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Abstract

Single-cell transcriptomics enabled the study of cellular heterogeneity in response
to perturbations at the resolution of individual cells. However, scaling high-
throughput screens (HTSs) to measure cellular responses for many drugs remains
a challenge due to technical limitations and, more importantly, the cost of such
multiplexed experiments. Thus, transferring information from routinely performed
bulk RNA HTS is required to enrich single-cell data meaningfully. We introduce
chemCPA, a new encoder-decoder architecture to study the perturbational effects
of unseen drugs. We combine the model with an architecture surgery for transfer
learning and demonstrate how training on existing bulk RNA HTS datasets can
improve generalisation performance. Better generalisation reduces the need for
extensive and costly screens at single-cell resolution. We envision that our pro-
posed method will facilitate more efficient experiment designs through its ability
to generate in-silico hypotheses, ultimately accelerating drug discovery.

1 Introduction

Recent advances in single-cell methods allowed the simultaneous analysis of millions of cells,
increasing depth and resolution to explore cellular heterogeneity (Sikkema et al., 2022; Han et al.,
2020). With single-cell RNA sequencing (scRNA-seq) and high-throughput screens (HT'Ss) one can
now study the impact of different perturbations, i.e., drug-dosage combinations, on the transcriptome
at cellular resolution (Yofe et al., 2020; Norman et al., 2019). Unlike conventional HTSs, scRNA-
seq HTSs can identify subtle changes in gene expression and cellular heterogeneity, constituting a
cornerstone for pharmaceutics and drug discovery (Srivatsan et al., 2020). Nevertheless, these newly
introduced sample multiplexing techniques (McGinnis et al., 2019; Stoeckius et al., 2018; Gehring
et al., 2018) require expensive library preparation and do not scale to screen thousands of distinct
molecules. Even in its most cost-effective version, nuclear hashing, the acquired datasets contain no
more than 200 different drugs (Srivatsan et al., 2020).

Consequently, computational methods are required to address the limited exploration power of
existing experimental methods and discover promising therapeutic drug candidates. Suitable methods
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should predict the response to unobserved (combinations of) perturbations. Increasing in difficulty,
such tasks may include inter- and extrapolation of dosage values, the generalisation to unobserved
(combinations of) drug-covariates (e.g., cell-type), or predictions for unseen drugs. In terms of
medical impact, the prediction of unobserved perturbations may be the most desirable, for example
for drug repurposing. At the same time, it requires the model to properly capture complex chemical
interactions within multiple distinct cellular contexts. Such generalisation capabilities can not yet
be learned from single-cell HT'Ss alone, as they supposedly do not cover the required breadth of
chemical interactions. In this work, we leverage information across datasets to alleviate this issue.

We propose a new model that generalises previous work on Fader Networks by Lample et al. (2017)
and the Compositional Perturbation Autoencoder (CPA) by Lotfollahi et al. (2021) to the challenging
scenario of generating counterfactual predictions for unseen compounds. Our method is as flexible
and interpretable as CPA but further enables us to leverage lower resolution but higher throughput
assays, such as bulk RNA HTSs, to improve the model’s generalisation performance on single-cell
data (Amodio et al., 2021). Our main contributions are:

1. We introduce chemCPA, a model that incorporates knowledge about the compounds’ struc-
ture, enabling the prediction of drug perturbations at a single-cell level from molecular
representations.

2. We propose and evaluate a transfer learning scheme to leverage HTS bulk RNA-seq data
in the setting of both identical and different gene sets between the source (bulk) and target
(single-cell) datasets.

3. We show how chemCPA outperforms existing methods on the task of predicting unobserved
drug-covariate combinations. At the same time, we demonstrate chemCPA’s versatility and
evaluate chemCPA on generalisation tasks that cannot be modeled using any previously
existing method.

