
Under review as a conference paper at ICLR 2023

GRAPH NEURAL BANDITS

Anonymous authors
Paper under double-blind review

ABSTRACT

Contextual bandits aim to choose the optimal arm with the highest reward out
of a set of candidates based on their contextual information, and various bandit
algorithms have been applied to personalized recommendation due to their ability
of solving the exploitation-exploration dilemma. Motivated by online recommen-
dation scenarios, in this paper, we propose a framework named Graph Neural
Bandits (GNB) to leverage the collaborative nature among users empowered by
graph neural networks (GNNs). Instead of estimating rigid user clusters, we model
the “fine-grained” collaborative effects through estimated user graphs in terms
of exploitation and exploration individually. Then, to refine the recommendation
strategy, we utilize separate GNN-based models on estimated user graphs for ex-
ploitation and adaptive exploration. Theoretical analysis and experimental results
on multiple real data sets in comparison with state-of-the-art baselines are provided
to demonstrate the effectiveness of our proposed framework.

1 INTRODUCTION

Contextual bandits are a specific type of multi-armed bandit problem where the additional contextual
information (contexts) related to arms are available at each round, and the learner intends to refine
its selection strategy based on the received arm contexts and rewards. Various contextual bandit
algorithms have been applied in real-world recommendation tasks, such as online content recom-
mendation and advertising (Li et al., 2010; Wu et al., 2016), and clinical trials (Durand et al., 2018;
Villar et al., 2015). Meanwhile, collaborative effects among users provide us the opportunity to
design better recommender strategies, since the target user’s preference can be inferred based on
other similar users. Such effects have been studied by many bandit works (Gentile et al., 2014; Li
et al., 2019; Gentile et al., 2017; Li et al., 2016; Ban & He, 2021). Different from the conventional
collaborative filtering methods (He et al., 2017; Wang et al., 2019), bandit-based approaches focus on
more dynamic environments (such as news, short-video platform) and the exploitation-exploration
dilemma inherently existed in the decisions of recommendation.

Existing works for clustering of bandits (Gentile et al., 2014; Li et al., 2019; Gentile et al., 2017; Li
et al., 2016; Ban & He, 2021; Ban et al., 2022a) have been proposed to model the user correlations
(collaborative effects) by clustering users into rigid groups, and assigning each formed group with
an estimator to learn the assumed reward functions combined with an Upper Confidence Bound
(UCB) strategy for exploration. However, these works only consider the “coarse-grained” user
correlations. To be specific, they assume that users from the same group would share identical
preferences, i.e., the users from the same group are compelled to make equal contributions to the final
decision (arm selection) with regard to the target user. Such formulation of user correlations (“coarse-
grained” collaborative effects), evidently fails to comply with real-world application scenarios, since
users within the same group tend to have similar but subtly different preferences instead of sharing
completely identical tastes. Therefore, given a target user, it is more practical to assume that the rest
of the users would impose different levels of (collaborative) effects on this user.

Motivated by aforementioned limitations of existing works, in this paper, we propose a novel
framework, named Graph Neural Bandits (GNB), to formulate the “fine-grained” collaborative
effects, where the correlation of each user pair is preserved by user graphs. Given a target user,
other users are allowed to make different contributions to the final decision based on the strength of
their correlation to the target user, which therefore corresponds to the “fine-grained” collaborative
effects. In particular, in GNB, we propose a novel approach to construct two kinds of user graphs with
distinct purposes, called “user exploitation graphs” and “user exploration graphs”. Then, we apply

1

Under review as a conference paper at ICLR 2023

two separate graph neural network (GNN) models on these two kinds of user graphs, to incorporate
the collaborative effects for both exploitation and exploration purposes in the final decision-making
process. Our main contributions can be summarized as follows:

1. Different from existing works that only formulate the “coarse-grained” collaborative effects
by neglecting the divergence within user groups, we introduce a new problem setting to
model the “fine-grained” user collaborative effects via user graphs. In our setting, the
pair-wise user correlations are preserved to contribute differently to the decision-making.

2. We propose a framework named GNB, which has the novel ways to build two kinds of user
graphs with two different purposes, i.e., exploitation and adaptive exploration, respectively.
Then, GNB utilizes GNN-based models for a refined arm selection strategy by leveraging
the user correlations encoded in these two kinds of user graphs.

3. With standard assumptions, we provide the theoretical analysis showing that GNB can
achieve the regret upper bound of complexity O(

√
T log(Tn)), where T is the number of

rounds and n is the number of users. This bound is sharper than the existing related works.
4. Extensive experiments comparing GNB with nine state-of-the-art algorithms are conducted

on various real data sets, which demonstrate the effectiveness of our proposed method.

After introducing the problem definition in Section 2, we provide the details of our proposed
framework in Section 3. Then, we present the theoretical analysis in Section 4, and the experiments
in Section 5. Finally, we conclude the paper in Section 6. Due to page limit, we will leave the review
of related works to the Section A in the Appendix.

2 GRAPH NEURAL BANDITS: PROBLEM DEFINITION AND NOTATION

Suppose there are a total of n users with the user set U = {1, · · · , n}. At each time step t ∈ [T], the
learner will receive a user ut ∈ U to serve, along with a set of candidate arms Xt = {xi,t}i∈[a] for
selection. The cardinality of this arm set is |Xt| = a, and each arm is described by a d-dimensional
context vector xi,t ∈ Rd with ∥xi,t∥2 = 1. Meanwhile, each arm xi,t ∈ Xt is associated with a
reward ri,t. As the user correlation is one important factor in determining the reward, we define the
following reward function:

ri,t = h(xi,t, ut,G(1),∗i,t) + ϵi,t (1)

where h(·) is the unknown reward mapping function, and ϵi,t stands for some zero-mean noise
such that E[ri,t] = h(xi,t, ut,G(1),∗i,t). Here, we have G(1),∗i,t = (U , E,W

(1),∗
i,t) being the unknown

user graph induced by arm xi,t, which encodes the “fine-grained” user correlations in terms of
expected rewards. In graph G(1),∗i,t , each user u ∈ U corresponds to a graph node; meanwhile,

E = {e(u, u′)}∀u,u′∈U refers to the set of edges, and the set W (1),∗
i,t = {w(1),∗

i,t (u, u′)}∀u,u′∈U stores
the weights for each edge from E. Under real-world application scenarios, users sharing the same
preference for certain arms (e.g., sports news) may have distinct tastes over other arms (e.g., political
news). Thus, we allow each arm xi,t ∈ Xt to induce different user collaborations G(1),∗i,t .

Then, motivated by various real applications (e.g., online recommendation with normalized ratings),
we consider ri,t to be bounded ri,t ∈ [0, 1] in this paper, which is standard in existing works (e.g.,
Gentile et al. (2014; 2017); Ban & He (2021); Ban et al. (2022a)). Note that as long as ri,t ∈ [0, 1],
we do not impose any distribution assumption (e.g., sub-Gaussian distribution) on noise term ϵi,t.

Comparison with Existing Problem Definitions. The problem definition of existing user clustering
works (e.g., Gentile et al. (2014); Li et al. (2019); Gentile et al. (2017); Ban & He (2021); Ban et al.
(2022a)) only can formulate "coarse-grained" user correlations. In their settings, given a user group
N ⊆ U , all the users in N are forced to share the same reward function given an arm xi,t, i.e.,
E[ri,t | u,xi,t] = hN (xi,t),∀u ∈ N . In contrast, our definition of the reward function enables us
to model the pair-wise fine-grained user correlations by introducing another two important factors
u and G(1),∗i,t . With our formulation, each user here is allowed to produce different rewards facing

the same arm, i.e., E[ri,t | u,xi,t] = h(xi,t, u,G(1),∗i,t),∀u ∈ N . Here, with different users u,

the corresponding expected reward h(xi,t, u,G(1),∗i,t) can be different. Therefore, our definition of
the reward function is more generic, and it can also readily generalize to existing user clustering
algorithms (with “coarse-grained” user correlations) by allowing each single user group to form an
isolated sub-graph in G(1),∗i,t with no connections across different sub-graphs.

2

Under review as a conference paper at ICLR 2023

To bridge user collaborative effects with user preferences (rewards), we consider the following
constrain for the reward function in Eq. 1. The intuition is that for any two users with comparable
user correlations, they would share similar tastes over the items with a high probability. For arm xi,t,
we consider the difference of expected rewards between any two users u, u′ ∈ U to be governed by

|h(xi,t, u,G(1),∗i,t)− h(xi,t, u
′,G(1),∗i,t)| ≤ Ψ(G(1),∗i,t [u, :],G(1),∗i,t [u′, :]) (2)

where G(1),∗i,t [u, :] stands for the adjacency matrix row of G(1),∗i,t that corresponds to user (node) u, and
Ψ : Rn × Rn 7→ R denotes an unknown mapping function. The reward function definition (Eq. 1)
and the constraint (Eq. 2) motivate us to design the GNB framework, to be introduced in Section 3.

Since the true user graph G(1),∗i,t in Eq. 1 reflects user correlations in terms of the expected reward, it
is exactly referring to the user exploitation correlation, where users with high correlations tend to
have similar expected rewards (Eq. 2). Then, we proceed to give the formulation of G(1),∗i,t below.

Definition 1 (User Correlation for Exploitation). In round t, for any two users u, u′ ∈ U , their
exploitation correlation score w

(1),∗
i,t (u, u′) w.r.t. a candidate arm xi,t ∈ Xt is defined as

w
(1),∗
i,t (u, u′) = Ψ(1)

(
E[ri,t|u, xi,t], E[ri,t|u′, xi,t]

)
where E[ri,t|u, xi,t], i ∈ [a] is the expected reward in terms of the user-arm pair (u,xi,t). Given two
users u, u′ ∈ U , the function Ψ(1) : R× R 7→ R maps from their expected rewards E[ri,t|u, xi,t] to
their user exploitation score w

(1),∗
i,t (u, u′).

Given an arm xi,t ∈ Xt, the user correlation for exploitation measures the user preference (i.e.,
expected reward) correlation between two users u, u′ ∈ U , and the corresponding exploitation score
w

(1),∗
i,t (u, u′) refers to the edge weight between these two users (nodes) u, u′ in exploitation graph

G(1),∗i,t . In this paper, we consider the mapping functions Ψ(1) as the prior knowledge, and it can be
functions such as the radial basis function (RBF) kernel or normalized absolute difference in practice.

Modeling User Exploration Correlations with the User Exploration Graph G(2),∗i,t . In order to
deal with the exploration-exploitation dilemma, for each candidate arm xi,t ∈ Xt, we propose to
formulate the user exploration graph G(2),∗i,t = (U , E,W

(2),∗
i,t) in order to model the user correlations

in terms of the uncertainty of the reward estimation model, which are formulated by the set of
edge weights W (2),∗

i,t = {w(2),∗
i,t (u, u′)}∀u,u′∈U . Inspired by Ban et al. (2022b), before defining the

second kind of user correlation (i.e., user exploration correlation), we first introduce the definition of
expected potential gain for reward estimation, which measures the prediction uncertainty of reward
estimators. Note that our formulation is distinct from Ban et al. (2022b), since they only focus on the
single-bandit setting with no user collaborations, and all the users will be treated identically.
Definition 2 (Expected Potential Gain). Given user u ∈ U at time step t, given a candidate arm
xi,t ∈ Xt, i ∈ [a] and a reward estimation function fu(·) corresponding to user u, the expected
potential gain for the reward estimation fu(xi,t) is defined as E[ri,t|u, xi,t]− fu(xi,t).

Here, the potential gain for reward estimation essentially formulates the uncertainty of model fu(·)
by measuring the difference between the expected reward E[ri,t|u, xi,t] and the prediction fu(xi,t).
Next, we proceed to introduce the second kind of user correlation, i.e., user exploration correlation.
Definition 3 (User Correlation for Exploration). In round t, given two users u, u′ ∈ U and an arm
xi,t ∈ Xt, their underlying exploration correlation score w

(2),∗
i,t (u, u′) is

w
(2),∗
i,t (u, u′) = Ψ(2)

(
E[ri,t|u, xi,t]− fu(xi,t), E[ri,t|u′, xi,t]− fu′(xi,t)

)
with E[ri,t|u, xi,t]− fu(xi,t), i ∈ [a] being the potential gain for the user-arm pair (u,xi,t). Here,
fu(·) is the reward estimation function specified to user u, and Ψ(2) : R× R 7→ R is the mapping
from user potential gains E[ri,t|u, xi,t]− fu(xi,t) to their exploration correlation score.

For the arm xi,t and two users u, u′ ∈ U , the user exploration correlation score w(2),∗
i,t (u, u′) refers to

the correlation of prediction uncertainty between two user-specific functions fu(·) and fu′(·). Then,

3

Under review as a conference paper at ICLR 2023

Figure 1: Workflow of the proposed Graph Neural Bandits (GNB) framework.

the exploration score w
(2),∗
i,t (u, u′) will be considered as the edge weight between these two nodes

(users) u, u′ in the true user exploration graph G(2),∗i,t . Analogous to previous Ψ(1), we also consider
the mapping functions Ψ(2) is given as the prior knowledge. Intuitively, when the exploration score
w

(2),∗
i,t (u, u′) is high, we can apply similar exploration strategies for both users u, u′. For example,

given arm xi,t, if the reward estimation error (i.e., prediction uncertainty) is large for both u and u′,
we may want to explore these two user-arm pairs (u,xi,t), (u

′,xi,t) more for additional knowledge.

Learning Objective. For the received user ut in round t, the learner is expected to recommend an arm
xt ∈ Xt (with reward rt) in order to minimize the cumulative pseudo-regret R(T) = E[

∑T
t=1(r

∗
t −

rt)] where r∗t is the reward for the optimal arm E[r∗t |ut,Xt] = maxxi,t∈Xt
h(xi,t, ut,G(1),∗i,t).

Notation. Denoting Tu,t ⊆ [t] as the collection of time steps that user u ∈ U is served up to round t,
we use Pu,t = {(xτ , rτ)}τ∈Tu,t

to represent the collection of received arm-reward pairs associated
with user u, and Tu,t = |Tu,t| refers to the number of rounds that user u has been served. Here,
xτ ∈ Aτ , rτ ∈ R separately refer to the chosen arm and actual received reward in round τ ∈ Tu,t.
Similarly, we use Pt = {(xτ , rτ)}τ∈[t] to denote all the past records (i.e., arm-reward pairs), up to
round t. For any graph G, we denote A ∈ Rn×n as its adjacency matrix (with added self-loops), and
D ∈ Rn×n as its degree matrix. Then, we will introduce our proposed solution, the GNB framework.

3 GRAPH NEURAL BANDITS: PROPOSED FRAMEWORK

The workflow of our proposed GNB framework is illustrated by Figure 1, and it consists of four major
components: (1) estimating the user exploitation graph G(1),∗, denoted by G(1), and user exploration
graph G(2),∗, denoted by G(2) to model the user correlations in terms of exploitation and exploration
respectively; (2) applying GNN models f (1)

gnn(·), f (2)
gnn(·) on the estimated user graphs G(1) and G(2),

to collaboratively derive the estimated reward for exploitation, and potential gain for exploration; (3)
selecting the arm xt based on estimated reward and potential gain; and (4) training parameters for
GNN models and user neural networks with gradient descent (GD).

3.1 USER GRAPH ESTIMATION WITH USER NETWORKS

Based on the definition of unknown true user graphs G(1),∗i,t , G(2),∗i,t w.r.t. arm xi,t ∈ Xt (Definitions
1, 3), we proceed to derive their estimations G(1)i,t , G(2)i,t , i ∈ [a] with individual user networks f (1)

u ,

f
(2)
u , u ∈ U . With these two kinds of estimated user graphs G(1)i,t and G(2)i,t , we can thus model the

user behaviors under the exploitation setting and the exploration setting separately. Due to page limit,
pseudo-code summarizing the workflow is presented in Alg. 2 in Section D of the Appendix.

User Exploitation Network f
(1)
u . For each user u ∈ U , we propose to apply an exploitation network

f
(1)
u (·) to learn user u’s preference for arm xi,t, i.e., E[ri,t|u,xi,t]. Here, f (1)

u (·) will be trained
on the past records (arm contexts and rewards) Pu,t from user u, and the loss function will be the
quadratic loss between the predicted reward and the actual reward. Following the Definition 1, we will
then be able to construct the exploitation graph G(1)i,t by estimating the user exploitation correlation

4

Under review as a conference paper at ICLR 2023

based on user preferences. In G(1)i,t , we consider the edge weight between two user nodes u, u′ to be

w
(1)
i,t (u, u

′) = Ψ(1)
(
f
(1)
u (xi,t), f

(1)
u′ (xi,t)

)
, where Ψ(1)(·, ·) is the mapping function mentioned in

Definition 1 (line 11, Alg. 2).

User Exploration Network f
(2)
u . To estimate the potential gain (i.e., the uncertainty for the reward

estimation) E[r|u,xi,t]−f
(1)
u (xi,t), we adopt an additional user exploration network f

(2)
u (·) inspired

by Ban et al. (2022b). As the confidence interval of reward estimation can be expressed as a
function of network gradients (Zhou et al., 2020; Qi et al., 2022), we apply f

(2)
u (·) to directly

learn the confidence bound with the gradient of f (1)
u (·). Here, the input of f (2)

u (·) is the network
gradient of f (1)

u (·) given arm xi,t, denoted as ∇f (1)
u (xi,t). For the training process, f (2)

u (·) will
be trained with the past gradients of f (1)

u , i.e., {∇f (1)
u (xτ)}τ∈Tu,t as inputs; and the uncertainty of

reward prediction {rτ − f
(1)
u (xτ)}τ∈Tu,t will be the labels. Analogously, for the estimated user

exploration graph G(2)i,t and given two user nodes u, u′, we let their edge weight be w
(2)
i,t (u, u

′) =

Ψ(2)

(
f
(2)
u

(
∇f (1)

u (xi,t)), f
(2)
u′

(
∇f (1)

u′ (xi,t)
))

, where∇f (1)
u (xi,t) stands for the gradient of f (1)

u (·)

given arm xi,t as the input (line 12, Alg. 2), and Ψ(2)(·, ·) is the mapping function in Definition 3.

Network Architecture. For the theoretical analysis and experiments, we apply separate L-layer
(L ≥ 2) fully-connected (FC) networks for both kinds of user networks. Their weight matrix entries
for the first L− 1 layers are drawn from the Gaussian distribution N(0, 2/m). The entries of the last
layer (L-th layer) are sampled from N(0, 1/m). Complementary details are in Appendix Section C.

3.2 EXPLOITATION AND EXPLORATION WITH USER GRAPHS

With two kinds of estimated user graphs encoding user correlations, we apply two GNN models
to separately estimate arm rewards and potential gains for a refined arm selection strategy, which
enables us to utilize the past records from all the users compared with single-bandit algorithms
(i.e., methods with no user collaboration).

3.2.1 ARCHITECTURE OF GNN MODELS

In round t, with user exploitation graph G(1)i,t for each arm xi,t ∈ Xt, we apply the exploitation GNN

model f (1)
gnn(xi,t,G(1)i,t ; Θ

(1)
gnn) to collaboratively estimate the arm reward r̂i,t for the received user

ut ∈ U . We start from learning the aggregated hidden representation over the user graph, denoted as

Hagg = σ
(
(S

(1)
i,t)

k · (Xi,tΘ
(1)
agg)

)
∈ Rn×m (3)

where S
(1)
i,t = (D

(1)
i,t)

− 1
2Ai,t(D

(1)
i,t)

− 1
2 is the symmetrically normalized adjacency matrix of G(1)i,t ,

and σ represents the ReLU activation function. With m being the network width, we have Θ(1)
agg ∈

Rnd×m as the trainable weight matrix. After propagating the information for k hops over the user
graph, each row of Hagg corresponds to the aggregated m-dimensional hidden representation for
one specific user-arm pair (u,xi,t), u ∈ U . In this way, the propagation of multi-hop information
can provide a global perspective over the users, since it also involves the neighborhood information
of users’ neighbors (Zhou et al., 2004). Here in Eq. 3, the embedding matrix Xi,t for the arm
xi,t ∈ Xt, i ∈ [a] is defined as

Xi,t =

x⊺
i,t 0 · · · 0
0 x⊺

i,t · · · 0
...

