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Abstract

Recently,the rapid development of multilingual001
social media platforms (SNS) exacerbates mul-002
tilinguality challenges in SNS content anomaly003
detection due to data islands and linguistic im-004
balance. While federated learning (FL) and005
parameter-efficient fine-tuning (PEFT) offer006
potential solutions in most cases, when every007
client is multilingual, existing solutions strug-008
gle with multilingual heterogeneity: 1) entan-009
gled language-specific knowledge during aggre-010
gation, 2) noise from minority languages, and011
3) unstable cross-platform collaboration. Based012
on the asymmetric nature of LoRA, we propose013
MuLA-F, a multilingual Federated LoRA intro-014
ducing SVD-based language-specific disentan-015
glement of LoRA blocks and a local orthogo-016
nal tuning strategy. Evaluations across 3 SNS017
content anomaly detection tasks demonstrate018
MuLA-F’s superiority in multilingual perfor-019
mance while reducing multilingual knowledge020
conflicts and communication rounds.1021

1 Introduction022

As social media platforms (SNS) proliferate in re-023

cent years, coupled with escalating global unrest024

and instability, anomalous content (Geissler et al.,025

2023; Houston et al., 2015; Savage et al., 2014)026

spreads with alarming speed and magnitude across027

a vast network of vulnerable social media users028

(Chen et al., 2013; Mossie and Wang, 2020).029

How can we safeguard the online ecosystem030

from the toxic contamination of fake news, hate031

speech, and other harmful content (Röttger et al.,032

2021; Wu et al., 2019)? How can we ensure033

that distant cries— e.g. those under crisis or de-034

pressions—are not drowned out amidst the noise035

(Zhang et al., 2019; Alam et al., 2021)? In response036

to these pressing concerns, academia has consis-037

tently pursued advancements in developing more038

1Our working code and data examples are available in
supplementary materials (As our higher-ups do not allow us
to release our code on Github before acceptance).

Figure 1: An illustration of addressing multilingual SNS
content anomaly detection using Federated Learning.

effective content anomaly detectors (Aïmeur et al., 039

2023; Alam et al., 2021) for SNS online content. 040

More recently, with the surge in applications of 041

large language models (LLMs), numerous inno- 042

vative works (Lei et al., 2025; Nan et al., 2024) 043

based on Parameter-Efficient Fine-Tuning (PEFT) 044

are proposed, achieving notable breakthroughs in 045

SNS content anomaly detection. 046

However, as SNS continue to decentralize and 047

show their inherent transcultural nature, and as user 048

interest in cross-border communication grows, indi- 049

viduals speaking various native languages are flock- 050

ing to popular or trending platforms (Kim et al., 051

2014). The influx of users speaking different native 052

languages sparks a profound increase in linguis- 053

tic diversity online. Consequently, SNS content 054

anomaly detectors are now contending with the 055

multilingual curse (Pfeiffer et al., 2022). Specifi- 056

cally, for a single data holder (e.g., an SNS oper- 057

ator’s data storage center or an edged device), the 058

dominant language among its users often prevails 059

in usage proportion, while the data available in 060

minority languages are insufficient to support the 061

multilingual local training necessary for an effec- 062

tive detector against the abnormal content in these 063
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minor languages (Guo et al., 2024c; Weller et al.,064

