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Figure 1: Mobile-GS is the first real-time Gaussian Splatting method that can reach 116 FPS render-
ing speed in the 1600 × 1063 resolution for Bicycle on the mobile equipped with the Snapdragon 8
Gen 3 GPU as shown in (a). We evaluate rendering quality, storage costs, and inference speed on an
RTX 3090 GPU in (b) and (c). Our Mobile-GS integrates depth-aware order-independent render-
ing, compression, and distillation techniques to deliver comparable rendering quality compared with
the original 3DGS, while substantially reducing the storage requirements to 4.8 MB and achieving
1098 FPS on the unbounded scene, thereby enabling efficient deployment on mobile devices.

ABSTRACT

3D Gaussian Splatting (3DGS) has emerged as a powerful representation for high-
quality rendering across a wide range of applications. However, its high compu-
tational demands and large storage costs pose significant challenges for deploy-
ment on mobile devices. In this work, we propose a mobile-tailored real-time
Gaussian Splatting method, dubbed Mobile-GS, enabling efficient inference of
Gaussian Splatting on edge devices. Specifically, we first identify alpha blending
as the primary computational bottleneck, since it relies on the time-consuming
Gaussian depth sorting process. To solve this issue, we propose a depth-aware
order-independent rendering scheme that eliminates the need for sorting, thereby
substantially accelerating rendering. Although this order-independent rendering
improves rendering speed, it may introduce transparency artifacts in regions with
overlapping geometry due to the scarcity of rendering order. To address this prob-
lem, we propose a neural view-dependent enhancement strategy, enabling more
accurate modeling of view-dependent effects conditioned on viewing direction,
3D Gaussian geometry, and appearance attributes. In this way, Mobile-GS can
achieve both high-quality and real-time rendering. Furthermore, to facilitate de-
ployment on memory-constrained mobile platforms, we also introduce first-order
spherical harmonics distillation, a neural vector quantization technique, and a
contribution-based pruning strategy to reduce the number of Gaussian primitives
and compress the 3D Gaussian representation with the assistance of neural net-
works. Extensive experiments demonstrate that our proposed Mobile-GS achieves
real-time rendering and compact model size while preserving high visual quality,
making it well-suited for mobile applications. Demos are here.

1 INTRODUCTION

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) is a recently introduced technique for high-quality
3D reconstruction that represents scenes as a set of anisotropic 3D Gaussian primitives. In contrast
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Figure 2: Sorting as the primary performance bottleneck. Left: Runtime analysis of the orig-
inal 3DGS highlights that the sorting operation incurs a significant computational overhead during
inference. Right: Removing the sorting step substantially accelerates 3DGS, achieving several-fold
speedup compared to the original implementation.

to traditional mesh- or voxel-based representations (Sitzmann et al., 2019; Shrestha et al., 2021;
Tsalicoglou et al., 2023; Liu et al., 2020), Gaussian splatting leverages the continuous and differen-
tiable nature of 3D Gaussians, enabling photorealistic rendering, precise novel view synthesis, and
high-fidelity reconstruction. However, deploying Gaussian splatting on mobile platforms for real-
time rendering remains challenging. The computational overhead of rendering tens of thousands
of Gaussians, especially with the view-dependent effects, exceeds the capabilities of most modern
mobile GPUs. This limitation highlights the pressing need for efficient solutions to enable real-time
Gaussian splatting on resource-constrained platforms, such as smartphones and AR headsets.

Several lightweight 3D Gaussian Splatting methods, such as Scaffold-GS (Lu et al., 2024), Mini-
Splatting (Fang & Wang, 2024), SplatFacto (Tancik et al., 2023), and C3DGS (Niedermayr et al.,
2023) improve efficiency through pruning and compact representations. However, these methods
rely on the traditional alpha blending, which requires a sorting process to render 3D Gaussians in
the near-to-far order. We observed that this sorting process is the primary computational bottleneck,
as shown in Fig 2, impeding real-time rendering on mobile devices. Therefore, to achieve real-
time rendering performance on such platforms, there are several critical factors: (1) Order-free
rendering: eliminating the time-consuming sorting process; (2) Quantization: compressing 3D
Gaussians to reduce memory and bandwidth consumption; (3) Fewer Gaussian points: reducing
the number of primitives while preserving visual quality.

In this work, we propose a real-time Gaussian Splatting method tailored for mobile devices, named
Mobile-GS. As shown in Fig. 1, our proposed Mobile-GS can reach 116 FPS rendering speed on
the mobile device with a Snapdragon 8 Gen 3 GPU, demonstrating real-time rendering performance
on mobile devices. Our proposed Mobile-GS contains the following key components: (1) Depth-
aware Order-independent Rendering: To circumvent the computationally intensive sorting pro-
cess inherent in traditional alpha blending, we propose a depth-aware order-independent rendering
technique, enabling faster rendering. To be specific, we discard the original standard alpha blending
paradigm, which relies on the sorted 3D Gaussians. Therefore, we propose a depth-aware weighting
strategy that order-independently blends all related 3D Gaussians to the pixel. This strategy explic-
itly decreases the weight of the far 3D Gaussians and increases the significance of the near ones,
enabling real-time performance, avoiding the sorting process. Although the proposed depth-aware
order-independent rendering facilitates real-time rendering, the unordered blending can introduce
transparency artifacts. To mitigate this, we further propose a neural view-dependent enhancement
strategy that leverages a neural network conditioned on 3D Gaussian attributes and viewing di-
rection to further capture view-dependent information. In this way, the rendering quality can be
significantly improved, especially for view-dependent effects. (2) First-order Spherical Harmon-
ics Distillation: Since the original 3DGS uses the third-order spherical harmonic (SH) function to
represent appearance, it introduces numerous parameters and increases the storage burden. There-
fore, we introduce a spherical harmonic distillation technique to distill the first-order SH parameters
under the guidance of the pre-trained teacher model, thus achieving faster rendering speed and lower
storage usage. (3) Neural Vector Quantization : To deploy 3DGS on mobile devices, the quanti-
zation process is necessary to largely reduce storage usage and improve rendering speed. Herein,
we introduce a neural vector quantization technique to quantize 3D Gaussian parameters grouped
by K-means and compress the distilled SH features using lightweight neural decoders, thereby sub-
stantially minimizing overall storage costs. (4) Contribution-based Pruning : We also propose

2
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a contribution-based pruning strategy to prune redundant Gaussians according to their opacity and
scale attributes. We reckon that the Gaussian with low opacity and scale indicates an insignificant
contribution. With our pruning strategy, we can remove numerous Gaussians and further decrease
storage costs.

Extensive experiments are conducted to qualitatively and quantitatively validate the effectiveness of
our proposed Mobile-GS. We demonstrate that our method, deployed on mobile devices, achieves
real-time rendering speed. Notably, our proposed Mobile-GS achieves high-quality and visually
pleasing novel view synthesis, comparable to the original 3DGS, demonstrating that our approach
can reliably reconstruct and render high-fidelity views. Our method consistently surpasses previous
lightweight approaches, achieving state-of-the-art rendering speed and visually pleasing quality.

