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Abstract

A common paradigm to improve the performance
of large language models is optimizing for a re-
ward model. Reward models assign a numerical
score to LLM outputs indicating, for example,
which response would likely be preferred by a
user or is most aligned with safety goals. How-
ever, reward models are never perfect. They in-
evitably function as proxies for complex desider-
ata such as correctness, helpfulness, and safety.
By overoptimizing for a misspecified reward, we
can subvert intended alignment goals and reduce
overall performance – a phenomenon commonly
referred to as reward hacking. In this work, we
characterize reward hacking in inference-time
alignment and demonstrate when and how we can
mitigate it by hedging on the proxy reward. We
study this phenomenon under Best-of-n (BoN)
and Soft-Best-of-n (SBoN), and we introduce
Best-of-Poisson (BoP) that provides an efficient,
near-exact approximation of the optimal reward-
KL divergence policy at inference time. We show
that the characteristic pattern of hacking as ob-
served in practice (where the true reward first
increases before declining) is an inevitable prop-
erty of a broad class of inference-time mecha-
nisms, including BoN and BoP. To counter this
effect, hedging offers a tactical choice to avoid
placing undue confidence in high but potentially
misleading proxy reward signals. We introduce
HedgeTune, an efficient algorithm to find the
optimal inference-time parameter and avoid re-
ward hacking. We demonstrate through experi-
ments that hedging mitigates reward hacking and
achieves superior distortion-reward tradeoffs with
minimal computational overhead.
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1. Introduction
Almost all current alignment methods, including BoN (Sti-
ennon et al., 2020; Nakano et al., 2021), RLHF (Christiano
et al., 2017; Bai et al., 2022), DPO (Rafailov et al., 2024),
and their variants, aim to maximize a reward function while
minimizing divergence from the original model’s outputs.
It is important to distinguish between two types of rewards:
proxy rewards which are the computable signals we di-
rectly use during alignment (like scores from a trained re-
ward model), and true (or gold) rewards, which represent
the true, often latent, quality of the model’s output according
to a desired objective. As the name suggests, proxy rewards
are approximations of the true reward and, consequently, of
intended alignment goals like correctness, helpfulness, and
safety.

A fundamental challenge persists across reward-based align-
ment methods: all proxy reward models are imperfect
(Laidlaw et al., 2025). This imperfection stems from mul-
tiple factors, including the scarcity of high-quality human-
labeled data and the difficulty of formalizing high-level
alignment goals into quantifiable metrics (Hadfield-Menell
et al., 2017; Pan et al., 2022). For instance, consider AI
alignment strategies that aim to promote safety. It is diffi-
cult for a single reward model to capture nuanced human
user preferences and assign accurate scalar rewards in com-
plex, context-dependent settings where safety specifications
conflict (Buyl et al., 2025).

In this work, we analyze and mitigate the impact of misspec-
ified proxy rewards in inference-time alignment methods.
Inference-time alignment has emerged as an effective and
computationally efficient paradigm to improve the capabili-
ties of large language models and align them with desired
goals (Welleck et al., 2024). Among these methods, Best-
of-n (BoN) sampling stands out due to its simplicity and
effectiveness. Empirically, BoN demonstrates competitive
performance, often matching more resource-intensive fine-
tuning approaches such as RLHF and DPO (Gao et al.,
2023; Mudgal et al., 2024). Additionally, BoN has received
an extensive theoretical treatment (Beirami et al., 2024;
Huang et al., 2025). BoN can be asymptotically equivalent
to RLHF (Yang et al., 2024a), enjoys non-asymptotic guar-
antees (Mroueh, 2024; Mayrink Verdun et al., 2025), and
achieves near-optimal winrate subject to a KL divergence
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Figure 1. The mismatch between the proxy and gold rewards manifests through the winner’s curse. In an ideal world where we could
optimize directly on the gold reward, its value would rise monotonically. However, since we are optimizing for a proxy, the gold reward
peaks and then collapses. The point at which we find the optimal tradeoff between maximizing reward and minimizing KL divergence
from the reference distribution corresponds to the hacking threshold. HedgeTune successfully recovers the hacking threshold for three
inference-time mechanisms: BoN, SBoN, and BoP. In the case of BoN and BoP, HedgeTune recovers the optimal number of samples n.
As for SBoN, we fix n and find the corresponding inverse-temperature λ that maximizes the true reward. If the hacking threshold is not
achievable with any λ, HedgeTune returns the best attainable reward, as shown above for low values of n.

constraint (Gui et al., 2024).

Methods like BoN, where multiple samples are generated
and the highest-scoring one is chosen, are victims of the win-
ner’s curse (Capen et al., 1971; Bazerman & Samuelson,
1983; Cox & Isaac, 1984; Thaler, 1988; 2012). In auctions,
after each bidder submits an estimate of an item’s value, the
highest bid typically overestimates the true worth, causing
the winner to overpay. As Figure 1 demonstrates, inference-
time alignment methods, particularly BoN, can overopti-
mize for proxy rewards: as we sample more candidates and
select based on the proxy reward estimate, we increase the
chance of choosing outputs where the proxy score signifi-
cantly overestimates the true quality. This mismatch creates
a critical tension: while initially optimizing for a proxy
reward improves alignment with true goals, excessive opti-
mization eventually leads to reward hacking – also called
Goodhart’s law (Goodhart & Goodhart, 1984) or goal mis-
generalization1 – where the model exploits the proxy’s lim-
itations, leading to worse true performance despite higher
proxy scores (Laidlaw et al., 2025; Skalse et al., 2022; Fluri
et al., 2024; Kwa et al., 2024; El-Mhamdi & Hoang, 2024).
Such misalignment can severely degrade trust and utility,
particularly in high-stakes applications (Bondarenko et al.,
2025; OpenAI, 2025; Anthropic, 2025).

We mathematically characterize inference-time reward hack-

1See (Weng, 2024; Amodei et al., 2016) and Section 6 for a
discussion of the terminology.

ing (see Theorem 1) and provide a general framework to
mitigate it (see Section 4). While this phenomenon has been
observed empirically in prior work (Gao et al., 2023; Huang
et al., 2025), there has been limited theoretical analysis spe-
cific to inference-time methods and ways to mitigate it; see
Section 6 for a discussion. As a result, reward hacking for
inference-time alignment remains a central challenge in AI
alignment. The driving question behind our work is:

When and how can we leverage useful signals from
proxy rewards while mitigating hacking?

We focus on answering this question for inference-time
alignment methods that sample multiple responses from an
LLM and use reward signals to select outputs. We develop
principled hedging techniques against the winner’s curse
during inference time that precisely determine until when
and how one may leverage proxy signals while preventing
overoptimization.

Overview of main results. Our starting point is an opti-
mization formulation at the heart of most alignment meth-
ods: finding a distribution π∗ that maximizes a (proxy)
reward rp while remaining close (in KL-divergence) to a
reference πref. This is described as the following regularized
optimization problem:

π∗ = argmax
πx∈∆X

Eπx
[rp(X)]− 1

λ
DKL(πx∥πref) (1)
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Consider the information-theoretic regime where all dis-
tributions are known exactly. The solution of the above
objective (1) is the exponential tilting of the reference distri-
bution using the proxy reward (Csiszár et al., 2004). Though
theoretically interesting, tilted distributions are impossible
to realize in practice since computing the normalizing con-
stant and drawing unbiased samples are computationally
prohibitive. Some attempts have been made to approxi-
mate this solution at inference time, i.e., when only samples
from πref and black-box access to rp are available. A no-
table example is Soft Best-of-n (SBoN) (Mayrink Verdun
et al., 2025). In this work, we show that SBoN is an effec-
tive strategy for hedging against reward hacking due to its
temperature parameter λ, which allows us to smoothly inter-
polate between aggressive exploitation of the proxy reward
and conservative adherence to the reference distribution; see
Section 5. However, this comes at the expense of having
two tunable parameters (n, λ), which can be difficult to set
in practice.

This motivates us to propose a new inference-time align-
ment strategy called Best-of-Poisson (BoP). The idea be-
hind BoP is simple: we run BoN with the number of samples
n chosen according to a Poisson distribution. We prove that
BoP achieves a near-optimal reward-distortion tradeoff at
inference. Using a single tunable parameter, BoP can ap-
proximate the optimal proxy reward-tilted solution with KL
gap of order 10−3 when rewards are uniformly distributed,
allowing to span the entire reward-distortion region at in-
ference (see Figure 2 and Theorem 7). BoP can serve as
a computationally efficient stand-in for the optimal tilted
distribution with negligible loss in KL-reward tradeoff.

In practice, hedging translates to selecting parameters of
inference-time alignment methods to avoid overoptimization
to a proxy reward. To do so, we introduce HedgeTune:
an algorithm for tuning parameters in BoN, SBoN, and
BoP in order to hedge against hacking (see Algorithm 4).
We illustrate the benefit of hedging in Figure 1, where we
plot the expected value of the true reward versus the distor-
tion with respect to the reference distribution for various
inference-time alignment methods. If we had access to the
true reward, the optimal solution would be the tilting of
the reference distribution via the true reward, leading to the
reward-distortion Pareto frontier (purple curve in Figure 1).
However, as we are tilting via the proxy reward, we suffer
from the winner’s curse: the true reward (orange curve in
Figure 1) increases at first and then collapses. This behavior
also manifests in BoN, as seen in the dotted points. Hedging
allows us to find the hacking threshold: the parameters of
inference-time alignment methods that yield the best trade-
off between (true) reward and distortion relative to the base
model.