2022). As a result, detectors trained locally (i.e.065

by a single SNS) could struggle to detect content066

anomaly in posts in minor languages—e.g. the067

APP “Little Red Note” fails to effectively filter out068

toxic remarks (even in English) posted by TikTok069

refugees (Press, 2025).070

Confronted with this challenge and the heavy071

costs of acquiring multilingual in-domain anno-072

tated data (Wang et al., 2022), we argue that the073

growing multilingual user base gives rise to data is-074

lands in SNS content anomaly detection—the issue075

that lies at the heart of this paper’s focus.076

Empirically, previous studies tackle similar chal-077

lenges by leveraging federated learning (FL) tech-078

niques, enabling the multilingual collaborative079

training of local models with multilingual or mono-080

lingual local datasets across diverse organizations081

and data sources. From a theoretical perspective,082

FL can effectively mitigate these challenges (Wang083

et al., 2022; Zhao et al., 2024). This is because,084

from a global standpoint, if data holders can col-085

laborate, the completeness of multilingual data can086

be significantly enhanced (Yang et al., 2023), as087

each major language community gravitates toward088

its preferred SNS. Consequently, each widely-used089

language is dominantly prevalent on a certain num-090

ber of SNS platforms (Khalil et al., 2024). Tech-091

nically, assuming that local data is complete and092

FL is unnecessary, as mentioned above, applying093

LLMs as the backbone for detectors and introduc-094

ing LoRA-PEFT (Hu et al.) emerges as a SOTA095

solution that effectively balances performance and096

cost (Yin et al., 2024; Wang et al., 2023a). More-097

over, for FL-suited scenarios, recent strides in fed-098

erated low-rank adaptation (FedLoRA) (Cho et al.,099

2024; Bai et al., 2024; Wu et al., 2024) make it pos-100

sible to treat LLM-based detectors as local model101

backbones, i.e., only integrate additional modules102

for LoRA-PEFT in federated communication. As103

such, FedLoRA stands out as the most promising104

and compelling technical routine for us.105

Nevertheless, despite recent studies (Guo et al.,106

2024c,b), significant technical challenges still per-107

sist for multilingual SNS content anomaly detec-108

tion on social media—mainly regarding server-side109

operations and local weight uploading—which are110

outlined as follows:111

(1-a): The nature of multilingual content detec-112

tion, i.e. language gap based on multilingualism,113

is a kind of severe, threatening data heterogeneity114

(Huang et al., 2021; Tan et al., 2022).115

(1-b): Since the language composition of each 116

multilingual client is only a subset of the global 117

language set, alleviating the multilingual curse and 118

balancing the local detector’s performance across 119

the languages in the subset necessitates that the 120

domain adaptation knowledge for each language 121

be not only effective but also explicitly disen- 122

tangled on the server-side (it can also be specu- 123

lated that local knowledge should be also multilin- 124

gually disentangled after local training). Moreover, 125

the language-specific knowledge should not suffer 126

from (catastrophic) forgetting and multilingual con- 127

flicts (Koohpayegani et al.; Xu et al., 2024) during 128

aggregation and server-to-client distribution. 129

(2-a): Due to the severely imbalanced propor- 130

tions of languages in local training data, after each 131

local round, a local LoRA could contain mixed 132

domain adaptation knowledge which shows vary- 133

ing degrees of effectiveness for various languages 134

that appear in the corresponding client. Existing 135

works (Khalil et al., 2024; Wang et al., 2022; Guo 136

et al., 2024c) often treat it as a contribution to the 137

client’s primary language and then upload it. Un- 138

fortunately, it shows obvious drawbacks. First, the 139

knowledge for local minority languages inevitably 140

introduces noise into the primary language. Sec- 141

ond, the contributions of minority languages are 142

often overlooked. Specifically, if a local minority 143

language never plays the role of primary language 144

in a certain number of other clients, they will be ex- 145

cessively edged in federated collaboration. The cur- 146

rent solution—aggregating the entire local weights 147

into the part of global weight corresponding to the 148

minority language—will introduce overwhelming 149

noise. Thus, better countermeasures are needed 150

(2-b): In our task scenario, FL across SNS or 151

users’ data storage units always faces strict data- 152

security legislation (Wen et al., 2023) and lower 153

willingness to cooperate (compared to other fields, 154

e.g. Medical) (Wu et al., 2022). Thus, the number 155

of federated rounds also becomes a critical concern 156

for participants in our task. 157

In light of this, to address these concerns, we 158

propose MuLA-F. On the client-side of MuLA-F, 159

we perform SVD on the local LoRA blocks and 160

apply Diff-eRank (Wei et al., 2024) as the met- 161

ric to identify the top-k most contributing feature 162

subspaces for each language appeared in the local 163

dataset. The selected feature subspaces are then 164

reconstructed into the format of LoRA to achieve 165

multilingual disentanglement of the local weights. 166

Inspired by a previous theoretical work (Zhu et al.) 167
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Figure 2: A client-side architecture overview of MuLA-F. We assume the local language composition is jp and zh.

