = {(380, 50)}. Figure 10 displays an754

example task of the Random Eggholder environment. The environment is particularly challenging755

since the Eggholder function has many local minima.756

F.1.3 Tuning controller parameters for the Argus linear robotic platform757

The high-precision motion system Argus from Schneeberger Linear Technology is shown on Fig.758

11). It is a 3 axes positioning system with 2 orthogonal linear axes and a rotational axes on top. The759

system has an accuracy of ±10µm, bidirectional repeatability of 0.7µm and 3σ position stability of760

< 1nm. In our experiments we focus on the upper linear axis of the system.761

The exact optimization problem is762

x∗ = argmin
x=[PKP,VKP,VKI]

Ts ·
d

dt
pe[tmove : tend] (55)

s.t. FFTmax(x
∗) = max

ω∈[0.03,0.07]
|fft(ve)|(ω) + b · max

ω∈[0.08,0.1]
|fft(ve)|(ω)− κ < 0 (56)

23

Figure 11: Argus motion system

pr

Feedforward

Position P
Controller C1

Feedforward

Velocity PI
Controller C2 Plant G

perr vr verr

vff Fff

Fr

p
v+

-

+
+ +

-

+
+

Figure 12: Argus controller structure

where PKP is the proportional gain of the position control loop, VKP is the proportional gain of763

the velocity control loop, VKI is the integral gain of the velocity control loop, Ts is the settling764

time, pe is the position error measurement, ve is the velocity error measurement, tmove is the move-765

time defined as the timepoint where the reference movement is finished, tend is the time endpoint766

of the movement measurement, set to 1.2s, ω is the frequency, fft is the fast Fourier transform in a767

given frequency window, b = 5 is a scaling factor, and κ is the constraint limit, dependent on the768

reference stepsize. The position reference trajectory is a step-wise constant jerk based s-curve with769

jerk = 200m
s3 , maximum acceleration a = 20m

s2 and maximum velocity v = 1m
s .770

The simulation model of the Argus used in section 6.3 contains a cascade controller and a model of771

the Argus system (plant). The cascaded controller (see figure 12) was rebuilt from the real controller772

design and the plant (see figure 13) was modelled by 1) a fitted linear transfer function G(s), con-773

taining a double integrator, the five most dominant resonances of form T (s) = s2/ωni+2λni/ωni+1
s2/ωdi+2λdi/ωdi+1774

and a dead time, using frequency domain data and 2) a nonlinear position-dependent cogging775

model Fc(p), based on linear interpolation of a lookup table for 16000 points at positions between776

±200mm of the axis using a discretization of 0.025mm, where p is position, v is velocity, and Fr777

is the force reference (proportional to current) applied to the motor of the axis. The linear transfer778

function has order 13. The resonant and anti-resonant frequencies are displayed in table 1, with779

fn/d = ωn/d ·
√
1− 2λ2

n/d and dead time tdead = 2ms780

Linear transfer
function

G(s)

Fr

p
v

Plant
G

Fr_new

F c
(p
)

+

-

Figure 13: Argus controller structure

24

fn in Hz λn fd in Hz λd

1 390 0.1 400 0.1
2 475 0.03 500 0.05
3 690 0.03 800 0.06
4 870 0.03 900 0.04
5 1050 0.03 1100 0.06

Table 1: Argus simulation linear transfer function parameters

Environment # meta-train tasks # points per task lengthscale constr model

Camelback + Random Sin 40 100 0.5
Random Eggolder 40 200 0.4
Argus Controller Tuning 20 400 0.4

Table 2: Specifications of the meta-train data

The optimization domain is 3-dimensional and corresponds to the three controller gains PKP, VKP,781

VKI, restricted to the following ranges: X = [100, 400]× [300, 1200]× [500, 4000]. As initial safe782

set, we take S0 = {(200, 800, 1000)}.783

F.2 Environment Normalization and Data Collection784

Environment Normalization. The three environments, specified in Appx F.1 have vastly different785

scales, both in x, f̃ and q̃. To alleviate the problems arising from different value ranges we stan-786

dardize the environment data such that the value ranges are roughly those of a standard normally787

distributed random variable, before we pass on the data to the GP model. Hence, the kernel variances788

and lengthscales displayed in Fig. 6.2 correspond to the standardized value ranges.789

To determine the standardization statistics (i.e., mean and standard deviation (std)) for x we use790

the domain ranges ([xl
i, x

u
i] for dimension i = 1, ..., d) of the environments. Assuming a uniform791

distribution over the domain, we use µxi
=

xu
i +xl

i

2 as mean and σxi
=

√
(xu

i −xl
i)