Our contributions are as follows:

• We mathematically formalize inference-time reward hack-
ing (Definition 1) and derive conditions when overopti-
mizing imperfect proxy rewards inevitably leads to per-
formance degradation (Theorem 1, Corollary 3).

• We introduce Best-of-Poisson (BoP), a novel inference-
time alignment method (Algorithm 3). For uniformly
distributed rewards, BoP approximates the optimal tilted
distribution with negligible KL divergence gap (Theorem
7).

• We develop HedgeTune, a principled hedging frame-
work that mitigates reward hacking by finding the optimal
inference-time parameters (Algorithm 4). We empirically
demonstrate that hedging strategies significantly outper-
form standard BoN sampling with minimal computational
overhead (Section 5).

2. Inference-Time Reward Hacking
In this section, we formalize inference-time reward hacking
and show its inevitability under methods like BoN.

Notation and Technical Assumptions. Let X be a finite
alphabet of tokens and let π be a probability mass function
(PMF) over token sequences x ∈ X ∗. We denote the prob-
ability simplex over all finite sequences of tokens as ∆X∗ .
Let πref ∈ ∆X∗ be the reference policy, typically a super-
vised fine-tuned (SFT) model. Let rp : X ∗ → R be a proxy
reward function that assigns a unique scalar value to each
sequence. This is the reward we use to optimize πref dur-
ing inference-time alignment. An inference-time alignment
method parameterized by θ transforms the base policy πref
into a new distribution πθ. Here, θ is the parameter of the
alignment method itself (e.g., the number of candidates
n in Best-of-n). The performance of the inference-time
aligned distribution is measured using a true (or gold) re-
ward rt. Primarily, we are interested in the expected value
of the true reward rt under the resulting distribution. We
denote our measure of interest as f(θ) = EU∼πθ

[rt(U)].

For theoretical tractability, we adopt the standard assump-
tion that proxy rewards can be transformed to have a uniform
distribution, stated next. This assumption is widely used in
the theoretical analysis of alignment (Beirami et al., 2024;
Gui et al., 2024; Balashankar et al., 2025) and allows us
to restrict our analysis to the space of proxy reward values
instead of the high-dimensional, discrete space of sequences
X ∗.
Assumption 1 (Uniform Reward Mapping). The proxy re-
wards rp(x) obtained by sampling sequences from the refer-
ence policy, x ∼ πref, are uniformly distributed over [0, 1].

Assuming uniformly distributed proxy rewards incurs little
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Algorithm 1 Best-of-n Sampling (BoN)
1: Input: Integer n ≥ 1, base policy πref
2: Draw n samples X1, . . . , Xn i.i.d. from πref
3: Compute proxy rewards Ri = rp(Xi) for all i
4: Select j = argmaxi∈{1,...,n} rp(Xi)
5: Return: Y = Xj

Algorithm 2 Soft Best-of-n Sampling (SBoN)
1: Input: Integer n ≥ 1, inverse temperature λ > 0, base

policy πref
2: Draw n samples X1, . . . , Xn i.i.d. from πref
3: Compute proxy rewards Ri = rp(Xi) for all i
4: Sample index Z ∈ {1, . . . , n} with probability

Pr(Z = i) =
eλ rp(Xi)∑n
j=1 e

λ rp(Xj)

5: Return: Y = XZ

loss of generality. In practice, the proxy reward distribution
can be made approximately uniform by applying an inverse
probability integral transform (Beirami et al., 2024). To
sample a sequence from πref, we first sort the space of all
sequences by the proxy reward rp(x). We then select a
sequence by mapping a uniform draw u ∼ Unif(0, 1) to
the corresponding quantile of a reference distribution πref
defined over this sorted space. While the policy πref is itself
complex and non-uniform, Assumption 1 allows us to only
consider the continuous uniform distribution of the proxy
reward.

Inference-time alignment. The core challenge we address
is the mismatch between the proxy reward rp and the true
reward rt. Discrepancies between these two rewards can
be exploited, leading to reward hacking. We focus on the
family of inference-time methods that first sample a pool of
candidate outputs and then use their proxy reward scores to
define the selection mechanism. Two examples from this
family are:

1. Best-of-n (see Algorithm 1). BoN places all probabil-
ity mass on the sample with the highest proxy reward.

2. Soft Best-of-n (see Algorithm 2). SBoN is a general-
ization of BoN recently proposed by (Mayrink Verdun
et al., 2025). It applies a temperature-scaled softmax
over candidate scores. As λ → 0, SBoN sampling
approaches uniform selection among the n candidates.
As λ→∞, SBoN converges to standard BoN.

We first formalize inference-time reward hacking through
the following definition.

Definition 1 (Inference-Time Reward Hacking). Let πθ
be a distribution induced by an inference-time alignment

method with parameter θ, where we assume increasing θ in-
creases both the expected proxy reward EX∼πθ

[rp(X)] and
the KL-divergence DKL(πθ∥πref). We say that inference-
time reward hacking occurs when there exists a threshold
θ† such that for θ > θ†, EX∼π

θ†
[rt(X)] > EX∼πθ

[rt(X)]
(i.e., the true reward decreases), despite the proxy reward
and KL-divergence continuing to increase. The largest value
of θ† for which this holds is called the hacking threshold.

Definition 1 offers a concrete basis for operationalizing and
measuring the winner’s curse for inference time methods.
The hacking threshold is the ideal operating parameter for
an inference-time alignment method: increasing θ beyond
the hacking threshold incurs distortion in a model’s output,
without a gain in true reward in return (see Figure 1).

The following theorem establishes that under common con-
ditions, the shape of f(θ) is well-behaved: it either varies
monotonically or reaches exactly one extremum.
Theorem 1 (Inevitability of Reward Hacking). Let
{πθ}θ∈Θ⊂R be a family of distributions with density pθ(x)
on a common support X such that (i) pθ(x) is strictly to-
tally positive of order 2 (TP2) in (θ, x), and (ii) its score
function ψ(x, θ) := ∂θ log pθ(x) is continuous in x and
strictly increasing in x for each fixed θ. For any bounded,
non-negative true reward rt : X → [0,∞) define

f(θ) := EX∼πθ
[rt(X)]

Then f is either monotone in θ or possesses a single unique
interior extremum θ†.
Corollary 1 (Inevitability of Reward Hacking for
Strictly MLR densities). Let pθ(x) be a strictly mono-
tone–likelihood–ratio in x. If the score function ψ(x, θ) =
∂θ log pθ(x) is strictly increasing in x, then Theorem 1
applies. In particular, this applies to Best-of-n, Best-of-
Poisson (to be introduced in Sec. 3,) and to any canonical
distribution from the exponential family with strictly mono-
tone statistic and strictly monotone natural parameter.

Four scenarios may occur: (i) monotonic improvement: true
reward continuously increases with optimization strength;
(ii) reward hacking: true reward initially improves but dete-
riorates beyond a critical threshold; (iii) reward grokking:
true reward initially declines but then improves beyond a
critical threshold; (iv) immediate decline: any optimization
immediately harms true performance. We describe exactly
when each regime occurs for MLR densities in Corollary 3.

The unimodality of the true reward function renders the
problem of locating the optimal operating point θ† algorith-
mically tractable. To implement this insight, we develop
hedging strategies that balance exploitation of the proxy
reward against fidelity to the reference distribution. Each
inference-time method offers a parameter controlling this
proxy reward-KL tradeoff: n in BoN, λ in SBoN (for a fixed
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Algorithm 3 Best-of-Poisson Sampling (BoP)
1: Input: Poisson parameter µ > 0, base policy πref
2: Sample n′ ∼ Poisson(µ) and set n = n′ + 1
3: Draw X1, . . . , Xn i.i.d. from πref
4: Compute proxy rewards Ri = rp(Xi) for all i
5: Select j = argmaxi∈{1,...,n} rp(Xi)
6: Return: Y = Xj

n), and µ in BoP (introduced in Section 3). Before introduc-
ing methods for tuning inference-time alignment methods,
we first introduce Best-of-Poisson sampling – an alternative
to BoN that approximates the optimal tilted distribution.

3. Best-of-Poisson: Approximating the
Optimal Reward

While Soft Best-of-n offers a principled approach to miti-
gate reward hacking, it requires tuning both the number of
samples n and the temperature parameter λ. In this section,
we introduce Best-of-Poisson (BoP) (Algorithm 3), that is
provably close to the solution of (1) with a single tunable
parameter (Figure 2). BoP is of independent interest as
it provides a mathematically elegant and computationally
efficient way to near-optimally span the entire reward-KL
distortion region with a single parameter. The key insight
behind BoP is to replace the fixed sample size n in BoN with
a random sample size drawn from a Poisson distribution.