which highlights the asymmetry between A and168

B in LoRA, i.e. A specializing in feature ex-169

traction while B specializes in feature transforma-170

tion, we argue that multilingualism could influ-171

ence client-side feature extraction by introducing172

data heterogeneity, while downstream SNS content173

anomaly detection is still a task with commonali-174

ties across languages (Yang et al., 2023; Demen-175

tieva and Panchenko, 2021; Xu et al., 2024). In176

light of this, we build multiple language centers177

on the server, perform language-specific federated178

aggregation regarding the uploaded A-matrices to179

achieve global disentanglement, and aggregate B-180

matrices globally for the downstream task. Mean-181

while, in terms of local training, inspired by O-182

LoRA (Wang et al., 2023b), we leverage exist-183

ing parameters in language centers to facilitate184

real-time orthogonalization of the locally recon-185

structed A-matrices to prevent catastrophic forget-186

ting and knowledge conflicts between languages.187

Finally, after broadcasting the global B-matrices188

to the clients, based on each client’s language com-189

position, we customize the A-matrices with the190

language-specific A-matrices for this client, and191

then distribute them to it, ensuring the performance192

of the local detectors while economizing the num-193

ber of federated rounds.194

Experiments on three multilingual SNS content195

anomaly detection tasks demonstrate that MuLA-F196

significantly outperforms existing baselines.197

2 Related Work198

Since the proposal of LoRA (Hu et al.), several199

studies have explored incorporating LoRA into Fed-200

erated Model Finetuning. For example, a study201

(Babakniya et al.) utilizes SVD combined with 202

Federated Learning to initialize the LoRA blocks 203

on local clients effectively. Additionally, (Zhang 204

et al., 2024) integrates LoRA-based local updates 205

with FedAvg for model aggregation. (Sun et al.) 206

proposes a method to enhance LoRA’s performance 207

in Federated Learning settings; (Yan et al., 2024) 208

addresses data heterogeneity by performing SVD 209

on pretrained model weights, and (Qin et al.) re- 210

duces communication costs using zeroth-order op- 211

timization. FLoRA (Wang et al.) introduces 212

stacking aggregation to alleviate data heterogene- 213

ity. FlexLoRA (Bai et al., 2024) introduces global 214

SVD to allocate global knowledge across heteroge- 215

neous clients. The general problem formulation of 216

FedLoRAs can be found in Appendix C.4. 217

However, there is limited research on Multilin- 218

gual Federated PEFT (Parameter-Efficient Fine- 219

Tuning). FedHLT (Guo et al., 2024b) and FedLFC 220

(Guo et al., 2024c) have effectively utilized lan- 221

guage family structures for federated LoRA aggre- 222

gation. Existing multilingual federated finetuning 223

methods (Khalil et al., 2024; Guo et al., 2024c) 224

mostly focus on scenarios where each client is 225

monolingual. The research on Federated LoRA for 226

multilingual clients remains largely under-explored, 227

which represents the primary technical challenge 228

that MuLA-F addresses in our task scenario. 229

3 Methodology 230

Assuming there is a federated PEFT framework 231

consisting of n client participants, which are de- 232

noted as {C1, . . . , Cn}. The local datasets of clients 233

are denoted as {D1, . . . ,Dn}. Before the start, the 234

server investigates the languages that appear in at 235
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least one local dataset, to form the global language236

set K, then assigns a “language center” to each lan-237

guage. The global language set is the union of all238

local language sets (the set of languages in each lo-239

cal dataset), expressed as K = K1 ∪K2 ∪ . . .∪Kn.240

For each pair of clients, there is likely some overlap241

regarding the language composition of their corre-242

sponding local datasets. From a global perspective,243

for each language k ∈ K, we identify all clients244

that incorporate the use of the language in their245

online activities, denoted as the set Sk.246

In the illustration of the client-side algorithm247

(see below), we focus on the client indexed by248

j. In detail, the local dataset Dj of client Cj249

consists of social media text data in multiple lan-250

guages sourced from the platform or distributed251

storage unit, e.g. edge device, denoted by Dj =252 ⊕
k∈Kj

Dk
j , where kj ∈ Kj is the primary lan-253

guage, and the languages other than the primary254

one are considered minority languages. In our set-255

ting, we suppose that most of the data heterogeneity256

among {D1, . . . ,Dn} can be attributed to the mul-257

tilingual gap, as the nature of the downstream tasks258

across different languages are highly similar.259

3.1 Multilingual Disentanglement for260

Client-side Language-specific Weights261

Uploading of LoRA Blocks262

Considering the perspective put forward by263

Sutskever et al. and Wei et al. (Sutskever, 2023;264

Wei et al., 2024), the significance of the weight265

update in large language model training can be266

described as an operation specifically designed to267

eliminate redundant information within the train-268

ing data. The process ensures that the representa-269

tion of in-domain data for the given task scenario270

becomes more regularized and structured after un-271

dergoing additional transformations driven by the272

weight updates. Hence, we propose the first hy-273

pothesis: the Local LoRA blocks obtained from274

multilingual local training are linear combinations275

of rank-1 updates in multiple feature subspaces that276

are mutually independent. Each of these updates277

aids in removing redundant information and noise278

in data regarding one or more languages within the279

local dataset, then extracting more significant and280

structured patterns and features for it.281

Furthermore, according to the insightful theoreti-282

cal analysis regarding Asymmetry in LoRA by Zhu283

et al. (Zhu et al.), the following conclusion can be284

Figure 3: An illustration of multilingual disentangle-
ment on local LoRA blocks performed by MuLA-F

