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Figure 1: Showcases of our EffiVMT. Given an input video, EffiVMT enables generating the video
with the same motion, including motion of single or multiple objects, complex poses of humans, and
movements of the camera view.

ABSTRACT

Recently, breakthroughs in the video diffusion transformer have shown remarkable
capabilities in diverse motion generations. As for the motion-transfer task, current
methods mainly use two-stage Low-Rank Adaptations (LoRAs) finetuning to
obtain better performance. However, existing adaptation-based motion transfer
still suffers from motion inconsistency and tuning inefficiency when applied
to large video diffusion transformers. Naive two-stage LoRA tuning struggles
to maintain motion consistency between generated and input videos due to the
inherent spatial-temporal coupling in the 3D attention operator. In addition, they
require time-consuming fine-tuning processes in both stages. To tackle these issues,
we propose EffiVMT, an efficient three-stage video motion transfer framework
that finetunes a powerful video diffusion transformer to synthesize complex motion.
In stage 1, we propose a spatial-temporal head classification technique to decouple
the heads of 3D attention to distinct groups for spatial-appearance and temporal
motion processing. We then finetune the spatial heads in the stage 2. In the stage 3
of temporal head tuning, we design the sparse motion sampling and adaptive RoPE
to accelerate the tuning speed. To address the lack of a benchmark for this field, we
introduce MotionBench, a comprehensive benchmark comprising diverse motion,
including creative camera motion, single object motion, multiple object motion,
and complex human motion. We show extensive evaluations on MotionBench to
verify the superiority of EffiVMT.
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1 INTRODUCTION

Motion transfer aims to synthesize novel videos that faithfully replicate the motion dynamics,including
camera movements and object trajectories from a given reference video. Unlike video-to-video trans-
lation methods (Qi et al., 2023; Wu et al., 2022), which prioritize preserving low-level appearance
and 2D spatial structure, motion transfer focuses exclusively on disentangling and reapplying mo-
tion patterns. This capability holds significant promise across diverse domains such as cinematic
production, augmented reality, automated advertising, and social media content generation.

Recent advances in generative models have been dominated by diffusion models (Rombach et al.,
2022), which excel in producing high-fidelity visual content through stable optimization over Gaussian
noise trajectories. The emergence of Diffusion Transformers (DiTs) has further elevated scalability
in terms of model size, computational efficiency, and compatibility with large-scale video datasets.
Leveraging pretrained video diffusion models, researchers have developed a spectrum of motion
transfer techniques, broadly categorized into training-free and tuning-based paradigms.

Training-free approaches (Geyer et al., 2023; Pondaven et al., 2025; Qi et al., 2023; Xiao et al.,
2024b; Yang et al., 2025) operate entirely during inference by manipulating intermediate motion
representations, such as attention maps or latent trajectories, without modifying model parameters.
For instance, SMM (Yatim et al., 2024) introduces a spatially averaged feature descriptor to guide
motion consistency, while MotionShop (Yesiltepe et al., 2024) repurposes latent-space updates in the
denoising process as a “Motion Score” for DiT models. Although these methods offer zero-training-
cost generalization across both UNet and DiT architectures, their fidelity is inherently constrained by
the motion priors embedded in the pretrained model.

To overcome this limitation and capture complex, out-of-distribution motions, tuning-based meth-
ods (Zhao et al., 2023b) optimize model parameters to explicitly encode reference motion. In early
UNet-based frameworks like MotionDirector (first row in the Figure 2(c).), temporal layers are
fine-tuned independently to learn motion dynamics, while spatial layers remain frozen or jointly
optimized. During inference, the learned motion is composited with the frozen model’s prior knowl-
edge to generate novel videos. While effective, extending this paradigm to modern DiT architectures
remains challenging due to their high computational cost and the entangled nature of spatial-temporal
modeling in 3D self-attention blocks.

A naive baseline for DiT-based motion transfer involves applying Low-Rank Adaptation (LoRA)
directly to all parameters within the 3D self-attention layers, as shown in the second row of Figure 2(c).
More sophisticated methods, such as the approach proposed by Abdal et al. (2025), employ a two-
stage spatial–temporal decoupled tuning strategy: first, spatial LoRAs are optimized on a subset of
key frames to preserve appearance consistency; these are then frozen, and temporal LoRAs are tuned
over the full video sequence to capture and transfer motion dynamics. However, we argue that this
two-stage procedure is inherently inefficient. Specifically, the limitations are listed as follows:

(1) Motion inconsistency: During the spatial tuning stage, both spatial and temporal attention
heads are updated using static frames, inadvertently coupling spatial appearance with temporal
dynamics. As shown in the top Fig. 2(a), for the naive baseline, both the reconstructed results
and motion transfer results fail to follow the reference video. Therefore, tuning both spatial and
temporal heads for appearance preservation is not reasonable.

(2) Tuning inefficiency: Recent analysis (Xi et al., 2025) reveals that 3D self-attention heads in
DiTs naturally specialize, some focus on spatial relations, others on temporal coherence. Yet
current methods indiscriminately tune all heads in each stage, resulting in parameter redundancy
and suboptimal adaptation. Furthermore, since 3D VAEs inherently compress and interpolate
temporal sequences, processing all reference frames during tuning ignores this latent interpolation
capacity and introduces unnecessary computational overhead.

To tackle these challenges, we propose EffiVMT, an efficient video motion transfer framework. First,
to resolve motion inconsistency, we employ robust head matching to classify attention heads into
spatial and temporal types. During tuning, spatial heads are updated only in the spatial stage, and
temporal heads only in the temporal stage for preserving motion consistency in both reconstruction
and transfer, as shown in Figure 2(a). To improve tuning efficiency, we introduce sparse motion
sampling during temporal tuning, significantly accelerating training. We further propose adaptive
RoPE to enhance motion interpolation learning, enabling accurate motion capture even from sparse
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Figure 2: Comparison between EffiVMT and baseline and Motivation. (a)&(b): We finetune
the baseline and our method 3,000 steps using Wan2.1 (Wang et al., 2025a). Our method gets better
reconstruction and motion preservation. (c): Despite the decoupling of temporal and spatial in UNet
is common, applying it to modern DiT is still challenging because of its spatial-temporal mixed 3D
full self-attention blocks. To address it, we propose the spatial-temporal decoupled tuning for DiT,
sparse motion sampling, and adaptive RoPE to synthesize video with complex motion efficiently.

frames. As demonstrated in Figure 2(b), our decoupled strategy reduces latency by 1.26×, and with
sparse sampling, achieves a 3.89× speed-up over full-frame tuning.