The parameter µ in BoP controls the expected number of
samples, analogous to how n functions in BoN. We first
sample n′ from a Poisson distribution parameterized by µ
and set n = n′+1 to ensure at least one sample is generated.
Under Assumption 1, the BoP distribution with parameter
µ has a probability density function (Appendix B)

qµ(x) = (µx+ 1)eµ(x−1) for x ∈ [0, 1]

The following theorem characterizes the KL divergence and
expected value of BoP:
Theorem 2 (KL Divergence and Expected Value of BoP).
Let XBoP be the random variable representing the response
selected by BoP with parameter µ. Then:

KL(πBoP∥πref) =
e−µ−1(Ei(µ+ 1)− Ei(1))

µ
+ log(µ+ 1)− 1 (2)

E[XBoP] = 1− 1

µ
+

1− e−µ

µ2
(3)

where Ei(z) = −
∫∞
−z

e−t

t dt is the exponential integral func-
tion.

What makes BoP particularly valuable is its ability to
closely approximate the solution of (1), i.e., the optimal
KL-constrained tilted distribution with parameter λ > 0,
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Figure 2. KL divergence gap between BoP and the optimal tilted
distribution with respect to the reference distribution. The plot
shows the difference in KL divergence when both distributions
are matched to produce the same expected reward. The extremely
small gap (of order 10−3) demonstrates that BoP approximates the
optimal distribution with negligible performance loss.

defined as π∗
λ(x) =

πref(x)e
λrp(x)

Z(λ) , where Z(λ) is the nor-
malization constant. While this distribution is theoretically
optimal for balancing reward and divergence, computing it
is intractable. To draw a next token from the tilted π∗

λ for
an autoregressive LLM, one would have to compute

π∗
λ(xt+1 | x≤t) =

πref(x≤t+1) e
λrp(x≤t+1)∑

x′

πref(x≤tx
′) eλrp(x≤tx

′)
,

where the denominator sums over every possible continua-
tion of the prefix x≤t. Because the space of continuations
grows exponentially with the remaining sequence length,
evaluating this denominator (and hence sampling a single
token) is computationally prohibitive for LLMs. Our analy-
sis (Appendix B) shows that BoP provably achieves nearly
identical performance to this optimal distribution with mini-
mal KL divergence gap. As illustrated in Figure 2, the KL
divergence gap between these distributions is remarkably
small. Numerical evaluation confirms that for all µ, if λ > 0
is chosen so that EX∼πBoP

[rp(X)] = EX∼π∗
λ
[rp(X)], then

the KL-gap is bounded between 0 and 7× 10−3.

This near-equivalence means that BoP can serve as a practi-
cal stand-in for the theoretically optimal tilted distribution.
This result has two consequences. First, hedging in the
optimal tilted distribution is almost equivalent to hedging
with BoP. Second, (1) represents the solution to the standard
RLHF optimization problem, which implies that BoP is an
inference-time approximation to RLHF and allows us to use
BoP to easily traverse between policies rather than having
to fine tune a new model for each λ of interest. In the next
section, we turn to the question of how to choose the right
parameter value to avoid reward hacking.
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4. Hedging to mitigate reward hacking
In this section, we develop a unified framework for choosing
the inference-time parameter θ in order to maximize the ex-
pected true reward and avoid hacking. The main limitation
is that we require black-box access to the true reward to
perform a one-time calibration of the parameter θ. This is
practical in several common scenarios. One may opt to use
an LLM-as-a-judge or a more powerful but computationally
prohibitive reward model (Zheng et al., 2023; Lambert et al.,
2024). Assume we are given the proxy and true reward
scores for a set of query-response pairs. By first construct-
ing an empirical CDF over generated proxy reward scores,
we transform these proxy scores to have a uniform distribu-
tion as explained in Section 2. We denote the transformed
proxy reward as U .

Each sampling method (BoN, SBoN, and BoP) induces a
distribution πθ over proxy-percentiles u ∈ [0, 1], where
θ is the corresponding parameter (sample size n, inverse-
temperature λ, or Poisson rate µ). Since we know by Theo-
rem 1 that the expected true reward has at most one peak,
our key insight is to create the precise hedge against hacking
by finding the parameter value where the marginal benefit
of increasing proxy reward equals zero. We present the
following conditions that the hacking threshold must satisfy
for each of the three inference-time methods.
Theorem 3 (Hacking Threshold Characterization). Let rt
be a true reward and θ† be the hacking threshold from Defini-
tion 1. For each inference-time method, θ† is characterized
by the following conditions:

For BoN, n† satisfies:

∇αEu∼Beta(α,1)[rt(u)] =
∫ 1

0
rt(u) (1 + n† lnu)un

†−1 du = 0 (4)

For SBoN, λ† satisfies:

∇λEu∼fλ [rt(u)] = Covu∼f
λ† (rt(u), u) = 0 (5)

For BoP, µ† satisfies:

∇µEu∼fµ [rt(u)] = Eu∼f
µ†

[
rt(u)

(
u− 1 +

u

µ†u+ 1

)]
= 0 (6)

The proof can be found in Appendix C. Consequently, we
provide HedgeTune (Algorithm 4), an algorithm that nu-
merically solves the corresponding root-finding problem to
determine the optimal inference-time parameter for BoN,
SBoN, or BoP. Note that we do not need access to the
LLM distribution itself. Given the score function ψ of
πθ, it defines a residual function R(θ) = E[rt(u)ψ(u, θ)]
which captures the alignment between the true reward and
the proxy-weighted score. The optimal parameter θ† is
found efficiently as the root of this function using standard
methods such as bisection or Newton’s method (Quarteroni
et al., 2006).

Algorithm 4 HedgeTune: Parameter Optimization for Hedging

1: Input: number of samples M , a set of proxy and true
reward scores {rip, rit}Mi=1, method m ∈ {BoN, SBoN,
BoP}, sample size n (for SBoN)

2: Output: optimal θ†

3: Transform the proxy scores using the empirical CDF to
obtain the set {ui, rt(ui)}Mi=1

4: if m = SBoN then sample u1:n; compute Pk∝ eθuk ;
draw J∼P , and set u←uJ . Repeat M times to get a
modified {ui, rt(ui)}Mi=1

5: if m = BoN then set ψ←1/θ + lnu; pθ←θuθ−1

6: if m = SBoN then set ψ←u−
∑

k Pkuk; pθ←PJ

7: if m = BoP then set ψ←u−1+ u

θu+1
; pθ ← (θu +

1)eθ(u−1)

8: Set R(θ) =
∑

i rt(ui)ψ(ui, θ)pθ(ui)∆u and find its
root θ†

9: if m = BoN then θ†←round(θ†)

5. Experiments: Hedging in Practice
In this section, we provide numerical results showcasing
hedging as an effective tool against reward hacking. In
particular, we validate that hedging can provide superior
reward-distortion tradeoffs in two experimental setups: a
controlled synthetic setting where the relationship between
the gold and proxy is known, and a more realistic RLHF
scenario that reflects practical deployment conditions.

Synthetic Setup. To empirically observe reward hacking,
we miscalibrate the proxy RMs at the extreme high end of
their scores. We use Pythia-1.4B (Biderman et al., 2023) to
generate a dataset of 60,000 responses for a prompt from
the TL;DR dataset. Another Pythia-1.4B model finetuned
on TL;DR preference labels serves as our proxy reward
model. Given how reward models are trained in practice,
having one prompt ensures that the reward scores are always
comparable across all responses. Consider Pα be the top
α-percentile of proxy scores. For responses with scores in
Pα, we consider a negatively linear relationship between the
proxy and true scores. Otherwise, we set the proxy to be the
same as true reward. We vary the threshold α to simulate
different thresholds at which the proxy becomes misaligned
with the true reward.

Findings. As seen in Figure 3, we observe reward hacking:
the expected gold reward for Best-of-n (BoN) sampling
and Best-of-Poisson (BoP) sampling eventually decrease
as the number of samples n increases. Note that for BoP
with given µ, the average number of samples is n = µ +
1. The optimal hacking thresholds are then found using
HedgeTune as marked on the figure. Subsequently, we
show that Soft Best-of-n (SBoN), using an optimally chosen
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Figure 3. Reward hacking manifests: proxy reward increases for
both BoN and BoP while true reward first increases and then
collapses as a function of the average number of samples n.
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Figure 4. Improvement in expected value of true reward by using
the optimal inverse temperature λ† in soft Best-of-n compared to
the expected value of true reward using Best-of-n

temperature λ†, mitigates this hacking and considerably
improves the true reward compared to BoN. As expected,
the degree of hacking is controlled by how misaligned the
proxy and gold are. Even if this disagreement happens
on the top 5% of responses out of 60, 000 responses, an
optimized hedging scheme will correspond to 10% increase
in expected reward compared to greedy Best-of-n starting
at n ≈ 50. Results illustrating this are presented in Figure 4.

Hacking in the wild setup. In the following section, we
train smaller reward models to act as proxies on labeled pref-
erence data. Our experimental design follows the methodol-
ogy of Coste et al. (Coste et al., 2024) and Gao et al. (Gao
et al., 2023), wherein proxy reward models are trained using
preferences of a fixed gold reward model. In many real-
world cases, we do not have access to the gold reward and
instead have access to preference data. However, as we
demonstrate below, a favorable operating point can still be
found using traditional hyperparameter search.