derived, which can be represented as: 285

∆W = BA = ϕB ◦ φA(·), (1) 286

where in the conclusion, A can be described as 287

a feature extractor, while B acts more as task- 288

oriented feature transformation, i.e. uses the ex- 289

tracted features to create the desired output. Build- 290

ing on this, we further refine our hypothesis: in our 291

task scenario, the LoRA-based update of the back- 292

bone weight matrix can be reconstructed as a linear 293

combination of multiple A-matrices, multiplied by 294

a single B. In this context, the B serves the purpose 295

of a general feature transformation for the received 296

regularized and structured features (produced by 297

A) towards the downstream content anomaly de- 298

tection task. Each A, on the other hand, is bound 299

with a specific language and represents a feature 300

extractor formed by a linear combination of parts 301

of the rank-1 updates (as described in the first hy- 302

pothesis) which provide a certain contribution, e.g., 303

removing redundant information and extracting ef- 304

fective patterns and features, to that language. In 305

other words, these selected rank-1 updates jointly 306

span the feature subspace for domain adaptation re- 307

garding the textual data composed in the language, 308

in the given client. 309

Thus, specifically, given a LoRA block of Cj 310

obtained by a local training round, we reconstruct 311

it into the form of ∆W and then conduct an SVD 312

on the matrix, which can be written as: 313

SVD(BjAj) = UjΣjV
T
j , (2) 314

where Uj , Σj and Vj are the SVD components of 315

(BjAj), Uj , Vj ∈ Rd×r0 . Among them, each sin- 316

gular value and its corresponding singular vector 317

can be reconstructed as a rank-1 weight matrix up- 318

date. Subsequently, we introduce Diff-eRank (Wei 319
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et al., 2024), a simple yet effective metric that, from320

an information-theoretic perspective, measures the321

contribution of the rank-1 weight update in remov-322

ing redundant information from features of the data323

and extracting more important ones, based on cal-324

culating the effective-rank (Schumacher, 1995) of325

the output hidden states (details can be found in326

Appendix A.1). For each language appeared in the327

local dataset, we compute the Diff-eRank contribu-328

tion of each singular value. Taking the r-th singular329

value as an example, it can be written as:330

ekj, r =
1

|Dk
j |
∑
h∈Dk

j

(erank(m
l
j(h

(l−1); W svd
j, r , θ

l
j))

− erank(m
l
j(h

(l−1); θlj))),
(3)331

where ml
j(·) is the l-th transformer layer to which332

the LoRA block belongs, rather than the entire333

model. W svd
j, r ∈ Rd×d is a rank-1 update calculated334

by (Uj [r, :]Σj [r, r]Vj [r, :]
T ). h(l−1) denotes the335

hidden state fed into ml
j(·). θlj denotes the rest of336

the parameters in this layer (including other LoRA337

blocks in ml
j(·)). Here, the principle of controlling338

variables is strictly followed. Next, according to339

the Diff-eRank scores, we select the top-k singu-340

lar values to retain, while masking out the other341

singular values (in their original positions).342

Mk
j [r, r] =

{
1, ekj, r ∈ topk

({
ekj, t

}r0

t=1

)
0, otherwise

,

(4)343

where Mk
j is the language-specific diagonal mask344

(Every local language respectively has one). Fi-345

nally, the triplets after the masking operation are346

reconstructed into the (B, A) format:347

Ak
j = (

√
ΣjM

k
j )V

T
j , Bc

j = Uj

√
Σj . (5)348

Eventually,
{{

Ak
j

}
k∈Kj

, Bc
j

}
are uploaded to349

the server. Note that only
{
Ak

j

}
k∈Kj

are language-350

specific and uploaded as disentangled local weights351

specifically for the corresponding languages.352

On the server-side, we perform global aggrega-353

tion on all received B-matrices to obtain general354

feature transformation components for our multi-355

lingual SNS content anomaly detection task, which356

can be written as:357

Bg =
1∑n

j=1 |Dj |

n∑
j=1

(|Dj |Bc
j ). (6)358

Figure 4: Architecture Overview of the proposed MuLA-
F (Server-Side and Client-Server Communication)