2 RELATED WORK

3D Gaussian Splatting. The recent 3D Gaussian Splatting (3DGS) technique (Kerbl et al., 2023),
along with its numerous variants (Fang & Wang, 2024; Du et al., 2024; Ye et al., 2024; Jiang et al.,
2024; Chen et al., 2024c; Girish et al., 2024; Mallick et al., 2024; Lin et al., 2025; Bulo et al.,
2025; Feng et al., 2025), employs anisotropic 3D Gaussians to represent scenes and leverages a
tile-based differentiable rasterizer to render novel views. Scaffold-GS (Lu et al., 2024) introduces a
hierarchical scaffold structure to reduce the number of Gaussians for high-quality rendering, while
maintaining visual fidelity. Mini-Splatting (Fang & Wang, 2024) focuses on pruning and densifica-
tion strategies to produce highly compact Gaussian structures. Octree-GS Ren et al. (2024) proposes
a Level-of-Detail (LOD) structure for 3D Gaussian supporting level-of-detail decomposition. 3D-
HGS Li et al. (2025) introduces a 3D-Half Gaussian as a novel reconstruction kernel to better learn
the surface normal in 3D scenes. 3DGS-LM Höllein et al. (2025) replaces the traditional Adam op-
timizer with a tailored Levenberg Marquardt (LM) optimizer to improve training speed and conver-
gence. 3DGS-MCMC Kheradmand et al. (2024) proposes a Markov Chain Monte Carlo (MCMC)
densification strategy, leading to a simpler optimization. These methods facilitate high-resolution
rendering while preserving high visual fidelity. Subsequently, more and more methods (Chen et al.,
2024b; 2025; Wang et al., 2024b; Liu et al., 2024) are proposed to increase the compression ratio
for more lightweight representations. However, these approaches require rendering Gaussians in a
particular order, typically determined by depth through a sorting process. This depth-sorting process
introduces multiple challenges, including increased implementation complexity and the potential for
visual artifacts, such as abrupt texture variations and popping artifacts, as discussed in (Radl et al.,
2024). In particular, we found that the computational overhead introduced by sorting is very serious,
which significantly impedes real-time rendering on mobile devices.

Order Independent Transparency. Modeling transmittance remains a longstanding challenge in
computer graphics, as it is essential for rendering accurate and semi-transparent structures such as
flames, smoke, and clouds. Traditional methods to achieve this either successively extract depth
layers, known as depth peeling (Bavoil & Myers, 2008), or store and sort fragment lists using A-
buffers (Carpenter, 1984). Several approaches have proposed to circumvent explicit sorting by ap-
proximate compositing, known as Order-Independent Transparency (OIT). Similar to depth peeling,
k-buffer methods similarly have different depth layers but store and accumulate only the first k layers
in a single rendering pass (Bavoil et al., 2007). Another line of approach, stochastic transparency,
commonly used in Monte Carlo rendering, samples fragments based on their depth and opacity,
producing visually plausible results given a sufficiently high sampling rate (Enderton et al., 2010).
Recently, plenty of sort-free 3DGS works (Hou et al., 2025; Kheradmand et al., 2025; Hahlbohm
et al., 2025; Sun et al., 2025) have been proposed to achieve fast rendering without sorting. The
representative work is SortFreeGS (Hou et al., 2025), which enhances the rendering speed via

C =
cbgwbg +

∑N
i=1 ciαiw(di)

wbg +
∑N

i=1 αiw(di)
, (1)

where w(di) = exp
(
−σid

βi

i

)
is a weighting function. wbg , σi, and βi represent learnable param-

eters, while di denotes depth. In Eq. 1, both the numerator and denominator are summations, and
since addition is commutative, these terms can be computed in any order. However, these methods
cannot be directly employed in edge devices due to the large storage and significant inference delay.
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Figure 3: Rendering pipeline of our proposed Mobile-GS compared with 3DGS. In the inference
stage, different from 3DGS, our proposed method eliminates the tile-based rendering and the 3D
Gaussian sorting process typically required for accurate alpha blending. Instead, we first compute
the color of each 3D Gaussian for its related pixels in parallel and accumulate the color value for each
pixel. Then, we composite the foreground and background color in a single pass. To further improve
performance and maintain visual quality, we propose a depth-aware order-independent rendering
strategy that replaces the original sorting-dependent alpha blending.

Gaussian Compression and Pruning. Recent researchers have explored compressing Gaussian
representations through techniques such as vector quantization (Wang et al., 2024b; Liu et al., 2024;
Papantonakis et al., 2024; Xie et al., 2024) and entropy encoding (Chen et al., 2024a; Niedermayr
et al., 2023). Among these, LocoGS (Shin et al., 2025) introduces a locality-aware strategy that com-
presses all Gaussian attributes into compact local representations. There is another line of research
about Gaussian pruning technique to eliminate Gaussians. LODGE Kulhanek et al. (2025) intro-
duces a depth-aware 3D smoothing filter with importance-based pruning to maintain LOD visual
fidelity. MaskGaussian Liu et al. (2025) leverages a masked-rasterization technique to dynamically
assess the contribution of each Gaussian and prune them with low contribution. GaussianSpa Zhang
et al. (2025) proposes a pruning technique to gradually restrict Gaussians to the target sparsity con-
straint and keep rendering quality. NeuralGS Tang et al. (2025) also adopts importance-based prun-
ing to prune Gaussians overlapped within in a certain pixel. While effective in reducing redundancy,
these methods often suffer from significant rendering quality degradation and still incur considerable
storage overhead. To address these limitations, we propose a more efficient compression framework
that preserves essential Gaussian features while achieving compact attribute representation, making
it particularly suitable for deployment on resource-constrained mobile devices.

3 METHODOLOGY

3.1 DEPTH-AWARE ORDER-INDEPENDENT RENDERING

▶ “ Rendering Insight”: Order-independent rendering enables efficient Gaussian compositing.

Traditional alpha blending typically requires a depth-sorting procedure, wherein 3D Gaussians are
composited in a near-to-far order to correctly accumulate color. Although this sorting-based mech-
anism ensures that Gaussians closer to the camera have a more significant contribution to the final
image, it incurs considerable computational overhead, particularly detrimental in latency-sensitive
and resource-constrained equipment like mobile devices.

To address these limitations, we propose a depth-aware order-independent rendering strategy tai-
lored for mobile devices as illustrated in Fig. 3. Our rendering mechanism differs fundamentally
from conventional alpha blending. To be specific, our rendering strategy eliminates the need for
depth sorting by introducing a learnable, view-conditioned weighting scheme. The rendered pixel
color C is computed as a weighted color accumulation from 3D Gaussians, defined as:

C = (1− T )

∑N
i=1 ciαiwi∑N
i=1 αiwi

+ Tcbg, (2)

4

Xiaobiao Du

Xiaobiao Du



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Camera-Gaussian vector

Spherical harmonics

Scale

𝑠

Rotation

𝑟

Sigmoid

Neural enhanced
view-dependent 

Multiple Layer Perceptron (MLP)

ReLU 𝜙

opacity
0.0

0.2
0.4

0.6
0.8

1.0

Opacity Counter
Kitchen

Bicycle
Garden

Scene

0.0

0.5

1.0

1.5

2.0

Nu
m

be
r (

M
)

3DGS

0.0
0.2

0.4
0.6

0.8
1.0

Opacity Counter
Kitchen

Bicycle
Garden

Scene

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Nu
m

be
r (

M
)

Mobile-GS (Ours)

Figure 4: Overall illustration and visualization of view-dependent opacity modeling. Left: We
leverage an MLP fed with 3D Gaussian scale, rotation, spherical harmonics, and the vector of the
camera toward the 3D Gaussian as input to predict a view-dependent opacity. Right: We display
that our Mobile-GS removes redundant opacity and keeps important Gaussians with high opacity.

where ci and cbg denote the RGB and background color of the i-th 3D Gaussian, respectively. T =∏N
j=1(1 − αj) represents the global transmittance to differentiate the foreground and background.