Models. As a reference model, we use a 1.4B Pythia
model (Biderman et al., 2023) fine-tuned on AlpacaFarm
dataset, but without any subsequent alignment (e.g., RLHF

or DPO). This reference model is used to generate responses.
We use AlpacaRM (Dubois et al., 2023) as our gold reward
model. AlpacaRM is an established reward model trained
on human preference data and has been adopted in prior
work on reward model evaluation (Coste et al., 2024; Xu
et al., 2025; Zeng et al., 2023). This model serves as the
ground truth for generating preference labels for training
proxy reward models. As for proxy rewards, we use the
setup of Coste et al. (Coste et al., 2024) where we train
Pythia 44m models.

Datasets. We use the
tlc4418/gold labelled gens dataset from
Coste et al. (Coste et al., 2024). This dataset comprises
of 12,600 responses generated by the Pythia 1.4B base
policy for each of 1,000 prompts. The prompts are
sourced from the validation split of the AlpacaFarm
dataset (Dubois et al., 2023). Each generated response
in this dataset is scored by AlpacaRM. To train proxy
reward models, we construct preference datasets using
the tlc4418/gold labelled gens scores. For each
training instance, we sample a pair of responses to a given
prompt and label them based on their AlpacaRM scores.

Training. The proxy RMs are trained using a standard bi-
nary cross-entropy loss on preference pairs. We train proxy
RMs on preference pair datasets of varying sizes: 10k, 20k,
46k, and 80k. In line with (Coste et al., 2024; Miao et al.,
2024; Yang et al., 2024b), we simulate disagreements in
human annotators by considering two cases: (a) no label
noise in the preferences, and (b) 25% label noise. All proxy
RM training runs are repeated across 4 random seeds each.
We present some of the runs with 25% label noise in Fig-
ure 5 and we present the remaining results in Appendix D,
along with other hyperparameters and training details. Post
training, we use each proxy model to score a set of 800
prompts, with 12,600 responses each.

Findings. We apply BoN, SBoN, and BoP on each run
and find the expected value of the true reward as a function
of n. When reward hacking manifests, we find a hacking
threshold for BoN and BoP that maximizes their reward. For
SBoN, with a selected λ†, we attain the peak value without
suffering from reward hacking. Meanwhile, if the proxy is
always at odds with the true reward, the optimal solution is
the reference distribution itself, corresponding to λ = 0.

6. Related Work
Reward Hacking. Reward hacking has been widely studied
in RL literature (Pan et al., 2022; Hadfield-Menell et al.,
2017; Karwowski et al., 2024), also under the name mis-
specification (Amodei et al., 2016), goal misgeneralization
(Shah et al., 2022), or specification gaming (Krakovna et al.,
2020). In the context of LLMs, overoptimization has been
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Figure 5. Use of three inference-time methods (BoN, SBoN, and
BoP) on trained proxy rewards. Hacking is effectively mitigated
by hedging via λ in SBoN or by early stopping in BoN and BoP.

referred to as reward hacking or Goodhart’s Law (Goodhart
& Goodhart, 1984; Gao et al., 2023; Kwa et al., 2024; El-
Mhamdi & Hoang, 2024). Hacking behavior has been found
to manifest in unwanted or surprising behavior (Denison
et al., 2024; Chen et al., 2024) across a variety of tasks (Pan
et al., 2024; Gao et al., 2023; Huang et al., 2025). Prior
works have proposed various formulations of reward hack-
ing based on true performance behavior (Skalse et al., 2022),
correlation between proxy and true reward (Laidlaw et al.,
2025), or distribution shift (Fluri et al., 2024). Huang et al.
(2025) prove that BoN alignment provably suffers from
reward hacking when the number of samples n is large.

To address inference time hacking, a variety of methods
have been explored to varying success, such as ensembling
(Coste et al., 2024; Eisenstein et al., 2024; Ahmed et al.,
2024; Rame et al., 2024), regularization (Ichihara et al.,
2025) or rejection sampling (Huang et al., 2025). Puri et al.
(2025) simulate n particles resampled using a softmax re-
ward to improve performance of reasoning models, similar
to SBoN over reasoning steps. However, all methods suf-
fer from some combination of additional generation cost
beyond generating n samples and estimation of additional
side-quantities such as KL-divergence or χ2-divergence.
Additionally, a variety of approaches have been proposed
to mitigate reward hacking during RLHF finetuning such
as regularization (Rashidinejad & Tian, 2024; Yang et al.,
2024b; Liu et al.; Miao et al., 2025), χ2-divergence (Huang
et al.; Laidlaw et al., 2025), uncertainty estimation (Zhang
et al., 2024b), and reward pessimism (Zhu et al., 2024) al-
though (Kwa et al., 2024) demonstrated that RLHF can
still result in reward hacking under heavy-tailed reward mis-
match. Finally, prior works have also focused on improving
reward models to prevent mismatch and reduce hacking
(Chen et al., 2025; Shen et al., 2023; Fu et al., 2025; Liu
et al., 2024; Miao et al., 2024; Wang et al., 2025).

Best-of-n. Best-of-n sampling is a simple inference-time
approach for alignment (Stiennon et al., 2020; Nakano et al.,
2021; Hilton et al., 2022). Prior results have characterized

the expected reward gap and KL divergence between BoN
sampling and the reference model and have demonstrated
that BoN is asymptotically equivalent to KL-constrained
reinforcement learning (Beirami et al., 2024; Yang et al.,
2024a; Mroueh, 2024). There have been various method-
ological improvements on BoN sampling. One such im-
provement is to reduce the cost of sampling n sequences
via tree-based or speculative search (Qiu et al., 2024; Zhang
et al., 2024a) . Additionally, (Gui et al., 2024; Sessa et al.,
2024; Touvron et al., 2023; Amini et al., 2024; Yang et al.)
distill the BoN sampling distribution into a model via fine-
tuning. Finally, (Balashankar et al., 2025; Chow et al., 2024)
propose inference-aware methods to improve BoN. Other
works focus on improving the reward model through self-
training (Pace et al., 2024). In this work, we focus on a vari-
ant of BoN, Soft-Best-of-n (Mayrink Verdun et al., 2025),
which allows for finer control between sampling from the
base model and the reward-maximizing generation.

7. Conclusion
Our work tackles the fundamental challenge that all proxy
rewards are imperfect, yet they remain essential for guiding
AI systems. We establish a theoretical framework prov-
ing the inevitability of reward hacking in inference-time
alignment and introduce practical hedging strategies to mit-
igate its harmful effects. By developing Best-of-Poisson
sampling which achieves near-optimal reward-distortion
tradeoffs with a single parameter and the HedgeTune al-
gorithm for precisely calibrating inference methods, we
enable practitioners to extract valuable signals from proxy
rewards without falling prey to Goodhart’s law. Ultimately,
this work demonstrates that principled hedging is a promis-
ing direction for building safer, more reliable AI systems.
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This appendix is organized as follows:

• Section A expands on the inevitability of reward hacking, stating Theorem 1, highlighting the key assumptions, and
summarizing its main consequences.

• Section B contains the proof of Theorem 2, including derivations of the KL–reward tradeoff and discussion of the
Best-of-Poisson example.

• Section C discusses additional details on Theorem 3, characterizing the hacking threshold and outlining computational
approaches.

• Section D presents additional experimental details and results.

A. Inference-Time Reward Hacking
One can observe that initially intensifying optimization to a proxy objective may improve intended performance. However,
beyond a certain point – which we call the hacking threshold – further proxy-optimization actually degrades the true reward.
Theorem 1 in Section 2 formalizes this phenomenon: under very general conditions on a one-parameter family of proxy
distributions πθ, the map

θ 7→ EX∼πθ
[rt(X)] := f(θ) (7)

can have at most one interior extremum. Thus, there is either a monotonic benefit (or disadvantage) to strengthening the
proxy or exactly one “sweet spot” before reward hacking sets in.

Let ψ(x, θ) denote the score function of distribution πθ(x) with density pθ(x). Standard calculations under mild regularity
conditions gives us the derivative of the true reward under πθ:

f ′(θ) =

∫
rt(x)∇θpθ(x)dx =

∫
rt(x)pθ(x)∇θ log pθ(x)dx = EX∼πθ

[rt(X)ψ(X, θ)] (8)

The rest of this appendix proceeds as follows. We first restate Theorem 1 in more detail (see Theorem 4). We prove the
single-crossing property for the derivative of the true reward expectation by invoking variation-diminishing kernels. We
then derive Corollary 2 and 3 and Lemma 1. We specialize the discussion to two concrete examples with Best-of-n and
Best-of-Poisson.
Theorem 4 (Inevitability of Reward Hacking). Let {πθ}θ∈Θ⊂R be a family of probability measures on a measurable space
(X ,A) with density pθ(x) relative to a common dominating measure. Assume that

1. pθ is strictly TP2 (totally positive with order 2): for every θ1 < θ2 and x1 < x2,

pθ1(x1)pθ2(x2) > pθ1(x2)pθ2(x1).

2. The score function ψ(x, θ) := ∂θ log pθ(x) exists, is continuous in x, and is strictly increasing in x for each fixed θ.

3. Denote f(θ) := Eπθ
[rt(X)] where rt : X → [0,∞) is non-negative, bounded, and not identically zero.

Then the derivative f ′(θ) = Eπθ
[rt(X)ψ(X, θ)] changes sign at most once on Θ. Consequently f is monotone or

possesses exactly one interior extremum.