2 Related Work

Over the past years, deep learning (DL) has become an essential tool for the analysis and interpretation
of scRNA-seq data (Angerer et al., 2017; Rybakov et al., 2020; Lopez et al., 2020; Hetzel et al., 2021).
Representation learning in particular, has been useful not only for identifying cellular heterogeneity
and integration (Gayoso et al., 2022), or mapping query to reference datasets (Lotfollahi et al., 2022),
but also in the context of modelling single-cell perturbation responses (Rampasek et al., 2019; Seninge
et al., 2021; Lotfollahi et al., 2019; Ji et al., 2021).

Unlike linear models (Dixit et al., 2016; Kamimoto et al., 2020) or mechanistic approaches (Frohlich
et al., 2018; Yuan et al., 2021), DL is suited to capture non-linear cell-type-specific responses
and easily scales to genome-wide measurements. Recently, Lotfollahi et al. (2021) introduced the
CPA method for modelling perturbations on scRNA-seq data. CPA does not generalise to unseen
compounds, hindering its application to virtual screening of drugs not yet measured via scRNA-seq
data, which is required for effective drug discovery.

For bulk RNA data, on the other hand, several methods have been proposed to predict gene expression
profiles for de novo chemicals (Pham et al., 2021; Zhu et al., 2021; Umarov et al., 2021). Crucially,
the L1000 dataset, introduced by the LINCS programme (Subramanian et al., 2017), greatly facilitated
such advances on phenotype-based compound screening. However, it remains unclear how to translate
these approaches to single-cell datasets that include significantly fewer compounds and, in many
cases, rely on different gene sets.

3 Chemical Compositional Perturbation Autoencoder

We consider a dataset D = {(@;,y:)}Y, = {(2i, (di, 55, ¢:))},, where z; € R™ describes the
n-dimensional gene expression and y; an attribute set. For scRNA-seq perturbation data, we usually
consider the drug and dosage attributes, d; € {drugs in D} and s; € R, respectively, and the cell-line
c; of cell ¢. Note that this set of attributes ) depends on the available data and could be extended to
covariates such as patient, or species.

A possible approach to predicting counterfactual combinations is to encode a cell’s gene expression
x; invariantly from its attributes y; as a latent vector z;, called the basal state. Being provided such
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Figure 1: Architecture of chemCPA. The model consists of three parts: (1) the encoder-decoder
architecure, (2) the attribute embeddings, and (3) the adversarial classifiers. The molecule encoder
G can be any graph- or language-based model as long as it generates fixed-sized embeddings Agrugs-
The MLPs S and M are trained to map the embeddings to the perturbational latent space. There,
zq, 1s added to the basal state z; and the covariate embedding z.,. In this work, the latter always
corresponds to cell lines. The basal state z; = Ejp(x;) is trained to be invariant through adversarial

classifiers Aé and the decoder D, gives rise to the Gaussian likelihood N (; | i, 0;).

disentangled representations, z; can be combined with attributes, z4, and z.,, to encode any attribute
combination y} # y;, and decoded back to a gene expression state Z; that corresponds to this new set
of chosen attributes.

To this end, we divide our model, the Chemical Compositional Perturbation Autoencoder (chemCPA),
into three parts: (1) the gene expression encoder and decoder, (2) the attribute embedders, and (3) the
adversarial classifiers, see Figure | for an illustration.

3.1 Gene encoder and decoder

Following Lotfollahi et al. (2021), our model is based on an encoder-decoder architecture combined
with adversarial training. The encoding network Ey : R — R! is a multi-layer perceptron (MLP)
with parameters 6 that maps a measured gene expression state x; € R™ to its [-dimensional latent
vector z; = Ey(x;). Through adversarial classifiers, z; is trained to not contain any information about
its attributes y;. This gives us control over the latent space in which we update z; with an additive
attribute embedding of our choice and obtain z;.

