
MASKED GENERATIVE PRIORS IMPROVE WORLD
MODELS SEQUENCE MODELLING CAPABILITIES

Cristian Meo1 Mircea Lică1 Zarif Ikram2,5 Akihiro Nakano3 Vedant Shah4

Aniket Rajiv Didolkar4 Dianbo Liu5 Anirudh Goyal4 Justin Dauwels1

ABSTRACT

Deep Reinforcement Learning (RL) has become the leading approach for creating
artificial agents in complex environments. Model-based approaches, which are
RL methods with world models that predict environment dynamics, are among
the most promising directions for improving data efficiency, forming a critical
step toward bridging the gap between research and real-world deployment. In
particular, world models enhance sample efficiency by learning in imagination,
which involves training a generative sequence model of the environment in a
self-supervised manner. Recently, Masked Generative Modelling has emerged as
a more efficient and superior inductive bias for modelling and generating token
sequences. Building on the Efficient Stochastic Transformer-based World Mod-
els (STORM) architecture, we replace the traditional MLP prior with a Masked
Generative Prior (e.g., MaskGIT Prior) and introduce GIT-STORM. We evaluate
our model on two downstream tasks: reinforcement learning and video predic-
tion. GIT-STORM demonstrates substantial performance gains in RL tasks on
the Atari 100k benchmark. Moreover, we apply Categorical Transformer-based
World Models to continuous action environments for the first time, addressing a
significant gap in prior research. To achieve this, we employ a state mixer function
that integrates latent state representations with actions, enabling our model to
handle continuous control tasks. We validate this approach through qualitative and
quantitative analyses on the DeepMind Control Suite, showcasing the effectiveness
of Transformer-based World Models in this new domain. Our results highlight the
versatility and efficacy of the MaskGIT dynamics prior, paving the way for more
accurate world models and effective RL policies.

1 INTRODUCTION

Deep Reinforcement Learning (RL) has emerged as the premier method for developing agents capable
of navigating complex environments. Deep RL algorithms have demonstrated remarkable perfor-
mance across a diverse range of games, including arcade games (Mnih et al., 2015; Schrittwieser
et al., 2020; Hafner et al., 2021; 2023), real-time strategy games (Vinyals et al., 2019; OpenAI, 2018),
board games (Silver et al., 2016; 2018; Schrittwieser et al., 2020), and games with imperfect informa-
tion (Schmid et al., 2021). Despite these successes, data efficiency remains a significant challenge,
impeding the transition of deep RL agents from research to practical applications. Accelerating
agent-environment interactions can mitigate this issue to some extent, but it is often impractical for
real-world scenarios. Therefore, enhancing sample efficiency is essential to bridge this gap and enable
the deployment of RL agents in real-world applications (Micheli et al., 2022; Lanillos et al., 2021).

Model-based approaches (Sutton & Barto, 2018) represent one of the most promising avenues for
enhancing data efficiency in reinforcement learning. Specifically, models which learn a “world
model” (Ha & Schmidhuber, 2018) have been shown to be effective in improving sample efficiency.
This involves training a generative model of the environment in a self-supervised manner. These

1 Delft University of Technology, NL. 2 Bangladesh University of Engineering and Technology, BD. 3

The University of Tokyo, JP. 4 Mila, University of Montreal, CA. 5 National University of Singapore, SG.
Corresponding author: c.meo@tudelft.nl

1

GIT-STORM

Bidirectional
Transformer

2 M 1 3 M 6 M 8

ηt

MaskGIT Codebook

⋅

Autoregressive
Transformer

Randomly
mask

tokens

ht

zt
2 9 1 3 5 6 4 8

79 1 3 5 6 4 8
zt+1

OneHotCategorical
Sampling

⋅⋅⋅
Logits

9 1 3 5 6 4 8 1
zt+1

OneHotCategorical
Sampling

⋅⋅⋅
Logits

STORM

MLP HeadAutoregressive
Transformer

ht

zt
2 9 1 3 5 6 4 8

MaskGIT Prior
MLP Prior

ξt

Figure 1: Overview of our proposed GIT-STORM method. (Left) The MaskGIT prior introduced to
model the dynamics of the environment. The bidirectional transformer (Devlin et al., 2018) combines
the hidden state given by the autoregressive transformer and the masked posterior zt ◦mt to produce
the prior corresponding to the next timestep. (Right) MLP prior originally used in STORM.

models can generate new trajectories by continuously predicting the next state and reward, enabling
the RL algorithm to be trained indefinitely without the need for additional real-world interactions.

However, the effectiveness of RL policies trained in imagination hinges entirely on the accuracy of
the learned world model. Therefore, developing architectures capable of handling visually complex
and partially observable environments with minimal samples is crucial. Following Ha & Schmidhuber
(2018), previous methods have employed recurrent neural networks (RNN) to model the dynam-
ics of the environment Hafner et al. (2020; 2021; 2023). However, as RNNs impede parallelized
computing due to their recurrent nature, some studies (Micheli et al., 2022; Robine et al., 2023;
Zhang et al., 2023) have incorporated autoregressive transformer architectures (Vaswani et al., 2017)
which have been shown to be effective across various domains, such as language (Devlin et al.,
2019; Radford et al., 2019; Brown et al., 2020; Raffel et al., 2020), images (Dosovitskiy et al.,
2021; He et al., 2022; Liu et al., 2023), and offline RL (Janner et al., 2021; Chen et al., 2021). For
instance, IRIS (Micheli et al., 2022) utilize discrete autoencoders (Oord et al., 2017) to map raw
pixels into a smaller set of image tokens to be used as the input to the world model, achieving super-
human performance in ten different environments of the Atari 100k benchmark (Kaiser et al., 2019).

Table 1: Comparison between an MLP prior and
a spatial MaskGIT prior for video dynamics us-
ing Fréchet Video Distance (FVD).

FVD (↓)
Method DMLab SSv2

TECO w/ MLP prior 153 228
TECO w/ MaskGIT prior 48 199

However, autoregressive transformers often suffer
from hallucinations (Ji et al., 2023), where pre-
dicted states of the environment are unfeasible, de-
teriorating the agent’s learning process. Addition-
ally, their unidirectional generation process limits
the ability to fully capture global contexts (Lee
et al., 2022). To address these issues, TECO (Yan
et al., 2023) introduces MaskGIT (Chang et al.,
2022) prior pϕ(zt+1 | ht), using a draft-and-revise
algorithm to predict the next discrete representa-
tions in the sequence in video generation task. In-
terestingly, STORM shows that the latent representations zt have the biggest impact on the sequence
modelling capabilities of the world model. Moreover, to the best of our knowledge, transformer-based
world models have not yet been applied to continuous action environments (e.g., DeepMind Control
Suite (DMC) (Kaiser et al., 2019)). The primary challenge lies in the reliance on categorical latent
states, which are often ill-suited for representing continuous actions. Addressing this gap is critical
for extending the applicability of transformer-based world models to a broader range of tasks.

In this paper, we introduce GIT-STORM, a novel world model inspired by STORM (Zhang et al.,
2023), which leverages the MaskGIT prior to enhance world model sequence modelling capabilities.
Building on insights from Yan et al. (2023), we demonstrate the superior performance of the MaskGIT
prior over an MLP prior in predicting video dynamics, as evidenced by results in the DMLab (Beattie

2

et al., 2016) and SSv2 (Goyal et al., 2017) datasets (Table 1). Here we summarize the main
contributions of this work:

C1: We propose GIT-STORM, a novel world model that enhances STORM (Zhang et al., 2023) with
a MaskGIT prior network for improved sequence modelling. Our model achieves state-of-the-art
results on the Atari 100k benchmark, outperforming methods like DreamerV3 (Hafner et al., 2023)
and IRIS, with comprehensive ablation studies showing the impact of discrete representation quality
on downstream RL tasks.

C2: We bridge the gap between transformer-based world models and continuous control tasks
by using a State Mixer function that effectively combines categorical latent representations with
continuous actions, enabling effective learning in continuous action spaces. Through rigorous
evaluation on the DMC benchmark, we provide an in-depth analysis of the strengths and limitations
of the proposed GIT-STORM model.

This paper marks a key step forward in extending transformer-based world models to more complex
and diverse environments.

2 RELATED WORKS

2.1 MODEL-BASED RL: WORLD MODELS

Model-based RL has been a popular paradigm of reinforcement learning. With the advent of neural
networks, it has become possible to model high-dimensional state spaces and thus, use model-based
RL for environments with high-dimensional observations such as RGB images. In the last few
years, based on PlaNet (Hafner et al., 2018), Hafner et al. proposed the Dreamer series (Hafner
et al., 2020; 2021; 2023), a class of algorithms that learn the latent dynamics of the environment
using a recurrent state space model (RSSM), while learning behavioral policy in the latent space.
Currently, DreamerV3 (Hafner et al., 2023) has been shown to work across multiple tasks with a
single configuration, setting the state-of-the-art across different benchmarks. The actor and critic in
DreamerV3 learn from abstract trajectories of representations predicted by the world model.

With the advent of transformers (Vaswani et al., 2017) in sequence modelling and the promise of
scaling performance across multiple tasks with more data, replacing the traditional RSSM backbones
with transformer-based backbones has become a very active research direction. Although IRIS
(Micheli et al., 2022), one of the first transformer-based world model approaches, obtains impressive
results, its actor-critic operates in the RGB pixel space, making it almost 14x slower than DreamerV3.
In contrast, methods such as TWM (Robine et al., 2023) and STORM (Zhang et al., 2023), use
latent actor-critic input space. The proposed GIT-STORM employs it as well, as we believe it is
the most promising direction to overcome sample efficiency constraints. More recently, STORM
updated DreamerV3 by utilizing the transformer backbone. All aforementioned transformer-based
world models use an MLP head to model a dynamics prior which is used to predict the discrete
representation of the following timestep. In contrast, introduced by TECO (Yan et al., 2023),
we employ a MaskGIT (Chang et al., 2022) prior head, which enhances the sequence modelling
capabilities of the world model. Table 4 compares various design aspects of different world models.
Furthermore, besides STORM, all the mentioned transformer-based world models concatenate the
discrete action to the extracted categorical latent representations. As a result, none of these methods
is able to handle continuous actions. In contrast, combining latent representations and actions with
a state mixer, we successfully train STORM and GIT-STORM on a challenging continuous action
environment (i.e., DMC).