Together, these designs enable EffiVMT to generate high-fidelity videos that faithfully follow
reference motion (See Figure 1). Additionally, to address the lack of benchmark in video motion
transfer, we introduce MotionBench, which is a comprehensive benchmark covering single-object,
complex human, multi-object, and camera motions across diverse scenes and styles. Our method
outperforms existing baselines across various evaluation metrics, demonstrating its effectiveness in
leveraging powerful DiTs for accurate motion transfer. Overall, our key contributions are summarized
as follows:

• We propose EffiVMT, a three-stage motion transfer framework that efficiently adapts
powerful video Diffusion Transformers (DiTs) to synthesize videos with complex, high-
fidelity motion.

• We identify and address two core challenges in DiT-based motion transfer: motion incon-
sistency and tuning inefficiency. To preserve motion coherence, we decouple spatial and
temporal adaptation via specialized LoRA heads. To accelerate training, we introduce sparse
motion sampling and adaptive RoPE for efficient yet accurate motion interpolation.

• To validate the effectiveness of our methods, we construct a benchmark MotionBench. We
perform extensive experiments and user studies to evaluate our approach, which shows our
method achieves state-of-the-art performance.

2 RELATED WORK

Text-to-video generation. Text-to-video generation aims to produce realistic videos that precisely
match the spatial visuals and temporal dynamics described in the input prompt. To generate the
complicated motion in the videos, diffusion-based video generation models (Guo et al., 2024; Zhao
et al., 2023a; Zhu et al., 2025; Liu et al., 2025a) are proposed to synthesize consistent results using a
pretrained image diffusion model. Previous works (Guo et al., 2023; He et al., 2022; Wang et al.,
2023; Xiong et al., 2025; Yang et al., 2024c) design the temporal module of UNet to generate
consistent results. Recently, the emergence of Diffusion Transformer-based methods for text-to-video
generation has exhibited superior performance in quality and consistency. These powerful scaling
transformers, including Sora (Liu et al., 2024), CogVideoX (Yang et al., 2024d), EasyAnimate (Xu
et al., 2024a), HunyuanVideo (Kong et al., 2024), and Wan2.1 (Wang et al., 2025a), enable generating
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more realistic video clips from given detailed prompts, paving the way for various downstream video
generation tasks.

Video Motion transfer. Motion transfer involves an important demand: creating a novel video and
maintaining the motion from the reference one. Some methods leverage the explicit control signal (Ma
et al., 2023; 2024; Xing et al., 2024a;b; Zhang et al., 2025; Yang et al., 2024b) to achieve motion
transfer from the reference video. However, these methods rely on a huge control signal dataset
and cost large computational resources. Thanks for the powerful pretrained text-to-video generation
model, the researchers pay attention to motion transfer using implicit control, including training-
free or tuning-based paradigm. For training-free methods (Hu et al., 2024; Pondaven et al., 2025;
Yesiltepe et al., 2024), they extract a motion embedding in the inference stage and use the gradient to
guide optimization. However, these methods fail to transfer the complex motion. For tuning-based
methods, they (Jeong et al., 2024a; Zhao et al., 2023b) always fine-tune model parameters to utilize
different attention for temporal and spatial information. Current works (Jeong et al., 2024a; Ren et al.,
2024; Zhao et al., 2023b) employ the dual-path LoRA structure to separate motion and appearance.
However, these methods are developed on the UNet-based pretrained model (Chai et al., 2023),
making them unsuitable for DiTs. In contrast, our proposed method is the first one-shot DiT-based
motion transfer framework. Using the video diffusion transfer as the foundation model, our method
extends the boundary of motion transfer performance.

3 METHOD

Algorithm 1 Dual attention decoupling
Input: Q,K ∈ RH×S×D: query and key

where S = F ×H ×W
Output: Closest head type: thead

▷ Target spatial & temporal attention maps:
[head, S, S]
Mspatial ← gen_spatial_maps(F,H,W )
Mtemporal ← gen_temporal_maps(F,H,W )

▷ Get attention maps of input data: [head, S, S]
Minput ← Softmax(Q ·K⊤/

√
D)

▷ Calculate similarity metrics
Sims ← ∥Minput ⊙Mspatial∥mean // mean
over (1,2)

Simt ← ∥Minput ⊙Mtemporal∥mean

▷ Classify head type: Boolean tensor [head]
thead ← (Sims < α · Simt)

Following prior work (Abdal et al., 2025; Zhao et al.,
2023b), a naive baseline first optimizes spatial LoRA
weights (∆Ws) by treating sampled frames as in-
dependent text-to-image instances. Subsequently,
temporal LoRA (∆Wt) is learned by fine-tuning on
consecutive frame sequences while freezing ∆Ws.
At inference, only ∆Wt is applied to transfer mo-
tion. However, this leads to appearance leakage and
remains computationally expensive for DiT-based
video diffusion models. As shown in Fig. 2, even af-
ter 3,000 optimization steps (3,042s on a single H20
GPU), motion fidelity is unsatisfactory.

Previous naive LoRA tuning faces two main chal-
lenges. (1) Recent Video DiT models leverage 3D at-
tention block without explicit temporal blocks, which
makes it difficult to disentangle temporal parameters,
and fine-tuning LoRA on whole attention parameters
results in larger parameter number (e.g., 29.5 M for
naive LoRA) (2) Finetuning on multiframe videos
increases token sequence length (e.g., 24276 tokens for 81 frames) and computation cost.

To address these challenges, we first propose an attention head classification strategy (Sec. 3.1) that
decouples spatial and temporal parameters by analyzing attention sparsity in the pretrained Video
DiT. Building on this, we introduce an efficient tuning framework (Sec. 3.2) to separately learn
spatial appearance and temporal motion from the source video. While we use WAN as the pretrained
backbone in our experiments, our method is model-agnostic and readily generalizes to other Video
DiT architectures(See Appendix E.2).

