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Abstract

In recent studies, researchers have used large001
language models (LLMs) to explore semantic002
representations in the brain; however, they have003
typically assessed different levels of semantic004
content, such as speech, objects, and stories,005
separately. In this study, we recorded brain006
activity using functional magnetic resonance007
imaging (fMRI) while participants viewed 8.3008
hours of dramas and movies. We annotated009
these stimuli at multiple semantic levels, which010
enabled us to extract latent representations of011
LLMs for this content. Our findings demon-012
strate that LLMs predict human brain activ-013
ity more accurately than traditional language014
models, particularly for complex background015
stories. Furthermore, we identify distinct016
brain regions associated with different semantic017
representations, including multi-modal vision-018
semantic representations, which highlights the019
importance of modeling multi-level and multi-020
modal semantic representations simultaneously.021
We will make our fMRI dataset publicly avail-022
able to facilitate further research on aligning023
LLMs with human brain function.024

1 Introduction025

Language models, which learn the statistical struc-026

ture of languages from large corpora to enable ma-027

chines to understand semantics, have made signifi-028

cant advances (Devlin et al., 2018; Radford et al.,029

2019; Zhang et al., 2022; Touvron et al., 2023). Be-030

cause semantic comprehension is fundamental to031

human intelligence, the correspondence between032

human brain activity and the latent representations033

of language models has been an intriguing sub-034

ject of research. To examine the correspondence035

between human and language models, in recent036

studies, researchers used brain encoding mod-037

els (Naselaris et al., 2011; Nishimoto et al., 2011;038

Huth et al., 2012) to predict brain activity based039

on the high-dimensional latent representations of040

language models (Jain and Huth, 2018; Jat et al.,041

2019; Toneva and Wehbe, 2019; Caucheteux et al., 042

2021; Schrimpf et al., 2021; Goldstein et al., 2022; 043

Caucheteux et al., 2022; Antonello et al., 2023). 044

The quantitative assessment of the correspondence 045

between the two can serve as a unique benchmark 046

for modern large language models (LLMs) because 047

it potentially provides a biological benchmark for 048

the alignment between LLMs and humans. 049

In previous studies, researchers typically focused 050

on a single aspect of semantic comprehension (e.g., 051

speech content); however, realistic scenarios are 052

inherently multifaceted. For instance, a scene in 053

which two people are speaking can be depicted 054

through multiple semantic levels in language: their 055

speech content, their identities and the visual ap- 056

pearance of their outfits, the location and time of 057

the scene, and the broader context of the conversa- 058

tion. In traditional studies, researchers often ad- 059

dress these levels of semantics separately, which 060

leads to a lack of clarity on how multiple levels of 061

semantic content are attributed to brain activity and 062

how the latent representations of language models 063

might align with the human brain processing of 064

multiple levels of content. 065

In this study, we address these issues by record- 066

ing human brain activity using functional magnetic 067

resonance imaging (fMRI) while participants view 068

8.3 hours of videos of dramas or movies. Impor- 069

tantly, we heavily annotate these videos across mul- 070

tiple levels of semantic content related to the drama, 071

including speech dialogue, visual objects, and back- 072

ground story. We extract latent representations of 073

these annotations from LLMs, then build encoding 074

models that predict brain activity from these latent 075

representations to quantitatively compare how each 076

type of information is represented in different brain 077

regions. Furthermore, we quantitatively assess 078

how each brain region uniquely captures differ- 079

ent aspects of semantic content using different 080

types of latent representations derived from LLMs 081

and multi-modal LLMs. 082
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Our contributions are as follows:083