The main idea to establish this result is that when we use parameter θ to control inference-time methods, we create a family
of densities {pθ(x)} that act as positive kernels. Crucially, these kernels satisfy the strict total positivity conditions required
for variation-diminishing theorems to apply. The key insight is that the expression f ′(θ) = Eθ[rt(X)ψ(X, θ)] captures how
the rate of change of expected reward depends on the interaction between:

• rt(X): The true reward function (which may have complex variation patterns). Our only assumption on the true reward
is that it is bounded. We then translate the reward function so that it is non-negative. The boundedness assumption is a
natural one in the alignment setting because real-world rewards originate from human judgments given on finite scales
(e.g. star ratings, Likert scores, or normalized preference probabilities). Moreover, clipping or normalizing the reward
prevents unbounded returns, improving the stability of policy updates and inference-time mechanisms.
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• ψ(X, θ) = ∂θ log pθ(X): The score function (which encodes how the distribution changes with the parameter)

The variation-diminishing theorem tells us that this interaction can have at most one sign change, which directly implies that
f ′(θ) can cross zero at most once, i.e., f(θ) is either monotonic or has exactly one extremum and this, in turn implies that
reward hacking follows predictable patterns. This theoretical finding then explains the characteristic behavior of reward
hacking as shown in empirical findings.

We now present the proof for Theorem 4.

Proof. Fix θ and set hθ(x) := rt(x)ψ(x, θ). Because ψ(·, θ) is strictly increasing, it has at most one zero; since rt ≥ 0, hθ
has the same single (− →+) sign change in x. Strict TP2 of pθ and Karlin’s variation–diminishing theorem imply that
θ 7→ F (θ) :=

∫
hθ(x)pθ(x) dx = f ′(θ) inherits at most the same number of sign changes, namely one.

Having established the inevitability result, we next explore how it specializes in classical families via a simple corollary.
Corollary 2 (Strict MLR densities). Let pθ(x) be strictly monotone–likelihood–ratio in x (i.e. pθ2(x)/pθ1(x) strictly
increases in x whenever θ2 > θ1). If ψ(x, θ) = ∂θ log pθ(x) is strictly increasing in x, then all conclusions of Theorem 4
apply.

Example 1 (One-parameter exponential families). Any regular canonical exponential family

pθ(x) = exp{η(θ)T (x)−A(θ) +B(x)},

with strictly monotone statistic T and strictly monotone natural parameter η is strict MLR and satisfies ψ(x, θ) =
η′(θ)T (x) − A′(θ), which is strictly increasing in x. Hence the single–crossing property holds for every bounded non-
negative rt ≥ 0.

The conditions are satisfied by two inference-time methods we study:

Best-of-n: The distribution corresponds to the maximum of n i.i.d. samples from the reference distribution. When proxy
rewards are uniformly distributed, this yields pn(u) = nun−1 for u ∈ [0, 1]. The likelihood ratio pn2 (u)

pn1
(u) = n2

n1
un2−n1 is

strictly increasing in u when n2 > n1, establishing strict MLR (which implies strict TP2). The score function ψ(u, n) =
1
n + log u is strictly increasing in u.

Best-of-Poisson: The distribution pµ(u) = (µu+ 1)eµ(u−1) for u ∈ [0, 1] can be verified to satisfy strict MLR by direct
computation of likelihood ratios. The score function ψ(u, µ) = u− 1 + u

µu+1 is strictly increasing in u.

Under the conditions presented in Theorem 4, we know that at most one interior extrema exists. The following corollary
gives precise conditions on when such an interior extrema exists.
Lemma 1. Under the assumptions of Theorem 1 and with rt ∈ C1 on a neighborhood of its boundaries (0 and 1) and let
Θ = [θl, θr],

lim
θ↓θℓ

f ′(θ) = r′t(0+)Eθℓ [X ψ(X, θℓ)], lim
θ↑θr

f ′(θ) = − r′t(1−)Eθr [(1−X)ψ(X, θr)].

Then, a stationary point exists iff
lim
θ↓θℓ

f ′(θ) and lim
θ↑θr

f ′(θ)

are of opposite sign (or one limit is 0 while the other is non-zero). By continuity, the Intermediate-Value Theorem
then forces one root of f ′ and single–crossing rules out a second. For example. for BoN, ψ(x, n) = 1/n + log x with
En[X ψ]=1/(n+1)2, En[(1−X)ψ] = −1/(n+1)2. Hence a stationary point exists iff r′t(0+) and r′t(1−) have opposite
signs, and its location n⋆ solves En[rt(X)ψ(X,n)] = 0.

Proof. We prove the left boundary results (the right one is identical with x 7→ 1 − x.) Write the first-order expansion
rt(x) = rt(0+) + r′t(0+)x+R(x) with R(x) = o(x) as x→ 0. Because Eθ[ψ] = 0,

f ′(θ) = r′t(0+)Eθ[Xψ] + Eθ[R(X)ψ].
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Strict increase of ψ implies |Xψ|≤ C(1 +X) on [0, 1]× [θℓ, θℓ + ρ], so Eθ[Xψ]→ Eθℓ [Xψ] by dominated convergence.
Next, fix δ ∈ (0, 1) and split the expectation:

Eθ[rt(X)ψ] = Eθ[rt(X)ψ1{X≤δ}] + Eθ[rt(X)ψ1{X>δ}].

Near 0, we have |R(x)|≤ cδx, hence the term is bounded by cδEθ[X|ψ|]; choose δ so small that cδEθℓ [X|ψ|] < ε and
continuity keeps it < 2ε for θ close enough to θℓ. Away from 0, we use boundedness of rt and local boundedness of ψ to
obtain a factor Pθ{X > δ} → 0.

Combining the two parts gives Eθ[R(X)ψ]→ 0, yielding the claimed limit.

Corollary 3 (Reward behavior for MLR samplers). Assume Lemma 1 holds and that the family {pθ}θ∈Θ is mono-
tone–likelihood–ratio in x ∈ (0, 1). Then for every θ ∈ Θ

Lθ := Eθ[X ψ(X, θ)] > 0, Rθ := Eθ[(1−X)ψ(X, θ)] < 0,

so
signf ′(θ+ℓ ) = sign r′t(0+), signf ′(θ−r ) = sign r′t(1−)

Single-crossing of f ′ implies that f(θ) can assume exactly one of the four shapes:

regime r′t(0+) r′t(1−)

monotonic improvement ≥ 0 ≥ 0

reward hacking > 0 < 0

reward grokking < 0 > 0

immediate decline ≤ 0 ≤ 0

Proof. Let pθ be differentiable in θ with score ψ(x, θ) = ∂θlog pθ(x). For any integrable g we have shown that:

d

dθ
Eθ[g(X)] = Eθ[g(X)ψ(X, θ)]

We first use that the MLR property implies first-order stochastic dominance. For every increasing function g, we have that
θ 7→ Eθ[g(X)] is non-decreasing and its derivative is ≥ 0. Choosing g(x) = x gives

Lθ = Eθ[X ψ(X, θ)] =
d

dθ
Eθ[X] > 0

On the other hand, g(x) = 1− x (strictly decreasing) yields:

Rθ = Eθ[(1−X)ψ(X, θ)] =
d

dθ
Eθ[1−X] < 0

Thus Lθ > 0 and Rθ < 0 for every θ ∈ Θ.

We have shown the conditions under which the expected value of true reward has a critical point with respect to θ. We now
show the conditions under which our results extend identically if we are studying the expected value of true reward as a
function of the KL divergence with respect to the reference distribution πθ0 .
Lemma 2 (Score–covariance formula for D′(θ∥θ0)). Let {πθ}θ∈Θ be a regular parametric family with density pθ(x) such
that

• pθ and ∂θpθ are jointly measurable and ∂θpθ(x) is locally integrable in θ;

• the score ψ(x, θ) := ∂θ log pθ(x) is square–integrable: Eθ[ψ
2] <∞.
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For a fixed reference point θ0 ∈ Θ define the Kullback–Leibler divergence

D(θ∥θ0) :=

∫
pθ(x) log

pθ(x)

pθ0(x)
dµ(x).

Then D(θ∥θ0) is differentiable and

d

dθ
D(θ∥θ0) = Eθ

[
(log pθ(x)− log pθ0(x))ψ(X, θ)

]
.

In particular, for canonical exponential families with strictly increasing natural parameter, this simplifies to

d

dθ
D(θ∥θ0) = (η(θ)− η(θ0))A′′(θ),

which is strictly positive when θ > θ0 (and negative for θ < θ0).

Proof. Write gθ(x) := log pθ(x) − log pθ0(x). Then D(θ∥θ0) = Eθ[gθ(X)]. For a parameter-dependent integrand the
classical Fisher–Leibniz rule gives

d

dθ
Eθ[gθ(X)] = Eθ[∂θgθ(X)] + Eθ[gθ(X)ψ(X, θ)], (†)

whenever ∂θgθ exists and an L1 dominated–convergence bound holds (true here by the square–integrable score assumption).
Since ∂θgθ(x) = ψ(x, θ) and Eθ[ψ] = 0, the first term vanishes, leaving exactly

d

dθ
D(θ∥θ0) = Eθ[gθ(X)ψ(X, θ)]

B. Best-of-Poisson
In this section, we prove Theorem 2 and establish, as a consequence, that Best-of-Poisson is numerically near-optimal as
compared to tilted distribution π∗

λ in terms of KL divergence. As a consequence, hedging in the optimal tilted distribution is
almost equivalent to hedging with BoP, making BoP an effective inference-time stand-in for the optimal tilted distribution
which can be difficult to numerically estimate. We start by establishing the BoP distribution in the uniform case.
Theorem 5 (BoP Distribution). Let µ > 0 be the parameter of the Best-of-Poisson sampling method and let Xµ be the
random variable representing the response selected by BoP. The probability density function qµ(x) of Xµ is given by:

qµ(x) = (1 + µx)eµ(x−1), (9)

for x ∈ [0, 1], where n = n′ + 1 with n′ ∼ Poisson(µ).