Additionally, it is important to note that, since 359

the entire LLM contains multiple LoRA blocks, 360

we adopt a layer-wise (layer-by-layer) inference 361

strategy when calculating the Diff-eRank scores 362

3.2 Server-side Language Centers 363

On the server side, the server initializes a center for 364

each language that appears in the federated system. 365

In each round of client-to-server federated commu- 366

nication, each client sends the language-specific 367

reconstructed A-matrices to their corresponding 368

language center for aggregation, which is: 369

Ag, k =
1∑

j∈Sk |Dk
j |
∑
j∈Sk

(|Dk
j |Ak

j ), (7) 370

where Ag, k denotes the disentangled knowledge 371

for language-specific feature extraction from a 372

global perspective. In the server-to-client commu- 373

nication, the server, based on the language compo- 374

sition of each client’s local data, selects the corre- 375

sponding language centers to customize the A for 376

that client, which can be written as: 377

Au
j =

1∑
k∈Kj

|Dk
j |
∑
k∈Kj

(|Dk
j |Ag, k), (8) 378

where (Au
j , B

g) is sent to Cj , as the fruit of our 379

proposed MuLA-F harvested by Cj . 380

3.3 Orthogonal Tuning for Local Steps 381

Previous studies in multilingual PLMs and con- 382

tinual learning demonstrate that when feature sub- 383

spaces of language centers overlap or conflict to 384
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some extent (Koohpayegani et al.), catastrophic for-385

getting can occur during the weight aggregation (in386

Eq.8). A recent study proposes a stacking strategy387

(Wang et al.) to tackle this challenge. However, it388

is not reliable enough for the selective aggregation389

in our method. Inspired by the finding of O-LoRA390

(Wang et al., 2023b) that constraining the feature391

subspaces of multiple A-matrices to be orthogo-392

nal can significantly avoid knowledge conflicts and393

mitigate catastrophic forgetting when aggregating394

them, in the local training phase of a given multi-395

lingual client Cj , we introduce an orthogonal reg-396

ularization term calculated from the real-time re-397

constructed A and other irrelevant language centers398

into the local objective function. Specifically, in399

each step, we perform a real-time low-rank approx-400

imate SVD on the in-training LoRA blocks, which401

can be written as:402

SVDlow-rank(B̂jÂj) = ÛjΣ̂j V̂ T
j , (9)403

where (B̂j , Âj) denotes the in-local-training LoRA404

block. Then, consider that the first singular value405

must be associated with the primary language, we406

compute the orthogonal loss between its corre-407

sponding singular vector and all other language408

centers, which is:409

La, 1
orth =

∑
i2

||(V̂ T
j [1, :]

∑
k∈K, k ̸=kj

Ag, k)[1, i2]||2.

(10)410

For the other singular values, we measure the or-411

thogonality of their corresponding singular vectors412

with the language centers that do not contribute at413

all to the current client, which is:414

La, ex
orth =

∑
i1, i2

||(V̂ T
j [2 :, :]

∑
k∈K\Kj

Ag, k)[i1, i2]||2.

(11)415

Meanwhile, to ensure that B focuses on serving416

as a common feature transformation, we try to unify417

the feature subspaces of Bj across clients. Specif-418

ically, starting from the second federated round,419

before each local round begins, we perform polar420

decomposition on Bg stored on the server to obtain421

the rotation matrix Bg
p , which is:422

SVD(Bg) = Ug
b Σ

g
bV

g
b
T
, Bg

p = Ug
b .V

g
b
T (12)423

424

Then, the orthogonality between the global rota-425

tion matrix and B̂j is added into the regularization426

term to achieve our goal, which is:427

Lb
orth = −

∑
i1, i2

||(ÛT
j B

g
p)[i1, i2]||2. (13)428

Figure 5: An illustration of our insights regarding LoRA
Asymmetry in multilingual SNS content anomaly de-
tection: language gap should be mitigated by A from
language centers, while B is a general feature transfor-
mation towards detecting the content anomaly.

Finally, the modified local training objective 429

which can mitigate the risk of forgetting when up- 430

dating the selected language centers is: 431

L = Ltask + α(La, 1
orth + La, ex

orth ) + βLb
orth, (14) 432

where L denotes the local training objective of the 433

current client. Note that Eq. (14) is executed on the 434

client side. It directly provides the input variables 435

for Eq. (2). 436

See Appendix C.1, C.3, A.3 for further discus- 437

sion of Section 3.1, 3.3, and a theoretical insight. 438

4 Experiments 439

4.1 Experimental Setups 440

4.1.1 Dataset 441

We collect publicly available social media text 442

datasets, then filter and synthesize them into 443

three datasets for distinct Multilingual SNS Con- 444

tent Anomaly Detection subtasks, which are: 445

Fake News Detection (MM-COVID), Hate Speech 446

Detection (CONAN), and Depression Detection 447

(MD3D). Data statistics are provided in Table 2, 448

and more details on global dataset construction 449

are shown in Appendix B.1. In terms of language 450

composition, MD3D mainly consists of commonly 451

used East Asian languages, while the pre-processed 452

versions of MM-COVID and CONAN are predom- 453

inantly made up of Indo-European languages. All 454
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Table 1: Comprehensive evaluations on multilingual SNS content anomaly detection datasets. Metric: federated
averaged F1-Score (Fed-F1). We conduct at least 3 runs and report the averaged results (score ± std). The best
results that pass p ≤ 0.005 paired t-test are underlined (all baselines pass the paired t-test against LoRA w/o FL).