1. Unlike previous researchers, who modeled084

various semantic modalities independently,085

we demonstrate that different semantic modal-086

ities uniquely account for brain activity in dis-087

tinct brain regions.088

2. We show that the superiority of LLMs is not089

uniform across different modalities: LLMs090

are particularly effective in modeling story-091

related information.092

3. We show that latent representations of multi-093

modal vision-semantic LLMs predict brain094

activity and uniquely capture representations095

in the association cortex better than unimodal096

models combined .097

4. We collect densely annotated fMRI datasets098

acquired while the participants watch 8.3099

hours of videos as another benchmark for the100

biological metric of the alignment between101

LLMs and humans. We will publish these102

datasets.103

2 Related work104

In numerous previous studies, researchers exam-105

ined the relationship between the latent represen-106

tations of language models and brain activity dur-107

ing speech comprehension. These researchers pri-108

marily focused on the correspondence between la-109

tent representations of language models obtained110

from speech transcriptions and brain activity (Huth111

et al., 2016; Jat et al., 2019; Toneva and Wehbe,112

2019; Schmitt et al., 2021; Caucheteux et al., 2021,113

2022). Recent findings have further demonstrated114

that LLMs provide a better explanation of brain ac-115

tivity than traditional language models (Schrimpf116

et al., 2021; Goldstein et al., 2022; Antonello et al.,117

2023; Tuckute et al., 2024).118

Regarding the semantic content of the visual119

object in the scene, the correspondence between120

the latent representations of deep learning models121

related to the displayed objects and human brain122

activity have been studied extensively (Güçlü and123

van Gerven, 2015; Horikawa and Kamitani, 2017;124

Groen et al., 2018; Wen et al., 2018; Khosla et al.,125

2021; Allen et al., 2022; Chen et al., 2023; Wang126

et al., 2023; St-Yves et al., 2023; Takagi and Nishi-127

moto, 2023; Luo et al., 2023). In most of these128

studies, researchers used neuroimaging data while129

participants watched static images or short video 130

clips. 131

Although several neuroscience studies have been 132

conducted in which researchers explored high-level 133

story content in the brain using a naturalistic movie 134

watching experiment (Hasson et al., 2008; Wehbe 135

et al., 2014; Aw and Toneva, 2022; Chang et al., 136

2021; Nastase et al., 2021), these researchers typi- 137

cally did not explicitly model high-level story con- 138

tent using language models. Furthermore, they 139

have not examined the unique explanatory power 140

story-specific semantic content exerts on brain ac- 141

tivity compared with other types of semantic con- 142

tent. 143

There is a growing consensus that LLMs mir- 144

ror human brain activity more accurately than tra- 145

ditional language models during semantic com- 146

prehension; however, in the individual studies de- 147

scribed above, the reseachers addressed discrete 148

aspects of semantic comprehension independently. 149

This is problematic because humans process dif- 150

ferent types of semantic content simultaneously in 151

naturalistic scenarios, and such content may be rep- 152

resented differently in LLMs and the human brain. 153

Here, we address these issues by evaluating how 154

much each level of semantic content uniquely ex- 155

plains brain activity compared with other semantic 156

content. 157

3 Methods 158

3.1 fMRI experiments 159

We collect brain activity data from six healthy par- 160

ticipants with normal and corrected-normal vision 161

(three females; age 22–40, mean = 28.7) while 162

they freely watch 8.3 hours of videos of movies 163

or drama series. All participants are right-handed, 164

native Japanese speakers. They provided written in- 165

formed consent for the study and the release of their 166

data. The ethics and safety committees approved 167

the experimental protocol. 168

MRI data are acquired using a 3T MAGNETOM 169

Vida scanner (Siemens, Germany) with a standard 170

Siemens 64-channel volume coil. Blood oxygena- 171

tion level-dependent (BOLD) images are acquired 172

using a multiband gradient echo-planar imaging 173

sequence (Moeller et al., 2010) (TR = 1,000 ms, 174

TE = 30 ms, flip angle = 60◦, voxel size = 2×2×2 175

mm3, matrix size = 96× 96, 72 slices with a thick- 176

ness of 2 mm, slice gap 0 mm, FOV = 192× 192 177

mm2, bandwidth 1736Hz/pixel, partial Fourier 6/8, 178

multiband acceleration factor 6). Anatomical data 179
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Figure 1: Overview of the experiment and brain encoding models. a In the experiment, participants watch 8.3
hours of videos of dramas or movies while we measure their brain activity inside an fMRI scanner. We densely
annotate the videos with multiple levels of semantic content, which are used for extracting latent representations
from multiple language models. The annotations provide examples from specific scenes in the series ’Suits’. b For
each semantic feature obtained by the language models, we estimate linear weights for predicting brain activity
across the cerebral cortex from the feature using ridge regression. We subsequently apply the estimated weights
to the features of the test data to estimate brain activity. We calculate prediction performance using Pearson’s
correlation coefficient between the predicted and actual fMRI responses.

were collected using the same 3T scanner using180

T1-weighted MPRAGE (TR = 2530 ms, TE = 3.26181

ms, flip angle = 9◦, voxel size = 1 × 1 × 1 mm3,182

FOV = 256× 256 mm2). The preprocessing of the183

functional data includes motion correction, coregis-184

tration, and detrending. See Section A.1 for details185

of the acquisition and preprocessing procedures.186

3.2 Stimuli187

We use nine videos of movies or drama series as188

stimuli (10 episodes in total), with dense annota-189

tions related to those videos. The videos encom-190

pass various genres. Eight are international videos191

and one is a Japanese animation. The average play-192

back time of the 10 episodes is 49.98 minutes (rang-193

ing from 21 minutes to 125 minutes). We divide194

each episode into two to nine parts, each approxi-195

mately 10 minutes long, for use as stimulus videos 196

during the fMRI experiment. We play all the inter- 197

national videos in Japanese dubbed versions and 198

the subjects understand them in Japanese. We will 199

make our fMRI dataset publicly available for fu- 200

ture research on acceptance. See Section A.1.1 for 201

details of data collection. 202

The annotations include five levels of semantic 203

content from the videos: transcriptions of spoken 204

dialogue (Speech), objects in the scene (Object), 205

background story of the scene (Story), summary of 206

the story (Summary), and information about time 207

and location (TimePlace) (Figure 1a). The seman- 208

tic content consists of annotations that describe 209

the stimulus videos in natural language. This con- 210

tent differs in the nature of the description and the 211

timespan of the annotations. Specifically, Speech 212
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Model Layers Width Params.
Word2Vec
(Mikolov et al., 2013) 1 300 900M1

BERT
(Devlin et al., 2018) 12 768 110M

GPT2
(Radford et al., 2019) 36 1280 812M

OPT
(Zhang et al., 2022) 32 4096 6.7B

Llama 2
(Touvron et al., 2023) 32 4096 6.74B

Table 1: Summary of the five language models.