. . .
...

0 0 · · · x⊺
i,t

 ∈ Rn×nd (4)

to partition the weight matrix Θ(1)
gnn for different users. In this way, it is designed to generate individual

m-dimensional representations w.r.t. each user-arm pair (u,xi,t), u ∈ U , which correspond to the
rows of the matrix multiplication (Xi,tΘ

(1)
agg) ∈ Rn×m.

Then, with H0 = Hagg , we feed aggregated representations to the L-layer (L ≥ 2) FC network as

H l = σ(H l−1 ·Θ(1)
l) ∈ Rn×m, l ∈ [L− 1], r̂all(xi,t) = HL−1 ·Θ(1)

L ∈ Rn (5)

5

Under review as a conference paper at ICLR 2023

where r̂all(xi,t) ∈ Rn represents the reward estimation for all the users in U , given the arm xi,t.
Received user ut in round t, the reward estimation for the user-arm pair (ut,xi,t) would be the
corresponding element in r̂all (line 8, Alg. 1), represented by:

r̂i,t = f (1)
gnn(xi,t, G(1)i,t ;Θ

(1)
gnn) = [r̂all(xi,t)]ut

. (6)

For the FC network, the weight matrices for the first L − 1 layers are Θl ∈ Rm×m, l ∈
[1, · · · , L − 1], and for the L-th layer, we have ΘL ∈ Rm. Here, we use Θ(1)

gnn =

[vec(Θ(1)
agg)

⊺, vec(Θ(1)
1)⊺, . . . , vec(Θ(1)

L)⊺]⊺ ∈ Rp to represent the trainable parameters of the GNN

exploitation model. The exploitation GNN model f (1)
gnn(·) will be trained with GD based on all

the received records Pt. Then we apply the quadratic loss function between the reward prediction
{f (1)

gnn(xτ , G(1)τ ;Θ(1)
gnn)}τ∈[t] of chosen arms xτ , and the actual received rewards {rτ}τ∈[t].

Connection with the Reward Function Definition (Eq. 1) and Constraint (Eq. 2). It is known
that when width m is large enough, the FC network is naturally Lipschitz continuous with respect
to the input (Allen-Zhu et al., 2019). In our case, with aggregated hidden representations Hagg

being the input to the FC network (Eq. 5), we will have the difference of reward estimations
r̂i,t bounded by the distance of rows in matrix Hagg (i.e., aggregated hidden representations).
Therefore, given arm xi,t ∈ Xt and two users ui, uj ∈ U , the difference of their estimated rewards
|[r̂all(xi,t)]ui

− [r̂all(xi,t)]uj
| can be bounded by the distance of their estimated correlation vectors

(i.e, the corresponding rows in Si,t). This matches the reward function definition and the constraint
presented in Eq. 1-2.

Exploration GNN Model. To achieve adaptive exploration with user collaborations, we apply a
second GNN model f (2)

gnn(∇[f (1)
gnn]i,t,G(2)i,t ;Θ

(2)
gnn) to evaluate the potential gain b̂i,t of the reward

estimation f
(1)
gnn(xi,t,G(1)i,t ;Θ

(1)
gnn) (line 8, Alg. 1). Here, the input is the user exploration graph

G(2)i,t , and the corresponding input graph signal is the gradient of the exploitation GNN model

∇[f (1)
gnn]i,t = ∇Θ

(1)
gnn

f
(1)
gnn(xi,t,G(1)i,t ;Θ

(1)
gnn). Analogous to f

(1)
gnn(·), the architecture of f (2)

gnn(·) can

also be represented by Eq. 3-Eq. 6. Note that while f (1)
gnn(·), f (2)

gnn(·) have the same network width and
number of layers, the dimensionality of weight matrices Θ(1)

agg ∈ Rnd×m,Θ(2)
agg ∈ Rnp×m is different.

Similarly, the exploration GNN model will be trained with GD. With the quadratic loss function, we
aim to minimize the difference between estimated potential gains {f (2)

gnn(∇[f (1)
gnn]τ ,G(2)τ ;Θ(2)

gnn)}τ∈[t]

and the actual ones {rτ − f
(1)
gnn(xτ , G(1)τ ;Θ(1)

gnn)}τ∈[t].

Instead of calculating non-negative UCB intervals (upward exploration only) as in existing works
(e.g., Gentile et al. (2014); Ban et al. (2022a)), the exploration GNN model f (2)

gnn(·) leverages both
gradient information from the exploitation GNN model f (1)

gnn(·) and the user exploration correlations
(i.e., G(2)i,t) to achieve adaptive exploration (downward and upward exploration).

Remark 3.1 (Reducing Input Complexity). The input of f (2)
gnn(·) is the gradient ∇Θf

(1)
gnn(x) given

the arm x, and its dimensionality is naturally p = (nd ×m) + (L − 1) ×m2 +m, which can be
large when increasing the network width m and depth L. Inspired by Convolutional Neural Networks
(CNNs), e.g., Radenović et al. (2018), we apply the average pooling to calculate the approximation
for the original gradient vector in practice. In this way, we can save the running time for large
matrix multiplications, and reduce the space complexity at the same time. Note this approach is
also compatible with user networks in Subsection 3.1. To prove its effectiveness, we will apply this
method on GNB for all the experiments in Section 5.

Remark 3.2 (Working with Large Systems). When facing a large number of users, to deal with
potentially high computational cost, we can apply approximated user neighborhoods to reduce the
running time of GNB. Given user graphs G(1)i,t ,G

(2)
i,t in terms of arm xi,t, we derive approximated user

neighborhoods Ñ (1)(ut), Ñ (2)(ut) ⊂ U for target user ut , with the size |Ñ (1)(ut)| = |Ñ (2)(ut)| =
ñ, where ñ << n. For instance, we can choose a subset of ñ representative users (e.g., users who
always post high quality reviews in e-commerce platforms) to form Ñ (1)(ut), Ñ (2)(ut) for the
downstream GNN models, which can significantly reduce the computation cost. Related experiments
are provided in Subsection 5.3 and Appendix Section B.

6

Under review as a conference paper at ICLR 2023

ALGORITHM 1: Graph Neural Bandits (GNB)
1 Input: Number of rounds T , network width m, information propagation hops k. Functions for

edge weight estimation Ψ(1)(·, ·),Ψ(2)(·, ·) : R× R 7→ R.
2 Output: Arm recommendation xt for each time step t.
3 Initialization: Initialize parameter Θ0 for all models.
4 for t = 1, 2, ..., T do
5 Receive a user ut and a set of arm contexts Xt = {xi,t}i∈[a].
6 Construct two kinds of user graphs {G(1)i,t }i∈[a], {G

(2)
i,t }i∈[a] for arm set Xt with Algorithm 2.

7 for each arm xi,t ∈ Xt do
8 Compute reward estimation r̂i,t = f

(1)
gnn(xi,t, G(1)i,t ; [Θ

(1)
gnn]t−1), and the potential gain

b̂i,t = f
(2)
gnn(∇Θ

(1)
gnn

f
(1)
gnn(xi,t, G(1)i,t ; [Θ

(1)
gnn]t−1), G(2)i,t ; [Θ

(2)
gnn]t−1).

9 end
10 Play arm xt = argmaxxi,t∈Xt

(
r̂i,t + b̂i,t

)
, and observe its true reward rt.

11 Train the user networks f (1)
u (·;Θ(1)

u), f (2)
u (·;Θ(2)

u) and GNN models f (1)
gnn(·;Θ(1)

gnn),

f
(2)
gnn(·;Θ(2)

gnn) with gradient descent, according to Algorithm 3.
12 end

Weight Matrices Initialization. For both GNN models Θ(1)
gnn and Θ(2)

gnn, the matrix entries of the
aggregation weight matrix Θagg and the first L− 1 FC layers {Θ1, . . .ΘL−1} are drawn from the
Gaussian distribution N(0, 2/m). Then, for the last layer ΘL, we draw its entries from N(0, 1/m).

3.2.2 ARM SELECTION MECHANISM AND MODEL TRAINING

In round t, with the current parameters [Θ
(1)
gnn]t−1, [Θ

(2)
gnn]t−1 for GNN models before train-

ing, the selected arm is chosen as xt = argmaxxi,t∈Xt

(
f
(1)
gnn(xi,t, G(1)i,t ; [Θ

(1)
gnn]t−1) +

f
(2)
gnn(∇Θ

(1)
gnn

f
(1)
gnn(xi,t, G(1)i,t ; [Θ

(1)
gnn]t−1), G(2)i,t ; [Θ

(2)
gnn]t−1)

)
based on the estimated reward and

potential gain (line 10, Alg. 1). After receiving the true reward rt, we proceed to update the user
networks and GNN models based on GD and quadratic loss function (line 11, Alg. 1). Pseudo-code
summarizing the training procedure is shown in Alg. 3 (Appendix Section D).

4 THEORETICAL ANALYSIS

In this section, we present the theoretical analysis for the proposed GNB. Here, we consider each
user u ∈ U to be evenly served T/n rounds up to time step T , i.e., |Tu,t| = Tu,t = T/n, which
is standard in closely related works (e.g., Gentile et al. (2014); Ban & He (2021)). To ensure the
neural models are able to efficiently learn the underlying reward mapping, we have the following
mild assumption on arm separateness.
Assumption 4.1 (ρ-Separateness of Arms). After a total of T rounds, for every pair xi,t,xi′,t′ with
t, t′ ∈ [T] and i, i′ ∈ [a], if (t, i) ̸= (t′, i′), we have ∥xi,t − xi′,t′∥2 ≥ ρ where 0 < ρ ≤ O(1

L).

Note that the above assumption is mild, and it has been repeatedly applied in previous works on
neural bandits (Ban et al., 2022b) and over-parameterized neural networks (Allen-Zhu et al., 2019).
Meanwhile, Assumption 4.2 in Zhou et al. (2020) and Assumption 3.4 from Zhang et al. (2021) also
imply that no two arms are the same, and they measure the arm separateness in terms of the minimum
eigenvalue λ0 (with λ0 > 0) of the Neural Tangent Kernel (NTK) (Jacot et al., 2018) matrix, which is
comparable with our Euclidean separateness ρ. Note that since L can be manually set (e.g., L = 2),
we can easily satisfy the condition 0 < ρ ≤ O(1

L) as long as no two arms are identical.

Based on Definition 1 and Definition 3, given an arm xi,t ∈ Xt, we have the adjacency matri-
ces A

(1),∗
i,t and A

(2),∗
i,t for the true arm graphs G(1),∗i,t , G(2),∗i,t . For the sake of analysis, given any

adjacency matrix A, we derive the normalized adjacency matrix S by scaling the elements of
A with 1/n. We also set the neighborhood parameter k = 1, and define the mapping functions
Ψ(1)(a, b),Ψ(2)(a, b) := exp(−|a−b|) given the inputs a, b ∈ R. Note that our results can be readily
generalized to other mapping functions with the Lipschitz-continuity properties.

7

Under review as a conference paper at ICLR 2023

We proceed to derive the regret bound for T time steps, denoted as R(T). Here, the following
Theorem 4.2 offers the cumulative regret bound covering both types of error: (1) the estimation error
of user graphs; and (2) the approximation error of neural models. Let η1, J1 be the learning rate and
iterations for user networks, and η2, J2 denote the learning rate and iterations for GNN models.
Theorem 4.2. Define δ ∈ (0, 1), 0 < ξ1, ξ2 ≤ O(1/T) and 0 < ρ ≤ O(1/L). With the user
networks defined in Eq. 7 and the GNN models defined in Eq. 3−5 with L FC-layers, let their width

m ≥ Ω

(
Poly(T, L, a, 1

ρ) · log(1/δ)
)

. With training process in Algorithm 3, set parameters

η1 = Θ

(
ρ

m · Poly(T, n, a, L)

)
, η2 = Θ

(
ρ

m · Poly(T, a, L)

)
,

J1 = Θ

(
Poly(T, n, a, L)

ρ · δ2
· log(1

ξ1
)

)
, J2 = Θ

(
Poly(T, a, L)

ρ · δ2
· log(1

ξ2
)

)
.

Then, following Algorithm 1, Algorithm 2 for arm pulling and user group update, with probability at
least 1− δ, the T -round pseudo-regret R(T) of GNB could be bounded by

R(T) ≤
√
T · O(L) +

√
T · O(L3) +

√
T · O(L2) ·

√
log(

Tn · a
δ

) +O(L2) +O(1).

The proof of Theorem 4.2 and the full regret bound are presented in the Appendix.

Remark 4.3 (Reducing
√
n to

√
log(n)). While our O(

√
T log(T)) bound matches theoretical

bound of state-of-the-art EE-Net (Ban et al., 2022b), EE-Net only considers the single-bandit setting
with no collaboration among users. Compared with Meta-Ban (Ban et al., 2022a), we provide the
theoretical analysis from a new perspective regarding the fine-grained user collaborative effect and
GNNs. In particular, compared with existing user clustering works (e.g., Ban et al. (2022a); Gentile
et al. (2014); Li et al. (2019); Ban & He (2021)) imposing the additional

√
n (where n is the number

of users) factor to incorporate user collaborative effects, our GNB only end up with the
√

log(n)
term by adopting GNN models for user collaboration, which is sharper than existing works.
Remark 4.4 (Removing i.i.d. Assumption). Compared with existing clustering of bandits algorithms
(e.g., Gentile et al. (2014); Li et al. (2019); Gentile et al. (2017); Ban et al. (2022a)) and the single-
bandit algorithm EE-Net (Ban et al., 2022b), we avoid making the i.i.d. assumption for the arms by
applying the martingale-based analysis. For real-world applications, their i.i.d. assumption can be
strong since the candidate arm pool is always conditioned on the received records, and candidate
arms for a specific round can also come from different distributions.

5 EXPERIMENTS

In this section, we evaluate the proposed GNB framework on multiple real data sets against nine
state-of-the-art algorithms, including: CLUB (Gentile et al., 2014), SCLUB (Li et al., 2019), LOCB
(Ban & He, 2021), DynUCB (Nguyen & Lauw, 2014), COFIBA (Li et al., 2016), Neural-UCB-Pool
(Neural-Pool) (Zhou et al., 2020), Neural-UCB-Ind (Neural-Ind) (Zhou et al., 2020), EE-Net (Ban
et al., 2022b), and Meta-Ban (Ban et al., 2022a). We will include the descriptions for the baselines
in the Appendix Section B.

5.1 REAL DATA SETS

Recommendation Data Sets. “MovieLens rating dataset” (https://www.grouplens.org/
datasets/movielens/20m/) includes reviews from 1.6× 105 users towards 6× 104 movies.
Since the genome-scores of user-specified tags are provided for each movie, we select 10 tags with
the highest score variance to generate the movie features vi ∈ Rd, d = 10. Here, the user features
vu ∈ Rd, u ∈ U are obtained through singular value decomposition (SVD) of the rating matrix.
Here, we use K-means to divide users into 50 groups based on vu, and the group information is
unknown to models. In each round t, a user ut is drawn from a randomly selected group. For the
arm pool Xt of 10 arms, we randomly choose one bad movie (with two stars or less, out of five)
rated by ut with reward 1, and randomly pick the other 9 good movies with reward 0. For “Yelp”
data set (https://www.yelp.com/dataset), we extract ratings and build the rating matrix
w.r.t. the top 2, 000 users and top 10, 000 arms with the most reviews. Then, we use SVD to extract a
normalized 10-dimensional feature vector for each user and restaurant. Given the rating for a specific

8

https://www.grouplens.org/datasets/movielens/20m/
https://www.grouplens.org/datasets/movielens/20m/
https://www.yelp.com/dataset

Under review as a conference paper at ICLR 2023

0 2000 4000 6000 8000 10000
Time step

0

2000

4000

6000

8000

Cu
m

ul
at

iv
e

re
gr

et

Cumulative regret on MovieLens dataset
LOCB
CLUB
SCLUB
COFIBA
Neural-Pool
Neural-Ind
EE-Net
Meta-Ban
Dyn-UCB
GNB

0 2000 4000 6000 8000 10000
Time step

0

2000

4000

6000

8000

Cumulative regret on Yelp dataset
LOCB
CLUB
SCLUB
COFIBA
Neural-Pool
Neural-Ind
EE-Net
Meta-Ban
Dyn-UCB
GNB

0 2000 4000 6000 8000 10000
Time step

0

2000

4000

6000

8000

Cumulative regret on MNIST dataset
LOCB
CLUB
SCLUB
COFIBA
Neural-Pool
Neural-Ind
EE-Net
Meta-Ban
Dyn-UCB
GNB

0 2000 4000 6000 8000 10000
Time step

0

200

400

600

800

Cumulative regret on Shuttle dataset
LOCB
CLUB
SCLUB
COFIBA
Neural-Pool
Neural-Ind
EE-Net
Meta-Ban
Dyn-UCB
GNB

Figure 2: Cumulative regrets on the recommendation and classification data sets.

user-item pair, if the user’s rating is greater than three stars (out of five stars), the reward is set to 1;
otherwise, the reward is 0. Similarly, we apply K-means clustering to divide users into 50 groups
based on user features. In each round t, a target ut, is sampled from a randomly selected group. For
the arm pool Xt, we randomly choose one good restaurant rated by ut with reward 1 and randomly
pick the other 9 bad restaurants with reward 0.

Classification Data Sets. In addition to the two recommendation data sets above, we also perform
experiments on two real classification data sets under the recommendation settings, which are
“MNIST” (http://yann.lecun.com/exdb/mnist/) and “Shuttle” (https://archive.
ics.uci.edu/ml/datasets/Statlog+(Shuttle)) data sets. Similar to previous works
(Zhou et al., 2020; Ban et al., 2022a), given a sample x ∈ Rd, we transform it into C different arms,
as x1 = (x, 0, . . . , 0),x2 = (0,x, . . . , 0), . . . ,x|C| = (0, 0, . . . ,x) ∈ Rd+C−1 where we add C − 1
zero digits as the padding. The received reward rt will be 1 if we select the arm of the correct class,
else the reward will be 0.

5.2 EXPERIMENT RESULTS

Figure 2 illustrates the cumulative regret results on the four data sets, our proposed GNB manages to
achieve the best performance against all these strong benchmarks. First, since the MovieLens data set
involves real arm features unlike the Yelp data set that includes high inherent noise, the performance
of different algorithms on the MovieLens data set tends to have larger divergence. Among those
regret results, the algorithms with neural architectures (Neural-Pool, EE-Net, Meta-Ban) generally
perform better than linear algorithms due to the approximation power of neural networks. However,
as Neural-Ind considers no collaboration among users, it performs the worst among all baselines
on these two data sets. EE-Net outperforms Neural-Pool thanks to its adaptive exploration strategy.
For classification data sets, Meta-Ban performs better than the other baselines by modeling user
correlations under the non-linear setting. Different from recommendation data sets, the classification
data sets involve more complicated reward mapping functions, and this might lead to the poor
performances of linear algorithms. Our proposed GNB consistently outperforms all baselines by
modeling fine-grained user correlations and utilizing the adaptive exploration strategy simultaneously.
In addition, GNB only takes at most 75% of Meta-Ban’s running time to finish the experiments
(Table 1), since Meta-Ban trains the framework individually for each arm before making predictions.