3.1 STAGE 1: SPATIAL-TEMPORAL ATTENTION CLASSIFICATION

The pretrained video DiT model Wan utilizes unified 3D attention instead of separated spatial and
temporal attention, which brings challenges to motion information decoupling (Pondaven et al.,
2025), training efficiency, and storage cost (Pondaven et al., 2025). Inspired by evidence in previous
work (Xi et al., 2025), we leverage the inherent sparsity in 3D Full Attention of video DiT to decouple
the parameters for temporal motion and spatial appearance.
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Figure 3: Overview of our methods. Stage 1: We first classify the attention heads using a pseudo
spatial attention map. Stage 2: After attention classification, we first tune the spatial LoRA using a
random frame in the video. Stage 3: After finishing spatial LoRA tuning, we load the spatial LoRA
weight and conduct temporal tuning using sparse motion sampling and adaptive RoPE.

Dual attention decoupling. As shown in Alg. 1, our method classifies attention heads in Wan into
temporal or spatial types. We take query and key tokens Q,K ∈ RH×S×D as input, where H is the
number of heads, S is the sequence length, and D is the feature dimension.

We prepare pseudo ground truths: for spatial attention map, Mspatial[i, j] = 1 if points (i, j) are
near the main diagonal ( within a predefined range), otherwise 0; for temporal attention map,
Mtemporal[i, j] = 1 if points (i, j) are near diagonals parallel to the main diagonal (identical spatial
positions in different frames), otherwise 0.

We compute the cosine similarity Sims between the input attention map Minput and Mspatial, and
Simt between Minput and Mtemporal. A head is classified as temporal if Sims < α · Simt, where
α = 1.25(empirically set to balance the number of spatial and temporal heads).

Dual attention fusion. Then, we rearrange the channels of the linear layers in full 3D attention
q, k, v, o to two parallel branches for temporal attention and spatial attention. The forward algorithm
of a single rearranged block is shown in Alg. 2. Given input sequence x, we concatenate the features
from the temporal and spatial branches along the channel dimensions to get the tokens of query Q,
key K, and value V . After applying rotary position embedding and scaled dot product attention,
feature x is split along the channel dimension, and fed to otemp and ospat. Finally, the summed
feature is returned at the end of the attention block.

3.2 STAGES 2&3: SPATIAL-TEMPORAL DECOUPLED TUNING

Spatial LoRA tuning. As the parameters of the attention block are decoupled in the previous stage,
we can use the spatial and temporal branches in two stages to learn the appearance and motion
in the reference videos, respectively. Following previous work (Abdal et al., 2025; Zhao et al.,
2023b), we first inject LoRAs θspat into the spatial heads branch (qspat, kspat, vspat, ospat) to learn
the spatial appearance in stage 2. In each iteration, We randomly sample a single frame xi from index
{0, 1, 2, ..., F − 1}, and optimize the spatial LoRA θspat as a text-to-image model using the training
loss:

Lspat = Exi,1∼Pdata,xi,0∼N(0,I),i∼U(0,F )

∥∥vi,t − vθspat
(xi,t, t, p)

∥∥2
2
, (1)

where t is time step, p is positional embedding and v represents the velocity in the diffusion model(See
Appendix C.

Temporal LoRA tuning. Once the spatial LoRA θspat gets converged, we freeze θspat in the
model, and continue to finetune temporal LoRA parameters θtemp of temporal heads branch

5
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…
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Figure 4: Illustration of sparse motion sampling
and adaptive RoPE. The adaptive RoPE is utilized
to represent frame position in the video.

Algorithm 2 Dual Attention Fusion

Input:
x ∈ RH×S×D: input sequence
fregs: positional frequencies
dtemp: temporal dimension size

Output: Fused output y ∈ RH×S×D

▷ Channel concatenate, and normalize
Q← Norm([qtemp(x)∥qspat(x)])
K ← Norm([ktemp(x)∥kspat(x)])
V ← [vtemp(x)∥vspat(x)]

▷ Rotary Position Embeddings for Q, K
Q̃← RoPE(Q, fregs, H)

K̃ ← RoPE(K, fregs, H)

▷ Multi-Head Attention
x← Attention(Q̃, K̃, V ; H)

▷ Dual Output Projection Fusion
y ← otemp(x[: dtemp]) + ospat(x[dtemp :])
return y

(qtemp, ktemp, vtemp, otemp). Since the Wan (Wang et al., 2025a) is pretrained on a large frame
number F = 81, fine-tuning on the original number F = 81 costs too expensive computation (Fig. 2).
To alleviate the high computation requirement for videos, we propose the sparse motion sampling,
which finetune our temporal LoRA θtemp on a sampled video with fewer frame number Fsamp = 17
and then infer with the original frame number. While recent transformer models apply Rotary
Positional Embedding (RoPE) (Vaswani et al., 2017) to encode the relative position dependency
according to the frame index, sampling frames from F to Fsamp breaks the original dependency and
thus deteriorates the motion quality. Motivated by previous text-to-image DiT models (Kong et al.,
2024; Yang et al., 2024e), we propose the adaptive RoPE, a centralized scaling positional encoding
along the frame index to align the position range with different total frame numbers. For each frame
with temporal index i ∈ [0, 1, ..., Fsamp − 1], its temporal positional embedding is assigned as:

PExi
= f(

F

2
+

F

Fsamp
(i− Fsamp

2
)), (2)

which ensures that videos with less frame number Fsamp have the same input range [0, F ] for the
embedding function f , as the pertaining stage of video DiT.
To further decouple the temporal motion from spatial appearance, we further introduce a motion
loss (Ling et al., 2024) by eliminating the appearance and focusing on the changes in the temporal
dimensions. We first define the motion latent v̂ for each frame i as: v̂i,t = vi,t − vi−1,t.

Then, we define the motion loss following (Zhao et al., 2023b) as the negative cosine similarity
between the ground truth motion latent and predicted motion latent:

LMotion = Exi,1∼Pdata,xi,0∼N(0,I),i∼U(0,F )[1− CosineSim(v̂i,t, v̂θtemp (xi,t, t, p))]. (3)

Finally, the total loss for temporal LoRAs is the combination of general video denoising loss and
motion loss as Ltemp = Lvideo_denoise + LMotion.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In our experiment, we employ the open-sourced video generation model WAN-2.1 (Wang et al.,
2025a) as the base text-to-video generation model. The LoRA ranks are 128 in both stages. We
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Figure 5: Gallery of our proposed methods. Given a reference video, our EffiVMT capability of
generating a high-quality video clip with the same motion, including single object motion, multiple
object motion, complex human motion, and camera motion.

first randomly select a single frame and take about 3,000 steps for spatial appearance learning. The
AdamW (Loshchilov & Hutter, 2017) optimizer is utilized, and the learning rate is 1× 10−5. The
spatial weight decay is 0.1. During the third tuning stage, we freeze the spatial head LoRA and only
train the temporal head LoRA for 2000 steps with learning rate 1 × 10−5 and weight decay 0.99.
More details and evaluation metrics can be found in Appendix A.