2.2 MASKED MODELLING FOR VISUAL REPRESENTATIONS AND GENERATION

Inspired by the Cloze task (Taylor, 1953), BERT (Devlin et al., 2018) proposed a masked language
model (MLM) pre-training objective that led to several state-of-the-art results on a wide class of
natural language tasks. Following the success of BERT, Masked Autoencoders (MAEs) (He et al.,
2022) learn to reconstruct images with masked patches during the pre-training stage. The learned
representations are then used for downstream tasks. Zhang et al. (2021) similarly, improves upon a
BERT-like masking objective for its non-autoregressive generation algorithm.

3

The most relevant to our work is MaskGIT (Chang et al., 2022), a non-autoregressive decoding
approach that consists of a bidirectional transformer model, trained by learning to predict randomly
masked visual tokens. By leveraging a bidirectional transformer (Devlin et al., 2018), it can better
capture the global context across tokens during the sampling process. Furthermore, training on
masked token prediction enables efficient, high-quality sampling at a significantly lower cost than
autoregressive models. MaskGIT achieves state-of-the art performance on ImageNet dataset and
achieves a 64× speed-up on autoregressive decoding. The MaskGIT architecture has been applied
to various tasks, such as video generation (Yan et al., 2023; Yu et al., 2023a;b) and multimodal
generation (Mizrahi et al., 2024). For example, Yan et al. (2023) proposes TECO, a latent dynamics
video prediction model that uses MaskGIT to model the prior for predicting the next timestep discrete
representations, enhancing the sequence modelling of a backbone autoregressive transformer. Inspired
by TECO, we adopt the use of MaskGIT prior for the world model, enhancing the sequence modelling
capabilities, crucial for enabling and improving the agent policy learning behavior.

Further discussion of related works can be found in Appendix B.

3 METHOD

Following DreamerV3 (Hafner et al., 2023) and STORM (Zhang et al., 2023), we define our frame-
work as a partially observable Markov decision process (POMDP) with discrete timesteps, t ∈ N,
scalar rewards, rt ∈ R, image observations, ot ∈ Rh×w×c, and discrete actions. at ∈ {1, . . . ,ma}.
These actions are governed by a policy, at ∼ π(at | o1:t, a1:t−1), where o1:t and a1:t−1 represent
the previous observations and actions up to timesteps t and t − 1, respectively. The termination
of each episode is represented by a Boolean variable, ct ∈ {0, 1}. The goal is to learn an optimal
policy, π, that maximizes the expected total discounted rewards, Eπ

[∑∞
t=1 γ

t−1rt
]
, where γ ∈ [0, 1]

serves as the discount factor. The learning process involves two parallel iterative phases: learning the
observation and dynamics modules (World Model) and optimizing the policy (Agent).

In this section, we first provide an overview of the dynamics module of GIT-STORM. Then, we
describe our dynamics prior head of the dynamics module, inspired by MaskGIT (Chang et al., 2022)
(Figure 1). Finally, we explain the imagination phase using GIT-STORM, focusing on the differences
between STORM and GIT-STORM. We follow STORM for the observation module and DreamerV3
for the policy definition, which are described in Appendix A.1 and A.2, respectively.

3.1 OVERVIEW: DYNAMICS MODULE

The dynamics module receives representations from the observation module and learns to predict
future representations, rewards, and terminations to enable planning without the usage of the observa-
tion module (imagination). We implement the dynamics module as a Transformer State-Space Model
(TSSM). Given latent representations from the observation module, zt, and actions, at, the dynamics
module predicts hidden states, ht, rewards, r̂t, and episode termination flags, ĉt ∈ {0, 1} as follows,

ζt = gθ(zt, at) (State Mixer)
ht = fθ(ζ1:t) (Autoregressive Transformer)

zt+1 ∼ pϕ(zt+1 | ht) (Dynamics Prior Head) (1)
r̂t ∼ pϕ(r̂t | ht) (Reward Head)
ĉt ∼ pϕ(ĉt | ht) (Termination Head)

The world model is optimized to minimize the objective,

L(ϕ) = 1

BT

B∑
n=1

T∑
t=1

[Lrew(ϕ) + Lterm(ϕ) + β1Ldyn(ϕ) + β2Lrep(ϕ)] (2)

where β1, β2 are loss coefficients and Lrew(ϕ),Lterm(ϕ),Lrep(ϕ),Ldyn(ϕ) are reward, termination,
representation, and dynamics losses, respectively. We use the symlog two-hot loss described in
Hafner et al. (2023) as the reward loss. The termination loss is calculated as cross-entropy loss,
ct log ĉt + (1− ct) log(1− ĉt). In the following section, we define the dynamics prior in Eq. 1, as
well as representation loss, Lrep, and dynamics loss, Ldyn.

4

3.2 DYNAMICS PRIOR HEAD: MASKGIT PRIOR

Given the expressive power of MaskGIT (Chang et al., 2022), we propose enhancing the dynamics
module in the world model by replacing the current MLP prior with a MaskGIT prior, as shown
in Figure 1. Given the posterior, zt, and a randomly generated mask, m ∈ {0, 1}N with M = ⌈γN⌉
masked values where γ = cos

(
π
2 t
)
, the MaskGIT prior pϕ(zt+1 | ht) is defined as follows.

First, the hidden states, ht, are concatenated with the masked latent representations, zt ◦mt, where ◦
indicates element-wise multiplication. Despite ht being indexed by t, it represents the output of the
fθ and thus encapsulates information about the subsequent timestep. Consequently, the concatenation
of zt and ht integrates information from both the current and the next timestep, respectively. A
bidirectional transformer is then used to learn the relationships between these two consecutive
representations, producing a summary representation, ξt. Finally, logits are computed as the dot
product (denoted as ⊙ in Figure 1) between the MaskGIT embeddings, which represent the masked
tokens, and ξt. This dot product is also known as weight tying strategy, first formalized in Inan
et al. (2017) and then used in the original MaskGIT Chang et al. (2022) and GPT-2 Radford et al.
(2019) models as well because of its regularization effects that help preventing overfitting Inan et al.
(2017). Indeed, this weight tying strategy (i.e., dot product) can be interpreted as a similarity distance
between the embeddings and ξt. Indeed, from a geometric perspective, both cosine similarity and
the dot product serve as similarity metrics, with cosine similarity focusing on the angle between
two vectors, while the dot product accounts for both the angle and the magnitude of the vectors.
Therefore, by optimizing the MaskGIT prior, this dot product aligns the embeddings with ξt, thereby
facilitating and improving the computation of logits. In contrast, when using the MLP prior, the
logits are generated as the output of an MLP that only takes ht as input. This approach requires the
model to learn the logits space and their underlying meaning without any inductive bias, making the
learning process more challenging.

During training, we follow the KL divergence loss of DreamerV3 (Hafner et al., 2023), which consists
of two KL divergence losses which differ in the stop-gradient operator, sg(·), and loss scale. We
account for the mask tokens in the posterior and define Ldyn and Lrep as,

Ldyn(ϕ)
.
= max

(
1,KL

[
sg(qϕ(zt | xt)) ◦mt

∥∥ pϕ(zt | ht−1)
])

(3)

Lrep(ϕ)
.
= max

(
1,KL

[
qϕ(zt | xt) ◦mt

∥∥ sg(pϕ(zt | ht−1))
])

(4)

where mt is multiplied element-wise with the posterior, eliminating the masked tokens from the loss.

Sampling. During inference, since MaskGIT has been trained to model both unconditional and
conditional probabilities, we can sample any subset of tokens per sampling iteration. Following Yan
et al. (2023), we adopt the Draft-and-Revise decoding scheme introduced by Lee et al. (2022) to
predict the next latent state (Algorithm 1 and 2). During the draft phase, we initialize a partition
Π which contains Tdraft disjointed mask vectors m of size (latent dim ÷ Tdraft), which together
mask the whole latent representation. Iterating through all mask vectors in Π, the resulting masked
representations are concatenated with the hidden states ht from Eq. 1 and fed to the MaskGIT prior
head that computes the logits of the tokens correspondent to ht and mi. Such logits are then used to
sample the new tokens that replace the positions masked by mi. During the revise phase, the whole
procedure is repeated Γ times. As a result, when sampling the new tokens, the whole representation
is taken into account, resulting in a more consistent and meaningful sampled state.

3.3 STATE MIXER FOR CONTINUOUS ACTION ENVIRONMENTS

When using a TSSM as the dynamics module, the conventional approach has been to concatenate
discrete actions with categorical latent representations and feed this sequence into the autoregressive
transformer. However, this method is ineffective for continuous actions, as one-hot categorical
representations or VQ-codes (Oord et al., 2017) are poorly suited for representing continuous values.
To overcome this limitation, we repurpose the state mixer function gθ(·) introduced in STORM,
which combines the latent representation and the action into a unified mixed representation ζt. This
approach allows for the integration of both continuous and discrete actions with latent representations,
enabling the application of TSSMs to environments that require continuous action spaces.

5

Figure 2: (Left) Human normalized mean, across the Atari 100k benchmark. GIT-STORM outper-
forms all other baselines. (Middle) Human normalized median. TWM achieves the highest median
value of 51%. (Right) IQM. GIT-STORM outperforms all other baselines.

3.4 IMAGINATION PHASE

Instead of training the policy by interacting with the environment, model-based approaches use
the learned representation of the environment and plan in imagination (Hafner et al., 2018). This
approach allows sample-efficient training of the policy by propagating value gradients through the
latent dynamics. The interdependence between the dynamics generated by the world model and
agent’s policy makes the quality of the imagination phase crucial for learning a meaningful policy. The
imagination phase is composed of two phases, conditioning phase and the imagination one. During
the conditioning phase, the discrete representations zt are encoded and fed to the autoregressive
transformer. The conditioning phase gives context for the imagination one, using the cached keys and
values (Yan et al., 2021) computed during the conditioning steps.