αi = oi exp
(
− 1

2∆xT
i Σ

−1
i ∆xi

)
means the alpha obtained from the opacity oi. wi is a depth-aware

weight that modulates the contribution of each 3D Gaussian based on its scale and position related
to the camera. Specifically, we utilize the inverse depth to reduce the contributions of the distant 3D
Gaussians. Moreover, we increase the weight of the Gaussian with a larger scale. The weighting
term wi can be determined as:

wi = ϕ2
i +

ϕi

d2i
+ exp(

smax

di
), (3)

where di and smax mean the depth and the maximum scale of the i-th 3D Gaussian in the camera
coordinate system. ϕi means the view-dependent per-Gaussian parameters, modulating the contri-
bution of each Gaussian, which will be described in detail later. This formulation offers two key
advantages. First, by removing the dependency on sorting, the proposed method enables efficient
and parallel accumulation of Gaussian contributions, resulting in significantly faster rendering. It
is crucial for real-time rendering on mobile hardware. Second, the weighting depth-aware modula-
tion allows a more flexible contribution modeling, enabling 3D Gaussians to dynamically adapt to
complex scene structures, without discarding information from distant Gaussians.

Neural View-dependent Enhancement: Although our depth-aware order-independent rendering
significantly reduces computational costs, it results in a slight degradation in rendering quality.
Specifically, due to the absence of strict depth-based compositing, objects that are spatially oc-
cluded or partially overlapped may exhibit undesired transparency effects. To address this issue and
enhance the fidelity of the rendered images, we propose a neural view-dependent opacity enhance-
ment strategy that incorporates explicit view-dependent information into the 3D Gaussian attributes.

As depicted in Fig. 4, we design a lightweight multi-layer perceptron (MLP) that predicts the view-
dependent opacity scalar for each Gaussian. This predicted opacity aims to modulate the visibility
of Gaussians in a view-aware manner, thereby compensating for the drawback of order-free ren-
dering and improving rendering quality. The input to the MLP consists of both the geometric and
appearance-related features of each 3D Gaussian. To be specific, for a given 3D Gaussian posi-
tion µi, we compute its direction from the camera center and normalize the final result to obtain the
Camera-Gaussian vector Pi =

µi−tv
∥µi−tv∥ , where tv means the center of the v-th training camera. This

vector encapsulates the relative orientation between the camera and the Gaussian center, providing
critical view-dependent cues. To further enrich the input representation, we incorporate additional
geometric and appearance-related per-Gaussian attributes, including the scale si ∈ R3, rotation pa-
rameter ri ∈ SO(3), and spherical harmonic coefficients Yi, which describe the anisotropic shape
and view-dependent color of the Gaussian. By feeding these composite feature vectors into the
MLP, the model learns to predict a scalar that adaptively modulates the contribution of each Gaus-
sian based on both its intrinsic attributes and the current viewing direction. Therefore, the neural
enhanced view-dependent ϕ, and opacity o can be formalized as:

F = MLPf (Pi, si, ri, Yi), ϕi = ReLU(MLPϕ(F)), oi = σ(MLPo(F)), (4)

where σ(·) means the Sigmoid function. MLPf , MLPϕ, and MLPo denote the MLP functions
for feature F, weight ϕ and opacity o. Specifically, view-dependent ϕ acts as a depth attenuation
factor, adaptively scaling the influence of each Gaussian based on its distance to the camera. The
view-conditioned opacity oi serves as a corrective factor in the rendering pipeline, allowing the
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system to dynamically suppress the transparency of the occluded regions. As a result, our Mobile-
GS effectively mitigates the transparency artifacts in depth-ambiguous scenarios, leading to higher
rendering quality and better preservation of scene geometry.

3.2 DISTILLATION AND QUANTIZATION

▶ “ Compressed Insight”: First-order SH and quantization enable efficient compression.

First-order Spherical Harmonics Distillation: Inspired by LightGaussian (Fan et al., 2024), it
employs a distillation strategy to project third-order spherical harmonics (3 × 16 coefficients) onto
a second-order representation (3 × 9 coefficients) for efficient rendering. Different from that, in
this work, we introduce a first-order spherical harmonics (3× 4 coefficients) distillation framework
that encourages a more compact model to approximate the directional radiance of a powerful teacher
model via Ldstill =

1
|P |

∑
p∈P

∥∥Ctea
p −Cp

∥∥ where P denotes the set of pixels. Ctea and C represent
the rendered pixel colors from the teacher and student, respectively. Except for that, we also propose
a scale-invariant depth distillation loss to impose depth supervision from the teacher model through:

Ldepth(C,Ctea) =
1

|P |
∑
p∈P

(
log(Ĉp)− log(Ĉtea

p )
)2

− 1

|P |2

∑
p∈P

(
log(Ĉp)− log(Ĉtea

p )
)2

,

(5)
where Ĉtea = Ctea+ε and we set ε as 1e−8 for training stability. We do not use the strict restriction
like L1/L2 loss since the depth from the teacher and student may have a slight difference, and the
depth of the teacher model is not always reliable.

Neural Vector Quantization: To efficiently compress the per-Gaussian attribute vectors while pre-
serving high rendering fidelity, we propose a neural vector quantization (NVQ) scheme tailored for
3D Gaussian splatting. Unlike traditional vector quantization methods that operate on the entire
attribute vector using a single codebook, our method adopts a sub-vector decomposition strategy
that enhances representation flexibility and compression efficiency. Specifically, given a Gaus-
sian attribute vector z ∈ RKL, we partition it into K clusters {z1, z2, . . . , zK} of length L by
K-Means (Hamerly & Elkan, 2003). The 3D Gaussian attributes in each cluster zk ∈ RL are quan-
tized using their own codebook Ck ∈ RB×L with B codewords, where B denotes the number of
codewords per subspace. This multi-codebook quantization reduces the memory footprint of each
codebook, mitigates codeword collisions, and simplifies lookup operations during inference. To
further compress the final quantized attributes for storage, we apply Huffman coding to encode se-
quences at the end of training. This entropy-based compression technique significantly reduces the
bitstream size without compromising runtime performance, enabling the deployment of our method
on storage-constrained devices.

To further reduce the storage burden associated with per-Gaussian SH coefficients, we decompose
the learned SH feature Y into a diffuse component hd ∈ R3 and a view-dependent component
hv ∈ R3 via the proposed neural vector quantization, and model them using lightweight multi-layer
perceptrons (MLPs). This design eliminates the need to store high-dimensional SH coefficients
directly for every Gaussian, instead leveraging compact neural functions to reconstruct SH features
at inference time. The final SH features for rendering are computed as:

fd = MLPd(hd, hv), fv = MLPv(hd, hv), (6)

where MLPd and MLPv are separately parameterized neural networks predicting diffuse and view-
dependent spherical harmonics components, respectively. Both MLPs are quantized to 16-bit preci-
sion to minimize storage overhead while retaining representation capability. In the inference stage,
we only use these MLPs to decode the SH features once as described in Eq. 6. This factorization
further reduces memory costs for mobile devices.

3.3 CONTRIBUTION-BASED PRUNING

▶ “Pruning Insight”: Gaussians with larger opacity and scale have more important contribution.