Proof. Write Xµ = max{U0, U1, . . . , Un′} where n′ ∼ Poisson(µ) and Ui
iid∼ Unif[0, 1]. Consider U0 ∼ Unif[0, 1] to be

the mandatory draw to achieve a sample size of at least one.

For x ∈ [0, 1],

Fµ(x) := Pr(Xµ ≤ x) = Pr(U0 ≤ x) Pr(Ui ≤ x for 1 ≤ i ≤ n′) = xE[xn
′
] = x e−µ(1−x),

because E[xn′
] = exp{−µ(1− x)} is the moment-generating function of a Poisson variable evaluated at log x.

Now, differentiating Fµ on (0, 1) gives

qµ(x) = e−µ(1−x) + µx e−µ(1−x) = (1 + µx) eµ(x−1),

which extends continuously to the endpoints. A direct computation verifies
∫ 1

0
qµ(x) dx = 1, so qµ is a valid density.
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Now, we can prove Theorem 2.
Theorem 6 (KL Divergence of BoP). Let Xµ be the random variable representing the response selected by BoP with
parameter µ. Then:

DKL(πPoisson∥πref) =
e−µ−1(Ei(µ+ 1)− Ei(1))

µ
+ log(µ+ 1)− 1, (10)

E[Xµ] = 1− 1

µ
+

1− e−µ

µ2
, (11)

where Ei(z) = −
∫∞
−z

e−t

t dt is the exponential integral function.

Proof. Mean.

E[Xµ] =

∫ 1

0

x(1 + µx)eµ(x−1)dx =

∫ 1

0

(x+ µx2)eµ(x−1)dx

With the substitution u = µ(x− 1), we get that∫ 1

0

xeµ(x−1)dx =
1

µ2

∫ 0

−µ

(u+ µ)eudu =
µ− 1 + e−µ

µ2

∫ 1

0

x2eµ(x−1)dx =
1

µ3

∫ 0

−µ

(u+ µ)2eudu =
µ2 − 2µ+ 2− 2e−µ

µ3

Hence

E[Xµ] =
µ− 1 + e−µ

µ2
+ µ

µ2 − 2µ+ 2− 2e−µ

µ3
= 1− 1

µ
+

1− e−µ

µ2

KL divergence. Because log qµ(x) = log(1 + µx) + µ(x− 1),

DKL(qµ∥U) =

∫ 1

0

qµ(x) log(1 + µx) dx+ µ[E[Xµ]− 1]

To compute the integral, set t = 1 + µx:∫ 1

0

qµ(x) log(1 + µx) dx =
e−µ−1

µ

∫ µ+1

1

t et log t dt

Integration by parts (f = log t, dg = tetdt) yields∫
tet log t dt =

1

2
t2et

(
log t− 1

2

)
− 1

2
Ei(t) + C

hence ∫ 1

0

qµ(x) log(1 + µx) dx = log(µ+ 1)− 1− e−µ

µ
+
e−µ−1

µ
[Ei(µ+ 1)− Ei(1)]

The resulting term becomes:

DKL(qµ∥Unif) =
e−µ−1

µ
[Ei(µ+ 1)− Ei(1)] + log(µ+ 1)− 1

Now that we have derived the exact formulas for BoP’s KL divergence and expected reward, we can establish that BoP
provides a practical approximation to the optimal tilted distribution with negligible performance loss.
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Theorem 7 (Near-Optimality of BoP). Let πPoisson be the distribution induced by Best-of-Poisson with parameter µ > 0,
and let π∗

λ be the optimal KL-constrained tilted distribution with parameter λ > 0, defined as:

π∗
λ(x) =

πref(x)e
λrp(x)

Z(λ)
, (12)

where Z(λ) is the normalization constant. For any given expected reward level, there exists a µ for BoP and a λ for the
tilted distribution such that EX∼πPoisson [rp(X)] = EX∼π∗

λ
[rp(X)], and the KL divergence gap between these distributions is

given by:

DKL(πPoisson∥πref)−DKL(π
∗
λ∥πref) =

e−(µ+1)(Ei(µ+ 1)− Ei(1))

µ
+ ln

(
(µ+ 1)(eλ − 1)

λ

)
− λeλ

eλ − 1
(13)

In particular, numerical evaluation shows that for all µ, if λ > 0 is chosen so that EX∼πPoisson [rp(X)] = EX∼π∗
λ
[rp(X)],

then the KL-gap satisfies
0 ≤ DKL(πPoisson∥πref)−DKL(π

∗
λ∥πref) ≤ 7× 10−3.

That is, Best-of-Poisson achieves nearly the optimal trade-off between expected reward and KL divergence from the
reference distribution.

Proof. Theorem 2 above established that

DKL(πPoisson∥πref) =
e−µ−1(Ei(µ+ 1)− Ei(1))

µ
+ log(µ+ 1)− 1 (14)

Now, we need to derive the KL divergence between the optimal tilted distribution π∗
λ and the reference distribution πref.

Recall that the optimal tilted distribution with parameter λ is given by:

π∗
λ(x) =

πref(x)e
λrp(x)

Z(λ)
(15)

where Z(λ) =
∫
X πref(x)e

λrp(x)dx is the normalization constant.

The KL divergence is defined as:

DDKL
(π∗

λ∥πref) =

∫
π∗
λ(x) log

π∗
λ(x)

πref(x)
dx (16)

Substituting π∗
λ(x) =

πref(x)e
λrp(x)

Z(λ) in the KL divergence gives:

DKL(π
∗
λ∥πref) =

∫
πref(x)e

λrp(x)

Z(λ)
log

eλrp(x)

Z(λ)
dx (17)

=

∫
πref(x)e

λrp(x)

Z(λ)
[λrp(x)− logZ(λ)] dx (18)

= λ

∫
πref(x)e

λrp(x)

Z(λ)
rp(x)dx− logZ(λ)

∫
πref(x)e

λrp(x)

Z(λ)
dx (19)

The second integral equals 1 since π∗
λ is a probability distribution. For the first integral, we recognize it as the expected

value of rp(X) under the distribution π∗
λ:

Eπ∗
λ
[rp(X)] =

∫
rp(x)π

∗
λ(x)dx =

∫
rp(x)

πref(x)e
λrp(x)

Z(λ)
dx (20)

Therefore:

DKL(π
∗
λ∥πref) = λEπ∗

λ
[rp(X)]− logZ(λ) (21)
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This shows that the KL divergence is given by the expected reward minus the log partition function. We can further simplify
by noting that the derivative of logZ(λ) with respect to λ gives us the expected reward:

d

dλ
logZ(λ) =

1

Z(λ)

d

dλ

∫
πref(x)e

λrp(x)dx =
1

Z(λ)

∫
πref(x)e

λrp(x)rp(x)dx = Eπ∗
λ
[rp(X)] (22)

Therefore:

DKL(π
∗
λ∥πref) = λ

d

dλ
logZ(λ)− logZ(λ) (23)

Which is a standard result for exponential families namely, that the KL divergence equals the Bregman divergence of the log
partition function. For our specific case where πref is the uniform distribution on [0, 1] and rp(x) = x (after the probability
integral transform), we have:

Z(λ) =

∫ 1

0

eλxdx =
eλ − 1

λ
logZ(λ) = log

(
eλ − 1

λ

)
(24)

The derivative is:

d

dλ
logZ(λ) =

eλ

eλ − 1
− 1

λ
(25)

So:

DKL(π
∗
λ∥πref) = λ

(
eλ

eλ − 1
− 1

λ

)
− log

(
eλ − 1

λ

)
(26)

= λ
eλ

eλ − 1
− 1− log

(
eλ − 1

λ

)
(27)

After further algebraic manipulation:

DKL(π
∗
λ∥πref) = λ− 1 +

λ

eλ − 1
− log

(
eλ − 1

λ

)
(28)

This shows that the difference in KL is given by

DKL(πPoisson∥πref)−DKL(π
∗
λ∥πref) (29)

=
e−µ−1(Ei(µ+ 1)− Ei(1))

µ
+ log(µ+ 1)− 1−

(
λ− 1 + log

(
λ

eλ − 1

)
+

λ

eλ − 1

)
(30)

To numerically verify the near-optimality claim, we solve the equation EX∼πBoP [rp(X)] = EX∼π∗
λ
[rp(X)] using Newton’s

method to find λ as a function of µ. For each value of µ, we then evaluate the KL divergence gap:

DKL(πBoP∥πref)−DKL(π
∗
λ∥πref) =

e−(µ+1)(Ei(µ+ 1)− Ei(1))
µ

+ ln

(
(µ+ 1)(eλ − 1)