corresponds to the intervals of speaking, whereas213

Object is annotated every second, Story every 5214

seconds, Summary approximately every 1-3 min-215

utes, and TimePlace every time the screen changes.216

Multiple annotators independently label each level217

of semantic content, except for Speech: five for218

Object, three each for Summary and TimePlace,219

and two for Story. For all five classes of semantic220

annotations, at least two researchers independently221

and regularly review the annotations, making cor-222

rections if any errors are found in the descriptions.223

We also quantitatively confirm that the results are224

robustly reproduced when the annotators or data225

are divided. See Sections A.2 and A.3 for details226

of annotations and quality control.227

We divide the data into training and test datasets,228

and calculate all the prediction performance re-229

sults presented in this paper using the test dataset.230

Specifically, we use the fMRI scanning sessions231

corresponding to the last split of each movie or232

drama series, 7,737 seconds in total, as test data.233

We use the remaining sessions, 22,262 seconds in234

total, as training data.235

3.3 Feature extraction236

We obtain latent representations from five language237

models (Figure 1a): Word2Vec (Mikolov et al.,238

2013), BERT (Devlin et al., 2018), GPT2 (Radford239

et al., 2019), OPT (Zhang et al., 2022), and Llama240

2 (Touvron et al., 2023). We use Word2vec as241

a traditional language model. The summary of242

these language models is presented in Table 1. See243

Section A.1.5 for the information of the models we244

used.245

We extract the latent representations of the lan-246

guage models for the annotations from each of the247

hidden layers, except for Word2Vec, from which248

we obtain word embeddings. For each latent rep-249

resentation from each hidden layer, we build brain250

encoding model (see Section 3.4). We first extract251

the latent representations of annotations, each of 252

which consists of several tokens or words, for each 253

time point. Then, we average the latent represen- 254

tations of the LLMs across tokens or average the 255

word embeddings of Word2Vec across words. Be- 256

cause multiple annotations exist for each second, 257

except for Speech annotations, we calculate the 258

latent representations for each annotator for each 259

language model and then average the latent rep- 260

resentations across all annotators. For OPT and 261

Llama 2, we reduce the dimensions of the flattened 262

stimulus features using principal component anal- 263

ysis (PCA) and set the number of dimensions to 264

1280 (the same dimension as GPT2). We calculate 265

the PCA loadings based on the training data and 266

apply these loadings to the test data. In the main 267

analysis we calculate latent representations using 268

the annotation that correspond to the TR (1 sec- 269

ond). We confirm that the results do not change 270

significantly when we use longer context-lengths 271

(see Figure A.7). 272

We also explore how uniquely different levels of 273

semantic content explain brain activity compared 274

with features from other modalities: vision, audio, 275

and vision-semantic. For visual features, we extract 276

latent representations from DeiT (Touvron et al., 277

2021) and ResNet (He et al., 2016). We input the 278

first and middle frames of each second of the video 279

into the model and extract the output from each 280

hidden layer. For audio features, we extract the 281

latent representations of audio data in the video 282

using AST (Gong et al., 2021) and MMS (Pratap 283

et al., 2023). We input audio data into the model 284

in 1-second intervals. We extract the output from 285

each hidden layer in response to the input. For 286

both the vision and audio modalities, we reduce 287

the dimensions of the flattened stimulus features 288

using PCA and set the number of dimensions to 289

1280. We calculate the PCA loadings based on the 290

training data and apply these loadings to the test 291

data. 292

In addition to the unimodal feature, we extract 293

vision-semantic multi-modal representations from 294

GIT (Wang et al., 2022), BridgeTower (Xu et al., 295

2023), and LLaVA-v1.5 (Liu et al., 2023). To ob- 296

tain these vision-semantic representations, we in- 297

put pairs of vision and semantic into the vision- 298

semantic models, which are the same as the in- 299

put for unimodal models. We use output from the 300

text-decoder in GIT, the cross-modal encoder in 301

BridgeTower, and the text-decoder in LLaVA-v1.5 302

as vision-semantic features. We average the latent 303
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representations of text and images across tokens, re-304