5.3 SUPPLEMENTARY EXPERIMENTS

Due to the page limit, we present additional supplementary experiments in the Appendix Section B,
including: (1) experiments on additional data sets; (2) with increasing number of users, experiments
demonstrating the effectiveness of applying approximated user neighborhoods (Remark 3.2); (3)
experiments showing the potential performance impact on GNB when there exist underlying user
clusters; (4) the parameter sensitivity study showing that our adaptive exploration strategy can indeed
improve the performance of GNB, and the effects of different hops k for information propagation.

6 CONCLUSION

In this paper, we propose a novel framework named GNB to model the fine-grained user collaborative
effects. Instead of modeling user correlations through the estimation of rigid user groups, we estimate
the user graphs to preserve the pair-wise user correlations for exploitation and exploration separately,
and utilize individual GNN-based models to achieve the adaptive exploration. Moreover, under
standard assumptions, we also demonstrate the improvement of regret bounds over existing methods
from a new perspective of “fine-grained” user collaborative effects and GNNs. Extensive experiments
are conducted to show the effectiveness of our proposed framework against strong baselines.

9

http://yann.lecun.com/exdb/mnist/
https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)

Under review as a conference paper at ICLR 2023

REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24:2312–2320, 2011.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002.

Yikun Ban and Jingrui He. Local clustering in contextual multi-armed bandits. In Proceedings of the
Web Conference 2021, pp. 2335–2346, 2021.

Yikun Ban, Jingrui He, and Curtiss B Cook. Multi-facet contextual bandits: A neural network
perspective. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pp. 35–45, 2021.

Yikun Ban, Yunzhe Qi, Tianxin Wei, and Jingrui He. Neural collaborative filtering bandits via meta
learning. arXiv preprint arXiv:2201.13395, 2022a.

Yikun Ban, Yuchen Yan, Arindam Banerjee, and Jingrui He. Ee-net: Exploitation-exploration neural
networks in contextual bandits. In International Conference on Learning Representations, 2022b.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep
neural networks. Advances in Neural Information Processing Systems, 32:10836–10846, 2019.

Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line
learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

Nicolo Cesa-Bianchi, Claudio Gentile, and Giovanni Zappella. A gang of bandits. In NeurIPS, pp.
737–745, 2013.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff
functions. In AISTATS, pp. 208–214, 2011.

Aniket Anand Deshmukh, Urun Dogan, and Clay Scott. Multi-task learning for contextual bandits.
In NeurIPS, pp. 4848–4856, 2017.

Audrey Durand, Charis Achilleos, Demetris Iacovides, Katerina Strati, Georgios D Mitsis, and Joelle
Pineau. Contextual bandits for adapting treatment in a mouse model of de novo carcinogenesis. In
Machine learning for healthcare conference, pp. 67–82. PMLR, 2018.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2019.

Claudio Gentile, Shuai Li, and Giovanni Zappella. Online clustering of bandits. In ICML, pp.
757–765, 2014.

Claudio Gentile, Shuai Li, Purushottam Kar, Alexandros Karatzoglou, Giovanni Zappella, and Evans
Etrue. On context-dependent clustering of bandits. In ICML, pp. 1253–1262, 2017.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In WWW, pp. 173–182, 2017.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pp. 639–648, 2020.

10

Under review as a conference paper at ICLR 2023

Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed, and Craig Boutilier. Latent
bandits revisited. Advances in Neural Information Processing Systems, 33:13423–13433, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Parnian Kassraie, Andreas Krause, and Ilija Bogunovic. Graph neural network bandits. arXiv preprint
arXiv:2207.06456, 2022.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In WWW, pp. 661–670, 2010.

Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. Collaborative filtering bandits. In SIGIR, pp.
539–548, 2016.

Shuai Li, Wei Chen, Shuai Li, and Kwong-Sak Leung. Improved algorithm on online clustering of
bandits. In IJCAI, pp. 2923–2929, 2019.

Odalric-Ambrym Maillard and Shie Mannor. Latent bandits. In International Conference on Machine
Learning, pp. 136–144. PMLR, 2014.

Trong T Nguyen and Hady W Lauw. Dynamic clustering of contextual multi-armed bandits. In Pro-
ceedings of the 23rd ACM International Conference on Conference on Information and Knowledge
Management, pp. 1959–1962, 2014.

Yunzhe Qi, Yikun Ban, and Jingrui He. Neural bandit with arm group graph. arXiv preprint
arXiv:2206.03644, 2022.

Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-tuning cnn image retrieval with no human
annotation. IEEE transactions on pattern analysis and machine intelligence, 41(7):1655–1668,
2018.

Victor Garcia Satorras and Joan Bruna Estrach. Few-shot learning with graph neural networks. In
International Conference on Learning Representations, 2018.

Sohini Upadhyay, Mikhail Yurochkin, Mayank Agarwal, Yasaman Khazaeni, and Djallel Bouneffouf.
Graph convolutional network upper confident bound. 2020.

Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nello Cristianini. Finite-time analysis
of kernelised contextual bandits. In Uncertainty in Artificial Intelligence, 2013.

Sofía S Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the optimal design
of clinical trials: benefits and challenges. Statistical science: a review journal of the Institute of
Mathematical Statistics, 30(2):199, 2015.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and
development in Information Retrieval, pp. 165–174, 2019.

Max Welling and Thomas N Kipf. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Qingyun Wu, Huazheng Wang, Quanquan Gu, and Hongning Wang. Contextual bandits in a
collaborative environment. In SIGIR, pp. 529–538, 2016.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462. PMLR, 2018.

11

Under review as a conference paper at ICLR 2023

Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, and Kenji Kawaguchi. Optimization of graph neural
networks: Implicit acceleration by skip connections and more depth. In International Conference
on Machine Learning, pp. 11592–11602. PMLR, 2021.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–983,
2018.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In International
Conference on Machine Learning, pp. 7134–7143. PMLR, 2019.

Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling. In
International Conference on Learning Representations, 2021.

Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard Schölkopf. Learning
with local and global consistency. In NeurIPS, pp. 321–328, 2004.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based exploration.
In International Conference on Machine Learning, pp. 11492–11502. PMLR, 2020.

12

Under review as a conference paper at ICLR 2023

A RELATED WORKS

In this section, we briefly review the existing works related to our proposed GNB framework.
Assuming the reward mapping to be linear, linear upper confidence bound (UCB) algorithms (Chu
et al., 2011; Li et al., 2010; Auer et al., 2002; Abbasi-Yadkori et al., 2011) were first proposed
to solve the exploitation-exploration dilemma. After kernel-based methods (Valko et al., 2013;
Deshmukh et al., 2017) were used to address the non-linear setting where the reward mapping is the
kernel-based function, neural algorithms (Zhou et al., 2020; Zhang et al., 2021; Ban et al., 2021)
have been proposed to utilize neural networks to estimate the reward function and confidence bound.
Meanwhile, AGG-UCB (Qi et al., 2022) adopts GNN to model the arm group correlations. GCN-UCB
(Upadhyay et al., 2020) manages to apply the GNN model to embed arm contexts for downstream
linear regression, and GNN-PE (Kassraie et al., 2022) utilizes the UCB based on information gains to
achieve exploration for classification tasks on graphs. Note that the above neural algorithms with
UCB-based exploration strategy all suffer from the space complexity O(p2) to store their gigantic
gradient matrix, where p is the number of model parameters. This space cost is especially enormous
when you increase the quantity of model parameters by adding more network width m and depth L.
Instead of UCB, EE-Net (Ban et al., 2022b) achieves adaptive exploration by using neural models for
estimating prediction uncertainty. Assuming a finite number of arms, (Maillard & Mannor, 2014;
Hong et al., 2020) discuss the latent bandits where there exist latent states that affect the reward
generation. Nonetheless, all of these works fail to consider the collaboration effects among users
under the real-world application scenarios.

In order to model the user correlations, (Wu et al., 2016; Cesa-Bianchi et al., 2013) assume the user
social graph is known, and apply an ensemble of linear estimators. Without the prior knowledge of
user correlations, CLUB (Gentile et al., 2014) introduces the user clustering problem in contextual
bandits with the graph connected components, SCLUB (Li et al., 2019) adopts dynamic user sets and
applies set operations to update user clusters, and DynUCB (Nguyen & Lauw, 2014) assigns users
to their nearest estimated clusters. Then, CAB (Gentile et al., 2017) studies the arm-specific user
clustering, and LOCB (Ban & He, 2021) estimates soft-margin user groups through a random-seed
based approach. COFIBA (Li et al., 2016) utilizes user and arm clustering for collaborative filtering.
Apart from these linear algorithms, we note a concurrent work Meta-Ban (Ban et al., 2022a), which
applies a neural meta-model to adapt to different user groups. However, all algorithms mentioned in
this paragraph consider rigid user groups, where users from the same group are treated equally with
no internal differentiation.

GNNs (Welling & Kipf, 2017; Chen et al., 2018; Wu et al., 2019; Gasteiger et al., 2019; He et al.,
2020; Satorras & Estrach, 2018) are a kind of neural models operating on the graph data, and have
been proved effective for various tasks, e.g., community detection (You et al., 2019) and recommender
systems (Ying et al., 2018). In this work, we leverage GNNs to learn from user correlations and arm
contexts simultaneously.

B EXPERIMENT SETTINGS AND SUPPLEMENTARY EXPERIMENTS

B.1 BASELINES AND EXPERIMENT SETTINGS

The descriptions for our nine baseline methods are:

• CLUB (Gentile et al., 2014) regards connected components as user groups out of the
estimated user graph, and adopts a UCB-type exploration strategy;

• SCLUB (Li et al., 2019) estimates dynamic user sets as user groups, and allows set operations
for group updates;

• LOCB (Ban & He, 2021) applies soft-clustering among users with random seeds and choose
the best user group for reward and confidence bound estimations;

• DynUCB (Nguyen & Lauw, 2014) dynamically assigns users to its nearest estimated cluster.
• COFIBA (Li et al., 2016) estimates user clustering and arm clustering simultaneously, and

ensembles linear estimators for reward and confidence bound estimations;
• Neural-Pool adopts one single Neural-UCB (Zhou et al., 2020) model for all the users with

UCB-type exploration strategy;

13

Under review as a conference paper at ICLR 2023

• Neural-Ind assigns each user with their own separate Neural-UCB (Zhou et al., 2020)
model;

• EE-Net (Ban et al., 2022b) achieves adaptive exploration by applying additional neural
models for the exploration and decision making;

• Meta-Ban (Ban et al., 2022a) utilizes individual neural models for each user’s behavior, and
applies a meta-model to adapt to estimated user groups.

Baseline Settings. For all the UCB-based baselines, we choose theirs exploration parameter with grid
search in the range {0.01, 0.1, 1} individually. And we set the L = 2 for all the deep learning models,
and set the network width m = 100. The learning rate of all neural algorithms are selected by grid
search in range {0.0001, 0.001, 0.01}. For EE-Net, we follow the default setting in their paper by
using a hybrid decision maker, where the estimation is f1 + f2 for the first 500 time steps, and then
we apply an additional neural network for decision making afterwards. For Meta-Ban, we follow the
settings in their paper by turning the clustering parameter γ through grid search {0.1, 0.2, 0.3, 0.4}.
For GNB, we choose the k-hop user neighborhood k ∈ {1, 2, 3} with grid search. Reported results
are the average of 5 runs.

B.2 EXPERIMENTS ON ADDITIONAL DATA SETS

Due to the page limit in the main body and to better compare our GNB with the bench-
marks, here, we include the experiments on two additional classification data sets in this subsec-
tion. They are: (1) the “Letter” data set with C = 26 different classes (https://archive.
ics.uci.edu/ml/datasets/letter+recognition), and (2) the “Pendigits” data set
with C = 10 classes (https://archive.ics.uci.edu/ml/datasets/Pen-Based+
Recognition+of+Handwritten+Digits), under the recommendation settings. Analogous
to settings of the “MNIST” and the “Shuttle” data set, we consider each class to be a user. Given a
sample x ∈ Rd, we transform it into C arms for different classes similar to previous works (Zhou et al.,
2020; Ban et al., 2022a), namely x1 = (x, 0, . . . , 0),x2 = (0,x, . . . , 0), . . . ,xC = (0, 0, . . . ,x) ∈
Rd+C−1 where additional C − 1 zero digits are added as the padding. The reward will be r = 1 if we
choose the correct arm that represents the sample’s true class; otherwise, the reward will be 0.

0 2000 4000 6000 8000 10000
Time step

0

2000

4000

6000

8000

Cu
m

ul
at

iv
e

re
gr

et

Cumulative regret on Letter dataset
LOCB
CLUB
SCLUB
COFIBA
Neural-Pool
Neural-Ind
EE-Net
Meta-Ban
Dyn-UCB
GNB

0 2000 4000 6000 8000 10000
Time step

0

1000

2000

3000

4000

5000

6000

7000
Cumulative regret on Pendigits dataset

LOCB
CLUB
SCLUB
COFIBA
Neural-Pool
Neural-Ind
EE-Net
Meta-Ban
Dyn-UCB
GNB

Figure 3: Cumulative regrets on the two additional classification data sets.

The experiment results for these two additional data sets are presented in Figure 3. It is worthwhile
to note that EE-Net continues to outperform the two Neural-UCB baselines, which is also another
evidence of the effectiveness of the adaptive exploration strategy. On the other hand, our exploration
strategy inspired by EE-Net further incorporates the user exploration graphs to exploit the encoded
“fine-grained” user collaborative effects. Therefore, analogous to the experiment results in the main
body (Figure 2), our proposed GNB framework consistently outperforms the other benchmarks by
exploiting and adaptively exploring the “fine-grained” correlations among different classes at the
same time.

14

https://archive.ics.uci.edu/ml/datasets/letter+recognition
https://archive.ics.uci.edu/ml/datasets/letter+recognition
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits

Under review as a conference paper at ICLR 2023

B.3 EFFECTS OF THE ADAPTIVE EXPLORATION AND EFFECTS OF INFORMATION
PROPAGATION HOPS

In order to demonstrate the necessity of the adaptive exploration strategy, we consider an alternative
arm selection approach (different from line 10, Alg. 1) at each time step t, with the following form:

xt = arg max
xi,t∈Xt

(
f (1)
gnn

(
xi,t, G(1)i,t ; [Θ

(1)
gnn]t−1

)
+ α · f (2)

gnn

(
∇

Θ
(1)
gnn

f (1)
gnn(xi,t, G(1)i,t ; [Θ

(1)
gnn]t−1), G(2)i,t ; [Θ

(2)
gnn]t−1

))
given the candidate arm set Xt = {xi,t}i∈[a] and the model parameters [Θ(1)

gnn]t−1, [Θ
(2)
gnn]t−1. Here,

we introduce an additional parameter α ∈ [0, 1] as the exploration coefficient to control the levels
of exploration (larger the α values will lead to higher levels of exploration). And we will show the
experiment results with α ∈ {0, 0.1, 0.3, 0.7, 1.0} on the “MNIST” and the “Yelp” data sets.

0 2000 4000 6000 8000 10000
Time step

0

1000

2000

3000

4000

5000

6000

7000

Cu
m

ul
at

iv
e

re
gr

et

Cumulative regret on Yelp dataset
= 0
= 0.1
= 0.3
= 0.7
= 1.0

0 2000 4000 6000 8000 10000
Time step

0

500

1000

1500

2000

Cumulative regret on MNIST dataset
= 0
= 0.1
= 0.3
= 0.7
= 1.0

Figure 4: Cumulative regrets for different exploration coefficients α.

In Figure 4, we illustrate the effects of different exploration coefficients. Regarding the results in
the left figure (“Yelp” data set), the adaptive exploration indeed helps to improve the performance
GNB, but the performances of GNB do not differ dramatically with different α values. As the “Yelp”
data set contains inherent noise, the curve of cumulative regrets (including cumulative regrets of
the other benchmark algorithms) tends to follow a near-linear growing rate. However, our carefully
designed adaptive exploration strategy based on user exploration graphs is still helpful to improve
the overall performance, and this is validated by the fact that setting α = 1 will lead to better
performance compared with the situation when no exploration strategy is involved (α = 0). On the
other hand, based on the figure on the right hand side (“MNIST” data set), different α values tend
to have relatively divergent results. The reason can be that in the “MNIST” data set, the mapping
from arm contexts to the rewards is more complicated compared with that of the “Yelp” data set.
Thus, the adaptive exploration strategy is able to prominently improve the performance of GNB by
flexibly estimating potential gains of different classes with the estimated “fine-grained” user (class)
correlations.

Recall that there exists a parameter k for the GNB framework in Eq. 3, which controls the user
neighborhood hops that the two GNN models learn from. In this subsection, we will present the
experiment results with k ∈ {1, 2, 3} on the “MNIST” data set and the “Yelp” data set, which are
presented in Figure 5.

Based on the results on the two data sets, we can observe that setting k = 1, namely making the
GNB learn directly from the 1-hop neighborhood, tends to yield the best result. This might be due
to the fact that since our user graphs are staying as connected graphs while the user correlations
are encoded by the edge weights, learning directly from the neighbor would be good enough. And
the pair-wise user correlations between the target user and every other user have already been taken
into consideration. Meantime, with larger k values (k = 2, 3), raising the matrix to the power of
k would lead to more even entry values across the adjacency matrix, which can be related to the
over-smoothing problem (Xu et al., 2018; 2021). The figure on the right hand side (“MNIST” data
set) may support this claim. Since it has already been shown in the Figure 2 that applying one single

15

Under review as a conference paper at ICLR 2023

0 2000 4000 6000 8000 10000
Time step

0

1000

2000

3000

4000

5000

6000

7000

8000

Cu
m

ul
at

iv
e

re
gr

et

Cumulative regret on Yelp dataset
k = 1
k = 2
k = 3

0 2000 4000 6000 8000 10000
Time step

0

500

1000

1500

2000

2500

Cumulative regret on MNIST dataset
k = 1
k = 2
k = 3

Figure 5: Cumulative regrets for different neighborhood hops k.

estimator across all users (classes), i.e., Neural-Pool and EE-Net, will lead to poor performances,
the “MNIST” data set tend to have complex correlations among different classes. In this case, when
we increase k, different user pairs tend to have similar correlations because entries of the adjacency
matrix become more close to each other, which may lead to extra estimation error.

0 2000 4000 6000 8000 10000
Time step

0

500

1000

1500

2000

Cu
m

ul
at

iv
e

re
gr

et

MNIST dataset (k=1)
= 0.0
= 0.3
= 0.6
= 1.0

0 2000 4000 6000 8000 10000
Time step

0

500

1000

1500

2000

2500

MNIST dataset (k=2)
= 0.0
= 0.3
= 0.6
= 1.0

0 2000 4000 6000 8000 10000
Time step

0

500

1000

1500

2000

2500

MNIST dataset (k=3)
= 0.0
= 0.3
= 0.6
= 1.0

Figure 6: Cumulative regrets for different neighborhood hops k and exploration parameter α for the
MNIST data set.

Moreover, we also conduct the experiments on the MNIST data set with different sets of α and k
parameters jointly, as shown in Figure 6. Following our conclusion above, setting k = 1 generally
leads to better results and the adaptive exploration strategy offers considerable help to improve the
GNB’s performance. One phenomenon to note is that when we increase the value of parameter k, the
performance difference of GNB with different α values will shrink. One reason for this situation is
that when we increase the k value, the propagated adjacency matrix of the user graph will become
more “smooth”, which makes the users closer to each other in terms of similarity. In this case, the
effect of the adaptive exploration strategy can be affected as the user correlations estimated are less
divergent.