4.2 MOTIONBENCH

In order to address the lack of a benchmark in video motion transfer, we introduce MotionBench, a
comprehensive benchmark to evaluate the ability of current motion transfer approaches. In detail,
we collect 200 videos from four aspects, including 1). camera motion, 2). single object motion,
3). multiple object motion, and 4). complex human motion. Single object motion sequences focus
on diverse motion patterns from a single subject. Multiple object motion involves the consistency
of spatial relationships between different instances. Camera motion evaluates viewpoint changes
through both simple camera trajectories (zoom, tilt, pan) and complex camera operations. Here,
single/multi-object refers to general objects and animals, while human motion contains more non-rigid
deformations, so we treat it separately. The 30% videos in our benchmark are generated by text-to-
video generation models (Wang et al., 2025a), and other videos are obtained from publicly licensed
video websites. We use the GPT4o (OpenAI, 2024) to get the video captions. In MotionBench,
each video is approximately 5 seconds long with 150 frames. MotionBench provides a standardized
evaluation protocol across diverse motion categories, enabling systematic assessment and comparison
of motion transfer methods.

4.3 COMPARISON WITH BASELINES

In the following paragraphs, we qualitatively and quantitatively compare our method with previ-
ous state-of-the-art methods. We also apply their methods to Wan-2.1 (Wang et al., 2025a) and
CogVideo (Yang et al., 2024e) for fair comparison (See Appendix E.2).

Qualitative comparison. We compare our approach with previous video motion transfer meth-
ods visually, including state-of-the-art video motion transfer methods: MOFT (Xiao et al., 2024b),
MotionInversion (Wang et al., 2024a), MotionClone (Ling et al., 2024), SMM (Yatim et al., 2024),
MotionDirector (Zhao et al., 2023b), DiTFlow (Pondaven et al., 2024). We exclude Motionshop (Yesil-
tepe et al., 2024) and MotionCrafter (Zhang et al., 2023b) from our comparisons as no public release
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Figure 6: Qualitative comparison with baselines. We perform the visual comparison with various
baselines using various kinds of motions. Our method obtains better performance in various motions.

Table 1: Comparison with state-of-the-art video motion transfer methods. Red and Blue denote the best
and second best results, respectively.

Method Quantitative Metrics User Study

Text Sim.↑ Motion Fid.↑ Temp. Cons.↑ Time (s)↓ Motion Pres.↓ App.↓ Text Align.↓ Overall↓

Training-free methods
MOFT (Xiao et al., 2024b) 0.286 0.792 0.922 1230 6.883 6.631 5.894 6.639

MotionClone (Ling et al., 2024) 0.302 0.831 0.901 1015 6.283 5.874 6.642 4.192
SMM (Yatim et al., 2024) 0.279 0.932 0.918 775 4.350 5.086 4.205 5.883

DiTFlow (Pondaven et al., 2025) 0.375 0.807 0.941 712 3.326 2.417 2.215 3.284

Tuning-based methods
MotionInversion (Jeong et al., 2024b) 0.295 0.831 0.771 2315 5.417 3.295 5.117 5.074
MotionDirector (Zhao et al., 2023b) 0.292 0.896 0.939 3008 2.217 4.208 3.298 2.216

Ours 0.380 0.971 0.976 727 1.123 1.335 1.174 1.132

exists. Our experimental results exhibit EffiVMT better performance and versatility across diverse
motion transfer scenarios. As illustrated in Fig. 6, in single object motion cases (first column), we
find that the previous works fail to follow source motion. In contrast, our approaches effectively
transform the motion from the source video into the target object, maintaining a consistent motion
pattern. For multi-object cases, MotionDirector (Zhao et al., 2023b) and SMM (Yatim et al., 2024)
have the challenge of handling multi-object interaction motion. Our method enables generating
videos with aligned movement patterns, preserving the spatial relationships between moving sub-
jects. Additionally, we provide a visual comparison of complex camera motion. The visual results
demonstrate the superiority of our methods in camera motion transfer capabilities.

Quantitative comparison. We compare our method with state-of-the-art video motion transfer on
our MotionBench, and the results are shown in Tab. 1. Due to the limited video length of previous
works, all evaluations are performed in 32 frames at a resolution of 512 × 512. Here, we classify
the SOTA methods as two classes, training-free or tuning-based, according to whether they use
spatial/temporal LoRA to optimize complex motion patterns. (a) Time: Thanks to sparse motion
sampling, EffiVMT is the fastest tuning-based method. Moreover, our running time is on par with
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training-free approaches while delivering superior performance. (b) Motion Fidelity: Following
(Yatim et al., 2024), motion fidelity is applied to evaluate tracklet similarity between reference and
output videos. (c) Temporal Consistency: We evaluate the average frame-to-frame coherence using
CLIP (Radford et al., 2021) feature similarity among consecutive video frames. (d)Text similarity:
We use CLIP to extract target video features and compute the average cosine similarity between
the input prompt and all video frames. (f) User study: Since automatic metrics often fail to reflect
real preferences, we invited 20 volunteers to rank methods on MotionBench across four aspects
including motion preservation, appearance diversity, text alignment, and overall quality from 1 (best)
to 7(worst). The average rank per method (lower is better) is shown in Tab. 1 (1=best, 7=worst). Our
method achieves the top result in both automatic metrics and human preference.

4.4 ABLATION STUDY

In this section, we conduct a systematic ablation study to isolate and quantify the contribution of each
key component in our framework. The qualitative and quantitative ablation study results are shown in
Fig. 7 and Tab. 2, respectively. More ablation studies can be found in the Appendix F.

Table 2: Quantitative ablation. Red and Blue denote best, 2nd.
Baseline means we disables all three proposed components simulta-
neously.

Method Text Sim.↑ Motion Fid.↑ Temp. Cons.↑ Time(s)↓

Baseline 0.362 0.658 0.824 2493
w/o STD LoRa 0.364 0.546 0.845 971
w/o Adaptive RoPE 0.371 0.655 0.817 792
w/o Sparse Sampling 0.369 0.975 0.967 2068

Ours 0.380 0.971 0.976 727

W/o Adaptive 
RoPE

W/o STD 
LoRaInput video

W/o Sparse
Motion sampling Ours

781s2053s

Figure 7: Ablation study about proposed modules. We
remove the proposed modules to evaluate their effectiveness.
“STD” means spatial–temporal decoupled LoRA.