spectively. We finally reduce the dimensions of the305

flattened features using PCA and set the number of306

dimensions to 1280. In variance partitioning analy-307

sis used to investigate unique variance explained by308

multi-modal features compared with unimodal fea-309

tures (see Section 3.7), we use Vicuna-v1.5 (Zheng310

et al., 2024), which is the base model of the text311

decoder of LLaVA-v1.5, and CLIP (Radford et al.,312

2021), which is the image encoder of LLaVA-v1.5.313

For CLIP, we use the model in LLaVA-v1.5, and314

for Vicuna-v1.5, we use the model provided by315

lmsys.316

3.4 Brain encoding models317

To investigate how different levels of semantic con-318

tent are represented differently in the human brain,319

we first build brain encoding models to predict320

brain activity from the latent representations of lan-321

guage models for each semantic content indepen-322

dently (see Figure 1b). We separately construct en-323

coding models for each subject, feature, and layer324

(if applicable).325

We model the mapping between the stimulus326

features and brain responses using a linear model327

Y = XW , where Y denotes the brain activity of328

voxels from fMRI data, X denotes the correspond-329

ing stimulus features, and W denotes the linear330

weights on the features for each voxel. We esti-331

mate the model weights from training data using332

L2-regularized linear regression, which we subse-333

quently apply to test data. We explore regulariza-334

tion parameters during training for each voxel us-335

ing cross-validation procedure. Because the dataset336

contains nine dramas and movies, to tune the reg-337

ularization parameters during training, we select338

sessions from two to three dramas or movies as339

validation data and use the remaining videos as340

training data. We repeat this procedure across all341

dramas and movies. For the evaluation, we use342

Pearson’s correlation coefficients between the pre-343

dicted and measured fMRI signals. We compute344

the statistical significance using blockwise permu-345

tation testing. Specifically, to generate a null distri-346

bution, we shuffle the voxel’s actual response time347

course before calculating Pearson’s correlation be-348

tween the predicted response time course and the349

permuted response time course. During this pro-350

cess, we shuffle the actual response time course in351

blocks of 10TRs to preserve the temporal correla-352

tion between slices. We identify voxels that have353

scores significantly higher than those expected by354

chance in the null distribution. We set the thresh- 355

old for statistical significance to P < 0.05 and 356

correct for multiple comparisons using the FDR 357

procedure. We conduct all encoding analyses using 358

the himalaya library2(la Tour et al., 2022). We will 359

make our code publicly available on acceptance. In 360

the analysis for comparing different language mod- 361

els (Figures 2 and 3), we assume hemodynamic 362

delays of 8-10 seconds from neural activity to the 363

BOLD signal. We confirm that choice of delay 364

time does not significantly affect on the results 365

(See Figure A.6). In the analysis for comparing 366

multi-modal features (Figure 5), we use the delay 367

time of 6-8 seconds for the analysis of all features. 368

3.5 Comparison of different levels of semantic 369

content 370

To examine how uniquely each level of semantic 371

content explains brain activity, we construct a brain 372

encoding model that incorporates all the semantic 373

features and evaluate the unique variance explained 374

by each semantic feature using variance partition- 375

ing analysis (la Tour et al., 2022). In variance 376

partitioning analysis, we determine the unique vari- 377

ance explained by subtracting the prediction perfor- 378

mance of a model with a certain feature of interest 379

removed from the prediction performance of the 380

full model that includes all features. To estimate 381

the model weights, we use banded ridge regression 382

(la Tour et al., 2022), which can optimally estimate 383

the regularization parameter for different feature 384

spaces. For variance partitioning analysis, we use 385

Llama 2 as LLMs, and use the latent representa- 386

tions from the layers that demonstrate the highest 387

accuracy in cross-validation within the training data 388

for each level of semantic content in the previous 389

encoding model analysis. 390

3.6 Principal component analysis 391

For interpretation purposes, we apply PCA to the 392

weight matrix of the encoding model (Huth et al., 393

2012). Here, we focus on the representation of the 394

Story feature because the representation of such 395

high-level semantic content in the brain has not 396

been quantitatively evaluated in previous studies. 397

We use only the voxels with top 5,000 prediction 398

performance. To interpret the estimated PCs, we 399

project randomly selected 1,640 Story annotations 400

onto each PC, thus acquiring PC scores for the an- 401

notation. To further interpret the PC scores, we use 402

2https://github.com/gallantlab/himalaya
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Figure 2: Encoding model results. a Prediction performance (measured using Pearson’s correlation coefficients)
when predicting the brain activity of a single participant (DM09) from the latent representations of different language
models for five distinct levels of semantic content. The figure presents the average prediction performance on the
test dataset for the top 5,000 voxels, which we select within the training cross-validation folds in the layer that
exhibits the highest prediction performance. We choose layers and voxels for each semantic content and each
language model, respectively. The error bars indicate the standard error of the mean across voxels. b Prediction
performance for a single subject (DM09) when all five levels of semantic content are used simultaneously using
Llama 2, projected onto the inflated (top, lateral, and medial views) and flattened cortical surface (bottom, occipital
areas are at the center), for both the left and right hemispheres. Brain regions with significant accuracy are colored
(all colored voxels P < 0.05, FDR corrected).

GPT-4 (gpt-4-1106-preview in the OpenAI API)403

to classify these annotations into five semantic at-404

tributes that are commonly present throughout the405

annotations. Finally, we interpret PC1, PC2 and406

PC3 as axes that represent content related to the407

environment, interaction and cooperation in the408

drama respectively. See Section A.1.4 for details.409

3.7 Comparison of different modalities410

Taking advantage of the fact that our stimuli con-411

sist of visual, auditory, and semantic multi-modal412

elements, we compare the prediction performance413

of the visual, auditory, and semantic modalities of414

brain activity. Thus, we use not only unimodal415

features but also multi-modal features of the vision-416

semantic modality. We build the encoding model417

following the same procedure described previously418

and compare its whole-brain prediction perfor-419

mance.420

Furthermore, we test whether the multi-modal421

features can predict brain activity components that422

unimodal features cannot. For this purpose, we use423

variance partitioning analysis as described earlier.424

The analysis procedure remains nearly identical425

to the procedure we use for the different levels426

of semantic content. We concentrate this analysis427

on LLaVA-v1.5, which performs particularly well 428

among multi-modal models. As unimodal mod- 429

els, we use Vicuna-v1.5 for the semantic modality, 430

CLIP for the vision modality, and AST for the au- 431

dio modality. Here, we use Speech as semantic 432

features. 433

4 Results 434

4.1 Comparison of the language models 435

We first evaluate how different levels of seman- 436

tic content explain brain activity independently. 437

Figure 2a shows that Speech, Object, and Story 438

content predict brain activity with higher accu- 439

racy than Summary and TimePlace content. No- 440

tably, the larger the model, the better the predic- 441

tion performance, and in particular, Llama 2 con- 442

sistently achieves higher prediction performance 443

than Word2Vec for all subjects for Speech, Object, 444

and Story (P < 0.05, paired t-test). It also shows 445

that large models achieve higher prediction per- 446

formance for high-level background Story content. 447

See Figure A.1 for the results for all subjects. Fig- 448

ure 2b shows the prediction performance of the 449

encoding model with all five levels of semantic 450

content simultaneously with Llama 2. It demon- 451
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Figure 3: Variance partitioning analysis. Unique variance explained by the latent representations of the semantic
content of (a) Speech, (b) Object, and c Story for a single subject (DM09). We use Llama 2 as a language model.
For illustration purposes, we color only the voxels with a unique variance above 0.03.

Figure 4: Principal component analysis. PCA on the encoding weight matrix of the latent representations of
Llama 2 identifies the first three PCs for two subjects (Left, DM03; Right, DM09). Only the voxels with top 5,000
prediction performance are used for PCA.