B.4 EXPERIMENTS WITH DIFFERENT NUMBER OF UNDERLYING USER GROUPS

0 2000 4000 6000 8000 10000
Time step

0

1000

2000

3000

4000

5000

6000

7000

Cu
m

ul
at

iv
e

re
gr

et

MovieLens dataset (5 users groups)
LOCB
DynUCB
CLUB
Meta-Ban
Neural-UCB-Pool
GNB

0 2000 4000 6000 8000 10000
Time step

0

1000

2000

3000

4000

5000

6000

7000

MovieLens dataset (10 users groups)
LOCB
DynUCB
CLUB
Meta-Ban
Neural-UCB-Pool
GNB

0 2000 4000 6000 8000 10000
Time step

0

1000

2000

3000

4000

5000

6000

7000

8000
MovieLens dataset (15 users groups)

LOCB
DynUCB
CLUB
Meta-Ban
Neural-UCB-Pool
GNB

Figure 7: Cumulative regrets for different number of underlying user groups (MovieLens data set).

16

Under review as a conference paper at ICLR 2023

0 2000 4000 6000 8000 10000
Time step

0

2000

4000

6000

8000

Cu
m

ul
at

iv
e

re
gr

et

Yelp dataset (5 users groups)
LOCB
DynUCB
CLUB
Meta-Ban
Neural-UCB-Pool
GNB

0 2000 4000 6000 8000 10000
Time step

0

2000

4000

6000

8000

Yelp dataset (10 users groups)
LOCB
DynUCB
CLUB
Meta-Ban
Neural-UCB-Pool
GNB

0 2000 4000 6000 8000 10000
Time step

0

2000

4000

6000

8000

Yelp dataset (15 users groups)
LOCB
DynUCB
CLUB
Meta-Ban
Neural-UCB-Pool
GNB

Figure 8: Cumulative regrets for different number of underlying user groups (Yelp data set).

To better understand the influence of potential underlying user clusters, we conduct the experiments
on the MovieLens and the Yelp data sets, with controlled number of underlying user groups. The
underlying user groups are derived by using hierarchical clustering on the user features, and we
maintain approximately a total of 50 users. Here, we apply four representative baselines with relatively
good performances, which are DynUCB (Nguyen & Lauw, 2014) [fixed number of user clusters],
LOCB (Ban & He, 2021) [fixed number of user clusters], CLUB (Gentile et al., 2014) [distance-based
user clustering], Neural-UCB-Pool (Zhou et al., 2020) [neural single-bandit algorithm], and Meta-Ban
(Ban et al., 2022a) [neural user clustering bandits]. In particular, DynUCB and LOCB are provided
with the true cluster number as the prior knowledge to determine the quantity of initial user clusters
/ random seeds. The experiment results are shown in Fig. 7 and Fig. 8.

As we can see from the results, our proposed GNB consistently outperforms other baselines across
different data sets and number of user groups. In particular, with more underlying user groups, the
performance improvement of GNB over the baselines will slightly increase, due to the increasingly
complicated user correlations. The modeling of fine-grained user correlations and the representation
power of our GNN-based architecture can help explain GNB’s good performance, and the ability of
utilizing user correlations.

B.5 EXPERIMENTS WITH APPROXIMATED USER NEIGHBORHOOD

In this subsection, we conduct experiments to support our claim that applying approximated user
neighborhoods is a feasible solution for increasing number of users (Remark 3.2). Then, we consider
three scenarios where the number of users n ∈ {200, 300, 500}. Meanwhile, we let the size of the
approximated user neighborhood Ñ (1)(ut), Ñ (2)(ut) fix to ñ = |Ñ (1)(ut)| = |Ñ (2)(ut)| = 50 for
all these three experiment settings, and the neighborhood users are sampled from the user pool U for
experiments.

0 2000 4000 6000 8000 10000
Time step

0

2000

4000

6000

8000

Cu
m

ul
at

iv
e

re
gr

et

MovieLens dataset (200 users)
EE-Net
Neural-Pool
DynUCB
LOCB
CLUB
SCLUB
COFIBA
Meta-Ban
Neural-Ind
GNB

0 2000 4000 6000 8000 10000
Time step

0

2000

4000

6000

8000

MovieLens dataset (300 users)
EE-Net
Neural-Pool
DynUCB
LOCB
CLUB
SCLUB
COFIBA
Meta-Ban
Neural-Ind
GNB

0 2000 4000 6000 8000 10000
Time step

0

2000

4000

6000

8000

MovieLens dataset (500 users)
EE-Net
Neural-Pool
DynUCB
LOCB
CLUB
SCLUB
COFIBA
Meta-Ban
Neural-Ind
GNB

Figure 9: Cumulative regrets for different number of users with approximated user neighborhood
(MovieLens data set).

The experiment results are shown in Figure 9. Here, we see that the proposed GNB still outperforms
the baselines with increasing number of users. In particular, given a total of 500 users, the approx-
imated neighborhood is only 1/10 (50 users) of the overall user pool. These results can serve as
a clear support that applying approximated user neighborhoods (Remark 3.2) is a practical way to
scale-up GNB in real-world application scenarios.

17

Under review as a conference paper at ICLR 2023

B.6 RUNNING TIME ON REAL DATA SETS

Data sets (104 rounds)
Methods MovieLens Yelp MNIST Shuttle
CLUB 230 36 359 4
SCLUB 274 82 363 4
LOCB 215 31 223 3
DynUCB 214 29 357 3
Neural-Pool 509 321 289 226
Neural-Ind 472 281 265 169
EE-Net 2435 2149 2903 2052
COFIBA 321 135 11874 13
Meta-Ban 20170 19825 18172 18101
GNB (Ours) 14121 [4295] 12506 [4082] 4299 [1072] 1606 [185]

Table 1: Average running time results (seconds) on real data sets. The running time in the brackets
“[]” is the actual time consumption for recommendation w/o the time consumption for training.

From Table 1, we see that compared with the most closely related work, Meta-Ban, our proposed
GNB is generally faster, since GNB does not required to re-train the model for each candidate arm.

Although the other baselines, especially the linear baselines tend to run much faster compared with
our proposed GNB, their experiment performances (Section 5) are also not comparable with our
proposed GNB as their linear assumption is too strong for most application scenarios. In particular,
for the data set with large arm context dimension d, the mapping from the arm context to the reward
will be much more complicated. In this case, as shown by the experiments on the MNIST data set
(d = 784) in Figure 2, the neural algorithms manage to achieve an undoubtedly huge improvement
over the linear algorithms, and have the reasonable running time.

Here, the numbers in the brackets “[]” are the time consumption for the actual recommendation
process. We have the following remarks: (1) Based on the running time in the brackets, we see that
for the two recommendation tasks, GNB takes approximately ∼ 0.4 second / per round to make
the arm recommendation for the received user, which is reasonable in real-world cases; (2) In all
the experiments, we train the GNB framework per 100 rounds after T > 1000 and still manage to
achieve good performance. Thus, the running time of GNB in a long run could be further significantly
improved by reducing the training frequency since we have already have enough data and an accurate
framework; (3) Moreover, since we are actually predicting the rewards and potential gain for all the
nodes within the user graph (or the “approximated” user graph), GNB is able to handle multiple users
in each round simultaneously without running the recommendation procedure multiple times, which
is efficient in real-world cases.

18

Under review as a conference paper at ICLR 2023

C USER NETWORKS ARCHITECTURE.

Here, we can choose different architectures for f
(1)
u (·), f (2)

u (·) to deal with various application
scenarios (e.g., Convolutional Neural Networks [CNNs] for recommendation tasks of visual contents).
In this paper, for the theoretical analysis and experiments, we apply separate L-layer fully-connected
(FC) networks for user exploitation models and exploration models, as

fu(χ;Θu) = ΘLσ(ΘL−1σ(ΘL−2 . . . σ(Θ1χ))) (7)

with Θu = [vec(Θ1)
⊺, . . . , vec(ΘL)

⊺]⊺ being the trainable parameters, and σ being the ReLU
activation. Here, since f

(1)
u (·), f (2)

u (·) are both L-layer networks shown in Eq.7, the input χ can be
either the arm x or the network gradient∇

Θ
(1)
u
f
(1)
u (·;Θ(1)

u).

Initialization. Then, the weight matrix of the input layer is different for two user networks where
Θ

(1)
1 ∈ Rm×d and Θ

(2)
1 ∈ Rm×p. The rest of the layers will be the same comparing the two kinds of

user networks, which are Θl ∈ Rm×m, l ∈ [2, · · · , L− 1], and ΘL ∈ R1×m.

D PSEUDO-CODE FOR ESTIMATING USER GRAPHS AND TRAINING THE
GNB FRAMEWORK

ALGORITHM 2: Estimating Arm-Specific User Graphs
1 Input: Model parameters Θt−1. Functions for edge weight estimation

Ψ(1)(·, ·),Ψ(2)(·, ·) : R× R 7→ R.
2 Output: Updated user graphs {G(1)i,t }i∈[a], {G

(2)
i,t }i∈[a].

3 Initialize {G(1)i,t }i∈[a], {G
(2)
i,t }i∈[a].

4 for each user u ∈ U do
5 for each arm xi,t ∈ Xt, i ∈ [a] do
6 Compute r̂u,i = f

(1)
u (xi,t; [Θ

(1)
ut

]t−1), and
b̂u,i = f

(2)
u (∇

Θ
(1)
ut

f
(1)
u (xi,t; [Θ

(1)
ut

]t−1); [Θ
(2)
ut

]t−1).

7 end
8 end
9 for each arm xi,t ∈ Xt do

10 for each user pair (u, u′) ∈ U × U do
11 For edge weight w(1)

i,t (u, u
′) ∈W

(1)
i,t , update w

(1)
i,t (u, u

′) = Ψ(1)(r̂u,i, r̂u′,i).

12 For edge weight w(2)
i,t (u, u

′) ∈W
(2)
i,t , update w

(2)
i,t (u, u

′) = Ψ(2)(b̂u,i, b̂u′,i).
13 end
14 end
15 Return user graphs {G(1)i,t }i∈[a], {G

(2)
i,t }i∈[a].

19

Under review as a conference paper at ICLR 2023

ALGORITHM 3: Model Training
1 Input: Initial parameter Θ0, step size η1, η2, training steps J1, J2, network width m. Updated

user graphs G(1)t , G(2)t . Served user ut.
2 Output: Updated model parameters [Θ(1)

ut
]t, [Θ(2)

ut
]t, [Θ(1)

gnn]t and [Θ(2)
gnn]t.

3 [Θ(1)
ut

]t, [Θ(2)
ut

]t = User-Model-Training
(
ut, [Θ

(1)
ut

]0, [Θ
(2)
ut

]0
)
.

4 for ∀u′ ∈ U , u′ ̸= ut do
5 [Θ

(1)
u′]t ← [Θ

(1)
u′]t−1, [Θ

(2)
u′]t ← [Θ

(2)
u′]t−1

6 end
7 [Θ(1)

gnn]t, [Θ
(2)
gnn]t = GNN-Model-Training

(
[Θ(1)

gnn]0, [Θ
(2)
gnn]0

)
.

8 Return [Θ(1)
ut

]t, [Θ(2)
ut

]t, [Θ(1)
gnn]t, [Θ

(2)
gnn]t.

9 Procedure User-Model-Training
(
ut, [Θ

(1)
ut

]0, [Θ
(2)
ut

]0
)

10 [Θ(1)
ut

]0 ←− [Θ(1)
ut

]0, [Θ(2)
ut

]0 ←− [Θ(2)
ut

]0.
11 # Training of f (1)

u (·)
12 Let L(Θ(1)

ut) :=
∑

τ∈Tut,t
|f (1)

u (xτ ;Θ
(1)
ut

)− rτ |2

13 for j = 1, 2, . . . , J1 do
14 [Θ(1)

ut
]j = [Θ(1)

ut
]j−1 − η1 · ∇ΘL([Θ(1)

ut
]j−1)

15 end
16 # Training of f (2)

u (·)
17 Let L(Θ(2)

ut) :=∑
τ∈Tut,t

|f (2)
u (∇

Θ
(1)
ut

f
(1)
u (xτ ; [Θ

(1)
ut

]τ−1);Θ
(2)
ut

)−
(
rτ − f

(1)
u (xτ ; [Θ

(1)
ut

]τ−1)
)
|2

18 for j = 1, 2, . . . , J1 do
19 [Θ(2)

ut
]j = [Θ(2)

ut
]j−1 − η1 · ∇ΘL([Θ(2)

ut
]j−1)

20 end

21 Let [Θ̂
(1)

ut
]t ← [Θ(1)

ut
]J1 , [Θ̂

(2)

ut
]t ← [Θ(2)

ut
]J1

22 Sample and return new parameters ([Θ(1)
ut

]t, [Θ
(2)
ut

]t) ∼ {([Θ̂
(1)

ut
]τ , [Θ̂

(2)

ut
]τ)}τ∈[t].

23 end

24 Procedure GNN-Model-Training
(
[Θ(1)

gnn]0, [Θ(2)
gnn]0

)
25 [Θ(1)

gnn]
0 ←− [Θ(1)

gnn]0, [Θ(2)
gnn]

0 ←− [Θ(2)
gnn]0.

26 # Training of f (1)
gnn(·)

27 Let L(Θ(1)
gnn) :=

∑
τ∈[t]|f

(1)
gnn(xτ ,G(1)τ ;Θ(1)

gnn)− rτ |2

28 for j = 1, 2, . . . , J2 do
29 [Θ(1)

gnn]
j = [Θ(1)

gnn]
j−1 − η2 · ∇ΘL([Θ(1)

gnn]
j−1)

30 end
31 # Training of f (2)

gnn(·)
32 Apply f

(1)
gnn(xτ) to denote f

(1)
gnn(xτ ,G(1)τ ; [Θ(1)

gnn]τ−1).

33 Let L(Θ(2)
gnn) :=

∑
τ∈[t]|f

(2)
gnn(∇Θ

(1)
gnn

f
(1)
gnn(xτ),G(2)τ ;Θ(2)

gnn)−
(
rτ − f

(1)
gnn(xτ ,G(1)τ)

)
|2

34 for j = 1, 2, . . . , J2 do
35 [Θ(2)

gnn]
j = [Θ(2)

gnn]
j−1 − η2 · ∇ΘL([Θ(2)

gnn]
j−1)

36 end

37 Let [Θ̂
(1)

gnn]t ← [Θ(1)
gnn]

J2 , [Θ̂
(2)

gnn]t ← [Θ(2)
gnn]

J2

38 Sample and return new parameters ([Θ(1)
gnn]t, [Θ

(2)
gnn]t) ∼ {([Θ̂

(1)

gnn]τ , [Θ̂
(2)

gnn]τ)}τ∈[t].
39 end

20

Under review as a conference paper at ICLR 2023

E PROOF OF THEOREM 4.2

Before presenting the regret bound after T rounds, we proceed to bound the regret at a single time
step t ∈ [T]. Recall that there are two kinds of user graphs {G(1)i,t }i∈[a], {G

(2)
i,t }i∈[a] at each time

step t, while we can also build true user exploitation graph {G(1),∗i,t }i∈[a] and true user exploration

graph {G(2),∗i,t }i∈[a] based on the Definition 1 and Definition 3 respectively. Comparably, the true

normalized adjacency matrices of G(1),∗i,t , i ∈ [a] are represented as S(1),∗
i,t .

With rt, r
∗
t separately being rewards for actual selected arm xt ∈ Xt and the optimal arm x∗

t ∈ Xt,
we formulate the pseudo-regret for a single round t as Rt = E[r∗t |ut,Xt] − E[rt|ut,Xt] based
on the candidate arms Xt and received user ut for the current round t. Here, regarding our
arm pulling mechanism in Algorithm 1, we have fgnn(xt) = f

(1)
gnn(xt, G(1)t ; [Θ(1)

gnn]t−1) +

f
(2)
gnn(∇f (1)

t (xt), G(2)t ; [Θ(2)
gnn]t−1) given the selected arm xt with the input gradient ∇f (1)

t (xt) =
∇

Θ
(1)
gnn

f(1)
gnn(xt, G(1)

t ;[Θ(1)
gnn]t−1)

cgL
(cg > 0 as the normalization factor, such that ∥∇f (1)

t (xt)∥2 ≤ 1), and

the estimated user graphs G(1)t , G(2)t related to xt. Analogously, we also have estimated user graphs
G(1)t,∗ ,G

(2)
t,∗ for the optimal arm x∗

t .

Then, in round t ∈ [T], the single-round regret Rt can be bounded as

Rt = E[r∗t |ut,Xt]− E[rt|ut,Xt]

= E[r∗t |ut,Xt]− fgnn(xt) + fgnn(xt)− E[rt|ut,Xt]

≤
(i)

E[r∗t |ut,Xt]− fgnn(x
∗
t) + fgnn(xt)− E[rt|ut,Xt]

≤ E
[
|r∗t − fgnn(x

∗
t)|

∣∣ut,Xt

]
+ E

[
|rt − fgnn(xt)|

∣∣ut,Xt

]
= E

[
|f (2)

gnn(∇f
(1)
t (x∗

t), G
(2)
t,∗ ; [Θ

(2)
gnn]t−1)− (r∗t − f (1)

gnn(x
∗
t , G

(1)
t,∗ ; [Θ

(1)
gnn]t−1))|

∣∣∣∣ut,Xt

]
+

E
[
|f (2)

gnn(∇f
(1)
t (xt), G(2)t ; [Θ(2)

gnn]t−1)− (rt − f (1)
gnn(xt, G(1)t ; [Θ(1)

gnn]t−1))|
∣∣∣∣ut,Xt

]
= CBt(xt) + CBt(x

∗
t)

where inequality (i) is due to the arm pulling mechanism, i.e., fgnn(xt) ≥ fgnn(x
∗
t), and CBt(·)

is the regret bound function at round t formulated by the last equation. Then, given an arbitrary
candidate arm x ∈ Xt with reward r, and its estimated user graphs G(1),G(2), we have

CBt(x) = E
[
|f (2)

gnn(∇f
(1)
t (x), G(2); [Θ(2)

gnn]t−1)− (r − f (1)
gnn(x, G(1); [Θ

(1)
gnn]t−1))|

∣∣∣∣ut,Xt

]
≤ E

[
|f (2)

gnn(∇f
(1),∗
t (x), G(2),∗; [Θ(2)

gnn]t−1)− (r − f (1)
gnn(x, G(1),∗; [Θ

(1)
gnn]t−1))|

∣∣∣∣ut,Xt

]
︸ ︷︷ ︸

I1

+

E
[
|f (1)

gnn(x, G(1),∗; [Θ
(1)
gnn]t−1)− f (1)

gnn(x, G(1); [Θ
(1)
gnn]t−1)|

∣∣∣∣ut,Xt

]
︸ ︷︷ ︸

I2

+

E
[
|f (2)

gnn(∇f
(1),∗
t (x), G(2),∗; [Θ(2)

gnn]t−1)− f (2)
gnn(∇f

(1),∗
t (x), G(2); [Θ(2)

gnn]t−1)|
∣∣∣∣ut,Xt

]
︸ ︷︷ ︸

I3

+

E
[
|f (2)

gnn(∇f
(1),∗
t (x), G(2); [Θ(2)

gnn]t−1)− f (2)
gnn(∇f

(1)
t (x), G(2); [Θ(2)

gnn]t−1)|
∣∣∣∣ut,Xt

]
︸ ︷︷ ︸

I4

.