The decoder Dy, : R! — R2" is an MLP that takes 2/ as input and computes the component-wise
parameters of the underlying distribution IP of the gene expression data. Dependent on whether z; is
raw or pre-processed, [P can follow a negative binomial or Gaussian distribution. Assuming a mean

and variance parametrisation, we get in both cases y = D) (z') and 0% = D,‘f (2) for the description

of the decoded gene expression state. While chemCPA supports both settings, we observed better
convergence with a Gaussian likelihood for which the reconstruction loss becomes:
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Next, we provide intuition about how we can meaningfully interpret latent space arithmetics and how
we encode drug and cell-line attributes.

3.2 Attribute embedding and additive latent space

We assume an additive structure of the perturbation response in the latent space:

/ ~
Z; = 2 + Zattribute = 2 + Ze; + SiZd; »

where z., and 24, correspond to the latent cell-line and drug attributes, and §; encodes the dosage.



This choice of linearity makes the model interpretable for users such as biologists since it permits to
analyse and ablate components individually, e.g., allowing interpolation or extrapolation of the dose
values. Another advantage of the additive structure is its permutation invariance and that it allows for
adding new covariates, e.g., during fine-tuning. While remaining interpretable, chemCPA is able to
model complex relationships through the non-linear decoder.

Due to their different nature, we encode the drug and cell-line attributes separately in the latent space.
For the cell-lines, we use the same approach as Lotfollahi et al. (2021), where a [-dimensional latent
representation z. is optimised for each cell-line c. For the drugs, we propose a new embedding
network P,.

Perturbation Network The network P, maps molecular representations—such as its graph or
SMILES representation—and the used dosage to its latent perturbation state. This perturbation
network P, consists of the molecule and perturbation encoders, G and M, as well as the dosage
scaler S, see Figure 1 (2).

The molecule encoder G : G — R™ encodes the molecule representation g; € G as a fixed size
embedding hg, € R™. In a subsequent step, the perturbation encoder M : R™ — R/ takes the
molecular embedding k4, as input and generates the drug perturbation z;, € R' that is used in
chemCPA’s latent space.

The dosage scaler S : R™T1 — R also uses h,, and maps it together with the dosage s; to the
scaled dosage value $;. We chose S to map back to a scalar value § as this allows us to compute
drug-response curves in an easy fashion. In addition, this way of encoding matches the idea that z4,
encodes the drug’s general effect, which is dosage independent. Put together, we end up with

§; X zq, = Pg,(gi,si) = S(hdi,si) X M(hdl) with hdi = G(gz)

The molecule encoder GG can be any encoding network that maps molecular representations to
fixed-size embeddings. Due to the limited number of drugs available in sScRNA-seq HTSs, we
propose to rely on a pretrained encoding model and freeze G during training. We tested multiple
different options for GG and include a detailed benchmark in the Appendix A.1. We found that RDKit
features performed well in our setting and report all following results for chemCPA with RDKit
as the molecule encoder G. By design, we can choose a new set of attributes for the drug and cell
line and compute the new latent state as z, = z; + Zauribute at test time. Due to the perturbation
network, chemCPA makes it possible to predict drug perturbations for molecules that have not been
experimentally observed (d ¢ D). In contrast, CPA can only make predictions for molecules that
were present during training (d € D). In both cases, the latent representation is computed as:

! ~
2 = Zi T Zawibute = Zi T Ze; + 8iZd; -
We next describe how we “strip z; from its attribute information” to obtain a basal state representation.

3.3 Adversarial classifiers for invariant basal states

To generate invariant basal states and produce disentangled representations z;, z4,, and z.,, we use
adversarial classifiers Aj;ug and AZ". Both adversary networks Aé : R! — RY take the latent
basal state z; as input and aim to predict the drug that has been applied to example i as well as
its cell-line ¢;. While these classifiers are trained to improve classification performance, we also
add the classification loss with a reversed sign to the training objective for the encoder Ey. Hence,
the encoder attempts to produce a latent representation z; which contains no information about the
attributes. Note that this explicit separation of basal, drug, and covariate information, which we
call disentanglement, is an approximation to make the problem tractable. At the same time, such
separation is useful for attributing perturbation effects to specific sources, e.g., drug or cell line,
which is relevant for biological applications and downstream analyses.