MM-COVID CONAN MD3D

Sp-1 Sp-2 Sp-1 Sp-1 Sp-2

Qwen-2.5-7B

FedAVG 87.85 ± 0.16 86.69 ± 0.31 87.52 ± 0.19 87.14 ± 0.05 84.81 ± 0.14
Vanilla 87.71 ± 0.45 86.37 ± 0.64 87.94 ± 0.27 86.92 ± 0.39 84.65 ± 0.58

FFA-LoRA 88.28 ± 0.39 86.95 ± 0.33 87.69 ± 0.26 88.57 ± 0.16 85.41 ± 0.27
FedSA 89.40 ± 0.24 87.18 ± 0.20 88.21 ± 0.15 89.86 ± 0.08 86.26 ± 0.13
FLoRA 88.56 ± 0.54 87.03 ± 0.73 88.70 ± 0.41 91.20 ± 0.60 87.31 ± 0.72

FlexLoRA 90.05 ± 0.31 87.91 ± 0.46 88.49 ± 0.31 92.61 ± 0.41 88.40 ± 0.65

FedLFC 89.74 ± 0.13 88.33 ± 0.25 88.85 ± 0.10 92.03 ± 0.13 87.55 ± 0.19
MuLA-F 91.08 ± 0.22 89.46 ± 0.28 89.67 ± 0.17 93.35 ± 0.20 89.54 ± 0.24

Qwen-2.5-14B

FedAVG 89.35 ± 0.13 87.62 ± 0.20 90.03 ± 0.16 90.57 ± 0.08 88.45 ± 0.13
Vanilla 89.58 ± 0.38 87.17 ± 0.55 89.95 ± 0.29 90.11 ± 0.44 88.69 ± 0.56

FFA-LoRA 91.22 ± 0.31 88.34 ± 0.42 90.34 ± 0.18 91.32 ± 0.22 88.90 ± 0.26
FedSA 91.85 ± 0.26 89.59 ± 0.28 90.66 ± 0.11 91.66 ± 0.10 89.63 ± 0.18
FLoRA 89.92 ± 0.39 87.99 ± 0.61 91.06 ± 0.35 93.59 ± 0.56 90.61 ± 0.75

FlexLoRA 92.09 ± 0.21 89.60 ± 0.32 90.72 ± 0.20 94.02 ± 0.34 91.05 ± 0.47

FedLFC 92.85 ± 0.09 90.11 ± 0.17 91.27 ± 0.09 92.88 ± 0.12 90.38 ± 0.14
MuLA-F 92.66 ± 0.20 91.24 ± 0.21 91.85 ± 0.12 95.25 ± 0.15 93.22 ± 0.19