Differently from STORM, which uses a MLP prior to compute the next timestep representations, we
employ MaskGIT to accurately model the dynamics of the environment. By improving the quality of
the predicted trajectories, the agent is able to learn a superior policy.

4 EXPERIMENTS

In this section, we analyse the performance of GIT-STORM and its potential limitations by exploring
the following questions: (a) How does the MaskGIT Prior affect TSSMs learning behavior and
performances on related downstream tasks (e.g., Model-based RL and Video Prediction tasks)? (b)
Can Transformer-based world models learn to solve tasks on continuous action environments when
using state mixer functions?

4.1 EXPERIMENTAL SETUP

To evaluate and analyse the proposed method, we consider both discrete and continuous actions
environments, namely Atari 100k benchmark (Kaiser et al., 2019) and DeepMind Control Suite (Tassa
et al., 2018) respectively. On both environments, we conduct both RL and video prediction tasks.

Benchmark and baselines. Atari 100k benchmark consists of 26 different video games with
discrete action space. The constraint of 100k interactions corresponds to a total of 400k frames
used for training, as frame skipping is set to 4. For RL task on Atari 100k benchmark, we compare
GIT-STORM against one model-free method, SimPLe (Kaiser et al., 2019), one RSSM, Dream-
erV3 (Hafner et al., 2023), and three TSSM models (i.e., IRIS (Micheli et al., 2022), TWM (Robine
et al., 2023), and STORM (Zhang et al., 2023)). DMC benchmark consists of 18 control tasks
with continuous action space. We restrict the models to be trained with only 500k interactions (1M
frames) by setting frame skipping to 2. For RL task on DMC benchmark, we compare our model
against SAC (Haarnoja et al., 2018), CURL (Laskin et al., 2020), DrQ-v2 (Yarats et al., 2022),
PPO (Schulman et al., 2017), DreamerV3 (Hafner et al., 2023), and STORM (Zhang et al., 2023). We
trained GIT-STORM on 5 different seeds. For video prediction tasks, we compare GIT-STORM with

6

0.00 0.25 0.50 0.75 1.00

IRIS

TWM

CURL

STORM

DrQ

DreamerV3

A
lg

or
ith

m
 Y

P(GIT-STORM > Y)

0.00 0.25 0.50 0.75 1.00

SAC

PPO

CURL

STORM

DrQ

DreamerV3

P(GIT-STORM > Y)

Figure 3: Probability of Improvement of the mentioned baselines and GIT-STORM in the Atari
100k benchmark (Left) and DMC benchmark (Right). The results represent how likely it is for
GIT-STORM to outperform other baselines.

STORM only to understand how the MaskGIT Prior affects the visual quality of predicted frames
and its influence on the policy training. Extended details of the baselines for both benchmarks can be
found in Appendix J.

Evaluation metrics. Proper evaluation of RL algorithms is known to be difficult due to both the
stochasticity and computational requirements of the environments (Agarwal et al., 2021). To provide
an accurate evaluation of the models, we consider a series of metrics to assess the performances of
the considered baselines on across the selected experiments. We report human normalized mean and
median as evaluation metrics, aligning with prior literature. We also report interquartile Mean (IQM),
Optimality Gap, Performance Profiles (scores distributions), and Probability of Improvement (PI),
which provide a statistically grounded perspective on the model evaluation (Agarwal et al., 2021).For
video prediction task, we report two metrics: Fréchet Video Distance (FVD) (Unterthiner et al., 2019)
to evaluate visual quality of the predicted frames, and perplexity (Jelinek et al., 2005) measure of
the predicted tokens to evaluate the token utilization by the dynamics prior head. We use the trained
agent to collect ground truth episodes and use the world model to predict the frames. We report
the FVD over 256 videos which are conditioned on the first 8 frames to predict 48 frames. A full
description of these metrics can be found in Appendix K.

4.2 RESULTS ON DISCRETE ACTION ENVIRONMENTS: ATARI 100K

RL task. Figure 2 summarizes the human normalized mean and median, and IQM score. The full
results on individual environments can be found in the Appendix due to space limitations (Table 5).
We can see that while TWM and DreamerV3 present a higher human median than GIT-STORM
(TWM: 51%, DreamerV3: 49% → GIT-STORM: 42.6%), GIT-STORM dominates in terms of
human mean (TWM: 96%, DreamerV3: 104% → GIT-STORM: 112.6%). In terms of IQM, a
more robust and statistically meaningful metric, GIT-STORM significantly outperforms the related
baselines (DreamerV3: 0.501, IRIS: 0.502→ GIT-STORM: 0.522).

Figure 3 (Left) compares PI against the baselines. Noticeably, GIT-STORM presents PI > 0.5 for
all baselines, which indicates that, from a probabilistic perspective GIT-STORM would outperform
each baseline on a random task Y from Atari 100k with a probability greater than 0.5. Figure 6
illustrates the Optimality Gap, while Figure 7 presents the fraction of runs with score > τ for
different human normalized scores; both confirm the trends observed so far. Moreover, a closer
look to Table 5 reveals that GIT-STORM presents an optimality gap of 0.500, marginally beating
DreamerV3, which reports 0.503 and significantly outperforming all other baselines.

Video Prediction task. Table 2 shows video prediction results on selected Atari 100k environ-
ments. The table shows that GIT-STORM presents, on average, lower FVD and higher perplexity than
STORM (e.g., in Freeway, STORM: 105.45, 33.15→ GIT-STORM: 80.33, 67.92, respectively). Fig-
ure 10 shows several video prediction results on each environment. For example, on Boxing, we
can see that GIT-STORM is able to predict more accurately into the future. The differences in the
other two games are smaller, as the player in each game has a much smaller dimension. We think
GIT-STORM achieves higher perplexity because the learned agent can collect more diverse episodes.

7

4.3 RESULTS ON CONTINUOUS ACTION ENVIRONMENTS: DEEPMIND CONTROL SUITE

RL task. Figure 4 summarizes the human normalized mean and median, and IQM score. The full
results on individual environments can be found in the Appendix (Table 6). Although DreamerV3
outperforms all other models on average, Table 6 shows that GIT-STORM presents state-of-the-art
scores on two environments, Walker Stand and Quadruped Run. Compared to STORM, GIT-STORM
consistently and significantly outperforms across the whole benchmark in terms of human median and
mean (STORM: 31.50, 214.50→ GIT-STORM: 475.12, 442.10, respectively). For PI, GIT-STORM
achieves PI > 0.5 than STORM, PPO, and SAC (e.g., GIT-STORM: 0.75, 0.60 and 0.63, over
STORM, PPO and SAC, respectively) (Figure 3 (Right)).

Video Prediction task. Table 3 shows video prediction results on selected DMC environments.
The table shows that our model achieves lower FVD and higher perplexity than STORM for all
environments. The video prediction results in Figure 11 show that although both models fail to
capture the dynamics accurately, GIT-STORM generates marginally better predictions, leading to
higher perplexity as well.

200 400 600 800

CURL
DrQ
SAC
PPO

DreamerV3
STORM

GIT-STORM

Mean

250 500 750

Median

Score

Figure 4: Comparison of human normalized mean (left) and median (right) on DMC benchmark.

5 DISCUSSION

The proposed GIT-STORM uses a Masked Generative Prior (MaskGIT) to enhance the world model
sequence modelling capabilities. Indeed, as discussed in the introduction, high quality and accurate
representations are essential to guarantee and enhance agent policy learning in imagination. Remark-
ably, the proposed GIT-STORM is the only world model, among the ones that use uniform sampling
and latent actor critic input space, that is able to achieve non-zero reward on the Freeway environment
(e.g., DreamerV3: 0, STORM: 0→ GIT-STORM: 13). Indeed, both STORM and IRIS resorted in
ad-hoc solutions to get positive rewards, such as changing the sampling temperature (Micheli et al.,
2022) and using demonstration trajectories (Zhang et al., 2023). Such result, together with the quanti-
tative results on the Atari 100k and DMC benchmarks, clearly answer question (a) - the presented
MaskGIT prior improves the policy learning behavior and performance on downstream tasks (e.g.,
Model-based RL and Video Prediction) of TSSMs. Moreover, the FVD and perplexity comparisons
in Table 2 and Table 3 suggest that GIT-STORM has better predictive capabilities, learns a better
dynamics module, and presents more accurate imagined trajectories (Figure 10, Figure 11). Similarly
to image synthesis (Chang et al., 2022) and video prediction (Yu et al., 2023a) tasks, we show how
using masked generative modelling is a better inductive bias to model the prior dynamics of discrete

Table 2: FVD and perplexity comparisons of
STORM and GIT-STORM on selected Atari
100k environments.

Game FVD (↓) Perplexity (↑)
STORM GIT-STORM STORM GIT-STORM

Boxing 1458.32 1580.32 49.24 54.95
Hero 381.16 354.16 10.55 30.25

Freeway 105.45 80.33 33.15 67.92

Table 3: FVD and perplexity comparisons of
STORM and GIT-STORM on selected DMC envi-
ronments.

Task FVD (↓) Perplexity (↑)
STORM GIT-STORM STORM GIT-STORM

Cartpole Balance Sparse 2924.81 1892.44 1.00 3.76
Hopper Hop 4024.11 3458.19 3.39 22.59

Quadruped Run 3560.33 1000.91 1.00 2.61

8

representations and improve the downstream usefulness of world models on RL tasks. Furthermore,
the MaskGIT Prior can be used in any sequence modelling backbone that uses categorical latent
representations (e.g., VideoGPT (Yan et al., 2021), IRIS (Micheli et al., 2022)), positioning itself as a
very versatile approach. In this work we do not apply a MaskGIT prior on top of IRIS only because
of computational and time constraints.

Noticeably, the quantitative results on DMC benchmarks answer question (b) - It is possible to
train TSSMs when using a mixer function to combine categorical representations and continuous
actions. Indeed, both STORM and GIT-STORM are able to learn meaningful policies within the
DMC benchmark. Remarkably, GIT-STORM outperforms STORM with an substantial margin, while
using exactly the same policy learning algorithm. Interestingly, Figure 15 presents an ablation of
the used state mixer function, revealing that the overall learning behavior highly depends on the
used inductive bias. Surprisingly, the simplest one (e.g., concatenation of zt and at) is the only one
that works meaningfully. We leave the exploration of better inductive biases (e.g., imposing specific
information bottlenecks (Meo et al., 2024a)) to improve the state mixer function as future work.