We use the cross-entropy loss for both classifiers
LGS = CB(AS™(2;)),d;) and LN, = CE(AS(z:), 1) -

class class
Following the CPA implementation from Lotfollahi et al. (2021), we add a zero-centered gradient
penalty to the loss function of the adversarial classifiers, to minimise

4 1 j 2
D) CEEACH
k



This gradient penalty was shown to make the discriminator more robust to noise and enable local
convergence, when applied to generative adversarial networks (Mescheder et al., 2018). During
training, we alternate update steps between the following competing objectives

EAE(aa 1, <P|¢) = £rec( — Adis Z ‘Cclass 9 | ¢ and

£Adv (b ‘ 9 Z ‘Cclass ¢ | 0 + )\penﬂpen((b) )

where \gjs balances the importance of good reconstruction against the encoder Ejy’s constraint to
generate disentangled basal states z;. The gradient penalty is weigthed with Ayep.

4 Datasets and transfer learning

We use the sci-Plex3 (Srivatsan et al., 2020) and the L1000 (Subramanian et al., 2017) datasets for
the main evaluation on single-cell data and pretraining on bulk experiments, respectively.

Datasets The L1000 data contains about 1.3 million bulk RNA observations for 978 different genes.
It includes measurements for almost 20k different drugs, some of which are FDA-approved, while
others are synthetic compounds with no proven effect on any disease. Compared to scRNA-seq
data, the L1000 data allows to explore a more diverse space of molecules which makes it ideal for
pretraining.

The sci-Plex3 data is similar in size and contains measurements for 649,340 cells across 7561 drug-
sensitive genes. On three human cancer cell lines—A549, MCF7, and K562—single-compound
perturbations for 188 drugs at four different dosages— 10nM, 100nM, 1 uM, and 10 yuM— are
examined. Note that all cell lines and about 150 compounds overlap with the L1000 data. In
addition, Srivatsan et al. (2020) assigned to all compounds one of 19 different modes of action (MoA),
also called pathways. In contrast to the mechanism of action, which is related to the biochemical
interaction between a molecule and a cell, the MoA describes the anatomical change that results from
the exposure of cells to a drug-like molecule.

Transfer learning As we train chemCPA with a Gaussian likelihood loss, the dataset was first
normalised and then log(x + 1)-transformed. Depending on the experiment, we further reduced the
number of genes included in the single-cell data. In Section 5.1, we first subsetted both datasets to
the same 977 genes which were identified via ensemble gene annotations. For the final experiment in
Section 5.2, the considered gene set is increased as we hypothesize that more than the 977 L1000
genes are required to capture the variability within the single-cell data. To assess whether pretraining
on L1000 is still beneficial in this scenario, we included 1023 highly variable genes (HVGs) from the
sci-Plex3 data. That is, we consider 2000 genes in total.

For the extended gene set, chemCPA’s input and output dimensions have to be adjusted to match the
total number of 2000 genes. This is realized by adding two non-linear layers hey : R™inetne — TR ™prewain

and hgee : R2Mremin s R2Minewne to the autoencoder. The encoder becomes Eg = FEy (henc(x)) and the

decoder becomes Dy, = hgec (Dy(2")). In our example, we have npremain = 977 and nfine-wune = 2000.
We train all layers during fine-tuning, including the newly added ones. This architecture surgery
differs from the procedure introduced in Lotfollahi et al. (2022), where individual neurons are added
(instead of whole layers) and the transfer is performed on dataset labels (instead of gene sets).

5 Experiments

Our evaluation strategy tests chemCPA’s ability to produce counterfactual predictions. To this end, it
is important to measure both the predictive performance of a trained model as well as the degree to
which the latent space components are disentangled.