clients in the client settings reported in Table 1 are455

multilingual themselves. To address potential con-456

cerns regarding MuLA-F’s performance on settings457

with monolingual clients, we additionally set up a458

client setting that includes both multilingual and459

monolingual clients. The corresponding additional460

results are reported in Appendix A.4. Details of461

client construction can be seen in in Appendix B.2.462

4.1.2 Baselines463

The selected competitive FedLoRAs as baselines464

except FedAVG (McMahan et al., 2017) include:465

Vanilla, FFA-LoRA (Sun et al.), FedSA (Guo466

et al., 2024a), FLoRA (Wang et al.), FlexLoRA467

(Bai et al., 2024), FedLFC (Guo et al., 2024c).468

Among them, FFA-LoRA and FedSA are simple469

but theoretically solid FedLoRA baselines. FLoRA470

and FlexLoRA are cutting-edge SOTA FedLoRAs.471

FedLFC is a dedicated SOTA Multilingual Fed-472

LoRA. Baseline introductions and implementation473

details can be found in Appendix B.3 and B.4.474

Due to the inclusion of multiple East Asian lan-475

guages in MD3D, we choose Qwen-2.5-7B and476

Qwen-2.5-14B as our base LLMs, as LLaMA-3.1-477

8B and Mistral-7B do not support these languages.478

Additional experimental results using LLaMA-3.1-479

8B on other datasets are shown in Appendix A.5.480

4.2 Comprehensive Evaluations 481

The results of the comprehensive evaluations 482

are reported in Table 1. Our findings are as follows: 483

484

(a) Across the three tasks of PEFT-based 485

multilingual SNS anomaly detection, our proposed 486

MuLA-F outperforms the best baseline methods by 487

an average of approximately 1.2 percentage points. 488

If we regard FedAVG as a reference point with no 489

additional modules or modifications — effectively 490

a relative zero — from this perspective, the 491

advantage of MuLA-F will be further amplified. 492

(b) When the LoRA-rank is a normal value, 493

FLoRA lags behind other methods, with almost 494

no prominent local performance, especially on the 495

CONAN dataset with less data. One reason is that 496

while the stacking operation avoids introducing 497

cross terms BiAj as noisy, the cost is that the 498

global rank expands sharply, which can impair the 499

validity of each singular value, causing feature 500

subspace redundancy or multicollinearity. 501

(c) By effectively integrating the data resources 502

of each language family, FedLFC performs better 503

when the global data distribution is more equitable 504

across language families. However, when more 505

clients’ local language composition spans multiple 506

language families or some low-resource languages 507

are consistently not primary across the clients, its 508

7



Figure 6: An analysis of federated communication
rounds (Metric: Fed-F1; Base model: Qwen-2.5-14B;
Dataset: (a) MD3D, (b) MM-COVID. For each method,
We report the test results up to the corresponding check-
point round in the section of comprehensive evaluation.

Fed-F1 substantially decreases.509

(d) The relatively low performance of FFA-LoRA510

and FedSA indicates that their interpretations of511

LoRA’s asymmetry are successfully challenged512

by MuLA-F’s in the context of multilingual SNS513

content anomaly detection.514

(e) As the best-performing baseline on average,515

FlexLoRA also provides disentanglement of516

multilingual domain knowledge algorithmically.517

However, it occurs on the server-side, relatively518

late, which highlights that MuLA-F’s early519

multilingual disentanglement (on the client-side)520

better leverages minor language data in local521

datasets, especially when there exist high data522

heterogeneity and low task heterogeneity.523

(f) The language-specific evaluation results524

in Figure 8 further indicate that, even though525

MuLA-F does not show a significant advantage526

on primary Languages, it greatly balances the527

local model’s performance for other locally minor528

languages.529

Additional evaluations on special client set-530

ting including both multilingual and monolingual531

clients are reported in Appendix A.4.532

4.3 Communication Rounds533

We conduct a round-by-round analysis of MuLA-534

F and 4 critical baseline methods. The experi-535

mental results reported in Figure 6 show that, in536

terms of smoothness, FedLFC shows a more stable537

convergence per round, which may be because it538

does not perform complex decomposition opera-539

tions. On the other hand, MuLA-F and FlexLoRA540

make larger strides toward convergence in the early541

rounds, although some fluctuation occurs. Despite542

MuLA-F having higher local round overheads, it543

Figure 7: Ablation Study (Metric: Fed-F1; Base model:
Qwen-2.5-14B)

surpasses the baselines within less than 40% of the 544

total rounds. We emphasize that, in the context of 545

our task, the number of federated communication 546

rounds is a very sensitive parameter due to factors 547

such as instability in multi-party cooperation in- 548

tentions across social media platforms. Moreover, 549

since each SNS participant always has sufficient 550

resources for local model training, the sensitivity 551

to local overhead is lower than in other scenarios. 552

4.4 Ablation Study 553

We create five degraded versions of MuLA-F. 554

Specifically, we remove the following components: 555

local disentanglement (directly submitting local 556

weights; Dg-1), global disentanglement (aggregat- 557

ing language centers; Dg-2), orthogonal regulariza- 558

tion (Dg-3), orthogonal regularization applied to 559

A-matrices (Dg-3-a) and to B-matrices (Dg-3-b). 560

Experimental results reported in Figure 7 show 561

that the effectiveness of language centers is sig- 562

nificantly enhanced when local disentanglement is 563

introduced. However, "language center" mecha- 564

nism alone could not directly effectively utilize the 565

weights submitted by multilingual clients. More- 566

over, the increase in the number of languages 567

causes higher multilingual conflict, which mani- 568

fests in the experimental results as a lift in the 569

importance of the orthogonal term. 570

5 Conclusion 571

In this paper, to address the challenging issues 572

faced by multilingual SNS content anomaly de- 573

tection, we propose MuLA-F. MuLA-F leverages 574

the asymmetry of LoRA, incorporating our pro- 575

posed SVD-based multi-level multilingual knowl- 576

edge disentangling and orthogonal regularization 577

modules. These components significantly alleviate 578

the multilingual curse and knowledge conflicts in 579

our task scenario, enabling MuLA-F to outperform 580

the cutting-edge FedLoRAs on multilingual clients. 581
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Limitations582