Effectiveness of spatial–temporal
decoupled LoRA. As shown in the
second row of Fig. 7 and the “w/o
STD LoRA” ablation in Tab. 2, the
naive baseline jointly tunes without
separating spatial and temporal atten-
tion heads, failing to decouple the
dog’s appearance and causing the
edited tiger to look unnaturally black.
In contrast, our decoupled LoRA pre-
serves motion while effectively modi-
fying appearance, as evidenced by the
improved text similarity in Tab. 2.

Effectiveness of adaptive RoPE.
Thanks to our adaptive RoPE design,
the model can precisely infer each
sampled frame’s original index under
sparse motion sampling, ensuring the
edited motion remains aligned with
the source. Without adaptive RoPE,
the tiger’s motion becomes disordered
and fails to match the original video
dynamics. In Tab. 2, an improvement
of about 48.3% over motion fidelity,
quantitatively confirms the benefit of our adaptive RoPE.

Effectiveness of sparse motion sampling. By employing sparse motion sampling in the temporal
tuning phase, we reduce the tuning time to 727s. Note that in the “w/o sparse sampling” setting, we
still apply adaptive RoPE but tune on all video frames, resulting in identical motion fidelity (0.975 vs.
0.971) while incurring the higher time cost.

5 CONCLUSION

In this paper, we propose EffiVMT, a three-stage video motion transfer framework that tunes the
video diffusion transformer to synthesize video clips with complex motion. In detail, we analyze the
motion inefficiency and tuning inefficiency in DiT-based video motion transfer. Through the proposed
efficient spatial-temporal decoupled LoRA, we achieve better motion consistency. To address the
tuning inefficiency, we introduce adaptive RoPE and sparse motion sampling to accelerate training.
Extensive experimental results demonstrate the effectiveness of our method, which outperforms a
wide range of previous methods, achieving state-of-the-art video motion transfer quality.
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REPRODUCIBILITY STATEMENT

All quantitative tables, qualitative images, and video results in this work are reproducible and
correspond to raw model outputs without manual editing or post-hoc alteration, except for minimal
format conversion and compression. After the review process, we will release a partial public
repository to support reproduction, including inference scripts, example data, and example videos
under CC-BY-NC-4.0. The datasets, configurations, and procedures used for training and evaluation
are documented in Section 4.1 and Appendix D. User study participants were compensated, gave
informed consent, and could withdraw at any time. All visual results in the paper and demo are
unedited.

ETHICS STATEMENT

Our work studies motion-transfer video editing and has social potential impact as shown in Ap-
pendix. L. The proposed dataset contains videos of people, vehicles, and landscape camera motions.
To mitigate representational bias in demonstrations, we curated and display examples spanning
different races, genders, and styles in the main text and appendix. All illustrative videos shown in
this paper are sourced from publicly available web content; we respect the original licenses and terms
of service and use the content solely for research purposes. We will not publicly release the dataset
prior to completing the insertion of AI-generated watermarks and an ethics/content-safety audit. We
explicitly prohibit harmful or deceptive uses of our methods and data, including deepfake attacks
and other malicious generative behaviors. When any portion of our code is made public, we will
enforce visible and/or machine-detectable watermarking during inference to help deter misuse. Any
future releases will be accompanied by usage terms that forbid impersonation, harassment, or other
malicious applications, and we will remove or restrict content that raises privacy, legal, or safety
concerns.
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A IMPLEMENTATION DETAILS

For sparse motion sampling, we set the sampling stride to 5. The input videos are fed into the
model as 512× 512. The sampled frame number is 16 in the second stage. In the inference stage,
we leverage the flow matching scheduler (Lipman et al., 2023) with a sampling step of 30, and a
text-guidance ratio of 7.0. The LoRA weights are set as 0.5. For the user study, to achieve a more
comprehensive evaluation of human preferences in video quality, we perform the user study with
four aspects. Motion preservation assesses the motion’s adherence between reference videos and
generated ones. Appearance diversity measures the diversity according to the reference video. Text
alignment means the semantic alignment between generated videos and prompts. Overall assesses
the subjective quality of the generated videos. We invite 20 volunteers to provide human feedback.
The questionnaire includes 30 cases about our method and other baselines. The volunteers are asked
to rank the video clips in terms of the performance of various motion transfer results. (The smaller
the score, the better; 1 point is the best.). Then, we calculate the average result for each baseline.

B RELATED WORK

Diffusion-based video editing. Image editing is a broad and impactful field with diverse applications.
Early works (Mokady et al., 2023; Meng et al., 2022; Kawar et al., 2023; Cao et al., 2023; Hertz
et al., 2023) explore training-free or fine-tuning-based methods to modify image attributes via text
prompts. Subsequent approaches (Zhao et al., 2024; Hui et al., 2024; Zhang et al., 2024; Yang et al.,
2024a) advance instruction-based editing by training on curated datasets. A line of research explores
additional control signals, such as masked regions (Zhuang et al., 2024; Ju et al., 2024), compositing
content (Chen et al., 2024b; Yang et al., 2023a; Song et al., 2023), customized ID with reference
images (Li et al., 2024a; Ruiz et al., 2023; Liu et al., 2023a;b; Kumari et al., 2023; Kim et al.,
2024; Chen et al., 2024a; Xu et al., 2024b; Li et al., 2024b; Wang et al., 2024b), drag points (Cui
et al., 2024; Mou et al., 2024). However, most of these works are limited to single editing tasks,
making them inadequate for diverse real-world application scenarios. To address these limitations,
unified frameworks (Chen et al., 2025; Xiao et al., 2024a; Han et al., 2024) are introduced to support
various image editing and generation tasks. Recent advances in video editing can be categorized
into two main approaches based on their underlying architectures. Image-based methods typically
extend pretrained text-to-image models to the video domain. Tune-A-Video (TAV) (Wu et al., 2022)
pioneeRed this direction by adapting latent diffusion models for spatial-temporal generation through
one-shot tuning. Subsequent works (Qi et al., 2023; Ceylan et al., 2023; Ma et al., 2025) improved
temporal consistency through attention map fusion during inversion. Alternative approaches relying
on Neural Atlas (Kasten et al., 2021), dynamic NeRF deformation fields (Pumarola et al., 2021; Chai
et al., 2023; Ouyang et al., 2023), optical flow, (Yang et al., 2023b; Cong et al., 2023; Zhang et al.,
2023a), feature aggregation (Geyer et al., 2023; Jeong & Ye, 2023) significantly mitigate the temporal
inconsistency issue. At the same time, they still suffer from artifacts when handling videos with large
motions. Video-based methods leverage emerging video foundation models (Yu et al., 2023; Guo
et al., 2024; Yang et al., 2024e) to overcome some limitations of image-based approaches. Prior
research efforts (Gu et al., 2023; Mou et al., 2025; Liu et al., 2025b; Ku et al., 2024) demonstrate
improved capabilities in motion transfer and editing by exploiting rich motion priors on single tasks.
Recent works also investigate the merit of unified video generation and editing frameworks (Jiang
et al., 2025).