Limitations and Future Work. The current implementation has been validated on environments
that do not require extensive training steps (e.g., ProcGen (Cobbe et al., 2020), Minecraft (Kanitschei-
der et al., 2021)) to be trained. We keep as a future work the validation of GIT-STORM on ProcGen
and Minecraft environments. As suggested by Yan et al. (2023), using a MaskGIT prior could benefit
the world model learning behavior in a visually challenging environment like Minecraft. From a
technical point of view, one of the main limitations of the proposed world model is that we use only
one iteration for the Draft-and-Revise decoding scheme (Lee et al., 2022). Indeed, while using one
iteration speeds up training and evaluation, we do not fully exploit the advantages of this decoding
scheme. As a result, in environments like Pong or Breakout, which present small objects (e.g., white
or red balls, respectively), using a masked generative approach can lead to filtering such objects out,
degrading the downstream performances in these environments. The main reason is that the presented
decoding scheme scales exponentially with the number of iterations. We leave as future work the
definition of a decoding scheme that scales more efficiently with the number of iterations.

6 CONCLUSION

The motivation for this work stems from the need to improve the quality and accuracy of world
models representations in order to enhance agent policy learning in challenging environments.
Inspired by (Yan et al., 2023), we conducted experiments using the TECO framework on video
prediction tasks with DMLab and SSv2 (Goyal et al., 2017) datasets. Replacing an MLP prior with
a MaskGIT (Chang et al., 2022) prior significantly improved the sequence modelling capabilities
and the related performance on the video prediction downstream task. Building upon these insights,
we proposed GIT-STORM, which employs a MaskGIT Prior to enhance the sequence modelling
capabilities of world models, crucial to improve the policy learning behavior (Micheli et al., 2022).
Moreover, through the use of a state mixer function, we successfully combined categorical latent
representations with continuous actions, and learned meaningful policies on the related environments.
We validated the proposed approach on the Atari 100k and the DMC benchmarks. Our quantitative
analysis showed that GIT-STORM on average outperforms all baselines in the Atari 100k benchmark
while outperforming STORM with a significant margin on the DMC benchmark. Although our
approach does not beat the state-of-the-art in the DMC benchmark, the presented quantitative and
qualitative evaluations led to the conclusion that masked generative priors (e.g., MaskGIT Prior)
improve world models sequence modelling capabilities and the related downstream usefulness.

9

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Anderson,
Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis Hassabis,
Shane Legg, and Stig Petersen. Deepmind lab, 2016.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Haoran Bi, Maksym Kyryliuk, Zhiyi Wang, Cristian Meo, Yanbo Wang, Ruben Imhoff, Remko
Uijlenhoet, and Justin Dauwels. Nowcasting of extreme precipitation using deep generative models.
In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5, 2023. doi: 10.1109/ICASSP49357.2023.10094988.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11315–11325, 2022.

Chang Chen, Jaesik Yoon, Yi-Fu Wu, and Sungjin Ahn. Transdreamer: Reinforcement learn-
ing with transformer world models, 2022. URL https://openreview.net/forum?id=
s3K0arSRl4d.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34, 2021.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pp.
2048–2056. PMLR, 2020.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Guilherme N DeSouza and Avinash C Kak. Vision for mobile robot navigation: A survey. IEEE
transactions on pattern analysis and machine intelligence, 24(2):237–267, 2002.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2021.

10

https://openreview.net/forum?id=s3K0arSRl4d
https://openreview.net/forum?id=s3K0arSRl4d

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzyńska, Susanne Westphal,
Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, Florian Hoppe,
Christian Thurau, Ingo Bax, and Roland Memisevic. The "something something" video database
for learning and evaluating visual common sense, 2017.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. Advances in
neural information processing systems, 31, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018. URL https:
//arxiv.org/abs/1801.01290.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
1W0z96MFEoH.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. arXiv preprint arXiv:1811.04551,
2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1lOTC4tDS.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=0oabwyZbOu.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16000–16009, 2022.

Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shotton,
and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving. arXiv preprint
arXiv:2309.17080, 2023.

Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers: A
loss framework for language modeling. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=r1aPbsFle.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456.
PMLR, 2015.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34, 2021.

F. Jelinek, R. L. Mercer, L. R. Bahl, and J. K. Baker. Perplexity—a measure of the difficulty of
speech recognition tasks. The Journal of the Acoustical Society of America, 62(S1):S63–S63, 08
2005. ISSN 0001-4966. doi: 10.1121/1.2016299. URL https://doi.org/10.1121/1.
2016299.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38, 2023.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

11

https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://openreview.net/forum?id=1W0z96MFEoH
https://openreview.net/forum?id=1W0z96MFEoH
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=r1aPbsFle
https://doi.org/10.1121/1.2016299
https://doi.org/10.1121/1.2016299

Ingmar Kanitscheider, Joost Huizinga, David Farhi, William Hebgen Guss, Brandon Houghton,
Raul Sampedro, Peter Zhokhov, Bowen Baker, Adrien Ecoffet, Jie Tang, et al. Multi-task cur-
riculum learning in a complex, visual, hard-exploration domain: Minecraft. arXiv preprint
arXiv:2106.14876, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Rachel Hornung, Hartwig
Adam, Hassan Akbari, Yair Alon, Vighnesh Birodkar, et al. Videopoet: A large language model
for zero-shot video generation. arXiv preprint arXiv:2312.14125, 2023.

P Lanillos, C Meo, C Pezzato, AA Meera, M Baioumy, W Ohata, A Tschantz, B Millidge, M Wisse,
CL Buckley, et al. Active inference in robotics and artificial agents: Survey and challenges. 2021,
p. arXiv preprint arXiv:2112.01871, 2021.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. In International Conference on Machine Learning, pp. 5639–5650.
PMLR, 2020.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1(4):541–551, 1989.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and WOOK SHIN HAN. Draft-and-revise:
Effective image generation with contextual rq-transformer. Advances in Neural Information
Processing Systems, 35:30127–30138, 2022.

Dianbo Liu, Vedant Shah, Oussama Boussif, Cristian Meo, Anirudh Goyal, Tianmin Shu, Michael Cur-
tis Mozer, Nicolas Heess, and Yoshua Bengio. Stateful active facilitator: Coordination and en-
vironmental heterogeneity in cooperative multi-agent reinforcement learning. In The Eleventh
International Conference on Learning Representations, 2023.

Aniruddha Mahapatra and Kuldeep Kulkarni. Controllable animation of fluid elements in still images.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 3667–3676, June 2022.

Cristian Meo, Louis Mahon, Anirudh Goyal, and Justin Dauwels. αTC-VAE: On the relation-
ship between disentanglement and diversity. In The Twelfth International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=ptXo0epLQo.

Cristian Meo, Ankush Roy, Mircea Lică, Junzhe Yin, Zeineb Bou Che, Yanbo Wang, Ruben Imhoff,
Remko Uijlenhoet, and Justin Dauwels. Extreme precipitation nowcasting using transformer-based
generative models, 2024b.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world models.
arXiv preprint arXiv:2209.00588, 2022.

Ruibo Ming, Zhewei Huang, Zhuoxuan Ju, Jianming Hu, Lihui Peng, and Shuchang Zhou. A
survey on video prediction: From deterministic to generative approaches. arXiv preprint
arXiv:2401.14718, 2024.

David Mizrahi, Roman Bachmann, Oguzhan Kar, Teresa Yeo, Mingfei Gao, Afshin Dehghan, and
Amir Zamir. 4m: Massively multimodal masked modeling. Advances in Neural Information
Processing Systems, 36, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

12

https://openreview.net/forum?id=ptXo0epLQo

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Aaron Van Den Oord, Oriol Vinyals, and et al. Neural discrete representation learning. Advances in
Neural Information Processing Systems, 30, 2017.

OpenAI. OpenAI Five. https://blog.openai.com/openai-five/, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21:1–67, 2020.

Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world models
are happy with 100k interactions. In International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=TdBaDGCpjly.

Martin Schmid, Matej Moravcik, Neil Burch, Rudolf Kadlec, Josh Davidson, Kevin Waugh, Nolan
Bard, Finbarr Timbers, Marc Lanctot, Zach Holland, et al. Player of games. arXiv preprint
arXiv:2112.03178, 2021.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

Ryan Sullivan, Akarsh Kumar, Shengyi Huang, John Dickerson, and Joseph Suarez. Re-
ward scale robustness for proximal policy optimization via dreamerv3 tricks. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 1352–1362. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/04f61ec02d1b3a025a59d978269ce437-Paper-Conference.pdf.

Richard S Sutton and Andrew G Barto. Introduction to Reinforcement Learning, volume 135. MIT
Press Cambridge, 1998.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller.
Deepmind control suite, 2018. URL https://arxiv.org/abs/1801.00690.

Wilson L. Taylor. “cloze procedure”: A new tool for measuring readability. Journalism & Mass
Communication Quarterly, 30:415 – 433, 1953. URL https://api.semanticscholar.
org/CorpusID:206666846.

13

https://blog.openai.com/openai-five/
https://openreview.net/forum?id=TdBaDGCpjly
https://proceedings.neurips.cc/paper_files/paper/2023/file/04f61ec02d1b3a025a59d978269ce437-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/04f61ec02d1b3a025a59d978269ce437-Paper-Conference.pdf
https://arxiv.org/abs/1801.00690
https://api.semanticscholar.org/CorpusID:206666846
https://api.semanticscholar.org/CorpusID:206666846

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski, and
Sylvain Gelly. FVD: A new metric for video generation, 2019. URL https://openreview.
net/forum?id=rylgEULtdN.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 30, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Ronald J. Williams and Jing Peng. Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241–268, January 1991. ISSN 0954-0091. doi: 10.1080/
09540099108946587.

Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang, Daxin Jiang, and Nan Duan. Nüwa: Visual
synthesis pre-training for neural visual world creation. In European conference on computer vision,
pp. 720–736. Springer, 2022.