To reduce redundant Gaussian primitives during training, we adopt a contribution-based pruning
mechanism that jointly considers opacity and spatial scale statistics. At each iteration t, we compute

6
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the per-primitive opacity values og and the maximum scale smax(g) across dimensions. A quantile
threshold τ is applied to identify low-contributing Gaussian candidates:

C(t)
opacity = {g ∈ G | og < Qτ (o)}, C(t)

scale = {g ∈ G | smax(g) < Qτ (smax)}, (7)

where Qτ (·) denotes the τ -quantile operator, and C(t)
prune = C(t)

opacity ∩ C(t)
scale is the set of Gaussians

selected as pruning candidates at iteration t. Instead of immediately removing candidates, we accu-
mulate pruning votes for each Gaussian. Let V (t)

g denote the accumulated vote count for Gaussian
g at iteration t, initialized as V (0)

g = 0. The update rule is

V (t+1)
g = V (t)

g + 1[g ∈ C(t)
prune], Gnew = G \ {g ∈ G | 1[V (t)

g > Iprune · v]}, (8)

where 1[·] is the indicator function. Iprune and v are the pruning interval and a vote threshold.
A Gaussian g is permanently pruned if its accumulated votes exceed a threshold in every pruning
interval. The updated Gaussian set is Gnew. This strategy mitigates noisy fluctuations in opacity or
scale during early training and progressively eliminates Gaussian primitives that consistently exhibit
low contribution (low opacity) and negligible geometric extent (low scale).

3.4 IMPLEMENTATION

Training Loss: In this work, we optimize our proposed Mobile-GS with the rendering loss same as
the original 3DGS (Kerbl et al., 2023), which utilizes L1 and LDSSIM:

Lrgb = λL1(C,Cgt) + (1− λ)LDSSIM(C,Cgt), (9)

where λ balance the contributions of the L1 and LDSSIM loss function. It is typically set as 0.8.
Therefore, the total loss can be computed via:

L = Lrgb + λdistillLdistill + λdepthLdepth, (10)

where λdistill and λdepth balance the weight between the rendered image loss, the distillation loss, and
the depth loss. In our experiments, we empirically set λdistill and λdepth as 1 and 0.1, respectively.

Training Details: We train our proposed Mobile-GS on an RTX 3090 GPU using PyTorch. We
develop custom CUDA Kernels for the adaptation of our proposed depth-aware order-independent
rendering. We utilize Mini-Splatting (Fang & Wang, 2024) as the teacher model in the distillation
stage. The main difference between our Mobile-GS with Mini-Splatting is that it uses traditional
alpha blending and does not have a quantization process. We train our method with 30k iterations.
We initialize MLPϕ to output ϕ as 1, thereby stabilizing the training process. At the 5k-th iteration,
we launch the proposed neural vector quantization as shown in Eq. 6. Additional implementation
details can be found in the appendix.

Deployment on Mobiles: To evaluate the efficiency of our method on resource-constrained devices,
we implement our approach using Vulkan 2.0, a modern, cross-platform graphics and compute API.
Vulkan offers low-overhead, high-performance access to GPU hardware and is well-suited for mo-
bile and embedded platforms due to its explicit control over rendering and memory management.
This implementation enables a fair and consistent comparison of the real-time rendering perfor-
mance and computational overhead on mobile GPU architectures.

4 EXPERIMENTS

4.1 QUANTITATIVE AND QUALITATIVE RESULTS

In our experiments, we compare our proposed Mobile-GS against several state-of-the-art methods,
including 3DGS (Kerbl et al., 2023), LightGaussian (Fan et al., 2024), AdR-Gaussian (Wang et al.,
2024a), SortFreeGS (Hou et al., 2025), Speedy-Splat (Hanson et al., 2025), C3DGS Lee et al. (2024),
GES Ye et al. (2025), and LocoGS-S (Shin et al., 2025). As shown in Table 1, we display quantitative
results of our Mobile-GS compared with these state-of-the-art methods across the three representa-
tive datasets. These methods cannot achieve high-quality novel view synthesis in terms of render-
ing performance and efficiency, while our proposed method can achieve comparable performance
compared with 3DGS. It indicates that our Mobile-GS delivers high-quality novel view synthesis
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Table 1: Quantitative comparisons of state-of-the-art 3D reconstruction methods on real-world
datasets. We evaluate and report performance on three commonly used datasets, such as Mip-NeRF
360 (Barron et al., 2022), Tank&Temples (Knapitsch et al., 2017), and Deep Blending (Hedman
et al., 2018). We highlight the best results among the lightweight 3DGS methods.

Dataset Mip-NeRF360 Tanks&Temples Deep Blending
Method & Metrics PSNR ↑ SSIM↑ LPIPS↓ Storage↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ Storage↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ Storage↓ FPS↑

3DGS (Kerbl et al., 2023) 27.21 0.815 0.214 839.9 MB 174 23.14 0.841 0.183 458.7 MB 236 29.41 0.903 0.243 697.3 MB 214

LightGaussian (Fan et al., 2024) 27.08 0.801 0.244 60.4 MB 227 22.61 0.803 0.264 29.9 MB 392 28.74 0.856 0.325 48.2 MB 271
AdR-Gaussian (Wang et al., 2024a) 26.95 0.792 0.259 358.2 MB 254 22.74 0.809 0.251 214.6 MB 372 28.92 0.863 0.305 251.4 MB 284
SortFreeGS (Hou et al., 2025) 27.02 0.775 0.267 851.4 MB 731 22.81 0.817 0.254 471.5 MB 848 28.69 0.852 0.326 724.2 MB 793
Speedy-Splat (Hanson et al., 2025) 26.92 0.782 0.296 79.4 MB 401 23.08 0.821 0.241 62.4 MB 527 29.11 0.864 0.309 71.2 MB 463
C3DGS (Lee et al., 2024) 27.03 0.797 0.247 30.6 MB 184 23.32 0.831 0.202 21.8 MB 174 29.73 0.900 0.258 24.7 MB 189
LocoGS-S (Shin et al., 2025) 27.02 0.805 0.241 8.5 MB 292 23.23 0.837 0.204 6.8 MB 325 29.76 0.903 0.251 7.8 MB 322
Mobile-GS (Ours) 27.12 0.807 0.235 4.6 MB 1125 23.09 0.831 0.208 2.5 MB 1179 29.93 0.906 0.243 4.6 MB 1132

Ground Truth3DGS Mobile-GS (Ours)Speedy-SplatSortFreeGS
Storage/FPS325 MB/400 336 MB/741 32.7MB/480

Storage/FPS23.9MB/453

3.3MB/1248

3.6MB/1130

Storage/FPS3.5MB/110727.5MB/468

278 MB/431

396 MB/337

291 MB/758

436 MB/659

Figure 5: Qualitative comparisons of existing methods and our proposed Mobile-GS. We dis-
play the storage cost and FPS per scene to better demonstrate the performance of our method. We
extract close-ups to highlight the differences.
Table 2: Evaluation on the mobile device with
Snapdragon 8 Gen 3 GPU. 3DGS*, Mini-Splatting*,
and SortFreeGS* mean the quantized version through
Huffman encoding. We report results on the Mip-
NeRF 360 dataset.