C PRELIMINARIES: LOW-RANK ADAPTATION FOR VIDEO DIFFUSION
TRANSFORMER MODEL

Video diffusion models. Following pioneering Latent Diffusion Model (Chai et al., 2023), video
diffusion models first compress the input video V in pixel space into a latent space x = E(V ) utilize
a pretrained encoder E , where the latent space x can be reconstructed back to pixel space video by a
decoder D. The encoder E and decoder D are built with causal 3D convolution blocks, which can
encode single-frame images and multi-frame videos into the same latent space. The size of a video
latent x is F × C ×W ×H , where F,C,W,H stand for the video length, latent channels, width,
and height, respectively.
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Recent video diffusion models (Wang et al., 2025a) leverage flow matching to formulate the diffusion
and denoising process in the latent space. During straining, a timestep t ∈ [0, 1] is sampled from a
logit-normal distribution, and the intermediate latent xt is defined as the linear interpolation between
image or video latent x1 and a random noise x0 ∈ N (0, I) as

xt = tx1 + (1− t)x0. (4)

The velocity vt is further defined as

vt =
dxt

dt
= x1 − x0 (5)

The diffusion models (Wang et al., 2025a; Kong et al., 2024) take intermediate latents xt as input and
are trained to estimate the velocity vt using mean squaRed error loss.

min
θ

Ex1,x0∼N(0,I) ∥vt − vθ (xt, t, p)∥22 , (6)

where p is embedding the text description for the input clean video.

The inference stage starts from a Gaussian noise x0, then the pretraiend diffusion model gradually
removes the noise in N discrete timesteps t = tN , ..., t0 as xti−1 = xti + (ti−1 − ti)vθ(xti , ti)
Finally, the pRedicted latent x1 is decoded to pixel space by the pretrained decoder D.

Diffusion Transformers and Low-Rank Adaptation. Recently, Diffusion Transformer (DiT) (Wang
et al., 2025b) demonstrated better motion consistency and visual quality over the previous UNet (Chai
et al., 2023) backbone in text-to-video generation. In the DiT model architecture vθ, the noisy latent
xt is first divided into patches of size P × P , and then rearranged into the token sequence of shape
(F · HP ·

W
P )×D with token dimensionality D.

The patchified latent token sequence is fed into a stack of N DiT blocks (Wang et al., 2025a). In each
block, latent tokens are processed by feedforward layers and multi-head self-attention layers, while
text embedding p is injected through the cross-attention block (Wang et al., 2025a) or the multimodal
self-attention block.

To preserve spatial relationships between patches during attention computation, a positional em-
bedding PE = f(i) is introduced. This embedding captures the positions i of patches within
the sequence and conditions the denoising process vθ(xt, p, t, PE). Different positional encoding
methods (Vaswani et al., 2017) can be applied, including adding PE to the input patches at the
initial stage of vθ directly, or incorporating it into the attention mechanism by rotating query and key
vectors (Kong et al., 2024).

Complex human motion

Multiple object motionSingle object motion

Camera motion

Figure 1: MotionBench. We collect four cate-
gories of motion, including single object motion,
multiple object motion, complex human motion,
and camera motion.

To alleviate the high computation cost of video
DiT (e.g, WAN (Wang et al., 2025a) has 14B
parameters), low-rank adaptation (LoRA) has
been applied in downstream fine-tuning and ap-
pearance customization (Ma et al., 2024; Jeong
et al., 2024a). Specifically, LoRA proposes to
optimize a Low-Rank factorized residual ∆W
of the parameters as

W = W0 +∆W = W0 +BA, (7)

where W0 ∈ Rd×k is the weights of the atten-
tion block in the pretrained model, B ∈ Rd×r

and A ∈ Rr×d are factors where r is much
smaller than d and k so the updated parame-
ters are Reduced compaRed with optimizing the
whole model.
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D MOTIONBENCH

D.1 BENCHMARK CONSTRUCTION

In Fig. 1, the 30% videos in our benchmark are generated by text-to-video generation models (Kong
et al., 2024; Wang et al., 2025b). The other videos are obtained from publicly licensed video websites.
We also use the GPT4o (OpenAI, 2024) to get the video captions. Note that the video clips with
excessive motion or overly large subjects are manually filteRed out, which often exhibit noticeable
blur. Each caption is about 20 words, and each video is approximately 5 seconds long with 150
frames.

MotionBench contains 200 videos, categorized as:

• Camera motion: 49 videos
• Single object motion: 52 videos
• Multiple object motion: 51 videos
• Complex human motion: 48 videos

All selections were random after automated filtering without cherry-picking. The benchmark includes
both real and synthetic videos, each paiRed with GPT-4o and human-written prompts for semantic
diversity. Such a benchmark with various motions would be beneficial for the development of the
community.

D.2 COMPARISON WITH ESTABLISHED BENCHMARKS

MotionBench improves upon DAVIS and FIVE (Xie et al., 2025) by:

• Covering more motion types (including camera and separated multi-object motion)
• Larger scale (200 vs. FIVE’s 100)
• Inclusion of synthetic data and diverse prompts
• Randomized, automated selection pipeline

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 RESULTS ON DAVIS DATASET

For comprehensive comparison, We report the results of different baselines and ours on the DAVIS
dataset in Tab. 1. These results demonstrate that our method generalizes well not only on our
MotionBench but also DAVIS.

Table 1: Comparison on DAVIS dataset (following DiTFlow’s protocol). We randomly select 50
high-quality videos from the DAVIS dataset (Perazzi et al., 2016). Red and Blue denote the best and
second best results, respectively.