λ

)
− λeλ

eλ − 1
(31)

Numerical evaluation confirms that this difference is bounded by approximately 7× 10−3 across the entire range of µ as in
Figure 2. This validates that Best-of-Poisson indeed provides a practically equivalent approximation to the optimal tilted
distribution with negligible computational overhead.
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C. Proof of Theorem 3
In Section 4, we present an efficient way to find the optimal hacking threshold. We restate Theorem 3 and prove it.
Theorem 8 (Hacking Threshold Characterization). Let rt be a true reward oracle and θ† be the hacking threshold from
Definition 1. For each inference-time method, θ† is characterized by the following conditions:

For BoN, n† satisfies: ∇αEu∼Beta(α,1)[rt(u)] =

∫ 1

0

rt(u) (1 + n† log u)un
†−1 du = 0, (32)

For SBoN, λ† satisfies: ∇λEu∼fλ [rt(u)] = EU1,...,Un
[Cov(rt(V ), V |U1, . . . , Un)]|λ=λ†= 0, (33)

For BoP, µ† satisfies: ∇µEu∼fµ [rt(u)] = Eu∼f
µ†

[
rt(u)

(
u− 1 +

u

µ†u+ 1

)]
= 0. (34)

Proof. We now consider each mechanism separately:

Hedging in Best-of-n. In BoN, we approximate the integer n via a continuous parameter α by placing a Beta(α, 1) prior

on u. Its density is fα(u) = αuα−1, so ψ(u, α) = ∂α[lnα + (α − 1) lnu] =
1

α
+ lnu. Thus, the optimality condition

becomes

Eu∼Beta(α,1)

[
rt(u)(

1

α
+ lnu)

]
= 0⇐⇒

∫ 1

0

rt(u) (1 + n log u)un−1 du = 0, (35)

which one solves for α to pick an effective sample size. In practice, this equation must be solved numerically. We do this by
discretizing [0, 1] into M points and forming the Riemann-sum residual

R(α) =

M∑
i=1

rt(ui)

(
1

α
+ lnui

)
uα−1
i ∆u,

The root R(α) = 0 is equivalent to the hedging condition. Then, one applies any root-finding method, see, e.g., (Quarteroni
et al., 2006), to locate the unique solution α†. Finally, the discrete sample size is chosen as N = [α], the integer nearest α†.

Hedging in Soft Best-of-n. Unlike BoN and BoP, SBoN does not admit a simple closed-form density due to its sampling
mechanism. In SBoN, we first sample n responses X1, . . . , Xn from the reference distribution, then select response Xi with
probability eλr(Xi)∑n

j=1 eλr(Xj)
. The resulting distribution is:

πn,λ(x) = EX1,...,Xn−1∼πref

πref(x) ·
eλr(x)

1
n

(
eλr(x) +

∑n−1
i=1 e

λr(Xi)
)


We can now derive the hedging condition ∂
∂λEu∼fλ [rt(u)] = 0. For the case of proxy reward percentiles, remember that the

SBoN sampling mechanism works as follows

1. Sample U1, . . . , Un ∼ Uniform[0, 1] independently

2. Select index Z with probability P (Z = i|U1, . . . , Un) =
eλUi∑n

j=1 eλUj

3. Return V = UZ

Then, to start, we compute ∂pi

∂λ :

∂pi
∂λ

=
∂

∂λ

[
eλUi

S

]
=
Uie

λUi · S − eλUi · ∂S∂λ
S2

(36)

Since ∂S
∂λ =

∑n
j=1 Uje

λUj :

∂pi
∂λ

=
eλUi

S

[
Ui −

∑n
j=1 Uje

λUj

S

]
= pi

Ui −
n∑

j=1

Ujpj

 (37)
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Now, we compute the derivative of the expected reward:

∂

∂λ
Eu∼fλ [rt(u)] = EU1,...,Un

[
∂

∂λ

n∑
i=1

rt(Ui)pi

]
(38)

= EU1,...,Un

[
n∑

i=1

rt(Ui)
∂pi
∂λ

]
(39)

= EU1,...,Un

 n∑
i=1

rt(Ui)pi

Ui −
n∑

j=1

Ujpj

 (40)

Expanding this expression:

= EU1,...,Un

 n∑
i=1

rt(Ui)piUi −
n∑

i=1

rt(Ui)pi

n∑
j=1

Ujpj

 (41)

= EU1,...,Un

 n∑
i=1

rt(Ui)piUi −

(
n∑

i=1

rt(Ui)pi

) n∑
j=1

Ujpj

 (42)

The expression inside the expectation is exactly the conditional covariance

Cov(rt(V ), V |U1, . . . , Un) = E[rt(V ) · V |U1, . . . , Un]− E[rt(V )|U1, . . . , Un] · E[V |U1, . . . , Un], (43)

where:

E[rt(V )|U1, . . . , Un] =

n∑
i=1

rt(Ui)pi (44)

E[V |U1, . . . , Un] =

n∑
i=1

Uipi (45)

E[rt(V ) · V |U1, . . . , Un] =

n∑
i=1

rt(Ui)Uipi (46)

Therefore:

∂

∂λ
Eu∼fλ [rt(u)] = EU1,...,Un

[Cov(rt(V ), V |U1, . . . , Un)] (47)

This condition must be evaluated numerically using the following procedure:

1. For a given λ, generate M independent realizations of (U (m)
1 , . . . , U

(m)
n ) ∼ Uniform[0, 1]n for m = 1, . . . ,M .

2. For each realization m, compute the conditional covariance:

C(m) = Cov(rt(V ), V |U (m)
1 , . . . , U (m)

n ) =

n∑
i=1

rt(U
(m)
i )U

(m)
i p

(m)
i −

(
n∑

i=1

rt(U
(m)
i )p

(m)
i

) n∑
j=1

U
(m)
j p

(m)
j


(48)

where p(m)
i = eλU

(m)
i∑n

j=1 e
λU

(m)
j

.

3. Estimate the derivative as R(λ) = 1
M

∑M
m=1 C

(m).
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4. Use root-finding methods (e.g., bisection or Newton’s method) to locate λ† where R(λ†) = 0.

Hedging in Best-of-Poisson. Here, one draws a Poisson(µ) number of samples (plus one) and selects the proxy-maximal u.
For uniform u, the density is pµ(u) = (µu+ 1)e−µ(1−u), giving ψ(u, µ) = ∂µ ln pλ(u) = u− 1 +

u

µu+ 1
. The hedging

equation

∇µEπµ
[ry(X)] = Eu∼fµ

[
rt(u)

(
u− 1 +

u

µu+ 1

)]
= 0 (49)

In an analogous way to the previous hedging equations, we solve the residual

R(µ) =

M∑
i=1

rt(ui)ψ(ui, µ)pµ(ui)∆u (50)

to locate µ† such that R(µ†) = 0. This µ† is the Poisson optimal hedge.

D. Experimental Details
In this section, we provide additional details on our experimental setup. We provide our code here.

D.1. Toy Example

In Figure 1, we present a toy example with one-dimensional rewards defined on [0, 1]. We set the proxy reward to be
rp(x) = x and the gold reward

rt(x) =
xp (1− x)

C
, C =

( p

p+ 1

)p 1

p+ 1

where C is a normalization constant so that the gold reward is bounded between 0 and 1 for convenience. We choose this
gold reward as the reward under the Best-of-n distribution has a simple closed-form solution. We set p = 12 and we find the
expected value of true reward and the KL divergence with respect to the reference distribution under four mechanisms:

1. Tilted Distribution: Exponential tilting of the gold reward, Qλ(x) ∝ exp(λ rt(x)) and of the proxy reward, Qλ(x) ∝
exp(λ rp(x)).

2. Best-of-n (BoN): Selection of the maximum of n i.i.d. uniform draws.

3. Soft Best-of-n (SBoN): Softmax–based sampling of n i.i.d. uniform draws with inverse temperature λ.

4. Best-of-Poisson (BoP): Selection of the maximum of n i.i.d uniform draws where n is drawn from a Poisson distribution
with rate µ.

Below we detail each one in turn.

Tilted Distribution We first consider tilting with respect to the gold reward, defined as:

Qλ(x) =
eλ rt(x)

Z(λ)
, Z(λ) =

∫ 1

0

eλ rt(x) dx,

We then compute

EQλ
[rt] =

1

Z(λ)

∫ 1

0

rt(x) e
λ rt(x) dx, DKL(Qλ ∥U [0, 1]) = λEQλ

[rt] − lnZ(λ).

All integrals are evaluated via numerical quadrature on [0, 1]. Analogously, letting

Zproxy(λ) =

∫ 1

0

eλ rp(x) dx =

{
1, λ = 0,
eλ−1
λ , λ ̸= 0,

we define

Qproxy
λ (x) =

eλx

Zproxy(λ)
,

and compute EQproxy
λ

[rt] and its KL with respect to the reference distribution (the uniform distribution).