2

12 . For f̃ and q̃792

we are more conservative, because we do not want to underestimate their std which could lead to793

getting stuck in local optima or safety violations. In particular, we consider the respective minimum794

and maximum values of f̃ and q̃ observed in the union of the meta-train datasets, i.e. f̃min, f̃max,795

q̃min, q̃max. For f̃ , we use µf̃ = f̃max+f̃min

2 and σf̃ = f̃max−f̃min

3 . For the constraint values, we set796

µq̃ = 0 because we do not want to distort the safety threshold and use σq̃ = max{|q̃max|,|q̃min|}
2 as std797

to re-scale the constraint values.798

Collection of meta-train data. We collect the meta-training data by running SAFEOPT on each799

task. Table 2 holds the specifications for each of the three environments, i.e. the number of tasks800

n, the number of points/iterations Ti per task and the constraint model lengthscale that is used for801

SAFEOPT. In all cases, we use a conservative lengthscale of 0.2 for the target model and a likelihood802

std of 0.1. Conservative parameter choices like these ensure that we continue exploring (within the803

confines of SAFEOPT) throughout the data collection and don not start to over-exploit, e.g. by804

querying the same data point many times.805

F.3 Parameter Choices for the Experiments806

Domain discretization. Since both SAFEOPT and GOOSE require finite domains, we discretize807

the continuous domains of the safe BO tasks with 40000 uniform points each.808

Likelihood Std. The standard deviation of the Gaussian likelihood of the GP is the only hyper-809

parameter we have to choose when employing our proposed frontier search in combination with810

Vanilla GPs. However, the observation noise is often known or easy to estimate by querying the811

25

10 8 6 4 2 0 2 4
z1

4

2

0

2

4

z 2

20

15

10

5

0

5

10

Figure 14: Monotone optimization problem in Eq. 57

same point multiple times and observing the variation of responses. We use the latter approach to812

determine the likelihood std in our experiments, obtaining the following settings: σ = 0.02 for813

the Camelback + Random Sin environment, σ = 0.05 for the Random Eggholder environment and814

σ = 0.1 for the Argus Controller parameter tuning.815

GoOSE expander sets. For computing the GoOSE expander sets Wt, we always use ϵ = 0.2. Note,816

that this applies after the environment standardization.817

G Further Experiment Results818

G.1 Frontier Search819

In this section, we aim to investigate how fast the proposed Frontier Search algorithm (c.f. Algorithm820

1) approaches the optimal solution of a montone optimization problem like the one in (24). To this821

end, we use the following monotone, constraint optimization problem to test the algorithm:822

min
ω

s(z) s.t. c(z) ≥ 1

with s(z) := z1 + 2z2

q(z) := 5 ∗ z1 + 0.5 ∗ z32 − 3

(57)

Figure 14 visualizes the s(z) and the constraint boundary q(z) = 0. In Figure 15 we visualize the823

first 33 iterations of Frontier Search on the optimization problem in (57). As we can see, Algorithm824

1 quickly shrinks the area between the frontiers and returns solutions close to the optimum after only825

a handful of queries.826

Finally, Figure 16 visualizes the convergence of Frontier Search, both in terms of the max-min827

distance and the sub-optimality s(ẑ∗)− s(z∗) of the solution, together with the bounds provided in828

Theorem 1.829

G.2 Compute Time Analysis830

Here, we provide a computational analysis of various components of the proposed SaMBO algo-831

rithm. Table 3 reports the time it takes to finish the computations associated with the frontier search832

as well as F-PACOH for different sizes of the meta-training data. Each experiment has been run on833

16 processor cores of an Intel Xeon 8360Y 2.4GHz CPU. As in all the experiments, we use 20 itera-834

tions of frontier search and 5000 iterations of stochastic gradient descent (with the Adam optimized)835

on the F-PACOH objective.836

As already discussed in Appendix D, we can use parallelization for the computation of the avg-calib837

and avg-std metric which makes frontier search relatively fast. For instance, for n = 20 tasks and838

T = 200 samples, the frontier search part of Algorithm 2 finishes in ca. 35 seconds. The compu-839

tational complexity of the calibration and sharpness computations grows with T since the number840

26

10 0
5

0

5
iter 0

10 0
5

0

5
iter 3

10 0
5

0

5
iter 6

10 0
5

0

5
iter 9

10 0
5

0

5
iter 12

10 0
5

0

5
iter 15

10 0
5

0

5
iter 18

10 0
5

0

5
iter 21

10 0
5

0

5
iter 24

10 0
5

0

5
iter 27

10 0
5

0

5
iter 30

10 0
5

0

5
iter 33

upper front. lower front. best solution optimum safety border

Figure 15: Frontier Search on the monotone optimization problem in in Eq. 57. Algorithm 1 quickly
shrinks the area between the frontiers and returns solutions close to the optimum after only a handful
of queries.