Method PSNR ↑ FPS*↑ Storage ↓ Peak Memory↓ Training ↓

3DGS* 27.01 8 61.8 MB 9489 MB 0.5 h
Mini-Splatting* 27.02 12 36.9 MB 5841 MB 0.4 h
Speedy-Splat 26.92 19 79.5 MB 6647 MB 0.4 h
HAC 26.98 12 11.8 MB 7591 MB 0.7 h
LocoGS-S 27.02 17 8.5 MB 7018 MB 0.8 h
C3DGS 27.03 14 30.6 MB 7423 MB 0.6 h
GES 26.98 18 29.4 MB 7146 MB 0.7 h
SortFreeGS* 26.74 24 64.3 MB 9628 MB 1.3 h
Mobile-GS (Ours) 27.12 127 4.6 MB 4865 MB 1.5 h

Table 3: Ablation Study of the proposed
components. We report results on the Mip-
NeRF 360 dataset. The inference speed
FPS is evaluated on the Desktop RTX 3090
GPU.

Method PSNR ↑ FPS ↑ Storage ↓

Mobile-GS 27.12 1125 4.6 MB
w/o order-independent 27.26 684 4.5 MB
w/o view-dependent 26.68 1227 4.4 MB
w/o neural quantization 27.33 841 121 MB
w/ 0th-order SH distill. 27.04 1219 3.6 MB
w/ 2nd-order SH distill. 27.13 917 7.3 MB
w/ 3rd-order SH 27.15 841 9.6 MB
w/o depth in Eq.3 27.03 1167 4.5 MB
w/o scale in Eq.3 27.08 1171 4.5 MB

performance and provides a more flexible solution for mobile deployment. It is attributed to our
proposed neural view-dependent enhancement strategy and a series of compression techniques that
empower view-dependent information perception and improve rendering efficiency. In addition to
the quantitative comparisons, we also present the qualitative results. As illustrated in Fig. 5, our pro-
posed Mobile-GS can achieve sharper and more consistent novel view synthesis quality comparable
to 3DGS, even better than 3DGS in the view-dependent effects. These quantitative and qualitative
results demonstrate that our Mobile-GS can achieve high-quality novel view synthesis results, es-
pecially in scenes with complex geometry and lighting. This is because our proposed Mobile-GS
is integrated with the proposed view-dependent enhancement to improve view-dependent rendering
and facilitate the learning process of 3D Gaussians toward the complex scene structures.

Evaluation on Mobile: To validate the real-time performance on the edge device, we deploy our
proposed Mobile-GS on a mobile device equipped with the Snapdragon 8 Gen 3 GPU for the eval-
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uation. For a fair comparison, we also quantize 3DGS and Mini-Splatting for the deployment and
evaluation. As depicted in Table 2, our proposed method outperforms these state-of-the-art methods
in terms of rendering quality, speed, storage costs, and peak memory. These results demonstrate
that our Mobile-GS is the most suitable for real-time rendering on mobile devices, compared with
existing state-of-the-art methods. It is attributed to our proposed depth-aware order-independent ren-
dering, quantization, and pruning techniques, which eliminate the need of the 3D Gaussian sorting
process, simultaneously render all 3D Gaussians, and significantly compress Gaussian parameters.
Although our proposed Mobile-GS requires more training time, its high-quality rendering and real-
time inference speed make it more suitable for mobile devices compared to existing methods.
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Figure 6: Runtime analysis of Mobile-GS.

Runtime Analysis: As illustrated in Fig. 6, we
further provide a detailed runtime analysis of our
proposed Mobile-GS evaluated on four representa-
tive scenes, covering both indoor and outdoor en-
vironments from the Mip-NeRF 360 dataset. The
reported runtime accounts for all essential compo-
nents involved in the rendering pipeline, including
the lightweight MLPs used for view-dependent ef-
fects. Despite the inclusion of MLPs, which are of-
ten regarded as computationally demanding, our design introduces minimal overhead. This demon-
strates that Mobile-GS maintains a favorable balance between computational efficiency and model
performance, ensuring real-time efficiency without compromising visual fidelity.

4.2 ABLATION STUDY

As shown in Table 3, we conduct ablation studies to demonstrate the effectiveness of the proposed
components. When we replace the proposed depth-aware order-independent rendering with the orig-
inal alpha blending, although the PSNR metric is slightly improved, the rendering speed is reduced
significantly. It demonstrates the critical role of the proposed order-independent rendering for bet-
ter rendering efficiency. When we do not employ the proposed view-dependent enhancement, the
rendered visual quality deteriorates dramatically. It is because our proposed neural view-dependent
enhancement strategy can effectively mitigate the problem of depth ambiguities in overlapping ge-
ometry introduced by order-free rendering. When we do not utilize the proposed neural vector
quantization, the storage cost increases dramatically, indicating its necessity for mobile deployment.
When we do not leverage the proposed spherical harmonics (SH) distillation, the rendering speed is
reduced, and the storage cost is increased, showing its importance for lightweight rendering. When
we remove the Gaussian depth or scale in our weighting function, the rendering quality degrades,
which demonstrates the significance of these two attributes for our rendering formulation. These re-
sults collectively validate the effectiveness of our components and demonstrate that each component
is essential to achieving high-fidelity and real-time rendering on mobile devices.

w/o view dependent w/ view dependent

Figure 7: Evaluation of the proposed neu-
ral view-dependent enhancement strategy.
“w/o” and “w/” mean the removal and the
integration of the proposed neural view-
dependent enhancement strategy.

Neural View-dependent Enhancement: To further
demonstrate the effectiveness of the proposed neural
view-dependent enhancement strategy, we present
visual comparisons of its ablation as illustrated in
Fig. 7. In the absence of this proposed strategy, the
rendered images suffer from noticeable transparency
artifacts, particularly in regions with overlapping ge-
ometry or depth ambiguity. These artifacts are pri-
marily caused by the order-independent rendering
mechanism, which does not account for the cover-
age of each 3D Gaussian. In contrast, when the pro-
posed neural view-dependent enhancement strategy
is incorporated, these transparency artifacts are sig-
nificantly reduced. This improvement is attributed to that we use the neural network to model the
relationship between the 3D Gaussian attributes and view-dependent lighting effects. This leads to
more consistent and realistic rendering across viewpoints.

Contribution-based Pruning: Our proposed contribution-based pruning strategy removes redun-
dant Gaussian primitives by jointly considering their opacity and scale attributes. To evaluate its
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Table 4: Ablation study of pruning strate-
gies. We leverage our Mobile-GS without
pruning as the baseline and leverage pruning
only on opacity, scale, and both attributes.

Method Baseline Opacity Scale Opacity & Scale

Num. ×106 ↓ 0.56 0.43 0.45 0.47
PSNR ↑ 27.22 26.84 26.87 27.12
FPS* ↑ 109 135 132 127

Table 5: Hyperparameter analysis about the prun-
ing threshold. We employ our Mobile-GS without
our contribution-based pruning as the baseline and ad-
just the pruning threshold to find a suitable trade-off.

Threshold Baseline 0.1 0.2 0.4 0.6

Num. ×106 ↓ 0.56 0.55 0.47 0.34 0.18
PSNR ↑ 27.22 27.15 27.12 26.47 25.85
FPS* ↑ 109 111 127 141 164

Table 6: Adaptivity of the proposed
contribution-based pruning. Our pro-
posed contribution-based pruning can be
applied in MaksGaussian Liu et al. (2025) and
Mini-Splatting for further Gaussian pruning.

Method MaskGaussian + prune. Mini-Splatting + prune.