Jialong Wu, Shaofeng Yin, Ningya Feng, Xu He, Dong Li, Jianye HAO, and Mingsheng Long.
ivideoGPT: Interactive videoGPTs are scalable world models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=4TENzBftZR.

Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
vq-vae and transformers. arXiv preprint arXiv:2104.10157, 2021.

Wilson Yan, Danijar Hafner, Stephen James, and Pieter Abbeel. Temporally consistent transformers
for video generation, 2023.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=GY6-6sTvGaf.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=_SJ-_yyes8.

Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10459–10469, 2023a.

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats diffusion–
tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023b.

Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2528–2535,
2010.

Weipu Zhang, Gang Wang, Jian Sun, Yetian Yuan, and Gao Huang. Storm: Efficient
stochastic transformer based world models for reinforcement learning. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 27147–27166. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/5647763d4245b23e6a1cb0a8947b38c9-Paper-Conference.pdf.

Zhu Zhang, Jianxin Ma, Chang Zhou, Rui Men, Zhikang Li, Ming Ding, Jie Tang, Jingren Zhou,
and Hongxia Yang. M6-ufc: Unifying multi-modal controls for conditional image synthesis via
non-autoregressive generative transformers. arXiv preprint arXiv:2105.14211, 2021.

14

https://openreview.net/forum?id=rylgEULtdN
https://openreview.net/forum?id=rylgEULtdN
https://openreview.net/forum?id=4TENzBftZR
https://openreview.net/forum?id=4TENzBftZR
https://openreview.net/forum?id=GY6-6sTvGaf
https://openreview.net/forum?id=_SJ-_yyes8
https://proceedings.neurips.cc/paper_files/paper/2023/file/5647763d4245b23e6a1cb0a8947b38c9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5647763d4245b23e6a1cb0a8947b38c9-Paper-Conference.pdf

A GIT-STORM FRAMEWORK

Autoregressive Transformer
Dynamics Prior

Head

zt−l at−l ⋯ zt−1

ot−l ̂ot−l ot−1 ̂ot−1

at−1 zt

ot ̂ot

at

ht−l ⋯ ht−1 ht

zt−l:t

mt−l:t

Reward Head

Termination Head

zt+1

rt

ct

Figure 5: GIT-STORM End-to-End pipeline. Similar to STORM (Zhang et al., 2023), GIT-STORM
performs sequence modelling using an autoregressive transformer, which predicts future stochastic
latents, zt, reward, rt and termination, ct. In contrast with STORM, GIT-STORM uses a Masked
Generative Prior to model the dynamics of the environment.

Similar to previous TSSM-based world models (Micheli et al., 2022; Chen et al., 2022; Zhang et al.,
2023), GIT-STORM consists of a world model with two modules, VAE-based observation module
and autoregressive dynamics module, and a policy trained in the latent space. Figure 5 describes
the world model architecture of GIT-STORM. In the following sections, we provide details of the
observation module and policy.

A.1 OBSERVATION MODULE

Following STORM, the observation module is a variational autoencoder (VAE) (Kingma & Welling,
2013), which encodes observations, ot, into stochastic latent representations, zt, and decodes back
the latents to the image space, ôt:

Observation encoder: zt ∼ qϕ(zt | ot) (5)
Observation decoder: ôt = pϕ(zt) (6)

The observations are encoded using a convolutional neural network (CNN) encoder (LeCun et al.,
1989) which outputs the logits used to sample from a categorical distribution. The distribution
head applies an unimix function over the computed logits to prevent the probability of selecting any
category from being zero (Sullivan et al., 2023). Since the sampled latents lack gradients, we use the
straight-through gradients trick (Bengio et al., 2013) to preserve them. The decoder, modeled using a
CNN, reconstructs the observation from the latents, zt. While the encoder is updated using gradients
coming from both observation and dynamics modules, the decoder is optimized using only the Mean
Squared Error (MSE) between input and reconstructed frames:

LObservation Model = MSE(ot, ôt) (7)

A.2 POLICY LEARNING

Following the model-based RL research landscape (DreamerV3; Hafner et al., 2023) we cast the agent
policy learning framework using the actor-critic approach (Mnih et al., 2016). The agent actor-critic
is trained purely from agent state trajectories st = [zt, ht] generated by the world model. The actor
aims to learn a policy that maximizes the predicted sum of rewards and the critic aims to predict the

15

distribution of discounted sum of rewards by the current actor:

Actor: at ∼ πθ(at|st) , Critic: Vψ(st) ≈ Eπθ,pϕ

[∞∑
τ=0

γτrt+τ

]
, (8)

where γ is a discount factor.

We follow the setup of STORM (Zhang et al., 2023) and DreamerV3 (Hafner et al., 2023) to train the
agent. First, a random trajectory is sampled from the replay buffer to compute the initial state of the
agent. Then, using the sampled trajectory as context, the world model and actor generate a trajectory
of imagined model states, s1:L, actions, a1:L, rewards, r̂1:L, and termination flags, ĉ1:L, where L is
the imagination horizon. To estimate returns that consider rewards beyond the prediction horizon, we
compute bootstrapped λ-returns (Sutton & Barto, 1998; Hafner et al., 2023) defined recursively as
follows:

Gλl = r̂l + γĉl
[
(1− λ)Vψ(sl+1) + λV λl+1

]
, GλL = Vψ(sL) (9)

To stabilize training and prevent the model from overfitting, we regularize the critic towards predicting
the exponential moving average (EMA) of its own parameters. The EMA of the critic is updated as,

ψEMA
l+1 = σψEMA

l + (1− σ)ψl, (10)

where σ is the decay rate. As a result, the critic learns to predict the distribution of the return estimates
using the following maximum likelihood loss:

Lψ =
1

BL

B∑
n=1

L∑
l=1

[
(Vψ(sl)− sg(Gλl))

2 + (Vψ(sl)− sg(VψEMA(sl)))
2
]
, (11)

The actor learns to choose actions that maximize return while enhancing exploration using an entropy
regularizer (Williams & Peng, 1991; Hafner et al., 2023). Reinforce estimator (Williams, 1992) is
used for actions, resulting in the surrogate loss function:

Lθ =
1

BL

B∑
n=1

L∑
l=1

[
−sg

(
Gλl − Vψ(sl)
max(1, S)

)
lnπθ(al|sl)− ηH(πθ(al|sl))

]
, (12)

where sg(·), H(·) are stop gradient operator and entropy, respectively, and η is a hyperparameter
coefficient of the entropy loss. When training the actor, the rewards are computed between the
range from the 5th to the 95th percentile and smoothed out by using an EMA to be robust to outliers.
Therefore, the normalization ratio S is,

S = EMA(percentile(Gλl , 95)− percentile(Gλl , 5)). (13)

16

A.3 DRAFT AND REVISE DECODING SCHEME

Algorithm 1 Draft-and-Revise decoding scheme

Require: Partition sampling distributions pdraft and previse, the number of revision iterations Γ, hidden
states ht, model θ
/* draft phase */

1: zempty ← ([MASK], · · · ,[MASK])N
2: Π ∼ pdraft(Π;Tdraft)

/* generate a draft prior map */
3: z0 ← MASKGIT HEAD(zempty,Π, ht; θ)

/* revision phase */
4: for γ = 1, · · · ,Γ do
5: Π ∼ previse(Π;Trevise)
6: zγ ← MASKGIT HEAD(zγ−1,Π, ht; θ)
7: end for
8: zt+1 ← zΓ

9: return zt+1

Algorithm 2 MASKGIT HEAD

Require: Generated latents z, hidden states ht, partition Π = (m1, . . . ,mT), model θ
1: ▷ Update the codes
2: for i = 1 to T do
3: MaskGIT_codes← MaskGIT_Codebook(z ◦mi)
4: ξ ← BidirectionalTransformer(MaskGIT_codes, ht)
5: logits← ξ ⊙MaskGIT_embeddings
6: ẑ ∼ Categorical(logits)
7: z ← (1−mi) ◦ z +mi ◦ ẑ
8: end for
9: return z

17

Table 4: Comparison between the proposed GIT-STORM and relevant world models. AC stands for
Actor Critic, OneHot for OneHotCategorical.

Module DreamerV3 IRIS TWM STORM GIT-STORM
(Hafner et al., 2023) (Micheli et al., 2022) (Robine et al., 2023) (Zhang et al., 2023) (ours)

Latent space [OneHot, Hidden] VQ Codes OneHot OneHot OneHot
Dynamics Model RSSM Transformer TransformerXL Transformer Transformer
Dynamics Prior MLP MLP MLP MLP MaskGIT
AC Input Space [Latent, Hidden] RGB Latent [Latent, Hidden] [Latent, Hidden]
Experience Sampling Uniform Uniform Balanced Uniform Uniform

B EXTENDED RELATED WORKS: VIDEO PREDICTION MODELLING

Video prediction, a fundamental task in computer vision, aims to generate or predict sequences of
future frames based on conditioning past frames. The downstream tasks of video prediction modelling
span a wide range of domains, showcasing its significance in different fields, such as autonomous
driving (Hu et al., 2023), robot navigation (DeSouza & Kak, 2002) controllable animation (Mahapatra
& Kulkarni, 2022), weather forecasting (Bi et al., 2023; Meo et al., 2024b), and model based
reinforcement learning (Hafner et al., 2018; 2020; 2021; 2023; Zhang et al., 2023; Micheli et al.,
2022). Video prediction modelling is known for its sample inefficiency, which poses significant
challenges in learning accurate and reliable models in a feasible time (Ming et al., 2024). To address
this, recent advancements have introduced spatio-temporal state space models, which typically consist
of a feature extraction component coupled with a dynamics prediction module. These models aim
to understand and predict the evolution of video frames by capturing both spatial and temporal
relationships. Notable examples include NUWÄ (Wu et al., 2022) and VideoGPT (Yan et al., 2021)
which respectively use 2D and 3D convolutional layers to extract the latent representations and an
autoregressive transformer to perform sequence modelling in the latent space. Moreover, TECO (Yan
et al., 2023) introduces the use of MaskGIT (Chang et al., 2022) prior to improve the accuracy of the
predicted discrete latents and uses a 1D convolution to enhance temporal consistency. Furthermore,
VideoPoet (Kondratyuk et al., 2023), which is able to handle multiple modalities and perform a
variety of tasks besides video prediction.