strates that we can predict brain activity across a452

wide range of brain regions involved in high-level453

cognition, in addition to sensory areas that include454

vision and audio.455

4.2 Variance partitioning analysis456

In the previous analysis, we showed that the LLMs’457

latent representations of Speech, Object, and Story458

content predict brain activity well. However, the459

unique contribution of each level of semantic con-460

tent to the explanation of brain activity remains461

unclear. Next, we use variance partitioning anal-462

ysis (la Tour et al., 2022) to determine the extent463

to which the different types of semantic content464

uniquely account for brain activity.465

Figure 3 shows that the latent representations466

of Llama 2 for the semantic content of Speech,467

Object, and Story correspond to spatially distinct468

brain regions. By contrast, Summary and Time-469

Place do not have unique variance (see Figure A.2).470

Specifically, Speech is associated with the auditory471

cortex, Object with the visual cortex, and Story472

with a broader brain region, including the higher473

visual cortex, precuneus, and frontal cortex. Fur-474

thermore, when we perform similar analysis using475

Word2Vec with Story, the unique variance is lower476

than that of Llama 2. This suggests that our en-477

coding results obtained by LLMs reflect high-level 478

semantic information representations in the brain 479

(see Figure A.3). 480

These findings are consistent with those of previ- 481

ous researchers who focused on individual modali- 482

ties (e.g. (Huth et al., 2016)). However, a critical 483

distinction from earlier work is that we focus 484

on the unique explanatory power of individual 485

modalities when compared with other modal- 486

ities; that is, building on insights from previous 487

studies, we present the first comprehensive results 488

that integrate various semantic content into a single 489

study. Figure A.2 shows the results for all subjects 490

for all semantic content. 491

4.3 Principal component analysis 492

Thus far, we have demonstrated that different levels 493

of semantic content uniquely explain spatially dis- 494

tinct brain regions. Next, we analyze what specific 495

information is captured by our encoding models by 496

applying PCA to the weight of the encoding model 497

for the latent representations of Llama 2 for Story 498

content. 499

The first three PCs explain the weight matrices 500

of the top 5000 voxels, based on prediction perfor- 501

mance, with explained variance ratios of 27.2 ± 502

4.5%, 13.7± 1.3%, and 7.6± 1.6% (mean±s.t.d, 503
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Figure 5: Comparisons among the modalities. a Prediction performance when predicting the brain activity of a
single participant (DM09) from the latent representations of the feature modalities. The results for Llama 2 are the
same as those in Figure 2b. b Unique variance explained by four modality features for a single subject (DM09).
Here, we use Speech as semantic features for Vicuna-v1.5 and LLaVA-v1.5. For illustration purposes, we color only
the voxels with unique variance above 0.03.

N=6). Figure 4a presents the projection of PC504

scores computed for each voxel for two example505

participants (DM03 and DM09). While high-level506

semantic content within Story annotations is pre-507

sumed to vary significantly between individuals,508

we observe certain trends across participants, par-509

ticularly PC1 and PC2. See Figure A.4 for the510

results for all subjects.511

4.4 Comparisons among the modalities512

Given the multi-modal nature of the stimuli in our513

study, we can quantitatively compare the prediction514

performance of latent representations of semantics515

with that of other modalities, such as vision and516

audio.517

Figure 5a shows the prediction performance of518

each modality’s latent representation. Similar to the519

semantic features, the visual and auditory features520

predict brain activity well. Interestingly, the multi-521

modal features (e.g. LLaVA-v1.5) predict brain522

activity better than all other features.523

Figure 5b demonstrates that the multi-modal fea-524

tures (LLaVA-v1.5) uniquely predict brain activ-525

ity in the association cortex, which cannot be ex-526

plained by the unimodal features.527

Together, these results suggest that the informa-528

tion processing style of state-of-the-art multi-modal529

deep learning models corresponds to human brain530

activity better and more uniquely than the unimodal531

models. This is intriguing because human cog-532

nition is inherently multi-modal and multi-modal533

models might capture such a computational process534

in their latent representations. See Figure A.5 for535

the results for all subjects.536

5 Discussion and conclusions 537

In this study, we quantitatively compared the re- 538

lationship between different latent representations 539

of LLMs and brain activity using diverse anno- 540

tations of semantic content. To achieve this, we 541

collected 8.3 hours of an fMRI dataset of brain 542

activity recorded while participants watched exten- 543

sively annotated videos. We demonstrated that the 544

LLMs’ latent representations explain brain activity 545

particularly well for high-level background story 546

content compared with traditional language models. 547

Moreover, our results show that different levels of 548

semantic content are distributed differently in the 549

brain. Finally, we demonstrated that multi-modal 550

vision-semantic models explain brain activity better 551

and more uniquely than unimodal models. 552

We reemphasize that these insights were not ap- 553

parent from the modeling of individual features, as 554

was performed in previous studies. For instance, 555

the absence of unique variance for Summary and 556

TimePlace is a significant insight, which indicates 557

that simply including these types of information 558

in encoding analysis might not be sufficient for 559

capturing high-level semantic representations in 560

the brain. Our results do not indicate that such 561

information is absent in the brain but the absence 562

could be caused by the limitations of the modeling 563

approaches or fMRI measurement. Hence, in fu- 564

ture work, we need to consider how to model these 565

types of high-level information using our data as a 566

new biological benchmark for alignment between 567

LLMs and humans. 568
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6 Limitations569