PSNR ↑ 27.24 27.16 27.41 27.38
Num. ×106 ↓ 1.21 0.84 0.58 0.47

Table 7: Analysis of the codebook size. We
analyze different codebook sizes on the Mip-
NeRF 360 dataset to find a more balanced trade-
off. The smaller codebook size means fewer
storage costs.

Codebook size 26 28 210 212

PSNR ↑ 25.52 26.83 27.12 27.15
Storage ↓ 3.84 MB 4.2 MB 4.6 MB 7.9 MB

effectiveness, we conduct detailed ablation studies, as summarized in Table 4. The results clearly
indicate that pruning based solely on either opacity or scale leads to a substantial degradation in
performance, highlighting the limitation of using a single criterion. In contrast, our pruning strategy
leverages the complementary nature of these two attributes: opacity reflects the visibility of a Gaus-
sian, while scale captures its spatial influence. By integrating both factors, our method achieves a
more balanced pruning decision, allowing us to discard a large portion of redundant primitives while
maintaining high rendering fidelity. This design not only reduces memory and computational over-
head but also demonstrates that effective pruning can be achieved with minimal loss of precision,
thus striking a favorable trade-off between efficiency and accuracy.

In our proposed contribution-based pruning strategy, we introduce a predefined threshold τ to iden-
tify Gaussians with low contribution. A larger threshold results in more aggressive pruning and
consequently fewer Gaussian points. We evaluate various threshold values, as displayed in Table 5,
using Mobile-GS without pruning as the baseline and applying our contribution-based pruning strat-
egy on top of it. We analyze thresholds ranging from 0.1 to 0.6 and observe that a threshold of
0.2 provides the best balance between rendering quality and computational efficiency. Accordingly,
we adopt 0.2 as the pruning threshold in our method. As shown in Table 6, our contribution-based
pruning strategy can be seamlessly integrated with various existing GS pruning methods to further
reduce the number of Gaussian points. In particular, it can significantly reduce Gaussian points
without substantial performance degradation.

Neural Vector Quantization: Our proposed neural vector quantization employs K-means clustering
to encode Gaussian parameters into a compact codebook. The codebook size directly influences both
rendering quality and storage cost. We evaluate a range of codebook sizes from 26 to 212, as depicted
in Table 7. When the codebook is too small, the PSNR degrades drastically due to insufficient
representational capacity. Conversely, an excessively large codebook requires substantially more
storage. Based on this trade-off, we select a codebook size of 210, which offers a favorable balance
between lightweight storage and high-quality rendering.

5 CONCLUSION

In this work, we propose Mobile-GS, the first Gaussian Splatting method specifically designed for
real-time rendering on mobile devices. To address the computational bottlenecks inherent in tradi-
tional 3D Gaussian Splatting, we propose a series of innovative techniques, including depth-aware
order-independent rendering, neural view-dependent opacity enhancement, first-order spherical har-
monics distillation, neural vector quantization, and contribution-based pruning. These innovations
jointly enable Mobile-GS to achieve high-quality novel view synthesis while dramatically reduc-
ing memory, storage usage, and computational overhead. Extensive experiments demonstrate that
Mobile-GS delivers rendering quality comparable to the original 3DGS, yet with a significantly
smaller storage footprint and faster efficiency, achieving up to 127 FPS on the modern mobile GPU.
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REPRODUCIBILITY STATEMENT

We ensure the reproducibility of our work by detailed implementation descriptions and publicly
available codes. The main paper and appendix provide implementation details. To facilitate the
reproducibility, we will release all codes, including training and evaluation code, upon acceptance
of the paper.
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Lukas Höllein, Aljaž Božič, Michael Zollhöfer, and Matthias Nießner. 3dgs-lm: Faster gaussian-
splatting optimization with levenberg-marquardt. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 26740–26750, 2025.

Qiqi Hou, Randall Rauwendaal, Zifeng Li, Hoang Le, Farzad Farhadzadeh, Fatih Porikli, Alexei
Bourd, and Amir Said. Sort-free gaussian splatting via weighted sum rendering. In The Thirteenth
International Conference on Learning Representations, 2025.

Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaoxiao Long, Wenping Wang, and Yuexin
Ma. Gaussianshader: 3d gaussian splatting with shading functions for reflective surfaces. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5322–
5332, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics (ToG), 42(4):1–14,
2023.

Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Weiwei Sun, Jeff Tseng, Hossam Isack, Ab-
hishek Kar, Andrea Tagliasacchi, and Kwang Moo Yi. 3d gaussian splatting as markov chain
monte carlo. arXiv preprint arXiv:2404.09591, 2024.

Shakiba Kheradmand, Delio Vicini, George Kopanas, Dmitry Lagun, Kwang Moo Yi, Mark
Matthews, and Andrea Tagliasacchi. Stochasticsplats: Stochastic rasterization for sorting-free
3d gaussian splatting. arXiv preprint arXiv:2503.24366, 2025.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics, 36(4), 2017.

Jonas Kulhanek, Marie-Julie Rakotosaona, Fabian Manhardt, Christina Tsalicoglou, Michael
Niemeyer, Torsten Sattler, Songyou Peng, and Federico Tombari. Lodge: Level-of-detail large-
scale gaussian splatting with efficient rendering. arXiv preprint arXiv:2505.23158, 2025.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 21719–21728, 2024.

Haolin Li, Jinyang Liu, Mario Sznaier, and Octavia Camps. 3d-hgs: 3d half-gaussian splatting.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 10996–11005,
2025.

Weikai Lin, Yu Feng, and Yuhao Zhu. Metasapiens: Real-time neural rendering with efficiency-
aware pruning and accelerated foveated rendering. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, Vol-
ume 1, pp. 669–682, 2025.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel
fields. Advances in Neural Information Processing Systems, 33:15651–15663, 2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiangrui Liu, Xinju Wu, Pingping Zhang, Shiqi Wang, Zhu Li, and Sam Kwong. Compgs: Efficient
3d scene representation via compressed gaussian splatting. In Proceedings of the 32nd ACM
International Conference on Multimedia, pp. 2936–2944, 2024.

Yifei Liu, Zhihang Zhong, Yifan Zhan, Sheng Xu, and Xiao Sun. Maskgaussian: Adaptive 3d
gaussian representation from probabilistic masks. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 681–690, 2025.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20654–20664, 2024.

Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Markus Steinberger, Francisco Vicente
Carrasco, and Fernando De La Torre. Taming 3dgs: High-quality radiance fields with limited
resources. In SIGGRAPH Asia 2024 Conference Papers, pp. 1–11, 2024.
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A LLM USAGE STATEMENT

In this work, we employed a Large Language Model (LLM) solely for language polishing purposes.
Specifically, the LLM was used to refine grammar, improve readability, and ensure consistency in
tone and style across the manuscript. Importantly, the LLM was not used for generating novel
ideas, conducting analysis, or contributing to the scientific content of this work. All research design,
implementation, and results presented herein are original contributions of the authors.

B PRELIMINARY: 3D GAUSSIAN SPLATTING

3DGS is a Gaussian-based rendering approach that leverages anisotropic 3D Gaussians to represent
scenes for high-quality real-time rendering. Each 3D Gaussian Gi is parametrized by (µi,Σi, oi, Yi).
The mean µi ∈ R3 specifies the 3D position of the Gaussian in world space. The covariance matrix
Σi ∈ R3×3, usually symmetric and positive semi-definite, describes the anisotropic spatial extent
and orientation of the Gaussian ellipsoid. Σi can be decomposed into si and ri, where s represents
the scale of 3D Gaussians and r denotes the rotation. The appearance of each Gaussian is controlled
by its color ci and an opacity factor o ∈ [0, 1], where the color c is represented by the spherical
harmonic coefficients Yi.