0 20 40 60
iter

100

101

m
ax

-m
in

 d
ist

0 20 40 60
iter

10 1

100

101

su
b-

op
tim

al
ity

max-min dist bound
max-min dist
sub-optimality bound
sub-optimality

Figure 16: Convergence of Frontier Search for the optimization problem in Eq. 57.

27

n T Duration Frontier Search Duration F-PACOH

10 50 14.19 ± 0.52 169.55 ± 1.99
10 100 18.83 ± 0.62 183.55 ± 2.21
10 200 33.82 ± 1.26 230.90 ± 4.57
10 400 75.23 ± 10.42 247.89 ± 11.05
20 50 13.96 ± 0.87 178.47 ± 4.93
20 100 22.14 ± 0.68 187.57 ± 1.84
20 200 37.44 ± 2.54 224.54 ± 8.75
20 400 95.15 ± 11.65 243.12 ± 8.94

Table 3: Compute time in seconds for Frontier Search and F-PACOH for different number of tasks
n and samples per task T . Reported is the mean and standard deviation over 5 sees / repetitions.

of sub-sequences of each dataset, as well as the maximum size of a sub-sequence used for GP in-841

ference grows. While the former can be parallelized, GP inference cannot be easily parallelized.842

The meta-training of the GP priors, typically takes ca. 3-4 minutes. Finally, the compute time for843

the safe BO part strongly varies depending on the employed algorithm (e.g. GoOSE or SafeOpt)844

and how time intensive/costly it is to query the f and q. In the best case, when we use simulated845

toy functions that are very cheap to evaluate and run GoOSE for 200 steps, the safe BO takes ca.846

500 seconds (8-9 min). In case of SafeOpt, the compute time is highly variable depending on the847

expander computation and ranges from 15 minutes to 1.5 hours. Generally, when employed with a848

real system or expensive simulation, the time for the safe BO outweights the compute time for the849

frontier search and F-PACOH steps of SaMBO by a order of magnitude.850

G.3 Study on amount of meta-train data851

In this section, we aim to study how varying amounts of meta-training data affect the overall per-852

formance of SaMBO. For this purpose, we employ SaMBO-G on the the Camelback Function +853

Random Sinusoid environment with a varying number of meta-training tasks and data points per854

task. Figure 17 displays the terminal inference regret at (T = 100) for a varying number of tasks855

n with each m = 100 data points (left) and a varying number of tasks n with each m = 100 data856

points (right).857

In all cases, the performance of SaMBO-G is substantially better than the inference regret of > 0.1858

we obtain when running GoOSE with a Vanilla GP, as done in Figure 4. This demonstrates that we859

can also successfully perform positive transfer when the amount of meta-training data is smaller.860

Finally, we observe that the performance improvement we gain by doubling the number of tasks is861

much bigger than when we double the number of points per task. This is consistent with learning862

theory in e.g. Pentina and Lampert [30] and Rothfuss et al. [34].863

28

50 100 200
number of points per task

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175

in
fe

re
nc

e
re

gr
et

 a
t T

=1
00

10 20 40
number of tasks

0.000

0.005

0.010

0.015

0.020
in

fe
re

nc
e

re
gr

et
 a

t T
=1

00

Figure 17: Overall performance for different amounts of meta-training. Displayed is the inference
regret at last step (T = 100) of SaMBO-G in the Camelback Function + Random Sinusoid environ-
ment. Left: Varying number of data points per task m for n = 20 tasks. Right: varying number of
tasks n with each m = 100 data points. Doubling the number of tasks leads to more performance
improvements than doubling the number of points per tasks.

29

	Introduction
	Related Work
	Problem Statement and Background
	Problem Statement
	Safe Bayesian Optimization Methods
	Meta-Learning GP Priors

	Choosing the Safe Kernel Hyper-Parameters
	Assessing kernel hyper-parameters: Calibration and sharpness
	Choosing good hyper-parameters via Frontier search

	Safe BO with meta-learned GP priors
	Experiments
	Experiment Setup
	Choosing the kernel parameters via calibration & sharpness based frontier search
	Safe Bayesian Optimization Benchmark & Controller Tuning

	Summary and Discussion of Limitations
	Safe Bayesian Optimization Algorithms
	SafeOpt
	GoOSE

	Meta-Learning reliable priors with F-PACOH
	Frontier Search
	Implementation Details of SaMBO
	Further discussions about SaMBO
	Experiment Details
	SafeBO environments
	The Camelback + Random Sinusoids environment
	The Random Eggholder environment
	Tuning controller parameters for the Argus linear robotic platform

	Environment Normalization and Data Collection
	Parameter Choices for the Experiments

	Further Experiment Results
	Frontier Search
	Compute Time Analysis
	Study on amount of meta-train data