18

C FULL RESULTS ON RL TASK

In this section we report and present the full evaluation and comparison on the two RL benchmark
environments, Atari 100k (Kaiser et al., 2019) and DMC (Tassa et al., 2018). Table 5 and Table 6 are
the results on Atari 100k and DMC, respectively.

Table 5: Evaluation on the 26 games in the Atari 100k benchmark. We report mean scores as well as
aggregated human normalized mean and median, Interquantile Mean (IQM), and Optimality Gap.
Following the conventions of Hafner et al. (2021), scores that are the highest or within 5% of the
highest score are highlighted in bold.

Game Rand Hum SimPLe TWM IRIS DreamerV3 STORM GIT-STORM
reported reported reported reproduced reproduced ours

Alien 228 7128 617 675 420 804 1364 1145
Amidar 6 1720 74 122 143 122 239 181
Assault 222 742 527 683 1524 642 707 967
Asterix 210 8503 1128 1116 854 1190 865 811
Bank Heist 14 753 34 467 53 752 375 503
Battle Zone 2360 37188 4031 5068 13074 11600 10780 9470
Boxing 0 12 8 78 70 71 80 81
Breakout 2 30 16 20 84 24 12 12
Chopper Command 811 7388 979 1697 1565 680 2293 2048
Crazy Climber 10780 35829 62584 71820 59234 86000 54707 55237
Demon Attack 152 1971 208 350 2034 203 229 223
Freeway 0 30 17 24 31 0 0 13
Frostbite 65 4335 237 1476 259 1124 646 582
Gopher 258 2413 597 1675 2236 4358 2631 8562
Hero 1027 30826 2657 7254 7037 12070 11044 13351
Jamesbond 29 303 101 362 463 290 552 471
Kangaroo 52 3035 51 1240 838 4080 1716 1601
Krull 1598 2666 2204 6349 6616 7326 6869 7011
Kung Fu Master 256 22736 14862 24555 21760 19100 20144 24689
Ms Pacman 307 6952 1480 1588 999 1370 2673 1877
Pong -21 15 13 19 15 19 8 6
Private Eye 25 69571 35 87 100 140 2734 2225
Qbert 164 13455 1289 3331 746 1875 2986 3924
Road Runner 12 7845 5641 9109 9615 14613 12477 17449
Seaquest 68 42055 683 774 661 571 525 459
Up N Down 533 11693 3350 15982 3546 7274 7985 10098

Human Mean (↑) 0% 100% 33% 96% 105% 104% 94.7% 112.6%
Human Median (↑) 0% 100% 13% 51% 29% 49% 35.7% 42.6%
IQM (↑) 0.00 1.00 0.130 0.459 0.501 0.502 0.426 0.522
Optimality Gap (↓) 1.00 0.00 0.729 0.513 0.512 0.503 0.528 0.500

19

Table 6: Evaluation on the DeepMind Control Suite benchmark. We report scores under visual inputs
at 1M frames as well as aggregated human normalized mean and median. Following the conventions
of Hafner et al. (2021), scores that are the highest or within 5% of the highest score are highlighted in
bold.

Task SAC CURL PPO DrQ-v2 DreamerV3 STORM GIT-STORM

Acrobot Swingup 5.1 5.1 2.3 128.4 210.0 12.2 2.1
Cartpole Balance 963.1 979.0 507.3 991.5 996.4 208.9 567.0
Cartpole Balance Sparse 950.8 981.0 890.4 996.2 1000.0 15.2 790.9
Cartpole Swingup 692.1 762.7 259.9 858.9 819.1 124.8 452.2
Cartpole Swingup Sparse 154.6 236.2 0.0 706.9 792.9 0.6 97.3
Cheetah Run 27.2 474.3 95.5 691.0 728.7 137.7 552.5
Cup Catch 163.9 965.5 821.4 931.8 957.1 735.5 841.5
Finger Spin 312.2 877.1 121.4 846.7 818.5 753.8 787.0
Finger Turn Easy 176.7 338.0 311.0 448.4 787.7 307.3 334.1
Finger Turn Hard 70.5 215.6 0.0 220.0 810.8 1.4 148.6
Hopper Hop 3.1 152.5 0.3 189.9 369.6 0.0 193.6
Hopper Stand 5.2 786.8 6.6 893.0 900.6 0.0 664.6
Pendulum Swingup 560.1 376.4 5.0 839.7 806.3 0.0 0.0
Quadruped Run 50.5 141.5 299.7 407.0 352.3 46.2 396.6
Quadruped Walk 49.7 123.7 107.1 660.3 352.6 55.4 445.4
Reacher Easy 86.5 609.3 705.8 910.2 898.9 72.7 222.4
Reacher Hard 9.1 400.2 12.6 572.9 499.2 24.3 12.3
Walker Run 26.9 376.2 32.7 517.1 757.8 387.2 427.6
Walker Stand 159.3 463.5 163.8 974.1 976.7 934.8 954.8
Walker Walk 38.9 828.8 96.0 762.9 955.8 758.0 854.7

Median 78.5 431.8 101.5 734.9 808.5 31.5 475.12
Mean 225.3 504.7 211.9 677.4 739.6 214.5 442.1

20

Figure 6: Optimality Gap of the mentioned baselines and GIT-STORM. It shows the amount by each
algorithm fails to achieve human performance, where lower values are better.

Figure 7: Performance profiles of the considered baseline and our proposed model GIT-STORM. The
graph presents the fraction of games above a certain human normalized score.

21

D TRAINING CURVES

In this section, we provide the training curves of GIT-STORM for both Atari 100k and DMC
benchmark.

0 100k 200k 300k 400k
0

1000

Alien

0 100k 200k 300k 400k
0

100

200

Amidar

0 100k 200k 300k 400k

250

500

750

Assault

0 100k 200k 300k 400k

500

1000

Asterix

0 100k 200k 300k 400k
0

500

Bankheist

0 100k 200k 300k 400k
0

10000

Battlezone

0 100k 200k 300k 400k

0

50

Boxing

0 100k 200k 300k 400k
0

10

Breakout

0 100k 200k 300k 400k

1000

2000

Choppercommand

0 100k 200k 300k 400k
0

50000

Crazyclimber

0 100k 200k 300k 400k

100

200

300
Demonattack

0 100k 200k 300k 400k
0

20

Freeway

0 100k 200k 300k 400k
0

1000

Frostbite

0 100k 200k 300k 400k

0

5000

Gopher

0 100k 200k 300k 400k
0

10000

Hero

0 100k 200k 300k 400k
0

500

Jamesbond

0 100k 200k 300k 400k

0

5000
Kangaroo

0 100k 200k 300k 400k

2500

5000

7500

Krull

0 100k 200k 300k 400k
0

20000

Kungfumaster

0 100k 200k 300k 400k
0

2000

Mspacman

0 100k 200k 300k 400k
20

0

Pong

0 100k 200k 300k 400k

0

2000

Privateeye

0 100k 200k 300k 400k
0

2000

4000

Qbert

0 100k 200k 300k 400k
0

10000

20000

Roadrunner

0 100k 200k 300k 400k

250

500

Seaquest

0 100k 200k 300k 400k
0

10000

Upndown

0 100k 200k 300k 400k

500

1000

Gamer median

0 100k 200k 300k 400k

2000

4000

6000
Gamer mean

GIT-STORM STORM

Figure 8: Training profiles across all the checkpoints for the Atari 100k benchmark. The solid line
represents the average over 5 seeds while the fill area is defined in terms of maximum and minimum
values corresponding to each checkpoint.

22

Figure 9: Performance evaluation across all the checkpoints for the DMC benchmark for GIT-STORM
and STORM. The solid line represents the average over 5 seeds while the fill area is defined in terms
of standard deviation values corresponding to each checkpoint.

23

Figure 10: Generated trajectories of STORM and GIT-STORM on selected Atari 100k environments.
The model uses the first 8 frames as context and then generates the following 48 frames.

Figure 11: Generated trajectories of STORM and GIT-STORM on selected DMC environments. The
model uses the first 8 frames as context and then generates the following 48 frames.

24

E ABLATION STUDY

E.1 GIT-STORM ABLATIONS

In this section, we analyze the contributions of the two primary components that define GIT-STORM:

• MaskGIT Head: We compare the performance of the MaskGIT head against a standard
MLP head to assess its role in improving downstream results.

• Logits Computation via Dot Product: We evaluate the impact of computing logits as
the dot product between ξt and the MaskGIT embeddings, comparing this approach to the
alternative of using an MLP head that takes ξt as input and directly outputs logits.

These components are hypothesized to be critical for understanding the capabilities of GIT-STORM
and the individual contributions they make to the observed performance improvements.

Figure 12 illustrates an ablation study on three Atari games (Hero, Freeway, and Boxing) and
three DMC environments (Walker Walk, Walker Run, and Quadruped Run). Across both sets
of environments, the removal of the MaskGIT head consistently results in poorer downstream
performance (e.g., lower scores). Additionally, leveraging the dot product between ξt and MaskGIT
embeddings has a substantial impact in environments such as Freeway, Walker Walk, and Quadruped
Run. However, its influence appears negligible in other environments like Hero and Walker Run,
suggesting that its efficacy may be context-dependent.

E.2 DIMENSIONS OF DYNAMIC PRIOR HEAD

In order to find the best configuration for the MaskGIT prior, we conduct experiments on three
different environments with different embedding and vocabulary dimensions corresponding to the
bidirectional transformer. While the performance of different configurations varies between envi-
ronments, we find that a bigger embedding size achieves higher scores on average as seen in Figure 13.

As shown in DreamerV3 (Hafner et al., 2023), the model achieves better performance as it increases
in the number of trainable parameters. Thus, to provide a fair comparison with STORM, we restrict
the transformer corresponding to the MaskGIT prior to a similar number of parameters as the MLP
prior defined in STORM.