(8)

Here, we have the term I1 representing the estimation error induced by the GNN model parameters
{[Θ(1)

gnn]t−1, [Θ
(2)
gnn]t−1}, the term I2 denoting the error caused by the estimation of user exploitation

21

Under review as a conference paper at ICLR 2023

graph. Then, error term I3 is caused by the estimation of user exploitation graph, and term I4 is the
output difference given input gradients ∇f (1),∗

t (x) and ∇f (1)
t (x), which are individually generated

by true user exploitation graph G(1),∗ and the estimated exploitation graph G(1).
These four terms I1, I2, I3, I4 are respectively bounded by Lemma G.2 (Corollary G.3 and the
bounds in Subsection G.1), Lemma G.4, Lemma G.5, and Lemma G.7 in the appendix. Then, with
the notation from Theorem 4.2, the pseudo regret after T rounds, namely R(T), can be bounded by

R(t) =
∑
t∈[T]

Rt

≤ 2 ·
(√

t ·
(√

2ξ2 +
3L√
2
+ (1 + γ2)

√
2 log(

Tn · a
δ

)
)

+
(
1 +O(tL

3 log5/6(m)

ρ1/3m1/6
)
)
· O(t3L

ρ
√
m

log(m)) +O
(t4L2 log11/6(m)

ρ4/3m1/6

)
+ 2 · O(L) ·

√
8t ·

(√
2ξ1 +

3L√
2
+ (1 + γ1)

√
2 log(

Tn · a
δ

)
)

+O(tL
5 log5/6(m)

ρ1/3m1/6
) +O(L2) ·

√
8t ·

(√
2ξ1 +

3L√
2
+ (1 + γ1)

√
2 log(

Tn · a
δ

)
)
+ 4Γt

)
=⇒

R(T) ≤ 2 ·
√
T
(√

2ξ2 +
3L√
2
+ (1 + γ2)

√
2 log(

Tn · a
δ

)
)

+
√
T · O(L2) ·

(√
2ξ1 +

3L√
2
+ (1 + γ1)

√
2 log(

Tn · a
δ

)
)
+O(1)

≤
√
T ·

(
(
√
8ξ2 +O(L2)

√
2ξ1) +O(L3) +O(L2) ·

√
2 log(

Tn · a
δ

)

)
+
√
T · O(L) +O(1)

where the second inequality is because we have sufficient large network width m ≥

Ω

(
Poly(T, L, a, 1

ρ) · log(1/δ)
)

as indicated in Theorem 4.2. Here, since m ≥ Ω(Poly(T)), terms

γ1, γ2 can also be bounded by O(1). Therefore,

R(T) ≤
√
T ·

(
(
√

8ξ2 +O(L2)
√

2ξ1) +O(L3) +O(L2) ·
√

2 log(
Tn · a

δ
)

)
+
√
T · O(L) +O(1)

≤
√
T ·

(
O(L3) +O(L2) ·

√
2 log(

Tn · a
δ

)

)
+
√
T · O(L) +O(L2) +O(1)

=
√
T · O(L) +

√
T · O(L3) +

√
T · O(L2) ·

√
log(

Tn · a
δ

) +O(L2) +O(1)

when we have ξ1, ξ2 ≤ O(1
T). The proof is then completed.

Apart from the two remarks in the main body (Remark 4.4, 4.3), we also want to mention another
improvement over existing works with the Remark E.1 below.

Remark E.1 (Removing d, d̃ Terms). Existing neural single-bandit (i.e., with no user collaboration)
algorithms (Zhou et al., 2020; Zhang et al., 2021) derive the bound O(d̃

√
T log(T)) based on neural

gradient mappings and ridge regression, and they involve the effective dimension term d̃ of the NTK
matrix, which can grow along with the scale of network parameters and number of rounds T . The
linear user clustering algorithms (e.g., Li et al. (2019); Ban & He (2021); Gentile et al. (2017))
have the bound O(d

√
T log(T)) with the term of arm dimension d, which can be large given arm

contexts in the high-dimensional space. Here, we improve their bounds by a multiplicative factor
of

√
log(T) and remove the dimension terms d, d̃. We apply the generalization bound for over-

parameterized neural networks (Allen-Zhu et al., 2019; Cao & Gu, 2019) instead of regression-based
analysis to remove the

√
log(T) term, and the generalization error is also unrelated to d or d̃ for

over-parameterized neural networks.

22

Under review as a conference paper at ICLR 2023

F GENERALIZATION OF USER NETWORKS AFTER GD

In this section, we present the generalization results of user networks f (1)
u (·;Θ(1)

u), f
(2)
u (·;Θ(2)

u), u ∈
U . Up to a certain time step t and for a given user u ∈ U , we have all its past arm-reward pairs
Pu,t−1 = {(xτ , rτ)}τ∈Tu,t

. Before presenting the bounds, with two vectors x̃,x as the input such
that ∥x̃∥2 ≤ 1, ∥x∥2 = 1, inspired by (Allen-Zhu et al., 2019), we first define the the following
operator

ϕ(x̃,x) = (
x̃√
2
,
x

2
, c) (9)

as the concatenation of the two vectors x̃√
2
, x
2 and one constant c, where c =

√
3
4 − (∥x̃∥2√

2
)2 ≥ 1

2 .
And this operator makes the transformed vector ∥ϕ(x̃,x)∥2 = 1. The idea of this operator is to
make the gradients ∇

Θ
(1)
u
f
(1)
u (·;Θ(1)

u) of the user exploitation model, which is the input of the

user exploration model f (2)
u (·), comply with the normalization requirement and the separateness

assumption (Assumption 4.1). For the sake of analysis, we will adopt this operation in the following
proof. Note that this operator is just one possible solution, and our results could be easily generalized
to other forms of input gradients under the unit-length and separateness assumption. Similar ideas
are also applied in previous works (Ban et al., 2022b).

F.1 USER EXPLOITATION MODEL

With the convergence result presented in Lemma F.6, we could bound the output of the user
exploitation model f (1)

u (·) after GD with the following lemma.
Lemma F.1. For the constants ρ ∈ (0,O(1

L)) and ξ1 ∈ (0, 1), given user u ∈ U and its past records
Pu,t−1 up to time step t, we suppose m, η1, J1 satisfy the conditions in Theorem 4.2. Then, with
probability at least 1− δ, given an arm-reward pair (x, r), we have

|f (1)
u (x; [Θ̂

(1)

u]t)| ≤ γ1

where

γ1 = 2 +O
(

t3L

n3ρ
√
m

logm

)
+O

(
L2t4

n4ρ4/3m1/6
log11/6(m)

)
.

Proof. For brevity, we use Θ̂
(1)

u to denote [Θ̂
(1)

u]t. The LHS of the inequality could be written as

|f (1)
u (x; Θ̂

(1)

u)| ≤|f (1)
u (x; Θ̂

(1)

u)− f (1)
u (x; [Θ̂

(1)

u]0)− ⟨∇[Θ̂
(1)

u]0
f (1)
u (x; [Θ̂

(1)

u]0), Θ̂
(1)

u − [Θ̂
(1)

u]0⟩|

+ |f (1)
u (x; [Θ̂

(1)

u]0) + ⟨∇[Θ̂
(1)

u]0
f (1)
u (x; [Θ̂

(1)

u]0), Θ̂
(1)

u − [Θ̂
(1)

u]0⟩|.

Here, we could bound the first term on the RHS with Lemma F.7. Applying Lemma F.8 on the

second term, and recalling ∥Θ̂
(1)

u − [Θ(1)
u]0∥2 ≤ ω, would give

|f (1)
u (x; Θ̂

(1)

u)| ≤ 2 + ∥∇
[Θ̂

(1)

u]0
f (1)
u (x; [Θ̂

(1)

u]0)∥2∥Θ̂
(1)

u − [Θ(1)
u]0∥2+

O(ω1/3L2
√

m log(m)) · ∥Θ̂
(1)

u − [Θ(1)
u]0∥2

≤ 2 +O(L) · ∥Θ̂
(1)

u − [Θ(1)
u]0∥2 +O(L2

√
m log(m))(∥Θ̂

(1)

u − [Θ(1)
u]0∥2)

4
3 .

Then, with Tu,t =
t
n , applying the conclusion of Lemma F.6 would lead to

|f (1)
u (x; Θ̂

(1)

u)| ≤ 2 +O(L) · O
(
(Tu,t)

3

ρ
√
m

logm

)
+O(L2

√
m log(m))

(
O((Tu,t)

3

ρ
√
m

logm)

) 4
3

= 2 +O
(

t3L

n3ρ
√
m

logm

)
+O

(
L2t4

n4ρ4/3m1/6
log11/6(m)

)
= γ1.

Then, under the assumption of arm separateness (Assumption 4.1), we proceed to bound the reward
estimation error of the user exploitation network f

(1)
u (·; [Θ(1)

u]t) in the current round t.

23

Under review as a conference paper at ICLR 2023

Lemma F.2. For the constants ρ ∈ (0,O(1
L)) and ξ1 ∈ (0, 1), given user u ∈ U and its past

records Pu,t−1, we suppose m, η1, J1 satisfy the conditions in Theorem 4.2, and randomly draw the

parameter [Θ(1)
u]t ∼ {[Θ̂

(1)

u]τ}τ∈Tu,t . Consider the past records Pu,t up to round t are generated
by a fixed policy when witness the candidate arms {Xτ}τ∈Tu,t . Then, with probability at least 1− δ
given an arm-reward pair (xt, rt), we have∑
τ∈Tu,t∪{t}

E
[
|f (1)

u (xτ ; [Θ
(1)
u]τ)− rτ |

∣∣Xτ

]
≤

√
t

n
·
(√

2ξ1 +
3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
where rτ is the corresponding reward generated by the reward mapping function given an arm xτ .

Proof. We proof this Lemma following a similar approach as in Lemma C.1 from (Ban et al., 2022b)
and Lemma D.1 from (Ban et al., 2022a). First, for the LHS and with τ ∈ Tu,t ∪ {t}, we have

|f (1)
u (xt; [Θ̂

(1)

u]τ)− rt| ≤ |f (1)
u (xt; [Θ̂

(1)

u]τ)|+ |rt| ≤ 1 + γ1

based on the conclusion from Lemma F.1. Then, for user u, we define the following martingale
difference sequence with regard to the previous records Pu,τ up to round τ as

V (1)
τ = E[|f (1)

u (xτ ; [Θ̂
(1)

u]τ)− rτ |]− |f (1)
u (xτ ; [Θ̂

(1)

u]τ)− rτ |.
Since the records in set Pu,τ are sharing the same reward mapping function, we have the expectation

E[V (1)
τ

∣∣Fu,τ] = E[|f (1)
u (xτ ; [Θ̂

(1)

u]τ)− rτ |]− E[|f (1)
u (xτ ; [Θ̂

(1)

u]τ)− rτ |
∣∣Fu,τ] = 0.

where Fu,τ denotes the filtration given the past records Pu,τ . And we have the mean value of V (1)
τ

across different time steps as
1

Tu,t

∑
τ∈Tu,t

[V (1)
τ] =

1

Tu,t

∑
τ∈Tu,t

E[|f (1)
u (xτ ; [Θ̂

(1)

u]τ)− rτ |]−
1

Tu,t

∑
τ∈Tu,t

|f (1)
u (xτ ; [Θ̂

(1)

u]τ)− rτ |.

with the expectation of zero. Then, we proceed to bound the expected estimation error of the
exploitation model with the estimation error from existing samples following the Proposition 1 from
(Cesa-Bianchi et al., 2004). Applying the Azuma-Hoeffding inequality, with a constant δ ∈ (0, 1), it
leads to

P
[

1

Tu,t

∑
τ∈Tu,t

E[|f (1)
u (xτ ; [Θ̂

(1)

u]τ)− rt|]−
1

Tu,t

∑
τ∈Tu,t

|f (1)
u (xτ ; [Θ̂

(1)

u]τ)− rτ |

≥ (1 + γ1) ·

√
2

Tu,t
ln(

1

δ
)

]
≤ δ.

As we have the parameter [Θ(1)
u]t ∼ {[Θ̂

(1)

u]τ}τ∈Tu,t , with the probability at least 1− δ, the expected
loss on [Θ(1)

u]t could be bounded as

1

Tu,t

∑
τ∈Tu,t

E[|f (1)
u (xt; [Θ̂

(1)

u]τ)− rt|] ≤ (1 + γ1) ·

√
2

Tu,t
ln(

1

δ
) +

(
1

Tu,t

∑
τ∈Tu,t

|f (1)
u (xτ ; [Θ̂

(1)

u]τ)− rτ |
)

where for the second term on the RHS, we have

1

Tu,t

∑
τ∈Tu,t

|f (1)
u (xτ ; [Θ̂

(1)

u]τ)− rτ | ≤
1

Tu,t

∑
τ∈Tu,t

|f (1)
u (xτ ; [Θ̂

(1)

u]t)− rτ |+
3L

√
2Tu,t

2
· 1

Tu,t

≤ 1

Tu,t

√
Tu,t ·

∑
τ∈Tu,t

|f (1)
u (xτ ; [Θ̂

(1)

u]t)− rτ |2 +
3L√
2Tu,t

≤

√
ξ1
Tu,t

+
3L√
2Tu,t

where the first inequality is the application of Lemma F.10, and the last inequality is due to
Lemma F.6. Summing up all the components and applying the union bound for all a arms, all
n users and t time steps would complete the proof.

Then, we also have the following Corollary for the rest of the candidate arms xi,t ∈
(
Xt \ {xt}

)
.

24

Under review as a conference paper at ICLR 2023

Corollary F.3. For the constants ρ ∈ (0,O(1
L)) and ξ1 ∈ (0, 1), given user u ∈ U and its past

records Pu,t−1, we suppose m, η1, J1 satisfy the conditions in Theorem 4.2, and randomly draw

the parameter [Θ(1)
u]t ∼ {[Θ̂

(1)

u]τ}τ∈Tu,t . For an arm xi,t ∈ Xt, consider its union set with the the
collection of arms P̃u,t ∪{xi,t, ri,t} are generated by a fixed policy when witness the candidate arms
{Xτ}τ∈Tu,t

, with P̃u,t = {xiτ ,τ , riτ ,τ}τ being the collection of arms chosen by this policy. Then,
with probability at least 1− δ, we have∑
τ∈Tu,t∪{t}

E
[
|f (1)

u (xiτ ,τ ; [Θ
(1)
u]t)− riτ ,τ |

∣∣Xτ

]
≤

√
Tu,t ·

(√
2ξ1 +

3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
+ Γt

where ri,τ is the corresponding reward generated by the mapping function given an arm xi,τ , and

Γt ≤
(
1 +O(tL

3 log5/6(m)

nρ1/3m1/6
)

)
· O(t4L

n4ρ
√
m

log(m)) +O
(
t5L2 log11/6(m)

n5ρ4/3m1/6

)
.

Proof. The proof of this Corollary follows an analogous approach as in Lemma F.2. First, suppose a

shadow model f (1)
u (·; [Θ̃

(1)

u]t), which is trained on the alternative trajectory P̃u,t. Analogous to the
proof of Lemma F.2, for user u, we can define the following martingale difference sequence with
regard to the previous records P̃u,τ up to round τ ∈ [t] as

Ṽ (1)
τ = E[|f (1)

u (xiτ ,τ ; [Θ̃
(1)

u]τ)− rτ |]− |f (1)
u (xiτ ,τ ; [Θ̃

(1)

u]τ)− riτ ,τ |.

Since the records in set P̃u,τ are sharing the same reward mapping function, we have the expectation

E[Ṽ (1)
τ

∣∣F̃u,τ] = E[|f (1)
u (xiτ ,τ ; [Θ̃

(1)

u]τ)− riτ ,τ |]− E[|f (1)
u (xiτ ,τ ; [Θ̃

(1)

u]τ)− riτ ,τ |
∣∣F̃u,τ] = 0.

where F̃u,τ denotes the filtration given the past records P̃u,τ . The mean value of Ṽ (1)
τ across different

time steps will be

1

Tu,t

∑
τ∈Tu,t

[Ṽ (1)
τ] =

1

Tu,t

∑
τ∈Tu,t

E[|f (1)
u (xiτ ,τ ; [Θ̃

(1)

u]τ)−riτ ,τ |]−
1

Tu,t

∑
τ∈Tu,t

|f (1)
u (xiτ ,τ ; [Θ̃

(1)

u]τ)−riτ ,τ |.

with the expectation of zero. Afterwards, applying the Azuma-Hoeffding inequality, with a constant
δ ∈ (0, 1), it leads to

P
[

1

Tu,t

∑
τ∈Tu,t

E[|f (1)
u (xiτ ,τ ; [Θ̃

(1)

u]τ)− riτ ,τ |]−
1

Tu,t

∑
τ∈Tu,t

|f (1)
u (xiτ ,τ ; [Θ̃

(1)

u]τ)− riτ ,τ |

≥ (1 + γ1) ·

√
2

Tu,t
ln(

1

δ
)

]
≤ δ.

To bound the output difference between the shadow model f (1)
u (·; [Θ̃

(1)

u]t) and the model we trained

based on received records f (1)
u (·; [Θ̂

(1)

u]t), we apply the conclusion from Lemma G.14, which leads
to that given the same input x, we have

|f (1)
u (x; [Θ̃

(1)

u]t)− f (1)
u (x; [Θ̂

(1)

u]t)| ≤(
1 +O(tL

3 log5/6(m)

ρ1/3m1/6
)

)
· O(t3L

ρ
√
m

log(m)) +O
(
t4L2 log11/6(m)

ρ4/3m1/6

)
.

Finally, assembling all the components together will finish the proof.

F.2 USER EXPLORATION MODEL

To ensure the unit length of f (2)
u (·)’s input, we normalize the gradient

∇
[Θ

(1)
u]t

f(1)
u (x;[Θ(1)

u]t)

c′gL
with

Lemma F.8, Lemma F.9 and a normalization constant c′g > 0. Then, to satisfy the separateness

25

Under review as a conference paper at ICLR 2023

(Assumption 4.1) assumption, we adopt the operation mentioned in Eq. 9 to derive the transformation

ϕ(
∇

[Θ
(1)
u]t

f(1)
u (x;[Θ(1)

u]t)

c′gL
,x) to make sure the transformed input gradient is of the norm of 1, and the

separateness of at least ρ√
2

.

Analogous to the user exploitation model, regarding the convergence result for FC networks in
Lemma F.6, we proceed to present the generalization result of the user exploration model f (2)

u (·)
after GD with the following lemma.
Lemma F.4. For the constants c′g > 0, ρ ∈ (0,O(1

L)) and ξ1 ∈ (0, 1), given user u ∈ U and its past
records Pu,t−1, we suppose m, η1, J1 satisfy the conditions in Theorem 4.2, and randomly draw the

parameter [Θ(2)
u]t ∼ {[Θ̂

(2)

u]τ}τ∈Tu,t . Consider the past records Pu,t up to round t are generated
by a fixed policy when witness the candidate arms {Xτ}τ∈Tu,t

. Then, with probability at least 1− δ
given an arm-reward pair (xt, rt), we have∑
τ∈Tu,t∪{t}

E
[
|f (2)

u

(
ϕ(
∇

[Θ
(1)
u]τ

f
(1)
u (xτ ; [Θ

(1)
u]τ)

c′gL
,xτ); [Θ

(2)
u]τ

)
−
(
rτ − f (1)

u (xτ ; [Θ
(1)
u]τ)

)
|
∣∣Xτ

]

≤
√
Tu,t ·

(√
2ξ1 +

3L√
2
+ (1 + 2γ1)

√
2 log(

tn · a
δ

)

)
Proof. The proof of this lemma is inspired by Lemma C.1 from (Ban et al., 2022b). Following the
same procedure as in the proof of Lemma F.2, we bound∣∣∣∣f (2)

u

(
ϕ(
∇

[Θ
(1)
u]t

f
(1)
u (xt; [Θ

(1)
u]t)

c′gL
,xt); [Θ

(2)
u]t

)
−

(
rt − f (1)

u (xt; [Θ
(1)
u]t)

)∣∣∣∣
≤

∣∣∣∣f (2)
u

(
ϕ(
∇

[Θ
(1)
u]t

f
(1)
u (xt; [Θ

(1)
u]t)

c′gL
,xt); [Θ

(2)
u]t

)∣∣∣∣+ ∣∣∣∣f (1)
u (xt; [Θ

(1)
u]t)

∣∣∣∣+ 1

≤ 1 + 2γ1

by triangle inequality and applying the generalization result of FC networks (Lemma F.1) on
f
(1)
u (·;Θ(1)

u), f
(2)
u (·;Θ(2)

u).