Counterfactual predictions To perform a counterfactual prediction, chemCPA first encodes an
unperturbed control observations, a cell treated with dimethyl sulfoxide. The resulting basal state is
then combined with the encoding of the desired drug and cell line, and chemCPA decodes the result.
As we are free to choose any drug encoding, we refer to this process as counterfactual prediction.



Table 1: Comparison of multiple models on their performance on generalisation to unseen drug-
covariate combinations for dosage values of 1 uM and 10 uM.

Dose  Model E[r?]all E[r?] DEGs Medianr?all Median r? DEGs
Baseline 0.69 0.51 0.82 0.62
scGen 0.73 0.59 0.77 0.68

1uM  CPA 0.72 0.54 0.86 0.67
chemCPA 0.74 0.60 0.86 0.66
chemCPA pretrained 0.77 0.68 0.85 0.76
Baseline 0.50 0.29 0.48 0.12
scGen 0.62 0.47 0.66 0.49

10uM CPA 0.54 0.34 0.52 0.26
chemCPA 0.71 0.58 0.77 0.64
chemCPA pretrained 0.76 0.68 0.82 0.79

Evaluation strategy Throughout our experiments, we use the coefficient of determination 2 as
the main performance metric. This score is computed between the actual measurements and the
counterfactual predictions on all genes and the 50 most differentially expressed genes (DEGs). It
is necessary to consider all genes to evaluate the background and general decoder performance.
However, the resulting r2-scores can get inflated since most genes stay similar to their controls under
perturbation. In contrast, the DEGs capture the differential signal which reflects a drug’s effect. To
further stress the importance to report both scores, note that the DEGs are unknown for unseen drugs
as they depend on the drug and cell type. Hence, the combination is essential to gauge the accuracy
of the model’s predictions.

In order to classify the degree of disentanglement during evaluation, we train separate MLPs with four
layers over 400 epochs and compute the prediction accuracy for drugs and covariates given the basal
state. We consider the resulting accuracies as our disentanglement scores. An optimally disentangled
model achieves scores that match the ratios of the most abundant drug and cell line, respectively.
Since no model achieves perfect scores, we subset to models that are sufficiently disentangled.
Throughout our experiments on the sci-Plex3 data, we set the thresholds for perturbation and cell line
disentanglement to < 10% and < 70%, respectively, while values of 3% and 51% are optimal. Note
that poor disentanglement will automatically lead to low scores due to computing the test scores on
the counterfactual predictions.

5.1 Comparing chemCPA against existing methods on unseen drug-covariate combinations

Before evaluating how well chemCPA can generalise to unseen drugs, we have to establish its com-
petitive performance in a less ambitious setting. For this, we consider the scenario of generalisation
to unobserved combinations of drugs and cell lines on the sci-Plex3 data and compare chemCPA
against scGen (Lotfollahi et al., 2019) and CPA (Lotfollahi et al., 2021).

As scGen cannot distinguish between different dosage values, we perform two separate experiments
for the second and highest dose values, 1 M and 10 uM, respectively. Moreover, as both CPA and
scGen require each individual component (drug d, cell line c) to be part of the training data D, we
create three distinct splits with only two of the three different drug set and cell line combinations
being present during training, the third one being left for testing.

We choose to test nine different compounds: Dacinostat, Givinostat, Belinostat, Hesperadin, Quisi-
nostat, Alvespimycin, Tanespimycin, TAK-901, and Flavopiridol. These drugs mostly belong to
three MoA—epigenetic regulation, tyrosine kinase signalling, and cell cycle regulation—and were
reported among the most effective drugs in the original publication (Srivatsan et al., 2020).

As discussed in the previous paragraph, we report mean and median 2 values, which we averaged
over the three splits and all drugs, for the sets of all genes and differentially expressed genes (DEGs).
We consider a model that discards all perturbation information as our baseline. As a consequence,
one can understand the improvement over the baseline as a result of the additional drug encoding.
Moreover, we use the L.1000 data for the pretraining of chemCPA and subset to the same 977 genes
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Figure 2: Performance of chemCPA on both the complete gene set (977 genes) and the compound
specific DEGs (50 genes). In both cases, the pretrained model shows the best performance. At 10 M
on the DEGs, more than 50% of the predictions have an 2 score > 0.6 while the baseline’s median
is below 0.2.