Firstly, we constructed our encoding models using570

multiple (five) levels of semantic content. Although571

this approach is more comprehensive compared to572

previous research, which typically used only one573

level of semantic content, our study still does not574

encompass the full diversity of semantic content575

processed in reality. Moving forward, it will be cru-576

cial to use resources like LLMs to annotate stimuli577

and model a richer human semantic experience.578

In this study, our focus was on the individual579

level, which is the most typical approach in the580

field of brain encoding models. We did not exten-581

sively compare how the representations of semantic582

content differ among individuals. To better capture583

the diversity of human cognition, it is important for584

future studies to explore how these computations585

vary between individuals, requiring more data from586

a larger number of participants.587

In this study, we used vision-language models588

to examine the importance of multi-modal fea-589

tures. However, human perception encompasses590

a broader range of modalities, including not just591

vision and language, but also hearing and other592

senses. To comprehensively understand these pro-593

cesses, it is important for future research to utilize594

models that can handle a greater variety of modali-595

ties.596
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A Appendix822

A.1 fMRI dataset and preprocessing823

A.1.1 Stimuli824

In our study, we used multi-modal stimuli from825

nine DVDs, which encompassed 10 episodes of826

television drama series and a feature film, as de-827

tailed in Table A.2. The selection of these nine828

DVDs adhered to specific criteria: We chose 1) in-829

ternationally acclaimed dramas and films, premised830

on the belief that their fame ensured the compelling831

nature of their content. This was intended to capti-832

vate the participants’ attention during the narratives833

in our study. 2) We included a diverse range of 834

genres. Typically, a single story predominantly fea- 835

tures certain characters whose dialogue and actions 836

reflect the genre. In such limited scenarios, when 837

deploying algorithms based on machine learning 838

to analyze BOLD signals, ensuring the generaliz- 839

ability of results may prove to be challenging. To 840

cover a broad spectrum of scenarios, we included 841

films from multiple genres; The average total du- 842

ration for the 10 episodes was 49.98 minutes (Ta- 843

ble A.2). Each episode was segmented into two 844

to nine segments for use in our imaging sessions. 845

We chose the segmentation points to maintain seg- 846

ment lengths of approximately 10 minutes and to 847

coincide with transitions between narrative scenes, 848

thereby facilitating the participants’ comprehen- 849

sion of each episode. For each segment, except 850

the initial segment, we included the concluding 851

20 seconds of the preceding segment. The result- 852

ing segments varied in length from 512 seconds to 853

1271 seconds, with an average of 746.8 seconds 854

(Table A.2). Instead of converting each segment 855

into a separate film file, we designated specific play- 856

back intervals to the respective DVDs using the 857

intervals as visual stimuli in each imaging session. 858

All films, with the sole exception of “Ghost in the 859

Shell” (originally produced in Japanese), were pre- 860

sented in the Japanese-dubbed version, considering 861

that all participants in our study were Japanese. 862

A.1.2 Procedures 863

fMRI BOLD signals were recorded as participants 864

viewed the audiovisual content (the film segments) 865

from 10 episodes across nine DVDs. The visual 866

stimuli were projected centrally with a visual angle 867

of 26.78 × 15.85 degrees at 25 or 30 Hz. MR- 868

compatible headphones delivered the auditory stim- 869

uli. Prior to the viewing sessions, the audio levels 870

were calibrated using non-experimental test clips 871

to ensure clarity and a comfortable volume for par- 872

ticipants. Participants were instructed to view the 873

film segments casually, mirroring their everyday 874

television-watching experience. For each partici- 875

pant, fMRI data were acquired over 10 distinct ses- 876

sions. During each session, participants watched 877

one or two episode segments over three to five seg- 878

ments (each segment lasting approximately 10 min- 879

utes) (Table A.2). Because of its extended length 880

(about 2 hours), “Dream Girls” was viewed over 881

two sessions. Each segment’s film content was 882

displayed by cueing the respective DVD to play 883

at specific times using the VLC media player’s 884
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(VideoLAN, France) command line interface. This885

interface was set up to commence playback coin-886

ciding with the scan’s start. Manual termination of887

the scan followed the film segment’s conclusion,888

thereby accommodating the varying durations of889

playback across segments and sessions. In total,890

around 9 hours (31905 seconds) of film content891

were presented to the participants across 10 ses-892

sions for fMRI data collection.893

A.1.3 Preprocessing894

For individual preprocessing of EPI895

data for each participant, the Statisti-896

cal Parameter Mapping toolbox (SPM8,897

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/)898

was used. EPI images were motion-corrected by899

aligning them to the initial image recorded in the900

first session for each participant. Voxel responses901

were standardized by deducting the average902

response over all time points. Subsequently,903

prolonged trends in the standardized responses904

were mitigated by detracting the outcome of905

median filter convolution with a 120-second time906

frame. Data standardization and detrending were907

conducted for each movie segment for each voxel.908

Data captured within the initial 20 seconds of the909

scan were deemed susceptible to artifacts from910

startup transients and thus excluded from the911

analysis. The analysis considered data from 20912

seconds post-scan initiation to the conclusion of the913

film content. ). To account for the hemodynamic914

response function (HRF), stimulus features were915

time-shifted by 8s and then averaged with the916

stimulus feature corresponding to each volume917

and the feature corresponding to the subsequent918

two-second volume. See Figure A.6919

A.1.4 Interpretation of PCA920

In the annotation process using GPT-4, we allowed921

the annotations to be associated with multiple se-922

mantic attributes. Then, we evaluated each PC ac-923

cording to the average scores for the five attributes.924

The five attributes depict a tense or peaceful envi-925

ronment (“Tense confrontations or crime” and “Ev-926

eryday interaction or peaceful living”), represent927

individual or collective decision-making (“Personal928

growth, change, or determination”, and “Decision-929

making or role of leaders”), and illustrate inter-930

action or cooperation with others (“Mutual assis-931

tance or cooperation’). We also define these five932

attributes using GPT-4 by asking GPT-4 to identify933

common attributes across annotations.934

To further interpret information content in the 935

PCs, we projected Story annotations on each PC. 936

Again, we observed consistent trends in PC1 and 937

PC2. Figure 4b shows that PC1 contrasts annota- 938

tions related to individual or collective decision- 939

making (“Decision-making or role of leaders” and 940

“Personal growth, change, or determination”) with 941

annotations depicting environment or background 942

scenario (“Tense confrontations or crime” and “Ev- 943

eryday interaction or peaceful living”). Regarding 944

PC2, it contrasts annotations that indicate coop- 945

eration with others (“Decision-making or role of 946

leaders” and “Mutual assistance or cooperation”) 947

with more personal scenarios (“Decision-making or 948

role of leaders”, “Everyday interaction or peaceful 949

living,” and “Tense confrontations or crime”). Re- 950

garding PC3, although there was a tendency among 951

participants to contrast cooperation (“Mutual as- 952

sistance or cooperation”) with other attributes, the 953

variation across participants was large. 954

A.1.5 Feature extraction 955

We use bert-base-uncased, gpt2-large, 956

facebook/opt-6.7bm, meta-llama/Llama-2- 957

7b-hf, MIT/ast-finetuned-audioset-10-10-0.4593, 958

facebook/mms-1b-models, facebook/deit-base- 959

distilled-patch16-224, microsoft/resnet-50, 960

microsoft/git-base, BridgeTower/bridgetower- 961

base, and llava-hf/llava-1.5-7b-hf models 962

available on Hugging Face for BERT, GPT2, 963

OPT, Llama2, AST, MMS, DeiT, ResNet, 964

GIT, BridgeTower, and Llava-v1.5. We use 965

GoogleNews-vectors-negative300 model available 966

on https://code.google.com/archive/p/word2vec/. 967

A.2 Annotation procedure 968

Each video was annotated for five types of semantic 969

content by annotators employed by external agen- 970

cies. The annotations were performed by one or 971

several annotators for each type of semantic con- 972

tent. Note that Speech annotations refer to the ex- 973

act content spoken by actors in a video (e.g., “Hey 974

John, how are you feeling?” “Great”). These can 975

indeed be expressed as language descriptions. On 976

the other hand, Story pertains not to the direct dia- 977

logue but to the context or background information 978

(e.g., “Mary and John, who have been childhood 979

friends, are reuniting after two years”). This allows 980

it to be described as a separate linguistic content 981

from the spoken dialogue. 982

The overview of each annotation is as follows. 983

The details of the annotation procedures will be 984
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more thoroughly explained in the documentation985