For brevity, we use∇f (1)
u,τ (xt) to denote ϕ(

∇
[Θ

(1)
u]τ

f(1)
u (xt;[Θ

(1)
u]τ)

c′gL
,xt) for the following proof. Define

the difference sequence as

V (2)
τ = E

[∣∣∣∣f (2)
u

(
∇f (1)

u,τ (xτ); [Θ
(2)
u]τ

)
−
(
rτ − f (1)

u (xτ ; [Θ
(1)
u]τ)

)∣∣∣∣]
−
∣∣∣∣f (2)

u

(
∇f (1)

u,τ (xτ); [Θ
(2)
u]τ

)
−

(
rτ − f (1)

u (xτ ; [Θ
(1)
u]τ)

)∣∣∣∣.
Since the reward mapping is fixed given the specific user u, which means that the past rewards and
the received arm-reward pairs (xτ , rτ) are generated by the same reward mapping function, we have
the expectation

E[V (2)
τ

∣∣Fu,τ] =E
[∣∣∣∣f (2)

u

(
∇f (1)

u,τ (xτ); [Θ
(2)
u]τ

)
−
(
rτ − f (1)

u (xτ ; [Θ
(1)
u]τ)

)∣∣∣∣]
− E

[∣∣∣∣f (2)
u

(
∇f (1)

u,τ (xτ); [Θ
(2)
u]τ

)
−

(
rτ − f (1)

u (xτ ; [Θ
(1)
u]τ)

)∣∣∣∣∣∣Fu,τ

]
= 0.

where Fu,τ denotes the filtration given the past records Pu,τ , up to round τ ∈ [t]. This also gives
the fact that V (2)

τ is a martingale difference sequence. Then, after applying the martingale difference
sequence over Tu,t, we have

1

Tu,t

∑
τ∈Tu,t

V (2)
τ =

1

Tu,t

∑
τ∈Tu,t

E
[∣∣∣∣f (2)

u

(
∇f (1)

u,τ (xτ); [Θ
(2)
u]τ

)
−

(
rτ − f (1)

u (xτ ; [Θ
(1)
u]τ)

)∣∣∣∣]

− 1

Tu,t

∑
τ∈Tu,t

∣∣∣∣f (2)
u

(
∇f (1)

u,τ (xτ); [Θ
(2)
u]τ

)
−
(
rτ − f (1)

u (xτ ; [Θ
(1)
u]τ)

)∣∣∣∣.
26

Under review as a conference paper at ICLR 2023

Analogous to the proof of Lemma F.2, by applying the Azuma-Hoeffding inequality, it leads to

P
[

1

Tu,t

∑
τ∈Tu,t

V (2)
τ − 1

t

∑
τ∈Tu,t

E[V (2)
τ] ≥ (1 + 2γ1)

√
2 log(1/δ)

Tu,t

]
≤ δ

Since the expectation of V
(2)
τ is zero, with the probability at least 1 − δ and an existing set of

parameters Θ̃
(2)

u s.t. ∥Θ̃
(2)

u − [Θ(2)
u]τ∥ ≤ O

(
t3

n3ρ
√
m
logm

)
, the above inequality implies

1

Tu,t

∑
τ∈Tu,t

V (2)
τ ≤ (1 + 2γ1)

√
2 log(1/δ)

Tu,t
=⇒

1

Tu,t

∑
τ∈Tu,t

E
[∣∣∣∣f (2)

u

(
∇f (1)

u,τ (xt); [Θ
(2)
u]τ

)
−
(
rt − f (1)

u (xt; [Θ
(1)
u]τ)

)∣∣∣∣]

≤ 1

Tu,t

∑
τ∈Tu,t

∣∣∣∣f (2)
u

(
∇f (1)

u,τ (xτ); [Θ
(2)
u]τ

)
−
(
rτ − f (1)

u (xτ ; [Θ
(1)
u]τ)

)∣∣∣∣+ (1 + 2γ1)

√
2 log(1/δ)

Tu,t

≤
(i)

1

Tu,t

∑
τ∈Tu,t

∣∣∣∣f (2)
u

(
∇f (1)

u,τ (xτ); Θ̃
(2)

u

)
−

(
rτ − f (1)

u (xτ ; [Θ
(1)
u]τ)

)∣∣∣∣+ (1 + 2γ1)

√
2 log(1/δ)

Tu,t

≤ 1√
Tu,t

√√√√ ∑
τ∈Tu,t

∣∣∣∣f (2)
u

(
∇f (1)

u,τ (xτ); Θ̃
(2)

u

)
−

(
rτ − f

(1)
u (xτ ; [Θ

(1)
u]τ)

)∣∣∣∣2 + (1 + 2γ1)

√
2 log(1/δ)

Tu,t

≤
(ii)

√
2ξ1
Tu,t

+ (1 + 2γ1)

√
2 log(1/δ)

Tu,t
.

Here, the upper bound (i) is derived by applying the conclusions of Lemma F.6 and Lemma F.10,
and the inequality (ii) is derived by adopting Lemma F.6 while defining the empirical loss to be

1
2

∑
τ∈Tu,t

∣∣∣∣f (2)
u

(
∇f (1)

u,τ (xτ); Θ̃
(2)

u

)
−

(
rτ − f

(1)
u (xτ ; [Θ

(1)
u]τ)

)∣∣∣∣2. Finally, applying the union

bound would give the aforementioned results.

Corollary F.5. For the constants ρ ∈ (0,O(1
L)) and ξ1 ∈ (0, 1), given user u ∈ U and its past

records Pu,t−1, we suppose m, η1, J1 satisfy the conditions in Theorem 4.2, and randomly draw

the parameter [Θ(1)
u]t ∼ {[Θ̂

(1)

u]τ}τ∈Tu,t
. For an arm xi,t ∈ Xt, consider its union set with the the

collection of arms P̃u,t ∪{xi,t, ri,t} are generated by a fixed policy when witness the candidate arms
{Xτ}τ∈Tu,t

, with P̃u,t = {xiτ ,τ , riτ ,τ}τ being the collection of arms chosen by this policy. Then,
with probability at least 1− δ, we have

∑
τ∈Tu,t∪{t}

E
[
|f (2)

u

(
ϕ(
∇

[Θ
(1)
u]τ

f
(1)
u (xiτ ,τ ; [Θ

(1)
u]τ)

c′gL
,xiτ ,τ); [Θ

(2)
u]τ

)
−
(
riτ ,τ − f (1)

u (xiτ ,τ ; [Θ
(1)
u]τ)

)
|
∣∣Xτ

]
≤

√
Tu,t ·

(√
2ξ1 +

3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
+ Γt

where riτ ,τ is the corresponding reward generated by the mapping function given an arm xiτ ,τ , and

Γt =

(
1 +O(tL

3 log5/6(m)

nρ1/3m1/6
)

)
· O(t4L

n4ρ
√
m

log(m)) +O
(
t5L2 log11/6(m)

n5ρ4/3m1/6

)
.

This corollary is the direct application of Lemma F.4, and the proof is analogous to that of Corollary
F.3.

27

Under review as a conference paper at ICLR 2023

F.3 LEMMAS FOR OVER-PARAMETERIZED USER NETWORKS

Applying Pu,t−1 as the training data, we have the following convergence result for the user exploita-
tion network f

(1)
u (·;Θ(1)

u) after GD.
Lemma F.6 (Theorem 1 from (Allen-Zhu et al., 2019)). For any 0 < ξ1 ≤ 1, 0 < ρ ≤ O(1

L). Given
user u ∈ U and its past records Pu,t−1, suppose m, η1, J1 satisfy the conditions in Theorem 4.2,
then with probability at least 1− δ, we could have

1. L(Θ(1)
u) ≤ ξ1 after J1 iterations of GD.

2. For any j ∈ [J1], ∥[Θ(1)
u]j − [Θ(1)

u]0∥ ≤ O
(

(Tu,t)
3

ρ
√
m

logm
)
= O

(
t3

n3ρ
√
m
logm

)
.

In particular, Lemma F.6 above provides the convergence guarantee for f (1)
u (·;Θ(1)

u) after certain
rounds of GD training on the past records Pu,t−1.
Lemma F.7 (Lemma 4.1 in (Cao & Gu, 2019)). Assume a constant ω such that
O(m−3/2L−3/2[log(TnL2/δ)]3/2) ≤ ω ≤ O(L−6[logm]−3/2) and n training samples. With
randomly initialized [Θ(1)

u]0, for parameters Θ,Θ′ satisfying ∥Θ− [Θ(1)
u]0∥, ∥Θ− [Θ(1)

u]0∥ ≤ ω,
we have

|f (1)
u (x;Θ)− f (1)

u (x;Θ′)− ⟨∇Θ′f (1)
u (x;Θ′),Θ−Θ′⟩| ≤ O(ω1/3L2

√
m log(m))∥Θ−Θ′∥

with the probability at least 1− δ.

Lemma F.8. Assume m, η1, J1 satisfy the conditions in Theorem 4.2 and [Θ(1)
u]0 being randomly

initialized. Then, with probability at least 1− δ and given an arm ∥x∥2 = 1, we have

1. |f (1)
u (x; [Θ(1)

u]0)| ≤ 2,

2. ∥∇
[Θ

(1)
u]0

f
(1)
u (x; [Θ(1)

u]0)∥2 ≤ O(L).

Proof. The conclusion (1) is a direct application of Lemma 7.1 in (Allen-Zhu et al., 2019). For
conclusion (2), applying Lemma 7.3 in (Allen-Zhu et al., 2019), for each layer Θl ∈ {Θ1, . . . ,ΘL},
we have

∥∇Θl
f (1)
u (x; [Θ(1)

u]0)∥2 = ∥(ΘLDL−1 · · ·Dl+1Θl+1)·(Dl+1Θl+1 · · ·D1Θ1)·x⊺∥2 = O(
√
L).

Then, we could have the conclusion that

∥∇
[Θ

(1)
u]0

f (1)
u (x; [Θ(1)

u]0)∥2 =

√∑
l∈[L]

∥∇Θl
f
(1)
u (x; [Θ(1)

u]0)∥22 = O(L).

Lemma F.9 (Theorem 5 in (Allen-Zhu et al., 2019)). Assume m, η1, J1 satisfy the conditions in
Theorem 4.2 and [Θ(1)

u]0 being randomly initialized. Then, with probability at least 1− δ, and for
all parameter Θ(1)

u such that ∥Θ(1)
u − [Θ(1)

u]0∥2 ≤ ω, we have

∥∇
Θ

(1)
u
f (1)
u (x;Θ(1)

u)−∇
[Θ

(1)
u]0

f (1)
u (x; [Θ(1)

u]0)∥2 ≤ O(ω1/3L3
√

log(m))

Lemma F.10. Assume m, η1 satisfy the condition in Theorem 4.2. With the probability at least 1− δ,
we have

∑
τ∈Tu,t

|f (1)
u (xτ ; [Θ̂

(1)

u]τ)− rτ | ≤
∑

τ∈Tu,t

|f (1)
u (xτ ; [Θ̂

(1)

u]t)− rτ |+
3L

√
2Tu,t

2

Proof. With the notation from Lemma 4.3 in (Cao & Gu, 2019), set R =
T 3
u,t log(m)

δ , ν = R2, and
ϵ = LR√

2νTu,t

. Then, considering the loss function to be L(Θ(1)
u) :=

∑
τ∈Tu,t

|f (1)
u (xτ ;Θ

(1)
u)− rτ |

would complete the proof.

28

Under review as a conference paper at ICLR 2023

G PROOF OF THE REGRET BOUND

In this section, we present the generalization results of GNN models f (1)
gnn(·;Θ(1)

gnn), f
(2)
gnn(·;Θ(2)

gnn).
Recall that up to round t, we have all the past arm-reward pairs Pt = {(xτ , rτ)}τ∈[t−1] for the
previous t − 1 time steps. Analogous to the generalization analysis of user models in Section
F, we adopt the the operation in Eq. 9 on the gradients ∇

Θ
(1)
gnn

f
(1)
gnn(·;Θ(1)

gnn) to comply with
the assumptions of unit-length and separateness, and the transformed gradient input is denoted as
∇f (1)(x) given the arm x.

G.1 BOUNDING THE PARAMETER ESTIMATION ERROR

Regarding Eq.8, given an arbitrary candidate arm x ∈ Xt with its reward r, and its user graphs
G(1),G(2), we have the bound for the estimation error as

CBt(x) = E
[
|f (2)

gnn(∇f
(1)
t (x), G(2); [Θ(2)

gnn]t−1)− (rt − f (1)
gnn(x, G(1); [Θ

(1)
gnn]t−1))|

∣∣∣∣ut,Xt

]
≤ E

[
|f (2)

gnn(∇f
(1),∗
t (x), G(2),∗; [Θ(2)

gnn]t−1)− (rt − f (1)
gnn(x, G(1),∗; [Θ

(1)
gnn]t−1))|

∣∣∣∣ut,Xt

]
︸ ︷︷ ︸

I1

+ I2 + I3 + I4

where we have the term I1 representing the estimation error induced by the GNN model parameters
{[Θ(1)

gnn]t−1, [Θ
(2)
gnn]t−1}. Based on our arm selected strategy given in Algorithm 1, we have the

selected arms and their rewards {xτ , rτ}τ∈[t−1] up to round t. And we first proceed to bound term
I1 w.r.t. the selected arm xt, i.e., CBt(xt).

Analogous to the user-specific models, we also have bounded outputs for the GNN models shown in
the following lemma.

Lemma G.1. For the constants ρ ∈ (0,O(1
L)) and ξ2 ∈ (0, 1), the past records Pt up to time step t,

we suppose m, η1, η2, J1, J2 satisfy the conditions in Theorem 4.2. Then, with probability at least
1− δ and given an arm-reward pair (x, r), we have

|f (1)
gnn(x; [Θ̂

(1)

gnn]t)| ≤ γ2

where

γ2 = 2 +O
(

t3L

ρ
√
m

logm

)
+O

(
L2t4

ρ4/3m1/6
log11/6(m)

)
.

Proof. The proof of this lemma follows an analogous approach as in Lemma F.1 where we have
proved the conclusion for the FC networks.

Given an arm x, we denote the adjacency matrix of its estimated user graph G(1) as A(1), and we
have the normalized adjacency matrices as S(1) = A(1)/n. For the received user ut ∈ U , we could
deem the corresponding row of the matrix multiplication S ·X , represented by hut

= [S ·X]i:, as
the aggregated input for the network for the user-arm pair (x, ut). Note that in this way, the rest of the
network could be regarded as a L+1-layer FC network (one layer GNN + L-layer FC network), where
the weight matrix of the first layer is Θ(1)

agg. Then, to make sure each aggregated input has the norm

of 1, we apply an additional transformation mentioned in Eq. 9 as h̃ut
= ϕ(hut

,x) = (
hut√

2
, x
2 , cut

)

where cut
=

√
3
4 −

1
2∥hut

∥22. This transformation ensures ∥h̃ut
∥2 = 1 while preserving the original

information w.r.t. the user-arm pair (x, ut), as it does not change the original aggregated hidden
representation. Meantime, this transformation also ensures the separateness of the transformed
contexts to be at least ρ

2 , which would fit the original data separateness assumption (Assumption
4.1). Finally, following a similar approach as in the FC networks (Lemma F.1), on the transformed
aggregated hidden representations would complete the proof.

29

Under review as a conference paper at ICLR 2023

Regarding the definition for the true reward mapping function in Section 2, we have the following
lemma for term I1 given the arm-reward pair (xt, rt).

Lemma G.2. For the constants ρ ∈ (0,O(1
L)) and ξ2 ∈ (0, 1), given user u ∈ U and its past records

Pu,t, we suppose m, η1, η2, J1, J2 satisfy the conditions in Theorem 4.2, and randomly draw the

parameters [Θ(1)
gnn]t ∼ {[Θ̂

(1)

gnn]τ}τ∈[t], [Θ
(2)
gnn]t ∼ {[Θ̂

(2)

gnn]τ}τ∈[t]. Then, with probability at least
1− δ given a sampled arm-reward pair (x, r), we have

∑
τ∈[t]

E
[∣∣∣∣f (2)

gnn

(
∇f (1),∗

t (xt), G(2),∗t ; [Θ(2)
gnn]t−1

)
−

(
rt − f (1)

gnn(xt, G(1),∗t ; [Θ(1)
gnn]t−1)

)∣∣∣∣|ut,Xt

]

≤
√
t ·

(√
2ξ2 +

3L√
2
+ (1 + γ2)

√
2 log(

tn · a
δ

)

)
where

γ2 = 2 +O
(

t3L

ρ
√
m

logm

)
+O

(
L2t4

ρ4/3m1/6
log11/6(m)

)
.