To render an image, each Gaussian is first projected onto the image plane via a standard perspective
camera model. In this process, 3DGS has a depth-sorting process to render the 3D Gaussians in
order. It ensures the rendering of 3D Gaussians from near to far order. After the sorting process, the
final pixel color can be computed by the alpha blending:

C =

N∑
i=1

ciαiTi, Ti =

i−1∏
j=1

(1− αj), αi = oi exp

(
−1

2
∆xT

i Σ
−1
i ∆xi

)
, (11)

where T denotes the transmittance in the alpha blending. ∆xi = xi−µi denotes the positional offset.
N represents the number of 3D Gaussians. Overall, Gaussian Splatting provides a differentiable,
compact, and efficient method to represent and render complex scenes, making it especially suitable
for real-time applications and gradient-based optimization in neural rendering pipelines.

C ADDITIONAL IMPLEMENTATION DETAILS

Neural View-dependent Enhancement. To effectively capture view-dependent appearance varia-
tions, we design a lightweight three-layer multilayer perceptron MLPf with progressively decreas-
ing neuron counts of 256, 128, and 64 per layer. This MLP extracts discriminative features from
the 3D Gaussian primitives and predicts both the opacity o and an auxiliary feature ϕ. We apply
a Sigmoid activation function to the opacity output to constrain it within the range [0, 1], while a
ReLU activation is employed for ϕ to enhance its representational flexibility. The network is trained
jointly with the 3D Gaussian primitives for 30k iterations, ensuring that the learned features are
tightly coupled with the underlying Gaussian representation.

Neural Vector Quantization. For the efficient compression of Gaussian attributes, we adopt a
neural vector quantization scheme. Specifically, the attributes are partitioned into five groups of
sub-vectors, each of which is clustered using K-means. The resulting discrete codes are then fur-
ther compressed via Huffman entropy coding to reduce storage redundancy. To refine the quantized
representations, we employ compact MLP modules associated with each group. These MLPs are in-
tentionally designed with a single hidden layer consisting of 64 neurons, striking a balance between
training efficiency and representational accuracy. This lightweight design significantly accelerates
training while maintaining high-quality reconstruction of the Gaussian attributes.

Distribution-based Pruning. To remove redundant Gaussian primitives and improve efficiency, we
introduce a distribution-based pruning strategy. We set the interval Iprune to 1000 and v to 0.6.
Pruning is applied only during the initial 25k iterations to prevent excessive removal in later stages
of training, where finer details are critical. Furthermore, we employ a redundancy identification
threshold τ = 0.2 to selectively discard Gaussian primitives with marginal contributions. This
design allows the model to retain representation capacity while substantially reducing unnecessary
primitives in early training.
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Table 8: Comparison with different sorting-free methods. SortFreeGS* means its quantized ver-
sion. We report metrics on the Mip-NeRF 360 dataset for the mobile equipped with the Snapdragon
8 Gen 3 GPU. FPS* means the rendering speed on the mobile.

Method Rendering Weighting PSNR ↑ Storage ↓ FPS*↑

SortFreeGS* C =
cbgwbg+

∑N
i=1 ciαiw(di)

wbg+
∑N

i=1 αiw(di)
w(di) = exp

(
−σdβi

)
26.74 64.3 MB 18

GES C = CsWs+CG

Ws+WG
WG(x̂) =

∑N
i=1[1(di < ds(x̂) + ϵ)]αi(x̂) 27.02 29.4 MB 24

Ours C = (1− T )
∑N

i=1 ciαiwi∑N
i=1 αiwi

+ Tcbg wi = ϕ2
i +

ϕi

d2
i
+ exp( smax

di
) 27.12 4.6 MB 127

D DISCUSSION AND LIMITATIONS

D.1 DIFFERENCE WITH SORTING-FREE METHODS

Although SortFreeGS (Hou et al., 2025), GES Ye et al. (2025), and our proposed Mobile-GS em-
ploy sorting-free rendering, Mobile-GS serves as a more comprehensive and efficient rendering
method as depicted in Table 8. It is worth noting that SortFreeGS* refers to the quantized version
of SortFreeGS, as the original method does not include a quantization stage. In terms of PSNR,
storage cost, and rendering FPS, our Mobile-GS consistently achieves superior performance over
prior sorting-free techniques. This improvement stems from our integrated design that incorporates
quantization, pruning, and a view-dependent enhancement mechanism. With respect to rendering
formulations, GES follows a formulation similar to SortFreeGS, whereas our method adopts a trans-
mittance proxy enriched with view-dependent modulation to more effectively capture the underlying
3D scene structure.

The Gaussian weight computation also differs substantially across these approaches. SortFreeGS
leverages the Gaussian depth to modulate its contribution but does not account for the Gaussian
scale, which we find to be critical. GES, on the other hand, relies on a two-stage rendering. It first
renders a depth image using conventional volume rendering and then filters out distant Gaussians
by comparing their depths against the rendered depth map for later sorting-free rendering. This
two-stage rendering pipeline relies on precise depth rendering and increases computational load,
so it is not well-suited for mobile deployment. In contrast, Mobile-GS exploits both depth and
scale attributes of each Gaussian to compute an importance weight, reflecting the intuition that
farther Gaussians should have lower contribution, while larger Gaussians typically provide more
meaningful rendering evidence.

Theoretically, A key challenge for sorting-free methods is the potential order ambiguity in regions
where geometry overlaps. SortFreeGS attempts to address this by introducing additional spherical
harmonics parameters to model view-dependent opacity. However, this design incurs significant
overhead and is unfavorable for practical mobile usage. Our Mobile-GS resolves this limitation by
enhancing the view-dependent effect through a learnable parameter ϕ, predicted by a lightweight
MLP conditioned on Gaussian attributes. This formulation achieves high-quality rendering without
introducing a prohibitive computational or memory burden. Overall, Mobile-GS is carefully tailored
to minimize resource consumption, reduce Gaussian parameter storage, and maintain real-time ren-
dering performance on mobile hardware.

D.2 DISCUSSION

Mobile-GS is a Gaussian-based method that can achieve real-time rendering on mobile and resource-
constrained platforms without significantly sacrificing rendering quality. The proposed depth-aware
order-independent rendering replaces traditional alpha blending with a sorting-free scheme, sub-
stantially improving runtime efficiency. Combined with neural view-dependent enhancements and
spherical harmonics distillation, our approach maintains visual fidelity even under complex scenes.
To address memory limitations, a neural vector quantization strategy is employed, improving stor-
age efficiency and enabling large-scale scene representations to be deployed on mobile devices with
limited memory.

Experimental results demonstrate that Mobile-GS achieves a compelling balance among rendering
speed, storage footprint, and visual quality. It consistently outperforms existing lightweight Gaus-
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Table 9: Per-scene PSNR results of state-of-the-art novel view synthesis methods on Mip-NeRF
360 dataset (Barron et al., 2022). The best results are highlighted.

Method bicycle garden stump flowers treehill counter kitchen room bonsai
3DGS Kerbl et al. (2023) 25.23 27.38 26.55 21.44 22.49 28.70 30.32 30.63 31.98
Speedy-Splat Hanson et al. (2025) 24.78 26.70 26.79 21.21 22.57 28.28 29.91 30.99 31.29
Mobile-GS (Ours) 24.91 26.65 26.82 21.41 22.77 28.82 30.47 30.95 31.25

Table 10: Per-scene SSIM results of state-of-the-art novel view synthesis methods on Mip-
NeRF 360 dataset (Barron et al., 2022). The best results are highlighted.