Methods Text Sim. ↑ Motion FID ↑ Temp. Cons. ↑ Time (s) ↓
Training-free methods

MOFT 0.244 0.659 0.884 1267
MotionClone 0.249 0.680 0.859 1049
SMM 0.333 0.765 0.883 795
DiTFlow 0.318 0.680 0.914 734

Training-based methods
MotionInversion 0.239 0.697 0.726 2429
MotionDirector 0.349 0.727 0.901 3104
Ours (EffiVMT) 0.424 0.883 0.936 762
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Figure 2: More visual comparisons with WAN-2.1. For fair comparison, we present the qualitative
comparison with baselines using WAN-2.1 (Wang et al., 2025a).

E.2 FAIR COMPARISON USING WAN-2.1 AND COGVIDEO BACKBONE

We re-implement DiTFlow and MotionDirector with WAN-2.1 and CogVideo backbone for fair
comparison. The results are shown in Tab. 9 and Tab. 4, respectively. The performance gain of
EffiVMT is influenced by the backbone’s motion modeling capability:

• On WAN-2.1 (strong motion prior): Motion FID gain = 0.971 - 0.931 = 0.04
• On CogVideoX (weaker motion prior): Motion FID gain = 0.944 - 0.928 = 0.016

This validates that our sparse motion sampling and adaptive RoPE benefit more from stronger base
models. Future work will explore adaptation to multimodal DiTs (e.g., CogVideoX’s expert attention).

Table 2: Comparison with ReVideo.

Methods Text Sim. ↑ Motion FID ↑ Temp. Cons. ↑ Time (s) ↓
ReVideo 0.247 0.793 0.882 1013
Ours (EffiVMT) 0.380 0.971 0.976 727

Table 3: Comparison using WAN-2.1 backbone (re-implemented baselines). We select two SOTA
training-free/training-based approaches, DiTFlow (Pondaven et al., 2025) and MotionDirector (Zhao
et al., 2023b) for fair comparison. Red and Blue denote the best and second best results, respectively.

Methods Text Sim. ↑ Motion FID ↑ Temp. Cons. ↑ Time (s) ↓
DiTFlow 0.369 0.872 0.947 713
MotionDirector 0.352 0.931 0.963 4641
Ours (EffiVMT) 0.380 0.971 0.976 727

Across both backbones, our method consistently achieves the top results. On WAN-2.1, it yields
a Motion FID Reduction of 0.040 relative to the strongest baseline (from 0.971 to 0.931), while
on CogVideo2 it Reduces Motion FID by 0.022 (from 0.944 to 0.922). These gains, alongside
improvements in Text Similarity and Temporal Consistency and competitive or faster generation time,
indicate superior intent adherence, motion stability, and efficiency. The larger improvement under the
stronger motion prior (WAN-2.1) further suggests that our approach better exploits backbone motion
priors, validating the effectiveness of our design across diverse generative settings.
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Table 4: Comparison using CogVideoX backbone. Performance gap is smaller due to CogVideoX’s
weaker motion modeling capability. Red and Blue denote the best and second best results, respec-
tively.

Methods Text Sim. ↑ Motion FID ↑ Temp. Cons. ↑ Time (s) ↓
DiTFlow 0.371 0.813 0.937 716
MotionDirector 0.343 0.928 0.952 4287
Ours (EffiVMT) 0.373 0.944 0.963 732

Table 5: Extended evaluation using VBench metrics and Warp Error. Red and Blue denote the
best and second best results, respectively.

Methods Subj. Consis. ↑ Temp. Flicker ↑ Motion Smooth ↑ Overall Consis. ↑ Warp Err. ↓
Training-based methods

MOFT 0.7527 0.7438 0.7041 0.1932 4.62
MotionClone 0.7619 0.7821 0.7628 0.2315 3.22
SMM 0.7845 0.7764 0.7543 0.2087 2.89
DiTFlow 0.8128 0.8236 0.8017 0.2213 2.26

Training-free methods
TokenFlow 0.8314 0.8217 0.8114 0.2106 2.86
StreamV2V 0.8125 0.8169 0.8251 0.1987 3.13
MotionInversion 0.8425 0.8673 0.8515 0.2326 2.31
MotionDirector 0.8763 0.8432 0.8423 0.2418 2.57
Ours 0.9113 0.8931 0.8842 0.2915 1.74

E.3 ADDITIONAL METRICS: VBENCH AND WARP ERROR

We follow SMM (Yatim et al., 2024) in not using warp error as a primary metric, as it cannot evaluate
structural deviations in motion transfer tasks. However, for completeness, we report it in Tab. 5 and
our method achieves the lowest error. Across all VBench metrics, our method consistently achieves
the top performance, indicating superior subject consistency and Reduced temporal flicker relative to
prior work. Training-based methods exhibit weaker overall VBench scores and higher warp error.

F MORE ABLATION STUDIES

F.1 ATTENTION HEAD ASSIGNMENT STRATEGY

Table 6: Ablation on attention head assignment (random vs. pseudo-label based).

Methods Text Sim. ↑ Motion FID ↑ Temp. Cons. ↑
Random Assigning 0.317 0.922 0.864
Ours (Pseudo-label) 0.380 0.971 0.976

Rationale for pseudo-labels: InspiRed by U-Net’s decoupled attention, we derive pseudo-labels
Mspatial and Mtemporal from DiT’s attention maps:

• Mspatial: High activation within same/adjacent frames → focuses on spatial structure.
• Mtemporal: High activation at same positions across frames → focuses motion trajectory.

This guides head classification without manual annotation. We also compare our head classification
method with random assigning, the results are shown in Tab. 6.
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Table 7: Ablation on alpha (weighting factor for head classification).

Alpha Text Sim. ↑ Motion FID ↑ Temp. Cons. ↑
0.75 0.347 0.925 0.923
1.00 0.362 0.948 0.957
1.25 0.380 0.971 0.976
1.50 0.374 0.962 0.958
1.75 0.368 0.957 0.954

(a) Overlap between temporal head and spatial head. (a) Visualization between temporal head and spatial head.
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Figure 3: Visualization and overlap illustration. We note that most of the attention heads are easy
to separate effectively.

F.2 HYPERPARAMETER SENSITIVITY OF ALPHA

Alpha,the weighting factor for head classification, is dataset-dependent; we found 1.25 optimal for
MotionBench. The detailed results for different Alpha value are shown in Tab. 7. The ablation study
on the hyperparameter α reveals a clear unimodal trend across evaluation metrics: performance
improves as α increases from small to moderate values, peaks at α = 1.25, and then declines as α
grows further. At α = 1.25, the model attains its best overall results. These findings indicate that
α materially affects generation quality, including intent adherence, motion fidelity, and temporal
coherence.