E.3 VQ-VAE VS ONE HOT CATEGORICAL

The world model state in model-based RL is represented in terms of a latent representation based on
raw observations from the environment. However, there is no clear consensus on the representation
of the latent space, with SimPLE (Kaiser et al., 2019) using a Binary-VAE, IRIS (Micheli et al.,
2022) using a VQ-VAE while DreamerV3 (Hafner et al., 2023), STORM (Zhang et al., 2023) and
TWM (Robine et al., 2023) employ a Categorical-VAE.

While recent methods show empirically the advantages of a Categorical-VAE in Atari environments,
there is no comprehensive study on different latent space representations. Thus, Table 7 provides
a comparison between a VQ-VAE and Categorical-VAE latent representation in the context of
GIT-STORM, motivating our choice of latent space. The comparison is performed on three
environments with different levels of complexity in terms of visual representations.

Table 7: Comparison between a VQ-VAE and Categorical-VAE latent representation for the world
model state on three Atari 100k environments.

Game VQ-VAE One Hot Categorical
Boxing 0 81
Hero 0 13351
MsPacman 255 1877

25

0 100k 200k 300k 400k

0

5

10

15

20

25

30
Freeway

0 100k 200k 300k 400k

20

0

20

40

60

80

Boxing

0 100k 200k 300k 400k

0

2000

4000

6000

8000

10000

12000

14000

Hero

GIT-STORM GIT-STORM w/o MG GIT-STORM w/o MGDP

0 200k 400k 600k 800k 1000k

0

200

400

600

800

1000
Walker_walk

0 200k 400k 600k 800k 1000k

100

200

300

400

Walker_run

0 200k 400k 600k 800k 1000k

0

100

200

300

400

500

Quadruped_run

GIT-STORM GIT-STORM w/o MG GIT-STORM w/o MGDP

Figure 12: GIT-STORM ablation study on selected Atari and DMC environments: GIT-STORM w/o
MG stands for without MaskGIT head, while GIT-STORM w/o MGDP stands for without MaskGIT
dot product. All results are averaged across three random seeds.

In order to keep the comparison between the two representations accurate, we scale down the VQ-
VAE to only 32 codebook entries, each consisting of 32 dimensions, matching the size of the one-hot
categorical representation of 32 categories with 32 classes each. While the VQ-VAE in IRIS (Micheli
et al., 2022) uses a considerably bigger vocabulary and embedding size, we believe the additional
number of parameters introduced provide a biased estimation of the representation capabilities of the
latent space. Moreover, we notice that the VQ-VAE approach introduces a significant overhead in
terms of training and sampling time. Table 7 shows that the VQ-VAE latent representations collapse
and fail to learn a meaningful policy. In contrast the categorical representation achieves impressive
results with the same compute budget.

E.4 STATE MIXER ANALYSIS

E.4.1 STATE MIXER INDUCTIVE BIASES

As described in Sec. 3.1, latent representations zt and actions at are mixed using a state mixer function
g(·). To understand the affect of different mixing strategies for the underlying task, we compare three
different mixing functions in the DMC benchmark: (1) concatenation, (2) concatenation followed
by attention and (3) cross attention between state and actions. Figure 15 illustrates the results.
Surprisingly, we find that the simple approach works the best for the tasks – concatenation of state
and action significantly outperforms the attention-based approaches in the chosen tasks.

26

Figure 13: Different MaskGIT configurations for the Bidirectional Transformer embedding size.
Bigger embedding sizes achieve better results. Three different seeds were used for this experiment.

E.4.2 STATE MIXER ABLATIONS

To evaluate the contribution of the State Mixer and its relevance compared to existing approaches,
such as iVideoGPT Wu et al. (2024), we conducted an ablation study. This analysis compares the
effect of the State Mixer on downstream performance against the approach proposed in iVideoGPT.
Figure 14 demonstrates that the State Mixer consistently outperforms the considered baselines.
Interestingly, under the given setup, the iVideoGPT approach fails to learn meaningful policies.
We hypothesize that this limitation arises from the scale of the training procedure and considered
environments. Specifically, iVideoGPT is designed to leverage much larger datasets, enabling it to
learn robust representations.

Moreover, we observe that bypassing the State Mixer by directly concatenating and feeding state
and action embeddings into the transformer allows the model to learn policies that are meaningful
but perform suboptimally compared to the State Mixer-based approach. This finding highlights the
effectiveness of the State Mixer in extracting and processing state-action representations crucial for
learning optimal policies.

0 200k 400k 600k 800k1000k
Steps

200

400

600

800

1000

Re
wa

rd

quadruped_run
iVideoGPT action embedder
Unmixed States
GIT-STORM

0 200k 400k 600k 800k1000k
Steps

walker_walk

0 200k 400k 600k 800k1000k
Steps

walker_run

Figure 14: GIT-STORM action embedding approach ablation study on DMC environments. We
consider: GIT-STORM, GIT-STORM using iVideoGPT action embedder and GIT-STORM without
the State Mixer (labeled as Unmixed States). All results are averaged across three random seeds.
GIT-STORM approach consistently outperforms the considered baselines.

F DYNAMICS HEAD ANALYSIS

F.1 KL DIVERGENCE COMPARISON

In this section, we present and analyze a comparison between our method and STORM in terms
of the KL divergence of the dynamics module. Figure 16 illustrates the KL divergence loss for
GIT-STORM and STORM across three environments: Hero, Boxing, and Freeway. It is evident
that the KL divergence for GIT-STORM is consistently lower across all three environments, with a
particularly significant difference observed in Boxing. This suggests that the dynamics module in

27

Figure 15: Comparison between different state and action mixing strategies tested in the DMC
environments. All results are averaged across three random seeds. We find that simple concatination
works the best for the chosen tasks.

GIT-STORM is better equipped to learn state transition dynamics compared to STORM, resulting in
more accurate modeling of the underlying system dynamics.

0 80k 160k 240k 320k 400k
0

2

4

6

8

10

KL
 D

iv
er

ge
nc

e
Lo

ss

Hero
STORM
GIT-STORM

0 80k 160k 240k 320k 400k
Steps

Boxing

0 80k 160k 240k 320k 400k

Freeway

Figure 16: Comparison of GIT-STORM and STORM’s KL divergence loss in Hero, Boxing and
Freeway. GIT-STORM consistently presents a lower KL divergence. All results are averaged across
three random seeds.

F.2 DYNAMICS HEAD OUTPUT DISTRIBUTION VISUALIZATION

In this section, we inspect the output distributions of the dynamics head generated by the proposed
GIT-STORM compared to those produced by STORM. Specifically, Figure 17 illustrates the mean
probability distribution for generating a certain token at a given time step and frame. A closer
examination of the density functions reveals that the mean distributions typically exhibit two peaks:
one near zero, indicating that a given token does not need to be sampled, and a second, smaller peak,
representing the confidence level for sampling a specific token.

The higher the second peak and the broader the distribution’s support, the more confident the world
model is in sampling tokens for a given dynamics state transition. Consistent with the perplexity
values presented in Table 3, GIT-STORM produces more refined probability distributions, enabling it
to make predictions with greater confidence compared to STORM.

G VIDEO PREDICTION DOWNSTREAM TASK: TECO

In order to assess the capabilities of the MaskGIT prior in modelling latent dynamics across different
tasks, we consider video generation tasks as a representative study. More specifically, we consider
Temporally Consistent Transformer for Video Generation (TECO) (Yan et al., 2023) on DeepMind

28

ST
O

R
M

G
IT

-S
TO

R
M

de

ns
ity

16
14
12
10
8
6
4
2
0

0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.2 0.0 0.2 0.0 0.1 0.2 0.0 0.1 0.0 0.1 0.0 0.1 0.2

GIT-STORM
STORM

Figure 17: Above: GIT-STORM imagined trajectory in Boxing. Middle: Mean probability distri-
bution of generating a certain token for a given time step and frame. Bottom: STORM imagined
trajectory in Boxing.

Lab (DMLab) (Beattie et al., 2016) and Something-Something v.2 (SSv2) (Goyal et al., 2017) datasets.
TECO uses a spatial MaskGIT Prior to generate the state corresponding to the next timestep. Table 1
highlights the importance of the prior network and supports our earlier results on the Atari 100k
benchmark. Indeed, when replacing the MaskGit prior network with an MLP one with the same
number of parameters, the FVD (Unterthiner et al., 2019) on both DMLab and SSv2 datasets
significantly increases, going from 48 to 153 and from 199 to 228 in the DMLab and SSv2 datasets
respectively.

29

H HYPERPARAMETERS

Table 8: Hyperparameters regarding the dynamics module, training settings and environment. We use
the same hyperparameters as STORM (Zhang et al., 2023) to focus our experiments on the MaskGIT
prior.

Hyperparameter Symbol Value

Transformer layers K 2
Transformer feature dimension D 512

Transformer heads - 8
Dropout probability p 0.1

World model training batch size B1 16
World model training batch length T 64

Imagination batch size B2 1024
Imagination context length C 8

Imagination horizon L 16
Update world model every env step - 1

Update agent every env step - 1
Environment context length - 16

Gamma γ 0.985
Lambda λ 0.95

Entropy coefficiency η 3× 10−4

Critic EMA decay σ 0.98

Optimizer - Adam (Kingma & Ba, 2014)
World model learning rate - 1.0× 10−4

World model gradient clipping - 1000
Actor-critic learning rate - 3.0× 10−5

Actor-critic gradient clipping - 100

Gray scale input - False
Frame stacking - False
Frame skipping - 4 (max over last 2 frames)

Use of life information - True

MaskGIT Transformer layers - 4
MaskGIT Transformer feature dimension - 128

MaskGIT Transformer heads - 8
MaskGIT Dropout probability - 0.0

Mask Schedule - cosine
Draft Rounds Tdraft 1

Revise Rounds Trevise 1
Repetitions M 1

30

Table 9: Specific structure of the image encoder used in GIT-STORM (ours) and STORM (Zhang
et al., 2023). The size of the modules is omitted and can be derived from the shape of the tensors.
ReLU refers to the rectified linear units used for activation, while Linear represents a fully-connected
layer. Flatten and Reshape operations are employed to alter the indexing method of the tensor
while preserving the data and their original order. Conv denotes a CNN layer (LeCun et al., 1989),
characterized by kernel = 4, stride = 2, and padding = 1. BN denotes the batch normalization
layer (Ioffe & Szegedy, 2015).