Method bicycle garden stump flowers treehill counter kitchen room bonsai
3DGS Kerbl et al. (2023) 0.765 0.864 0.770 0.602 0.633 0.907 0.925 0.918 0.940
Speedy-Splat Hanson et al. (2025) 0.704 0.815 0.765 0.561 0.590 0.878 0.894 0.905 0.927
Mobile-GS (Ours) 0.740 0.823 0.777 0.593 0.643 0.905 0.920 0.924 0.936

Table 11: Per-scene LPIPS results of state-of-the-art novel view synthesis methods on Mip-
NeRF 360 dataset (Barron et al., 2022). The best results are highlighted.

Method bicycle garden stump flowers treehill counter kitchen room bonsai
3DGS Kerbl et al. (2023) 0.211 0.108 0.217 0.339 0.329 0.201 0.127 0.220 0.205
Speedy-Splat Hanson et al. (2025) 0.333 0.213 0.288 0.419 0.463 0.260 0.198 0.260 0.231
Mobile-GS (Ours) 0.270 0.180 0.250 0.356 0.354 0.195 0.132 0.194 0.187

sian Splatting methods across multiple benchmarks, highlighting the effectiveness of our proposed
components, including depth-aware order-independent rendering, neural view-dependent enhance-
ment, spherical harmonics distillation, neural vector quantization, and contribution-based pruning.

D.3 LIMITATIONS

Despite its advantages, Mobile-GS contains several limitations: (1) Training Cost and Complexity:
Although inference is fast, training Mobile-GS remains computationally intensive due to the pro-
posed components (e.g., spherical harmonics distillation, neural vector quantization, neural view-
dependent enhancement). Additionally, the model requires pretraining on desktop GPUs before
mobile deployment, limiting its accessibility for real-time data acquisition and retraining on the
device. (2) Scene Generalization: While Mobile-GS performs well on standard benchmarks, it is
optimized per-scene and does not generalize across scenes without retraining. This limits its imme-
diate usage in applications requiring dynamic scene capture or rendering in unseen environments,
such as real-time AR reconstruction. (3) Quantization Degradation: Although the proposed neu-
ral vector quantization is highly effective in compressing Gaussian attributes, there still remains a
trade-off between compression ratio and reconstruction quality, especially for fine-grained appear-
ance details. Excessive quantization may introduce minor color shifts or blurring artifacts in highly
textured regions.

E ADDITIONAL QUALITATIVE AND QUANTITATIVE RESULTS

As shown in Table 9, 10 and 11, we provide detailed per-scene quantitative results, between our
proposed Mobile-GS, 3DGS (Kerbl et al., 2023), SortFreeGS (Hou et al., 2025), and Speedy-
Splat (Hanson et al., 2025). The results indicate that Mobile-GS achieves performance comparable
to these state-of-the-art methods and even surpasses them in several scenes. Additional qualitative
results of novel view synthesis are presented in Fig. 8, where Mobile-GS demonstrates superior
rendering quality. This improvement is primarily attributed to our proposed neural view-dependent
enhancement strategy, which facilitates better fitting and adaptation of 3D Gaussians toward view-
dependent effects. It enhances the representation capacity of 3D Gaussian properties, thus achieving
better results. These results further demonstrate that our proposed Mobile-GS not only supports
real-time rendering on mobile devices but also maintains high-quality novel view synthesis.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Ground Truth3DGS Mobile-GS (Ours)Speedy-SplatSortFreeGS

Figure 8: Additional visual comparisons of Speedy-Splat, SortFreeGS, 3DGS, and our pro-
posed Mobile-GS. We highlight the close-up for better differentiation.

3DGS
25%

LocoGS-S
11%

Mobile-GS (Ours)
64%

Mip-NeRF 360

3DGS
19%

LocoGS-S
22%

Mobile-GS (Ours)
59%

3DGS
11%

LocoGS-S
10%

Mobile-GS (Ours)
79%

Tanks&Temples Deep Blending

Figure 9: User study of rendering quality between our proposed Mobile-GS, 3DGS (Kerbl
et al., 2023), and LocoGS-S (Shin et al., 2025). The higher rate means more users like it.

F USRER STUDY

As illustrated in Fig. 9, we conduct a user study to evaluate the rendering quality of our proposed
Mobile-GS. To be specific, we train and render on the publicly available datasets, including Mip-
NeRF 360 (Barron et al., 2022), Tank&Temples (Knapitsch et al., 2017), and Deep Blending (Hed-
man et al., 2018), with 3DGS (Kerbl et al., 2023), LocoGS-S (Shin et al., 2025), and our proposed
Mobile-GS. For a fair comparison, we also quantize 3DGS. A total of 30 volunteers participated
in the study, rating the quality of videos involving novel view synthesis produced by each method.
These results suggest that most of the participants preferred the renderings produced by our Mobile-
GS, indicating higher visual quality. This preference is largely attributed to our tailored design for
mobile platforms, incorporating neural view-dependent enhancement and neural vector quantiza-
tion, while 3DGS often exhibits floaters and rendering artifacts. These results further demonstrate
that Mobile-GS delivers visually appealing rendering results and performance, especially under
resource-constrained mobile environments.

G ADDITIONAL MOBILE TESTING

For a more comprehensive analysis, we further conduct detailed evaluations on a mobile device
equipped with a Snapdragon 8 Gen 3 GPU. As summarized in Table 12, we report both the cold-
start FPS (measured immediately at launch) and the steady-state FPS (measured after thermal equi-
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Table 12: Steady-state FPS evaluation on the mobile. The larger FPS means faster rendering
speed.

Method 3DGS Speedy-Splat SortFreeGS Mobile-GS (Ours)

Cold-start FPS ↑ 8 19 24 127
Steady-state FPS ↑ 3 10 18 74

Table 13: Power draw measurement on the mobile. We measure on different Vulkan operators
and report their power (W) on the mobile with the Snapdragon 8 Gen 3 GPU.

Method Preprocessing Sorting MLP Rasterization Total

3DGS* 1.64 2.09 0 2.16 5.89
SortFreeGS* 1.78 0 0 2.25 4.03
Mobile-GS 0.17 0 0.24 0.42 0.83

librium). This allows us to clearly analyze the performance change over time and the impact of
thermal throttling on mobile rendering. On mobiles, FPS drops over time because of thermal throt-
tling, power limits, GPU clock downscaling, and NPU/CPU frequency limits. We can find that
our Mobile-GS can still achieve 74 Steady-state FPS, which demonstrates the effectiveness of our
Mobile-GS for real-time rendering on mobiles.

We further report the power-consumption measurements on the mobile device, as summarized in
Table 13. Using the Qualcomm Trepn Profiler, we measure the power draw (W) of the Vulkan
operators and MLP when running on the Mip-NeRF 360 dataset, and compare our Mobile-GS with
3DGS* and SortFreeGS*. Here, 3DGS* and SortFreeGS* denote their quantized variants adapted
for deployment on a Snapdragon 8 Gen 3 mobile GPU. The results show that Mobile-GS achieves the
lowest power consumption among all methods, highlighting the practical efficiency and suitability
of our approach for mobile deployment.
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