accompanying the future release of the dataset.986

1. Speech: Describe the speech and narration987

content, specifying the start and end times of988

each segment.989

2. Object: Describe the content displayed on the990

screen every second. The descriptions should991

be in natural language and range from one to992

several sentences.993

3. Story: Approximately every five seconds, de-994

scribe the story based on the content of the995

narrative.996

4. Summary: Approximately every 1–3 minutes,997

or at points where the overall flow of the998

story changes, describe the content of each999

section and provide summaries of the actions1000

performed by each character.1001

5. TimePlace: At each scene transition, describe1002

the time of day and location.1003

Note that, for Speech annotations, we transcribed1004

the words actually spoken in the video. Specifically,1005

we collected speech transcription from two annota-1006

tors. One of the annotators was an English speaker1007

and transcribed English speech while watching1008

the movie with English audio. The other was a1009

Japanese speaker and transcribed Japanese speech1010

while watching a Japanese-dubbed version of the1011

movie. For each language, we split the speech into1012

units as short as possible to maintain the mean-1013

ing of sentences, and annotated the transcription1014

and the onset/offset of each speech part. The tran-1015

scription included speech, filler, and non-verbal1016

utterances (e.g. laughing voice and a cough) at-1017

tributed to each character. Note that English and1018

Japanese speeche coincided in both the timing of1019

delivery and the intended meaning, but they were1020

not entirely congruent.1021

Below are three example annotations from three1022

different scenes in our dataset. For Summary, the1023

description of the content section is extracted and1024

displayed:1025

• Scene from Suits:1026

– (Speech) A novel? A grade schooler?1027

– (Object) The face of a man in a suit is1028

shown large in the center of the screen.1029

The man looks forward, mouth closed,1030

and appears to have a serious expression1031

on his face.1032

– (Story) Harvey expressed surprise that 1033

Mike, an elementary school student, was 1034

reading an adult novel. Mike replied that 1035

he loved books. 1036

– (Summary) Harvey Spector is interview- 1037

ing Mike Ross. He is interested in Mike 1038

Ross when he hears how he was able to 1039

identify him as a police officer. He gives 1040

Mike Ross a question to test his knowl- 1041

edge. Harvey Spector notices that Mike 1042

Ross has a good memory and is smart, 1043

and decides to hire Mike Ross as an as- 1044

sociate. 1045

– (TimePlace) Noon. Hotel. Room. 1046

• Scene from The Crown: 1047

– (Speech) It’s okay. It’s all right. 1048

– (Object) A man is shown in the center 1049

looking to the left. Behind the man is a 1050

stained glass window, and several figures 1051

are vaguely visible. 1052

– (Story) Philip was waiting for the woman 1053

(Elizabeth) in the church with a nervous 1054

look on his face. He told himself over 1055

and over again that he would be fine. 1056

– (Summary) In front of the church altar, 1057

Philip looks nervous as he waits for the 1058

ceremony to begin. Former Prime Minis- 1059

ter Winston Churchill and his wife arrive 1060

at the church, where the attendees stand 1061

to greet them. 1062

– (TimePlace) Morning. Chapel. 1063

• Scene from Ghost in the Shell: STAND 1064

ALONE COMPLEX: 1065

– (Speech) Hey, what’s going on? 1066

– (Object) Two men are wearing uniforms 1067

and have their hands clasped behind 1068

their backs, as if guarding a figure sitting 1069

in a chair. Behind them, a sharp-eyed 1070

man appears to be on the phone.. 1071

– (Story) At air traffic control, one man 1072

with glasses is impatient and tries to fig- 1073

ure out what’s going on by whispering 1074

on the phone. 1075

– (Summary) A tank suddenly starts mov- 1076

ing inside the experimental facility of 1077

Kenryo Heavy Industries. When a 1078

worker calls out to it, it stops, turns 1079

around, and attacks the worker and other 1080
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tanks with a machine gun and cannon.1081