Table 2: Performance of chemCPA on the shared gene set. Since drug effects are stronger for high
dosages, we present scores for a dosage value of 10 uM.

Model E[r?]all E[r?*] DEGs Median7?all Median r? DEGs
Baseline 0.50 0.29 0.49 0.12
chemCPA 0.51 0.32 0.47 0.24
chemCPA pretrained 0.68 0.54 0.75 0.64

for the fine-tuning on sciPlex-3. This way, we are able to evaluate chemCPA in its pretrained and
non-pretrained version.

We report the results of this experiment in Table 1. ChemCPA outperforms both scGen and CPA,
demonstrating that the perturbation network together with pretraining leads to SOTA performance.
Note also that the base version of chemCPA performs better than both CPA and scGen, indicating
that the additional regularisation that comes from the perturbation networks P, has beneficial effects
on single-cell perturbation modelling.

To make a fair comparison, we optimised all CPA and chemCPA models identically and swept
over the same set of hyperparameters (random, 10 samples). scGen was optimised with default
parameters and an adjusted KL annealing scheme to match the set number of epochs. Note that both
CPA and chemCPA can take control cells x; from all cell lines as input ({A549, K562, MCF7} —
{A549, K562, MCF7}), while the cell line input for scGen has to match the test set (A549 —
A549, K562 — K562, MCF7 — MCF7).

5.2 Using chemCPA to predict single-cell responses for unseen drugs

For the application of chemCPA to predict perturbation responses for unseen compounds, we use
the same nine drugs from sci-Plex3 data as in Section 5.1. In addition to the shared gene set, we
also consider an extended gene set, cf. Section 4. We include HVGs to account for the technological
difference between bulk and single-cell and to capture the variance of single-cell data. To this end,
the 977 genes present in both datasets are extended with 1023 HVGs of the sci-Plex3 data. Note that
through this larger genes set, the 50 DEGs become a subset of the HVGs which makes it considerably
more difficult for pretrained models to leverage learned bulk expressions directly.

Shared gene set Table 2 shows the test performance of chemCPA, averaged over all drugs and
the three cell lines, for the same gene set as used in Section 5.1. The pretrained chemCPA model
consistently outperform the baseline and its base version.

The high baseline scores in Figure 2 shows that the drugs have almost no effect at low dosages. At
high dosages, however, we see how chemCPA’s predictions improve over the baseline. Looking at
the prediction for all genes, the pretrained model has a significant advantage over its non-pretrained
version. As expected, the performance is lower for the DEGs. Nevertheless, also in this scenario,



Table 3: We show the performance of chemCPA on the extended gene set. Since drug effects are
stronger for high dosages, we present scores for a dosage value of 10 uM.

Model E[r?]all E[r?*] DEGs Median7?all Median r? DEGs
Baseline 0.37 0.19 0.16 0.00
chemCPA 0.46 0.22 0.35 0.00
chemCPA pretrained  0.69 0.47 0.79 0.62

chemCPA, especially the pretrained version, can explain gene expression values that must result from
the drugs’ influence.

In Figure 3, latent perturbations z, are visualised. Note that the difference between the lowest and
highest doseage values results only from the non-linear dosage scaler S.

Extended gene sets The extension to the larger gene set introduces a more difficult task for
chemCPA. In Table 3, we show the same analysis as for the shared gene set. Again, the advantage of
the pretraied chemCPA model translates to this scenario, while the base version is only slightly better
than the baseline. A more comprehensive view for all dosages is shown in Figure 4, see also A.5 for
results with different molecule encoders G.
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Figure 3: Illustration of the the scaled perturbation embedding s x z4 for 10 uM. The left part
illustrates how the perturbation embeddings z, are clustered according to some of the pathways. Most
notably, the histone deacetylation drugs show a clear separation. Further context is provided by the
uncertainty score on the right, showing regions of high and low confidence for the drug embeddings
z4. The nine test compounds are labeled.
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Figure 4: Performance of chemCPA model on the extended gene set, see also Figure 2. The pretrained
model shows the best performance with the non-pretrained model failing to beat the baseline at lower
dosages. At 10 uM on the DEGs, the pretrained model’s median much higher that the baseline.