22

https://anonymous.4open.science/r/hedging-F33C/


Inference-Time Reward Hacking in Large Language Models

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
KL divergence to the reference distribution

0.2

0.3

0.4

0.5

0.6

0.7

E
xp

ec
te

d 
va

lu
e 

of
 tr

ue
 re

w
ar

d

BoN
=100.0
=20.0
=13.0
=10.0
=5.0
=3.3
=2.0
=1.0

Figure 6. Expected value of true reward versus KL divergence to the reference distribution using both Best-of-n and Soft Best-of-n in the
setup presented in Sec. D.1. For the same range of n = {1, · · · , 80}, Soft BoN softens the winner’s curse with an appropriate λ while
attaining a competitive reward vs KL tradeoff.

Best-of-n For n i.i.d. draws X1:n ∼ U [0, 1], the max has density nxn−1. One shows

E[rt(maxX1:n)] =
n

C (n+ p) (n+ p+ 1)
, DKL = lnn− 1 +

1

n
.

Soft-BoN We draw m = 1.2 × 105 samples of (X1:n), apply a softmax with temperature λ, and numerically estimate
E[rt] and DKL. We sweep λ over 600 log-spaced values in [10−4, 104].

Best-of-Poisson (BoP) We treat the number of draws as distributed from a Poisson distribution n ∼ Poisson with sampling
density qλ(x) = (λx+ 1) eλ(x−1), from which E[rt] and DKL are again computed by numerical quadrature. We sweep µ
over 800 uniformly-spaced values in [0, 300].

We apply HedgeTune as presented in Alg. 4 for BoN and BoP. In both cases, we attain an operating point which
corresponds exactly to the true hacking threshold as shown in Fig. 1. The success of this algorithm hinges on Theorem
1 which guarantees an existence of (at least) one hacking threshold. However, this guarantee does not hold for Soft BoN.
Therefore, the optimization problem becomes much more challenging, and using vanilla estimators for the density causes
numerical instabilities when applied for Soft BoN.

D.2. Synthetic setup

We randomly select a single Reddit post from the validation split of the
trl-internal-testing/tldr-preference-trl-style dataset on Hugging Face. Using this prompt
(see Figure 7), we generate 60, 000 candidate summaries from a supervised fine-tuned Pythia-1.4B model
(cleanrl/EleutherAI pythia-1b-deduped sft tldr on HuggingFace) via ancestral sampling with
temperature T = 1 and a top-k filter of k = 50 (see examples of candidate summaries in Figure 8). After generating
candidate summaries, we annotate them by scoring with a reward model trained on summarization task. Concretely, we use
cleanrl/EleutherAI_pythia-1b-deduped__reward__tldr found on Hugging Face.

Using this annotated data, we would like to empirically observe the winner’s curse. Methods like Best-of-n that aggressively
optimize for the proxy are particularly vulnerable to this phenomenon. We artificially miscalibrate the proxy reward model
at the extreme high-end of its scores. Concretely, let Pα denote the top α%-percentile of proxy scores. For any response
whose proxy score lies in Pα, we replace its proxy score by a negatively linear function of its true reward (so that higher
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Below is a reddit POST and the corresponding SUBREDDIT and TITLE.
Write a both precise and concise summary of the contents of the post.
—
SUBREDDIT: r/relationships
TITLE: I [23F] have just come out of 8 year relationship. Feel like I don’t know how to date/flirt. Scared will grow
old with many cats. Any advice?
POST: This is my first post so please be kind :)

I know that lots of people often feel confused when they come out of a long-term relationship. They
think they have forgotten how to be single, or how to flirt/date.

I am one of these people.

The problem is, my relationship started when I had just turned 16. I have never been single—as an adult.
That might sound silly. But the only time I have ever flirted or dated was as an over-confident, hormone-riddled
teenager.

Now I have a pretty demanding job, responsibilities blah blah. . . And I just don’t know how to this!

I’m in no way in a rush to get into a new relationship, but that doesn’t mean I want to be completely
alone in the meantime.

If anyone has experienced anything similar, or just generally has some advice, it would be greatly appre-
ciated!
—

Summary:

Figure 7. Prompt template used to summarize a selected Reddit post

true-reward responses receive lower proxy scores). All other responses retain their true reward as the proxy. Formally,

rp(x) =

{
a− b rt(x), if rt(x) ≥ Pα,

rt(x), otherwise,

where a, b > 0 are chosen so that this mapping spans the same range as the original scores. We then map both distributions
to uniform percentiles via their sorted ranks, yielding two arrays in [0, 1] amenable to direct comparison. We consider α in
the set {80, 85, 90, 95}, simulating increasingly egregious misalignment at the top end of the proxy. This synthetic setup let
us measure how each selection strategy (BoN, SBoN, and BoP) degrades in true-reward performance as the proxy becomes
more misleading among its highest-ranked candidates.

We define our sampling grids as n ∈ {1, . . . , 1000} (BoN), λ ∈ [0, 20] (SBoN), µ ∈ [0, 50] (BoP) each discretized
into 300, 150, and 250 points respectively. For every parameter setting and for each bootstrap replicate (B = 300), we
apply the selection mechanism, record the chosen item’s true reward, and check whether this true reward exceeds the true
reward of a randomly selected response by at least 10%. We aggregate these outcomes to estimate, for each combination, the
probability of at least 10% true-reward improvement, and compute 95% confidence intervals via a normal approximation.
We consider this probability as a calibrated reward. In Figure 3, we present the proxy and true (calibrated) rewards using
BoN and BoP where we vary the average number of samples n. Moreover, we find the value of n corresponding to the
peak true reward for each case using HedgeTune. Meanwhile, in Figure 4, we compare the performance of Soft Best-of-n
mechanism with an optimized temperature λ† to Best-of-n. We do so by plotting the gap between the (calibrated) reward
attained by SBoN and that attained with BoN. With larger n, Best-of-n is more likely to fall victim to the winner’s curse,
making hedging an effective solution to improve performance.
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Summary 1: ” I am a 23/F looking for advice on how to find potential lovers. I think I find no one, and it frustrates
me. Any advice?”

Summary 2: ”I just came out of a relationship, a really long one. I know I’m young but I feel like I
must be naive and lack experience. Please give me anything you can!”

Summary 3: ”Teenage dating syndrome. Don’t know-how-to- avoid it. Care to chat and/or share stories
about your dating/relationship experiences?”

Figure 8. Example of generated summaries of the Reddit post shown in Fig. 7

D.3. Reward hacking in the wild

To observe reward hacking in the wild, we follow the setup of Coste et al. (Coste et al., 2024). We first use an annotated
dataset provided by (Coste et al., 2024) which contains 1,000 prompts from the validation split of AlpacaFarm dataset,
along with 12,600 response generations per prompt from a 1.4b fine-tuned Pythia model. Each prompt-response pair is
labeled with the AlpacaFarm reward-model-human to give ‘gold’ scores. Next, we would like to train proxy reward
models on the preferences of this true reward. We randomly sample a prompt with two responses from the annotated dataset
and curate a dataset of the form (prompt, chosen, rejected) where the chosen response is the response with the higher gold
reward score. We follow this procedure to curate four datasets with varying sizes (10k, 20k, 46k, 80k). For each dataset, we
consider two variants: one with no label noise and one with random 25% label noise. Next, we use the code kindly provided
by the authors of (Coste et al., 2024) in their Github repository to train proxy reward models with the different datasets over
four random seeds (1, 2, 3 and 4) using their default hyperparameters (e.g., 10−5 learning rate and five epochs). Lastly, we
score the annotated dataset using the trained proxy reward models. The end result is a set of 800 prompts, 12 600 responses
per prompt, along with gold and proxy scores for each prompt-response pair.

While reward hacking can appear without label noise (see left panels of Figures 9 and 10), reward hacking is more
pronounced with label noise as expected. Moreover, reward hacking is more apparent when the proxy reward is trained on
less data. One potential explanation is that, with fewer training examples, the proxy is less well-calibrated and its estimation
errors vary more sharply across inputs. In that case, a small n might produce a deceiving reward gain. In contrast, errors
may surface early on with a large training dataset, so true reward declines immediately as sampling increases. In cases
of reward hacking, we see that SBoN with an appropriately chosen λ can (1) achieve the maximum reward achieved by
BoN/BoP and (2) mitigate reward hacking, as shown with the reward almost flatlining after it reaches its peak value. We
also witness cases where the proxy reward always misaligns with the gold reward, causing a collapse of true reward from
the onset of BoN. In that case, the optimal hedging behavior is a uniform selection over responses, which is recovered with
n = 1 for BoN or λ = 0 for SBoN.

Interestingly, we observe instances of what we call reward grokking as shown in the right panels of Figures 10 and 12,
where the true reward decreases or flat-lines across low- to mid-range sample counts, only to undergo a sudden uptick
at higher sample regimes, revealing a delayed but apparent realignment of proxy and true objectives. We leave detailed
investigation of reward grokking and its implications for hedging strategies to future work.
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Figure 9. Expected true-reward vs. average number of samples with proxy trained on 10 000 examples: (a) without label noise; (b) with
25% label noise.
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(b) 25% label noise

Figure 10. Expected true-reward vs. average number of samples with proxy trained on 20 000 examples: (a) without label noise; (b) with
25% label noise.
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(b) 25% label noise

Figure 11. Expected true-reward vs. average number of samples with proxy trained on 46 000 examples: (a) without label noise; (b) with
25% label noise.
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Figure 12. Expected true-reward vs. average number of samples with proxy trained on 80 000 examples: (a) without label noise; (b) with
25% label noise.
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