Unrest spreads among the workers and1082

air traffic controllers. Ohba watches the1083

scene from a short distance outside the1084

fence.1085

– (TimePlace) Morning. Inside the Dome.1086

Management Office.1087

A.3 Quality control of the dataset1088

To verify the quality of the dataset, we split the1089

dataset and annotations as follows to ensure that the1090

results were consistent when the encoding model1091

was built separately for each split.1092

First, we split the entire training dataset into two1093

parts: runs of the first and second halves of the1094

data used in the main analysis. We used the same1095

videos for testing dataset. Regarding ’Breaking1096

Bad,’ because only one run of data was used in1097

the main analysis, we excluded it from this control1098

analysis. The comparison shows that the results1099

for the two encoding models using different data1100

splits produced quite similar results across cortical1101

voxels (see Figure A.8).1102

We also checked the quality at the annotation1103

level. For our data, there were two annotators for1104

Story and five for Object. Therefore, for Story, we1105

split the two annotators and these split are used to1106

create their respective encoding models. For Ob-1107

ject, we split the annotators into groups of three1108

and two and used to create their respective encod-1109

ing models to compare the results. The comparison1110

shows that the results for the two encoding models1111

using different annotator splits produced quite sim-1112

ilar results across cortical voxels (see Figure A.9).1113

Finally, for the Speech annotations, we per-1114

formed analysis to verify the consistency in the1115

speech transcription between Japanese and English.1116

Specifically, we compared the results for the encod-1117

ing models when we used Japanese Speech annota-1118

tion with the results when we used English Speech1119

annotation with the latent representations of GPT2.1120

In this analysis, we constructed the encoding model1121

for the two languages, respectively, and compared1122

the prediction accuracies across voxels for each1123

participant. We then examined whether the predic-1124

tion accuracies exhibited a similar pattern between1125

two annotations. We observed strong correlation1126

across all participants (DM01: Pearson’s r = 0.90,1127

DM03: r = 0.85, DM06: r = 0.91, DM07: r = 0.90,1128

DM09: r = 0.92, DM11: r = 0.82), which indicates1129

that the latent features for the two languages had1130

similar information to explain brain activity.1131

A.4 Additional results of encoding models 1132

Figures A.1, A.2, A.4, and A.5 show additional 1133

results for all subjects for Figures 2, 3, 4, and 5, re- 1134

spectively. They show that our results were robust 1135

across subjects. 1136
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Figure A.1: All subject results for comparing prediction performances among different language models for different
semantic contents.

Figure A.2: All subject results for comparing unique variance explained among different semantic contents using
variance partitioning analysis.

15



Figure A.3: All subject results for unique variance explained of for Story feature for Llama 2 (Left) and Word2Vec
(Right), respectively.
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Figure A.4: All subject results for principal components analysis. We project each caption onto the PC space and
then calculated the PC scores for each attribute assigned to the caption. The error bars represent the standard error
of the mean PC scores across annotations belonging to each attribute.
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Figure A.5: All subject results for comparing the prediction performance among semantics, audio, visual, and
vision-semantic features.
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Figure A.6: Results for the encoding models under the assumption of different BOLD signal time delays, using
the Llama 2 with Story Feature. Changing the settings used in the main analysis (8-10s) does not affect the overall
patterns of results.
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Figure A.7: Result for the encoding models using the Story feature of Llama 2 with different context widths (w).
Changing the setting used in the main analysis (w=1s) does not affect the overall patterns of results.
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Figure A.8: Results for encoding models when training data are split in half (Split A and Split B) and the models are
built independently. We observe no significant difference in the distribution of the flat map in both splits. Also, when
comparing prediction performance across voxels between Split A and Split B, the results are generally reproduced
in both splits (see scatter plots).
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Figure A.9: Results for encoding models when annotations are divided into two splits (Split A and Split B) and the
models are built independently. We observe no significant difference in the distribution of the flat map in both splits.
Also, when comparing prediction performance across voxels between Split A and Split B, the results are generally
reproduced in both splits (see scatter plots).
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Title Created by EAN
Volume #, Episode #
(Total duration (s))

Play time for each run
(hour: minute: second)

Breaking Bad Vince Gilligan 4547462088963 Vol. 1, Ep. 1 (3479)

[run1] 00:00:00 – 00:11:19
[run2] 00:10:59 – 00:22:48
[run3] 00:22:28 – 00:34:23
[run4] 00:34:03 – 00:46:05
[run5] 00:45:45 – 00:57:59

Big Bang Theory
Chuck Lorre,
Bill Prady

4548967168747 Vol. 1, Ep. 1 (1374)
[run1] 00:00:00 – 00:12:27
[run2] 00:12:07 – 00:22:54

The Crown Peter Morgan 4547462113825 Vol. 1, Ep. 1 (3507)

[run1] 00:00:00 – 00:10:38
[run2] 00:10:18 – 00:20:43
[run3] 00:20:23 – 00:32:14
[run4] 00:31:54 – 00:45:58
[run5] 00:45:38 – 00:58:27

Heroes Tim Kring 4988102075101 Vol. 1, Ep. 1 (3194)

[run1] 00:00:00 – 00:10:17
[run2] 00:09:57 – 00:20:36
[run3] 00:20:16 – 00:28:48
[run4] 00:28:28 – 00:41:22
[run5] 00:41:02 – 00:53:14

Suits Aaron Korsh 4988102341596 Vol. 1, Ep. 1 (2362)
[run1] 00:00:00 – 00:12:34
[run2] 00:12:14 – 00:28:22
[run3] 00:28:02 – 00:39:22

Dream Girls Bill Condon 4988102646882 N/A (7481)

[run1] 00:00:00 – 00:12:44
[run2] 00:12:24 – 00:26:05
[run3] 00:25:45 – 00:39:22
[run4] 00:39:02 – 00:48:54
[run5] 00:48:34 – 01:07:12
[run6] 01:06:52 – 01:18:23
[run7] 01:18:03 – 01:32:46
[run8] 01:32:26 – 01:43:50
[run9] 01:43:30 – 02:04:41

Glee
Ryan Murphy,
Brad Falchuk,
Ian Brennan

4988142968722 Vol. 1, Ep. 1 (2877)

[run1] 00:00:00 – 00:12:02
[run2] 00:11:42 – 00:25:14
[run3] 00:24:54 – 00:34:55
[run4] 00:34:35 – 00:47:57

The Mentalist Bruno Heller 4548967348217 Vol. 1, Ep. 1 (2704)

[run1] 00:00:00 – 00:12:17
[run2] 00:11:57 – 00:22:04
[run3] 00:21:44 – 00:32:44
[run4] 00:32:24 – 00:45:04

Ghost in the Shell Kenji Kamiyama 5022366203746
Vol. 1, Ep. 1 (1510)
Vol. 1, Ep. 2 (1505)

[run1] 00:00:00 – 00:13:24
[run2] 00:13:04 – 00:25:10
[run3] 00:00:00 – 00:11:13
[run4] 00:10:53 – 00:25:05

Table A.2: Videos used for the experiment.
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