Submodule Output tensor shape

Input image (ot) 3× 64× 64
Conv1 + BN1 + ReLU 32× 32× 32
Conv2 + BN2 + ReLU 64× 16× 16
Conv3 + BN3 + ReLU 128× 8× 8
Conv4 + BN4 + ReLU 256× 4× 4

Flatten 4096
Linear 1024

Reshape (produce Zt) 32× 32

Table 10: Structure of the image decoder. DeConv denotes a transpose CNN layer (Zeiler et al.,
2010), characterized by kernel = 4, stride = 2, and padding = 1.

Submodule Output tensor shape

Random sample (zt) 32× 32
Flatten 1024

Linear + BN0 + ReLU 4096
Reshape 256× 4× 4

DeConv1 + BN1 + ReLU 128× 8× 8
DeConv2 + BN2 + ReLU 64× 16× 16
DeConv3 + BN3 + ReLU 32× 32× 32

DeConv4 (produce ôt) 3× 64× 64

Table 11: Action mixer ζt = gθ(zt, at). Concatenate denotes combining the last dimension of two
tensors and merging them into one new tensor. The variable A represents the action dimension, which
ranges from 3 to 18 across different games. D denotes the feature dimension of the Transformer. LN
is an abbreviation for layer normalization (Ba et al., 2016).

Submodule Output tensor shape

Random sample (zt), Action (at) 32× 32, A
Reshape and concatenate 1024 +A
Linear1 + LN1 + ReLU D

Linear2 + LN2 (output et) D

Table 12: Positional encoding module. w1:T is a learnable parameter matrix with shape T ×D, and
T refers to the sequence length.

Submodule Output tensor shape

Input (e1:T)
T ×DAdd (e1:T + w1:T)

LN

31

Table 13: Transformer block. Dropout mechanism (Srivastava et al., 2014) can prevent overfitting.

Submodule Module alias Output tensor shape

Input features (label as x1) T ×D
Multi-head self attention

MHSA T ×DLinear1 + Dropout(p)
Residual (add x1)
LN1 (label as x2)

Linear2 + ReLU

FFN

T × 2D
Linear3 + Dropout(p) T ×D

Residual (add x2) T ×D
LN2 T ×D

Table 14: MLP settings. A 1-layer MLP corresponds to a fully-connected layer. 255 is the size of the
bucket of symlog two-hot loss (Hafner et al., 2023).

Module name Symbol MLP layers Input/ MLP hidden/ Output dimension

Reward head pϕ 3 D/ D/ 255
Termination head pϕ 3 D/ D/ 1
Policy network πθ(at|st) 3 D/ D/ A
Critic network Vψ(st) 3 D/ D/ 255

32

I COMPUTATIONAL RESOURCES

Throughout our experiments, we make use of NVIDIA A100 and H100 GPUs for both training and
evaluation on an internal cluster, a summary of which can be found in Table 15. For the Atari 100k
benchmark, we find that each individual experiment requires around 20 hours to train. For the video
prediction tasks, DMLab requires 3 days of training on 4 NVIDIA A100 GPUs. For DMC Vision
tasks, we used H100 GPUs to sample from 16 environments concurrently, which reduced our training
time to only 8 hours for 1M steps. Compared to this, using A100 for one environment takes 7 days.
We acknowledge that the research project required more computing resources than the reported ones,
due to preliminary experiments and model development.

Table 15: Summary of resources used in experiments.

Experiment type GPU Type # of Days to train

Atari100k 1x A100 20 hours
DMLab 4x A100 3 days

DMC Vision 1x A100 8 hours

J BASELINES

To assess our approach downstream capabilities on Atari 100k we select the following baselines:
SimPLe (Kaiser et al., 2019) trains a policy using PPO (Schulman et al., 2017) leveraging a world
model represented as an action-conditioned video generation model; TWM (Robine et al., 2023)
uses a transformer-based world model that leverages a Transformer-XL architecture and a replay
buffer which uses a balanced sampling scheme (Dai et al., 2019). IRIS (Micheli et al., 2022), that
uses a VideoGPT (Yan et al., 2021) based world model; DreamerV3 (Hafner et al., 2023), a general
algorithm which achieves SOTA results on a multitude of RL benchmarks. Lastly, we consider
STORM (Zhang et al., 2023), an efficient algorithm based on DreamerV3 that uses the transformer
architecture for the world model. Since Hafner et al. (2023) shows that the replay buffer size is a
scaling factor, to present a fair comparison we reproduce DreamerV3, which uses a replay buffer
of 1M samples by default and full precision variables for the Atari 100k benchmark, using a replay
buffer of 100K samples and half precision variables, consistent with our approach. Moreover, since
STORM does not follow the evaluation protocol proposed in Agarwal et al. (2021), after setting
reproducible seeds, we reproduce STORM on the Atari 100k benchmark using the code released by
the authors, and report the results as a result of running the released code.

For DMC Suite, we consider several state-of-the-art algorithms. Soft Actor-Critic (SAC) (Haarnoja
et al., 2018) is a popular algorithm for continuous control tasks, known for its data efficiency due to
the use of experience replay. However, SAC often requires careful tuning, particularly for the entropy
coefficient, and its performance can degrade when handling high-dimensional input spaces (Hafner,
2022). Another baseline is Proximal Policy Optimization (PPO) (Schulman et al., 2017), a widely-
used RL algorithm recognized for its robustness and stability across a range of tasks. Additionally,
we include DrQ-v2 (Yarats et al., 2021) and CURL (Laskin et al., 2020), both of which are tailored
for visual environments. These methods leverage data augmentation to improve the robustness of
learned policies, making them highly effective in scenarios where pixel-based observations dominate.
Finally, we consider DreamerV3, which is the current state-of-the-art in this environment.

33

K METRICS

In order to meaninfgully evaluate the considered baselines we follow the protocol suggested in
Agarwal et al. (2021), which proposes the following metrics for a statistically grounded comparison:

• Human Normalized Score: To account for the discrepancies between raw score ranges
in Atari games, and at the same time comparing the algorithm’s capabilities with the
human benchmark, the human normalized score is used to assess the performance of
an algorithm on a specific environment. The Human Normalized Score is defined as
agentscore−randomscore

humanscore−randomscore
.

• Human Mean: The Human Mean is an aggregate metric used to assess the performance
across the whole Atari benchmark. The mean is computed using the Human Normalized
Score for each environment, as previously defined.

• Human Median: Similar to the Human Mean, the Human Median is an aggregate metric
across the Atari benchmark that is insensitive to high-score environments, which instead
harm the statistical significance of the Human mean. According to Agarwal et al. (2021),
both the Human Mean and Human Median are necessary to assess the performance of an
algorithm in Atari.

• Interquantile Mean (IQM): Interquantile Mean is a popular statistical tool that only consid-
ers 50% of the results, effectively ignoring the lowest and highest performing environments.
IQM aims to address the shortcomings of the Human Mean by ignoring outliers, while being
more statistically significant than the Human Median, which only considers a single value.

• Performance profiles (score distributions): Considering the variety of score ranges across
different Atari environments, some of which may be heavy-tailed or contain outliers, point or
interval estimates provide an incomplete picture with respect to an algorithm’s performance.
Performance profiles aim to alleviate this issues by revealing performance variability across
tasks more significantly than interval and point estimates, like the Human Mean and Human
Median.

• Optimality Gap: The Optimality Gap represents another alternative to the Human Mean,
and accounts for how much the algorithm fails to meet a minimum Human Normalized
Score of γ = 1. The metric considers γ as the desirable target and does not account for
values greater than it. In the context of the Atari benchmark, γ = 1 represents the human
performance. Using the Optimality Gap, the algorithms are compared without taking in
consideration super-human performance, which is considered irrelevant.

• Probability of Improvement: Instead of treating algorithm’s comparison as a binary deci-
sion (better or worse), the Probability of Improvement, indicates a probability corresponding
to how likely it is for algorithm X to outperform algorithm Y on a specific task.

For sequence modelling and video prediction task, we use the following metrics:

• Perplexity: Perplexity is mathematically defined as the exponentiated average negative
log-likelihood of a sequence. Given a sequence of categorical representations z0, z1, . . . , zt,
the perplexity of z is computed as:

PPL(z) = exp

{
−1

t

t∑
i=1

log pϕ(zi | z<i)

}
.

Here, log pθ(zi | z<i) is the log-likelihood of the i-th token, conditioned on the preceding
tokens z<i, according to the model. In this context, perplexity serves as a measure of the
model’s ability to predict the tokenized representations of images in a sequence.

• Fréchet Video Distance (FVD): Introduced in (Unterthiner et al., 2019), FVD is a metric
designed to evaluate the quality of video generation models. It builds on the idea of the
widely-used Fréchet Inception Distance (FID), which is applied to assess the quality of
generated images, but extends it to video by incorporating temporal dynamics. FVD is
particularly effective for comparing the realism of generated videos with real video data,
making it a crucial metric in video prediction and generation tasks.

34

	Introduction
	Related Works
	Model-based RL: World Models
	Masked Modelling for Visual Representations and Generation

	Method
	Overview: Dynamics Module
	Dynamics Prior Head: MaskGIT Prior
	State Mixer for Continuous Action Environments
	Imagination Phase

	Experiments
	Experimental Setup
	Results on Discrete Action Environments: Atari 100k
	Results on Continuous Action Environments: DeepMind Control Suite

	Discussion
	Conclusion
	GIT-STORM Framework
	Observation Module
	Policy Learning
	Draft and Revise decoding scheme

	Extended Related Works: Video Prediction Modelling
	Full Results on RL Task
	Training Curves
	Ablation study
	GIT-STORM Ablations
	Dimensions of Dynamic Prior Head
	VQ-VAE vs One Hot Categorical
	State Mixer Analysis
	State Mixer Inductive Biases
	State Mixer Ablations

	Dynamics Head Analysis
	KL Divergence comparison
	Dynamics head output distribution visualization

	Video Prediction Downstream Task: TECO
	Hyperparameters
	Computational Resources
	Baselines
	Metrics