Proof. Based on the conclusion of Lemma G.1, we have the upper bound as∣∣∣∣f (2)
gnn

(
∇f (1),∗

t (xt), G(2),∗t ; [Θ(2)
gnn]t−1

)
−

(
rt − f (1)

gnn(xt, G(1),∗t ; [Θ(1)
gnn]t−1)

)∣∣∣∣ ≤ 1 + 2γ2

by simply using the triangular inequality. Then we proceed to define the sequence Vτ , τ ∈ [t] as

Vτ =EXτ

[∣∣∣∣f (2)
gnn(∇f (1),∗

τ (xτ), G(2),∗τ ; [Θ(2)
gnn]τ−1)− (rτ − f (1)

gnn(xτ , G(1),∗τ ; [Θ(1)
gnn]τ−1))

∣∣∣∣]
−
∣∣∣∣f (2)

gnn(∇f (1),∗
τ (xτ), G(2),∗τ ; [Θ(2)

gnn]τ−1)− (rτ − f (1)
gnn(xτ , G(1),∗τ ; [Θ(1)

gnn]τ−1))

∣∣∣∣.
And since the candidate arms and the corresponding rewards are associated with the same reward
mapping function h(·), the sequence Vτ is a martingale difference sequence with the expectation

E[Vτ

∣∣Fτ] = EXτ

[∣∣∣∣f (2)
gnn(∇f (1),∗

τ (xτ), G(2),∗τ ; [Θ(2)
gnn]τ−1)− (rτ − f (1)

gnn(xτ , G(1),∗τ ; [Θ(1)
gnn]τ−1))

∣∣∣∣]
− EXτ

[∣∣∣∣f (2)
gnn(∇f (1),∗

τ (xτ), G(2),∗τ ; [Θ(2)
gnn]τ−1)− (rτ − f (1)

gnn(xτ , G(1),∗τ ; [Θ(1)
gnn]τ−1))

∣∣∣∣] = 0.

where Fτ denotes the filtration of all the past records Pτ up to time step τ . Then, we will have the
mean value for this sequence as

1

t

∑
τ∈[t]

Vτ =

1

t

∑
τ∈[t]

EXτ

[∣∣∣∣f (2)
gnn(∇f (1),∗

τ (xτ), G(2),∗τ ; [Θ(2)
gnn]τ−1)− (rτ − f (1)

gnn(xτ , G(1),∗τ ; [Θ(1)
gnn]τ−1))

∣∣∣∣]

− 1

t

∑
τ∈[t]

∣∣∣∣f (2)
gnn(∇f (1),∗

τ (xτ), G(2),∗τ ; [Θ(2)
gnn]τ−1)− (rτ − f (1)

gnn(xτ , G(1),∗τ ; [Θ(1)
gnn]τ−1))

∣∣∣∣.
As it has shown that the sequence is a martingale difference sequence, by directly applying the
Azuma-Hoeffding inequality, we could bound the difference between the mean and its expectation as

P
[
1

t

∑
τ∈[t]

Vτ −
1

t

∑
τ∈[t]

E[Vτ] ≥ (1 + 2γ2)

√
2 log(1/δ)

t

]
≤ δ

30

Under review as a conference paper at ICLR 2023

with the probability at least 1− 2δ. Since it has shown that the Vτ is of zero expectation, we have the
second term on the LHS of the inequality to be zero. Then, the inequality above is equivalent to

1

t

∑
τ∈[t]

Vτ ≤ (1 + 2γ2)

√
2 log(1/δ)

t
=⇒

1

t

∑
τ∈[t]

EXτ

[∣∣∣∣f (2)
gnn(∇f (1),∗

τ (xτ), G(2),∗τ ; [Θ(2)
gnn]τ−1)− (rτ − f (1)

gnn(xτ , G(1),∗τ ; [Θ(1)
gnn]τ−1))

∣∣∣∣]

≤ 1

t

∑
τ∈[t]

∣∣∣∣f (2)
gnn(∇f (1),∗

τ (xτ), G(2),∗τ ; [Θ(2)
gnn]τ−1)− (rτ − f (1)

gnn(xτ , G(1),∗τ ; [Θ(1)
gnn]τ−1))

∣∣∣∣
+ (1 + 2γ2)

√
2 log(1/δ)

t

with the probability at least 1− 2δ. Then, for the RHS of the above inequality, by further applying
Lemma G.8 and Lemma G.12, we have

1

t

∑
τ∈[t]

∣∣∣∣f (2)
gnn(∇f (1),∗

τ (xτ), G(2),∗τ ; [Θ(2)
gnn]τ−1)− (rτ − f (1)

gnn(xτ , G(1),∗τ ; [Θ(1)
gnn]τ−1))

∣∣∣∣
≤ 1

t

∑
τ∈[t]

∣∣∣∣f (2)
gnn(∇f (1),∗

τ (xτ), G(2),∗τ ; Θ̃
(2)

gnn)− (rτ − f (1)
gnn(xτ , G(1),∗τ ; [Θ(1)

gnn]τ−1))

∣∣∣∣
+

3L
√
2t

2

with regard to the parameter Θ̃
(2)

gnn s.t. ∥Θ̃
(2)

gnn − [Θ(2)
gnn]0∥2 ≤ O

(
t3

ρ
√
m
logm

)
. Therefore, by

applying the conclusion from Lemma G.8, we could bound the empirical loss w.r.t. Θ̃
(2)

gnn as

1

t

∑
τ∈[t]

∣∣∣∣f (2)
gnn(∇f (1),∗

τ (xτ), G(2),∗τ ; Θ̃
(2)

gnn)− (rτ − f (1)
gnn(xτ , G(1),∗τ ; [Θ(1)

gnn]τ−1))

∣∣∣∣
≤ 1√

t

√√√√∑
τ∈[t]

∣∣∣∣f (2)
gnn(∇f (1),∗

τ (xτ), G(2),∗τ ; Θ̃
(2)

gnn)− (rτ − f
(1)
gnn(xτ , G(1),∗τ ; [Θ(1)

gnn]τ−1))

∣∣∣∣2

≤
√

2ξ2
t
.

Finally, assembling all the components and applying the union bound would complete the proof.

Analogous to the Lemma G.1, we could also have the following corollary of the generalization

results for the optimal arms and their rewards {x∗
τ , r

∗
τ}τ∈[t] up to round t. Then, let [Θ̂

(1),∗
gnn]t be the

parameter that is trained on {x∗
τ , r

∗
τ}τ∈[t], and denote [Θ̂

(2),∗
gnn]t as the parameter of f (2)

gnn(·) trained
on corresponding gradients and residuals.

Corollary G.3. For the constants ρ ∈ (0,O(1
L)) and ξ2 ∈ (0, 1), given user u ∈ U and its past

records Pu,t, we suppose m, η1, η2, J1, J2 satisfy the conditions in Theorem 4.2, and randomly draw

the parameter [Θ(1),∗
gnn]t ∼ {[Θ̂

(1),∗
gnn]τ}τ∈[t], [Θ

(2),∗
gnn]t ∼ {[Θ̂

(2),∗
gnn]τ}τ∈[t]. Then, with probability at

least 1− δ given a sampled arm-reward pair (x, r), we have∑
τ∈[t]

E
[∣∣∣∣f (2)

gnn

(
∇f (1),∗

t (x∗
t), G

(2),∗
t,∗ ; [Θ(2)

gnn]t−1

)
−
(
r∗t − f (1)

gnn(xt, G(1),∗t,∗ ; [Θ(1)
gnn]t−1)

)∣∣∣∣|ut,Xt

]

≤
√
t ·

(√
2ξ2 +

3L√
2
+ (1 + γ2)

√
2 log(

tn · a
δ

)

)
+ Γt

31

Under review as a conference paper at ICLR 2023

where

γ2 = 2 +O
(

t3L

ρ
√
m

logm

)
+O

(
L2t4

ρ4/3m1/6
log11/6(m)

)
.

Proof. The proof of this corollary is comparable to the proof of Lemma G.2. At each time step
t, regarding the definition of the optimal arm, we have x∗

t = maxxi,t∈Xt E[ri,t|ut,xi,t]. Then,
analogously, we could define the difference sequence as

V ∗
τ =EXτ

[∣∣∣∣f (2)
gnn(∇f (1),∗

τ (x∗
τ), G(2),∗τ ; [Θ(2),∗

gnn]τ−1)− (rτ − f (1)
gnn(x

∗
τ , G(1),∗τ ; [Θ(1),∗

gnn]τ−1))

∣∣∣∣]
−
∣∣∣∣f (2)

gnn(∇f (1),∗
τ (x∗

τ), G(2),∗τ ; [Θ(2),∗
gnn]τ−1)− (rτ − f (1)

gnn(x
∗
τ , G(1),∗τ ; [Θ(1),∗

gnn]τ−1))

∣∣∣∣
where by reusing the notation, we denote G(1),∗τ ,G(2),∗τ to be the true user graphs w.r.t. the optimal
arm x∗

τ here. Then, similar to the proof of Lemma G.2, we have the sequence to be the martingale
difference sequence as

E[V ∗
τ

∣∣F ∗
τ] = EXτ

[∣∣∣∣f (2)
gnn(∇f (1),∗

τ (x∗
τ), G(2),∗τ ; [Θ(2),∗

gnn]τ−1)− (rτ − f (1)
gnn(x

∗
τ , G(1),∗τ ; [Θ(1),∗

gnn]τ−1))

∣∣∣∣]
− EXτ

[∣∣∣∣f (2),∗
gnn (∇f (1),∗

τ (x∗
τ), G(2),∗τ ; [Θ(2),∗

gnn]τ−1)− (rτ − f (1)
gnn(x

∗
τ , G(1),∗τ ; [Θ(1),∗

gnn]τ−1))

∣∣∣∣] = 0

with F ∗
τ being the filtration of past optimal arms up to round τ . Then, we could also applying

the Azuma-Hoeffding inequality to bound the difference between the mean 1
t

∑
τ∈[t] V

∗
τ and its

expectation 1
t

∑
τ∈[t] E[V ∗

τ]. Finally, like in the proof of Lemma G.2, applying the conclusion from
Lemma G.8 and Lemma G.12 would complete the proof.

Then, recall the definition of of the confidence bound function CBt(x
∗
t) w.r.t. the optimal arm x∗

t ,
we the corresponding term I1 as

I1 = E
[
|f (2)

gnn(∇f
(1),∗
t (x∗

t), G
(2),∗
t ; [Θ(2)

gnn]t−1)− (rt − f (1)
gnn(x

∗
t , G

(1),∗
t ; [Θ(1)

gnn]t−1))|
∣∣∣∣ut,Xt

]
.

And it can be further decomposed as

|f (2)
gnn(∇f

(1),∗
t (x∗

t), G
(2),∗
t ; [Θ(2)

gnn]t−1)− (rt − f (1)
gnn(x

∗
t , G

(1),∗
t ; [Θ(1)

gnn]t−1))|

≤ |f (2)
gnn(∇f

(1),∗
t (x∗

t), G
(2),∗
t ; [Θ(2),∗

gnn]t−1)− (rt − f (1)
gnn(x

∗
t , G

(1),∗
t ; [Θ(1),∗

gnn]t−1))|+

+ |f (1)
gnn(x

∗
t , G

(1),∗
t ; [Θ(1),∗

gnn]t−1)− f (1)
gnn(x

∗
t , G

(1),∗
t ; [Θ(1)

gnn]t−1)|

+ |f (2)
gnn(∇f

(1),∗
t (x∗

t), G
(2),∗
t ; [Θ(2),∗

gnn]t−1)− f (2)
gnn(∇f

(1),∗
t (x∗

t), G
(2),∗
t ; [Θ(2)

gnn]t−1)|

where the first term on the RHS could be bounded by Corollary G.3. Then, for the second term,
we first denote h∗

i ∈ Rm to be the aggregated hidden representation w.r.t. the user-arm pair (ui,x
∗
t)

where ui is the i-th user. Here, h∗
t is essentially the row in the aggregated representation matrix Hagg

corresponding to the user arm pair (ut,x
∗
t). Therefore, for the received user ut ∈ U , the reward

estimation based on two samples regarding the two sets of parameters would have the same the input
h∗
t . Then, for the second term, since the outputs w.r.t. two sets of parameters have the same input h∗

t ,
we could apply the conclusion from Lemma G.14, which will lead to

|f (1)
gnn(x

∗
t , G

(1),∗
t ; [Θ(1),∗

gnn]t−1)− f (1)
gnn(x

∗
t , G

(1),∗
t ; [Θ(1)

gnn]t−1)|

≤
(
1 +O(tL

3 log5/6(m)

ρ1/3m1/6
)

)
· O(t3L

ρ
√
m

log(m)) +O
(
t4L2 log11/6(m)

ρ4/3m1/6

)
.

Analogously, we could also have the same bound for the third term on the RHS. Summing up the
bounds for three terms on the RHS would finish deriving the upper bound for term I1.

32

Under review as a conference paper at ICLR 2023

G.2 BOUNDING THE EXPLOITATION GRAPH ESTIMATION ERROR

Then, we proceed to bound the error induced by the estimation of user exploitation graph, i.e., the
error term I2. Recall that the confidence bound function CBt(x) for the given arm x ∈ Xt is

CBt(x) = E
[
|f (2)

gnn(∇f
(1)
t (x), G(2); [Θ(2)

gnn]t−1)− (r − f (1)
gnn(x, G(1); [Θ

(1)
gnn]t−1))|

∣∣∣∣ut,Xt

]
≤ E

[
|f (1)

gnn(x, G(1),∗; [Θ
(1)
gnn]t−1)− f (1)

gnn(x, G(1); [Θ
(1)
gnn]t−1)|

∣∣∣∣ut,Xt

]
︸ ︷︷ ︸

I2

+I1 + I3 + I4.

given an arbitrary arm x ∈ Xt. For arm x, we use the following lemma to bound the error caused by
the difference between the estimated exploitation graph G(1) and the true exploitation graph G(1),∗
associated with arm x.

Denoting the adjacency matrix of the estimated graph G(1) as A(1), and the adjacency matrix for
the true user exploitation graph G(1),∗ as A(1),∗, we have the normalized adjacency matrices as
S(1) = A(1)/n and S(1),∗ = A(1),∗/n. For the i-th user ui ∈ U , we could deem the i-th row
of the matrix multiplication S ·X , represented by h0,i = [S ·X]i:, as the aggregated input for
the network for the user-arm pair (x, ui). Note that in this way, the rest of the network could
be regarded as a L + 1-layer FC network, where the weight matrix for the first layer is Θ(1)

agg.
Then, to make sure each aggregated input has the norm of 1, we apply an additional transformation

mentioned in Eq. 9 as h̃0,i = ϕ(h0,i,x) = (
h0,i√

2
, x
2 , c0,i) where c0,i =

√
3
4 −

1
2∥h0,i∥22. And

this transformation ensures ∥h̃0,i∥2 = 1 and c0,i ≥ 1
2 . Since this transformation does not alter the

original aggregated representation h0,i, it will not impair the original information w.r.t. the user-arm
pair (x, ui). Meantime, note that this transformation also ensures the separateness of the transformed
contexts to be at least ρ

2 .

Lemma G.4. For the constants ρ ∈ (0,O(1
L)) and ξ1 ∈ (0, 1), given past records Pt−1, we

suppose m, η1, η2, J1, J2 satisfy the conditions in Theorem 4.2, and randomly draw the parameter

[Θ(1)
gnn]t ∼ {[Θ̂

(1)

gnn]τ}τ∈[t]. Then, with probability at least 1− δ, given an arm x ∈ Rd, we have∑
τ∈[t]

|f (1)
gnn(x, G(1),∗τ ; [Θ(1)

gnn]τ−1)− f (1)
gnn(x, G(1)τ ; [Θ(1)

gnn]τ−1)|

≤ O(L) ·
√
8t ·

(√
2ξ1 +

3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
+ Γt.

Proof. By the conclusion of Lemma F.2, at time step t, the reward estimation error of the user
exploitation model could be bounded as∑

τ∈[t]

E
[
|f (1)

u (x; [Θ(1)
u]t)− r|

∣∣Xt

]
≤

√
t

n
·
(√

2ξ1 +
3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
+ Γt.

with the probability at least 1 − δ. And given two users ui, uj ∈ U and an arbitrary arm x ∈ Xt,
we denote their individual reward as ri, rj separately. We omit the expectation notation below for
simplicity. Then, we could bound the absolute difference between the reward estimations as

||ri − rj | − |f (1)
u (xi; [Θ

(1)
ui

]t)− f (1)
u (xj ; [Θ

(1)
uj

]t)|| ≤ |(ri − f (1)
u (xi; [Θ

(1)
ui

]t))− (rj − f (1)
u (xj ; [Θ

(1)
uj

]t))|

≤ |(ri − f (1)
u (xi; [Θ

(1)
ui

]t))− (rj − f (1)
u (xj ; [Θ

(1)
uj

]t))|

≤ |(ri − f (1)
u (xi; [Θ

(1)
ui

]t))|+ |(rj − f (1)
u (xj ; [Θ

(1)
uj

]t))|.

Based on the definition of the mapping function Ψ1, it would naturally be Lipschitz continuous with
the coefficient of 1, which is

|exp(−|ri − rj |)− exp(−|f (1)
u (xi; [Θ

(1)
ui

]t)− f (1)
u (xj ; [Θ

(1)
uj

]t)|)|

≤ ||ri − rj | − |f (1)
u (xi; [Θ

(1)
ui

]t)− f (1)
u (xj ; [Θ

(1)
uj

]t)||.

33

Under review as a conference paper at ICLR 2023

with the probability at least 1 − δ. Finally, applying the union bound for all the (n2 − n)/2 user
pairs and re-scaling the δ would give us the estimation error bound for the reward difference for each
pair of users. To achieve the upper bound, we apply the Corollary F.3 by considering the trajectory
P̃u,t consists of the past arm-reward pairs {xiτ ,τ , riτ ,τ}τ∈[t], where arm xiτ ,τ leads to the largest
estimation error of the estimation model f (1)

uτ (·) in each round τ ∈ [t]. Thus, we have the bound for
the edge weight difference, where the difference of an arbitrary i-th row could be bounded by∑

τ∈[t]

∥[A(1)
τ]i: − [A(1),∗

τ]i:∥2 ≤ 2n
√
t ·

(√
2ξ1 +

3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
+ Γt,

which implies∑
τ∈[t]

∥[S(1)
τ]i: − [S(1),∗

τ]i:∥2 ≤ 2
√
t ·

(√
2ξ1 +

3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
+ Γt.

Therefore, applying the conclusions from Lemma F.2, it leads to∑
τ∈[t]

||ri,τ − rj,τ | − |f (1)
u (xi,τ ;[Θ

(1)
ui

]t)− f (1)
u (xj,τ ; [Θ

(1)
uj

]t)||

≤ 2

√
t

n
·
(√

2ξ1 +
3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
+ Γt

Afterwards, recalling the transformation at the beginning of this subsection, and given an user-arm
pair (ui,x) for the i-th user, we denote h = [S(1) · X]i: and h∗ = [S(1),∗ · X]i:. Based the
aforementioned transformation in Eq. 9, their transformed form could naturally be h̃ = (

√
2
2 h, x

2 , c)

and h̃
∗
= (

√
2
2 h∗, x

2 , c
∗) with ∥x∥2 = 1. Without the loss of generality, we let c > c∗. Then, we

could have

∥h̃− h̃
∗
∥2 =

√
∥h− h∗∥22 + (c− c∗)2 ≤

(i)

√
∥h− h∗∥22 + (c2 − (c∗)2)2

=
(ii)

√
∥h− h∗∥22 +

1

4
(∥h∗∥22 − ∥h∥22)2

=

√
∥h− h∗∥22 +

1

4
(∥h∗ − h∥2 · ∥h∗ + h∥2)2

≤
(iii)

√
2 · ∥h− h∗∥2

Here, (i) is because c, c∗ ≥ 1
2 . (ii) is because of c2 + ∥h∥2

2

2 = (c∗)2 +
∥h∗∥2

2

2 = 3
4 , and (iii) is due to

∥h∥2, ∥h∗∥2 ≤ 1.

Then, we proceed to bound ∥h − h∗∥2. Recall the definition from Eq. 4. Extending the above
conclusion across different rounds τ ∈ [t], we will have∑
τ∈[t]

∥hτ − h∗
τ∥2 ≤ ∥xτ∥ · ∥[S(1)

τ]i: − [S(1),∗
τ]i:∥2 ≤ 2

√
t

(√
2ξ1 +

3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
+ Γt.

Finally, combining the conclusion from Lemma G.13, we finally have∑
τ∈[t]

|f (1)
gnn(x, G(1),∗τ ; [Θ(1)

gnn]τ−1)− f (1)
gnn(x, G(1)τ ; [Θ(1)

gnn]τ−1)|

≤ O(L) ·
√
8t ·

(√
2ξ1 +

3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
+ Γt

which concludes the proof.

34

Under review as a conference paper at ICLR 2023

G.3 BOUNDING THE EXPLORATION GRAPH ESTIMATION ERROR

Again, recall the definition of the confidence bound function CBt(x) which is

CBt(x) = E
[
|f (2)

gnn(∇f
(1)
t (x), G(2); [Θ(2)

gnn]t−1)− (r − f (1)
gnn(x, G(1); [Θ

(1)
gnn]t−1))|

∣∣∣∣ut,Xt

]
≤ E

[
|f (2)

gnn(∇f
(1),∗
t (x), G(2),∗; [Θ(2)

gnn]t−1)− f (2)
gnn(∇f

(1),∗
t (x), G(2); [Θ(2)

gnn]t−1)|
∣∣∣∣ut,Xt

]
︸ ︷︷ ︸

I3

+ I1 + I2 + I4.

Analogous to the procedure for the user exploitation graph, we have the following lemma to bound
the error induced by user exploitation graph estimation.
Lemma G.5. For the constants ρ ∈ (0,O(1

L)) and ξ1 ∈ (0, 1), given past records Pt−1, we
suppose m, η1, η2, J1, J2 satisfy the conditions in Theorem 4.2, and randomly draw the parameter

[Θ(2)
gnn]t ∼ {[Θ̂

(2)

gnn]τ}τ∈[t]. Then, with probability at least 1− δ, given an arm x ∈ Rd, we have∑
τ∈[t]

|f (2)
gnn(∇f

(1),∗
t (x), G(2),∗; [Θ(2)

gnn]t−1)− f (2)
gnn(∇f

(1),∗
t (x), G(2); [Θ(2)

gnn]t−1)|

≤ O(L) ·
√
8t ·

(√
2ξ1 +

3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
+ Γt.