Table 4: Uncertainty score for all nine unseen drugs. The last column shows the improvement Ar? of
chemCPA over the baseline. The number of considered neighbours was nine for all drugs.

Drug Uncertainty score u ~ Ar? on DEGs
Dacinostat 0.570 0.00
Givinostat 0.660 0.00
Belinostat 0.623 0.12
Hesperadin 0.197 0.40
Quisinostat 0.052 0.65
Alvespimycin 0.058 0.74
Tanespimycin 0.092 0.75
TAK-901 0.049 0.88
Flavopiridol 0.011 0.99

5.3 Measure uncertainty on the drug embedding

Generalisation can only be achieved within the limits of the dataset a model is trained on. For the
sci-Plex3 data, less than 20% of the drug-dose combinations deviate from the controls’ phenotypes by
more than 35% in its 72 scores. In additon, we know from the original sci-Plex3 publication that only
drugs from a few pathways—tyrosine kinase signaling, DNA damage and repair, cell cycle regulation,
and epigenetic regulation—show a clear effect. We assume that this technological noise is the reason
why the non-pretrained chemCPA version struggles to outperform the baseline on the extended gene
set, whereas the pretrained model is more robust. These data challenges are also reflected in the left
part of Figure 3 as we would expect chemCPA’s perturbation latent space to cluster according to the
drugs’ MoA, similar to the cluster of histone deacetylation drugs.

We found that an imperfect clustering often correlates with high baseline scores and, as a result of that,
chemCPA not being able to identify distinct perturbations, see Figure 15 in the appendix. To make
the generalisation ability more transparent, we employ a measure of uncertainty. A good indicator
for chemCPA’s ability to generalise is the MoA prediction from the KNN-graph of the perturbation
embedding space. We further combine this measure with the average distance to neighbouring drugs
as we recognise that larger distances indicate a distinct perturbation:

1
i _%\% og (dti.)) < HX)

where d is the Euclidean distance, H is the Shannon entropy, and X the normalised pathway
prediction deduced from the neighbours N; of drug 7. This uncertainty measure combines two things:
First, chemCPA’s confidence on the drug’s MoA, measured by H, and second, whether chemCPA
expects the drug to have a distinct perturbation effect on the cell, measured by the inverse distance.

We report an analysis of the uncertainty for the chemCPA model in Figure 3 and Table 4. A plot that
shows chemCPA’s performance and uncertainty for all compounds is part of the appendix A.6. The
results show that the uncertainty score u for unseen drugs correlates well with the accurate prediction



of perturbed cells. This illustrates how chemCPA’s compositional latent space can be leveraged for
additional insights in order to evaluate its generalisation ability.

6 Conclusion

In this paper, we introduced chemCPA, a model for predicting cellular gene expression responses for
unseen drug perturbations by encoding the drugs’ molecular structures. We showed how chemCPA
outperforms CPA and scGen on shared tasks, while generalising over existing methods by being appli-
cable to the novel task of generalising to unseen drugs. Applied to single-cell data, we demonstrated
how pretraining on bulk HTSs improves chemCPA’s generalisation performance. This applies even
when the gene set of the single-cell dataset differs from the genes of the pretraining bulk RNA HTS
dataset. We further provided an uncertainty measurement that correlates well with the chemCPA’s
generalisation ability to unseen drugs. Taken all results together, we are confident that chemCPA will
benefit from higher-quality scRNA-seq HTSs in the future and can become a powerful aid in the drug
screening and drug discovery process.
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