G ADDITIONAL METRICS: VBENCH AND WARP ERROR

H COMPARISON WITH ADDITIONAL BASELINES

In Tab. 8, we compare with two more baselines( VideoComposer and SMA) on MotionBench. As
shown in the Tab. 8, our method surpasses competing approaches and achieves the best performance
on Text Similarity, Motion FID, Temporal Consistency, and Time. These results demonstrate that,
relative to other baselines, our approach attains state-of-the-art intent adherence, motion consistency,
and generation speed.

I VISUALIZED COMPARISON WITH BASELINE

In Fig. 8, we provide qualitative comparisons across four representative single-object motion (a swan
is swimming), camera motion (a blockhouse captuRed with an arc shot), multiple-object motion
(a camel is turning and a panda is sniffing), and complex human motion (a spiderman is climbing
on a wall) to assess motion fidelity, temporal coherence, and intent adherence. Prior approaches
(e.g., DiTFlow, MotionDirector, MOST, VMD, MotionDriver) frequently exhibit inconsistent motion
patterns, including foreground trajectory jitter and identity drift, inaccurate or drifting camera
control with unstable parallax, asynchronous or conflicting dynamics between multiple objects,
and discontinuous human pose transitions with temporal flicker and limb distortions. In contrast,
our method produces: (i) stable single-object trajectories with smooth velocities and preserved
appearance, (ii) precise and temporally consistent camera motion (e.g., a smooth arc shot) with
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Table 8: Comparison with VideoComposer and SMA.

Methods Text Sim. ↑ Motion FID ↑ Temp. Cons. ↑ Time (s) ↓
VideoComposer 0.354 0.942 0.963 1103
SMA 0.358 0.935 0.956 3216
Ours 0.380 0.971 0.976 727

Table 9: Ablation with sparse sampling ratio.The input video is 81 frame. We select 1/2,1/4,1/8,1/10
of the video frames for ablation. Red and Blue denote best, 2nd.

Methods Text Sim. ↑ Motion FID ↑ Temp. Cons. ↑ Time (s) ↓
1/2 0.379 0.970 0.975 912
1/4 0.380 0.971 0.976 727
1/8 0.345 0.943 0.951 583
1/10 0.328 0.915 0.938 374

coherent background alignment and realistic parallax, (iii) coordinated, temporally aligned behaviors
for multiple subjects without cross-object interference, and (iv) plausible complex human motion
with consistent body geometry, articulated limb kinematics, and realistic contact dynamics. Overall,
these results indicate that our approach effectively resolves motion inconsistency observed in prior
work, yielding coherent dynamics and faithful adherence to the textual intent across diverse motion
regimes.

J MORE RESULTS

We show more video motion transfer results produced by our method in an MP4 file, which can be
found in the file: demo.mp4. The accompanying video further demonstrates our method’s motion
transfer capabilities across a broad spectrum of scenarios, including single-object motion, camera
motion, multiple-object motion, and complex human motion. The demonstrations span natural
landscapes, animals, vehicles, close-up facial footage, and architectural cinematography, highlighting
robust camera control and high temporal coherence. The video also presents ablation analyses and
side-by-side comparisons with prior methods. Together, these comprehensive examples substantiate
the effectiveness of our approach and underscore its advantages over competing solutions, clearly
conveying the quality, consistency, and intent adherence of the generated results.

K LIMITATION

• As a tuning-based method, our method optimizes LoRA for each input video. CompaRed to
tuning-free methods, LoRA tuning is more time-consuming but can generalize to more complex
motion.

• Since our base model WAN has more learnable parameters than previous video diffusion models,
optimizing WAN with LoRA requires more training cost. In the future, this issue will be addressed
with better base models and more acceleration strategies.

L SOCIAL POTENTIAL IMPACT

The development of EffiVMT, an advanced framework for video motion transfer using a spatial-
temporal decoupled LoRA, holds significant social potential across various domains. By facilitating
the generation of complex motions in videos, this technology can greatly enhance creative industries
such as film, animation, and gaming, allowing artists and creators to easily produce high-quality,
dynamic content that was previously time-consuming and resource-intensive to achieve.

Moreover, the introduction of MotionBench as a benchmark will promote standardization and collab-
oration within the research community, driving further advancements in video diffusion technologies.
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Figure 4: More comparisons of our methods against baselines on motion of objects and cameras.

Three astronauts with orange suits are skateboarding.
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Iron Man, Captain America, and spider man are skateboarding.

Three penguins walk together on the icy surface

Three kangaroos leap across a sunlit desert

Figure 5: More object cases. We are able to animate multiple objects with consistent motion.
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Three young lambs wander across a grassy clearing

Three foxes wander across a grassy clearing

Figure 6: More object cases. We are able to animate multiple objects with consistent motion.
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Four white birds glide quietly on dark surface of the water.

Four crocodiles glide quietly on dark surface of the water.

Four fishes glide quietly on dark surface of the water.

Figure 7: More object cases. We are able to animate multiple objects with consistent motion.
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A lone figure stands on a tiled platform, gazing toward a dramatic mountain peak

A lone figure stands centered on a futuristic platform between two towering blue structures

0 th 30 th 60 th 90 th 120 th 150 th

Figure 8: Longer video. We are able to achieve longer video motion transfer.

This could lead to improved applications in fields like education, where engaging video content can
enhance learning experiences, or in virtual reality, enabling more immersive environments.

Additionally, the efficiency of EffiVMTcan democratize access to high-quality video production,
making it more accessible to individuals and small businesses, fostering innovation and creativity
in the digital landscape. However, as with any advanced technology, it is vital to consider ethical
implications and ensure responsible use to prevent potential misuse in areas such as misinformation
or deepfakes. Overall, EffiVMThas the potential to significantly impact not only artistic fields but
also education, virtual experiences, and the broader digital economy.

M THE USAGE OF LARGE LANGUAGE MODELS

In this paper, the usage of the LLM mainly falls into the following aspects:

• Grammar checking and format optimization: In the paragraphs of the paper, LLMs are
used for grammar error checking and format checking of charts and graphs.

• Language polishing: The text description part of the paper uses LLMs to polish and
optimize the language expression.

• All authors are responsible for the content generated by the LLMs.
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