Proof. The proof of this lemma could be derived based on a similar approach as in Lemma G.4.
Recall that for the exploration GNN model f (2)

gnn(·), we have the gradients of the GNN exploitation

model ∇f (1)
u,t (x) =

∇
[Θ

(1)
u]t

f(1)
u (x;[Θ(1)

u]t)

c′gL
as the input given an arm x and user u ∈ U , whose norm

∥∇f (1)
u,t (x)∥2 ≤ 1.

Given two users ui, uj ∈ U and an arbitrary arm x ∈ Xt, we denote their individual reward as ri, rj
separately. Then, we could bound the absolute difference between the potential gain estimations as

||(ri − f (1)
u (x; [Θ(1)

ui
]t))− (rj − f (1)

u (x; [Θ(1)
uj

]t))| − |f (2)
u (∇f (1)

ui,t(x); [Θ
(2)
ui

]t)− f (2)
u (∇f (1)

uj ,t(x); [Θ
(2)
uj

]t)||

≤ |f (2)
u (∇f (1)

ui,t(x); [Θ
(2)
ui

]t))− (ri − f (1)
u (x; [Θ(1)

ui
]t))|

+ |f (2)
u (∇f (1)

uj ,t(x); [Θ
(2)
uj

]t)− (rj − f (1)
u (x; [Θ(1)

uj
]t))|.

Afterwards, applying the conclusion from Lemma F.4 would lead to the result that∑
τ∈[t]

||(ri − f (1)
u (x; [Θ(1)

ui
]t))− (rj − f (1)

u (x; [Θ(1)
uj

]t))| − |f (2)
u (∇f (1)

ui,t(x); [Θ
(2)
ui

]t)− f (2)
u (∇f (1)

uj ,t(x); [Θ
(2)
uj

]t)||

≤ 2

√
t

n
·
(√

2ξ1 +
3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
+ Γt.

Following a similar approach as in the proof of Lemma G.4, we proceed to consider the aggregated
hidden representations for the input gradients. Since the entries between A(2) −A(2),∗ (and also
the distance between S(2) − S(2),∗) are bounded, by adopting the aforementioned transformation in
Eq. 9 on the aggregated hidden representations for the input gradients and the initial arm contexts x,
we would end up with the bound for the difference between transformed representations for input
gradients. Finally, combining the conclusion from Lemma G.13 would give the proof.

G.4 BOUNDING THE GRADIENT INPUT ESTIMATION ERROR

For the last term I4 in the confidence bound function CBt(x), we have

I4 = E
[
|f (2)

gnn(∇f
(1),∗
t (x), G(2); [Θ(2)

gnn]t−1)− f (2)
gnn(∇f

(1)
t (x), G(2); [Θ(2)

gnn]t−1)|
∣∣∣∣ut,Xt

]

35

Under review as a conference paper at ICLR 2023

which represents the estimation error induced by the difference of input gradients. And we first bound
the gradient difference with the following lemma

Lemma G.6. For the constants ρ ∈ (0,O(1
L)) and ξ1 ∈ (0, 1), given past records Pt−1, we

suppose m, η1, η2, J1, J2 satisfy the conditions in Theorem 4.2, and randomly draw the parameter

[Θ(1)
gnn]t ∼ {[Θ̂

(1)

gnn]τ}τ∈[t]. Then, with probability at least 1− δ, given an arm x ∈ Rd, we have∑
τ∈[t]

∥∇f (1)
τ (x)−∇f (1),∗

τ (x)∥2

≤ O(t
2L4 log5/6(m)

ρ1/3m1/6
) +O(L) ·

√
8t ·

(√
2ξ1 +

3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
+ Γt

where∇f (1)
t (x) =

∇
Θ

(1)
gnn

f(1)
gnn(x, G

(1);[Θ(1)
gnn]t−1)

cgL
, and∇f (1),∗

t (x) =
∇

Θ
(1)
gnn

f(1)
gnn(x, G

(1),∗;[Θ(1)
gnn]t−1)

cgL
.

Proof. Following the aggregation procedure and transformation procedure shown in section G.2, we
have the transformed representations for given an user-arm pair (ui,x) with the i-th user, which are
h = [S(1) ·X]i: and h∗ = [S(1),∗ ·X]i:. And their transformed form could naturally be h̃ = (h, c)

and h̃
∗
= (h∗, c∗). From the conclusion of Lemma G.4, we have∑

τ∈[t]

∥h̃τ − h̃
∗
τ∥2 ≤

√
8t ·

(√
2ξ1 +

3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
+ Γt.

Then, applying the conclusion from Lemma G.13 would complete the proof.

Then, we have te following lemma to bound the term I4.

Lemma G.7. For the constants ρ ∈ (0,O(1
L)) and ξ1 ∈ (0, 1), given past records Pt−1, we

suppose m, η1, η2, J1, J2 satisfy the conditions in Theorem 4.2, and randomly draw the parameter

[Θ(1)
gnn]t ∼ {[Θ̂

(1)

gnn]τ}τ∈[t]. Then, with probability at least 1− δ, given an arm x ∈ Rd, we have∑
τ∈[t]

|f (2)
gnn(∇f (1),∗

τ (x), G(2); [Θ(2)
gnn]τ−1)− f (2)

gnn(∇f (1)
τ (x), G(2); [Θ(2)

gnn]τ−1)|

≤ O(t
2L5 log5/6(m)

ρ1/3m1/6
) +O(L2) ·

√
8t ·

(√
2ξ1 +

3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
+ Γt.

Proof. We again follow the aggregation procedure and transformation procedure presented in
section G.2. Then, the aggregated and transformed input gradient could be denoted as we have
the transformed representations for given an user-arm pair (ui,x) with the i-th user, which are
g = [S(2) ·G]i: and g∗ = [S(2) ·G∗]i:, where G denotes the gradient matrix embedded w.r.t. Eq. 4.
And their transformed form could be g̃ = (

√
2
2 g, c) and g̃∗ = (

√
2
2 g∗, c∗). Then, according to the

definition of Eq. 4, we could naturally have

∥g̃ − g̃∗∥2 ≤ ∥[S(2)]i:∥2 · ∥∇f (1),∗
t (x)−∇f (1)

t (x)∥2 ≤ ∥∇f (1),∗
t (x)−∇f (1)

t (x)∥2

since the normalization of the adjacency matrix ensures its arbitrary row has the norm smaller than 1.
Finally, applying the conclusions from Lemma G.6 and Lemma G.13, it will leads to∑
τ∈[t]

|f (2)
gnn(∇f (1),∗

τ (x), G(2); [Θ(2)
gnn]τ−1)− f (2)

gnn(∇f (1)
τ (x), G(2); [Θ(2)

gnn]τ−1)|

≤ O(t
2L5 log5/6(m)

ρ1/3m1/6
) +O(L2) ·

√
8t ·

(√
2ξ1 +

3L√
2
+ (1 + γ1)

√
2 log(

tn · a
δ

)

)
+ Γt.

36

Under review as a conference paper at ICLR 2023

G.5 LEMMAS FOR OVER-PARAMETERIZED NETWORKS

Applying Pt−1 as the training data, we have the following convergence result for the exploitation
GNN network f

(1)
u (·;Θ(1)

gnn) after GD.

Lemma G.8 (Theorem 1 from (Allen-Zhu et al., 2019)). For any 0 < ξ2 ≤ 1, 0 < ρ ≤ O(1
L).

Given past records Pt−1, suppose m, η1, η2, J1, J2 satisfy the conditions in Theorem 4.2, then with
probability at least 1− δ, we could have

1. L(Θ(1)
gnn) ≤ ξ2 after J2 iterations of GD.

2. For any j ∈ [J2], ∥[Θ(1)
gnn]

j − [Θ(1)
gnn]

0∥ ≤ O
(

t3

ρ
√
m
logm

)
.

In particular, Lemma F.6 above provides the convergence guarantee for f (1)
u (·;Θ(1)

gnn) after certain
rounds of GD training on the past records Pt−1.
Lemma G.9 (Lemma 4.1 in (Cao & Gu, 2019)). Assume a constant ω such that
O(m−3/2L−3/2[log(TnL2/δ)]3/2) ≤ ω ≤ O(L−6[logm]−3/2) and n training samples. With
randomly initialized [Θ(1)

gnn]0, for parameters Θ,Θ′ satisfying ∥Θ− [Θ(1)
gnn]0∥, ∥Θ− [Θ(1)

gnn]0∥ ≤ ω,
we have

|f (1)(x;Θ)− f (1)(x;Θ′)− ⟨∇Θ′f (1)(x;Θ′),Θ−Θ′⟩| ≤ O(ω1/3L2
√
m log(m))∥Θ−Θ′∥

with the probability at least 1− δ.

Lemma G.10. Assume m, η1, η2, J1, J2 satisfy the conditions in Theorem 4.2 and [Θ(1)
gnn]0 being

randomly initialized. Then, with probability at least 1− δ and given an arm ∥x∥2 = 1, we have

1. |f (1)
u (x; [Θ(1)

gnn]0)| ≤ 2,

2. ∥∇
[Θ

(1)
gnn]0

f
(1)
u (x; [Θ(1)

gnn]0)∥2 ≤ O(L).

Proof. The conclusion (1) is a direct application of Lemma 7.1 in (Allen-Zhu et al., 2019). For
conclusion (2), for each weight matrix Θl ∈ {Θ(1)

0 ,Θ
(1)
1 , . . . ,Θ

(1)
L } where Θ

(1)
0 = Θ(1)

agg , we have

∥∇Θf (1)
u (x; [Θ(1)

gnn]0)∥2 = ∥(ΘLDL−1 · · ·Dl+1Θl+1)·(Dl+1Θl+1 · · ·D1Θ1D0Θ0)·h⊺∥2 ≤ O(
√
L)

by applying Lemma 7.3 in (Allen-Zhu et al., 2019), and h denotes the aggregated hidden representa-
tion for each user-pair, namely the corresponding row in Hagg . Therefore, by combining the bounds
for all the weight matrices, we could have

∥∇
[Θ

(1)
gnn]0

f (1)
u (x; [Θ(1)

gnn]0)∥2 =

√ ∑
l∈{0,...,L}

∥∇Θf
(1)
u (x; [Θ(1)

gnn]0)∥22 = O(L).

which finishes the proof.

Lemma G.11 (Theorem 5 in (Allen-Zhu et al., 2019)). Assume the training parameters m, η2, J2
satisfy the conditions in Theorem 4.2 and [Θ(1)

gnn]0 being randomly initialized. Then, with probability
at least 1− δ, and for all parameter Θ(1)

gnn such that ∥Θ(1)
gnn − [Θ(1)

gnn]0∥2 ≤ ω, we have

∥∇
Θ

(1)
gnn

f (1)
u (x;Θ(1)

gnn)−∇[Θ
(1)
gnn]0

f (1)
u (x; [Θ(1)

gnn]0)∥2 ≤ O(ω1/3L3
√

log(m))

Lemma G.12. Assume m, η2 satisfy the condition in Theorem 4.2. With the probability at least
1− δ, we have

∑
τ∈[t]

|f(xτ ; [Θ̂
(1)

gnn]τ)− rτ | ≤
∑
τ∈[t]

|f(xτ ; [Θ̂
(1)

gnn]t)− rτ |+
3L
√
2t

2

37

Under review as a conference paper at ICLR 2023

Proof. With the notation from Lemma 4.3 in (Cao & Gu, 2019), set R = t3 log(m)
δ , ν = R2, and

ϵ = LR√
2νt

. Then, considering the loss function to be L(Θ(1)
gnn) :=

∑
τ∈[t]|f(xτ ;Θ

(1)
gnn)− rτ | would

complete the proof.

Lemma G.13. Consider a L-layer fully-connected network f(·;Θt) initialized w.r.t. Subsection
3.2.1. For any 0 < ξ2 ≤ 1, 0 < ρ ≤ O(1

L). Given the training data set with t samples satisfying the
unit-length and the ρ-separateness assumption, suppose the training parameters m, η2, J2 satisfy the
conditions in Theorem 4.2. Then, with probability at least 1− δ, we have

|f(x;Θt)− f(x′;Θt)| ≤ O(L) · ∥x− x′∥2

∥∇Θt
f(x;Θt)−∇Θt

f(x′;Θt)∥2 ≤ O(
tL4 log5/6(m)

ρ1/3m1/6
) +O(L) · ∥x− x′∥2

when given two new samples x,x′.

Proof. Denoting Dl to be the diagonal sign matrix of the l-th layer such that Dl[i, i] =
I[(Θlhl−1)i ≥ 0], i ∈ [m], we could have

|f(x;Θt)− f(x′;Θt)| = |(ΘLDL−1 · · ·D1Θ1) · (x− x′)⊺|
≤ ∥ΘLDL−1 · · ·D1Θ1∥2 · ∥x− x′∥2.

Based on Lemma 7.3 from (Allen-Zhu et al., 2019) and Lemma C.4 from (Ban et al., 2022b),
we have we have ∥ΘLDL−1 · · ·D1Θ1∥2 = O(L) for the initialized parameters Θ0 =
{[Θ1]0, . . . , [ΘL]0}. Meantime, after training the network and ending up with trained parame-
ters Θt = {[Θ1]t, . . . , [ΘL]t}, according to Lemma 8.6 from (Allen-Zhu et al., 2019), the bound
∥ΘLDL−1 · · ·D1Θ1∥2 = O(L) still holds, which proves this statement.

Then, for the bound on the gradients, we have

∥∇Θt
f(x;Θt)−∇Θt

f(x′;Θt)∥2
= ∥∇Θt

f(x;Θt)−∇Θ0
f(x;Θ0) +∇Θ0

f(x;Θ0)−∇Θ0
f(x′;Θ0) +∇Θ0

f(x′;Θ0)−∇Θt
f(x′;Θt)∥2

≤ ∥∇Θtf(x;Θt)−∇Θ0f(x;Θ0)∥2 + ∥∇Θ0f(x;Θ0)−∇Θ0f(x
′;Θ0)∥2+

∥∇Θ0
f(x′;Θ0)−∇Θt

f(x′;Θt)∥2.

Firstly, we have

∥∇[Θl]f(x;Θ0)∥2 = ∥(ΘLDL−1 · · ·Dl+1Θl+1) · (Dl+1Θl+1 · · ·D1Θ1) · x⊺∥2 ≤ O(
√
L)

based on Lemma 7.3 from (Allen-Zhu et al., 2019), and this leads to ∥∇Θ0
f(x;Θ0)∥2 ≤ O(L).

Analogously, we also derive

∥∇Θ0
f(x;Θ0)−∇Θ0

f(x′;Θ0)∥2
= ∥(ΘLDL−1 · · ·Dl+1Θl+1) · (Dl+1Θl+1 · · ·D1Θ1) · (x− x′)⊺∥2 ≤ O(L) · ∥x− x′∥2.

Then, according to Theorem 5 from (Allen-Zhu et al., 2019) and with ∥Θ0 −Θt∥2 ≤ ω, we could
have ∥∇Θ0

f(x;Θ0)−∇Θt
f(x;Θt)∥2 ≤ O(ω1/3L2

√
log(m)) · ∥∇Θ0

f(x;Θ0)∥2. Substituting
the ω value with the conclusion from Lemma G.8, we could have

∥∇Θ0
f(x;Θ0)−∇Θt

f(x;Θt)∥2 ≤ O(ω1/3L2
√

log(m)) · ∥∇Θ0
f(x;Θ0)∥2

= O(tL
4 log5/6(m)

ρ1/3m1/6
).

Finally, assembling all parts together will lead to the conclusion.

Lemma G.14. Consider a L-layer fully-connected network f(·;Θt) initialized w.r.t. Section 3.2.1.
For any 0 < ξ2 ≤ 1, 0 < ρ ≤ O(1

L). Let there be two sets of training samples Pt,P ′
t with the

unit-length and the ρ-separateness assumption, and let Θt be the trained parameter on Pt while

38

Under review as a conference paper at ICLR 2023

Θ′
t is the trained parameter on P ′

t. Suppose m, η1, η2, J1, J2 satisfy the conditions in Theorem 4.2.
Then, with probability at least 1− δ, we have

|f(x;Θt)−f(x;Θ′
t)| ≤(

1 +O(tL
3 log5/6(m)

ρ1/3m1/6
)

)
· O(t3L

ρ
√
m

log(m)) +O
(
t4L2 log11/6(m)

ρ4/3m1/6

)
when given a new sample x ∈ Rd.

Proof. First, based on the conclusion from Theorem 1 from (Allen-Zhu et al., 2019) and regarding
the t samples, the trained the parameters satisfy ∥Θt −Θ0∥2, ∥Θ′

t −Θ0∥2 ≤ O(t3

ρ
√
m
log(m)) = ω

where Θ0 is the randomly initialized parameter. Then, we could have

∥∇Θtf(x;Θt)∥2 ≤ ∥∇Θ0f(x;Θ0)∥2 + ∥∇Θtf(x;Θt)−∇Θ0f(x;Θ0)∥2

≤
(
1 +O(tL

3 log5/6(m)

ρ1/3m1/6
)

)
· O(L)

w.r.t. the conclusion from Theorem 1 and Theorem 5 of (Allen-Zhu et al., 2019). Then, regarding the
Lemma 4.1 from (Cao & Gu, 2019), we would have

|f(x;Θt)− f(x;Θ′
t)− ⟨∇Θ′

t
f(x;Θ′

t),Θt −Θ′
t⟩| ≤ O(ω1/3L2

√
m log(m)) · ∥Θt −Θ′

t∥2.

Therefore, the our target could be reformed as

|f(x;Θt)− f(x;Θ′
t)| ≤ ∥∇Θ′

t
f(x;Θ′

t)∥2∥Θt −Θ′
t∥2 +O(ω1/3L2

√
m log(m)) · ∥Θt −Θ′

t∥2

≤
(
1 +O(tL

3 log5/6(m)

ρ1/3m1/6
)

)
· O(L) · ω +O(ω4/3L2

√
m log(m))

Substituting the ω with its value would complete the proof.

H COMPUTATIONAL RESOURCES

All the experiments are conducted on a Windows machine with an Intel Core i7 CPU, 64GB RAM,
and two RTX 5000 GPUs.

39

	Introduction
	Graph Neural Bandits: Problem Definition and Notation
	Graph Neural Bandits: Proposed Framework
	User Graph Estimation with User Networks
	Exploitation and Exploration with User Graphs
	Architecture of GNN Models
	Arm Selection Mechanism and Model Training

	Theoretical Analysis
	Experiments
	Real Data Sets
	Experiment Results
	Supplementary Experiments

	Conclusion
	Related Works
	Experiment Settings and Supplementary Experiments
	Baselines and Experiment Settings
	Experiments on Additional Data Sets
	Effects of the Adaptive Exploration and Effects of Information Propagation Hops
	Experiments with Different Number of Underlying User Groups
	Experiments with Approximated User Neighborhood
	Running Time on Real Data Sets

	User Networks Architecture.
	Pseudo-code for Estimating User Graphs and Training the GNB Framework
	 Proof of Theorem 4.2
	Generalization of User Networks after GD
	User Exploitation Model
	User Exploration Model
	Lemmas for Over-parameterized User Networks

	Proof of the Regret Bound
	Bounding the Parameter Estimation Error
	Bounding the Exploitation Graph Estimation Error
	Bounding the Exploration Graph Estimation Error
	Bounding the Gradient Input Estimation Error
	Lemmas for Over-parameterized Networks

	Computational Resources