The limitations of MuLA-F are discussed as below.583

Firstly, excessive constraints in feature decou-584

pling may result in an overly rigid feature space,585

suppressing natural relationships between lan-586

guages (such as the grammatical similarities be-587

tween Japanese and Chinese), thereby affecting the588

model’s adaptability to new language combinations589

or mixed languages. Over-decoupling may prevent590

the model from capturing shared features across591

languages, reducing generalization performance.592

Another drawback is the high computational cost593

of SVD decomposition and orthogonal constraints,594

particularly in scenarios involving large-scale lan-595

guage models or massive datasets, which could596

significantly slow down training speed and limit597

the scale of practical applications.598

Nevertheless, as demonstrated by the experi-599

ments reported in Appendix A.6 and Appendix C.2,600

the two aforementioned drawbacks do not caused601

significant negative influence in our task setting.602

They are acceptable and do not undermine the sig-603

nificance of MuLA-F’s advantages in comparison604

to baseline methods.605
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A Extensive Analysis 861

A.1 Sensitivity Analysis 862

In MuLA-F, two critical configuration parameters 863

are: the number of singular value components se- 864

lected for each local language after Diff-eRank 865

evaluation, and the coefficient α of the orthogonal 866

regularization term. 867

The experimental results shown in Figure 9 indi- 868

cate that for Cj , the optimal number of selected 869

singular values should be slightly greater than 870

r/||Kj ||. α depends on the complexity of the local 871

language composition. Furthermore, the experi- 872

mental results suggest that the optimal value of the 873

orthogonal coefficient is partially influenced by the 874

level of heterogeneity across languages within the 875

current dataset. 876

In this part, we also evaluate several of the most 877

competitive FedLoRAs with respect to their sensi- 878

tivity to the rank of LoRA. The experimental results 879

shown in Figure 10 indicate that an increase in the 880

global number of languages or the complexity of 881

local datasets indicates a higher rank required. In 882

contrast, FLoRA is more suitable for low-rank lo- 883

cal LoRA, while MuLA-F and FlexLoRA are better 884

suited for higher ranks. 885

A.2 Introduction to Diff-eRank 886

Diff-eRank is a novel evaluation metric for large 887

language models (LLMs) based on information 888

theory and Effective Ranks. Diff-eRank assesses 889

model performance by analyzing the effective rank 890

of hidden representations. This approach quantifies 891

how LLMs eliminate redundant information during 892

training and how LLMs make the data representa- 893

tions more structural for feature transformations, 894

offering evaluation insights regarding their internal 895

information processing. 896

Specifically, regarding the algorithm, given an 897

arbitrary input x, Diff-eRank calculates the hidden 898

representation respectively with the model before 899

(M0) and after (M1) the training: 900

h0 = M0(x), h1 = M1(x), 901

where h0, h1 are two-dimensional sequential hid- 902

den representations with the shape [seq-len, d]. Fur- 903

thermore, it respectively calculates the covariance 904
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Figure 8: Multilingual comprehensive evaluation results (Base model: Qwen-2.5-14B; Metric: Fed-F1)

Figure 9: Sensitivity analysis of Diff-eRank-selected
singulars and orthogonal tuning coefficient (Dataset:
MD3D (Sp-2), CONAN, MM-COVID (Sp-2); Base
model: Qwen-2.5-14B; Metric: Fed-F1)

matrix of h0, h1, as A0, A1. Finally, the effective905

rank of each covariance matrix can be calculated906

as:907

erank(A) = exp

(
−

∑Q
i=1 σi∑Q

i=1 σi log σi

)
,908

where σ denote the singular values of A In MuLA-909

F, as for all local languages of a given client, (M0)910

is consistent. Hence, we only need to rank the911

values of erank(A1)912

A.3 A Theoretical Insight913

Although all the authors of this paper come from914

a team that primarily focuses on empirical work,915

we still provide an interesting theoretical insight to916

enhance the soundness of MuLA-F.917

In our setting, the gradient of the orthogonal loss918

function forces the column vectors of vj to align919

with the orthogonal space, thereby correcting the920

update direction of the client’s parameters. When921

this constraint aligns with the objective function922

(for example, separating noise features), the con-923

vergence speed will be accelerated. When the gra-924

dient descent applies the orthogonal constraint, it925

restricts the parameters within the set of the Stiefel926

manifold (the space of orthogonal matrices), which 927

is written as: 928

V (m,n) = {W ∈ Rm×n|W TW = In}, 929

so that it can be regarded as a non-convex opti- 930

mization problem, which reduces the risk of catas- 931

trophic forgetting. Note that at this point, V (m,n) 932

is defined as the set of m × n matrices that sat- 933

isfy the column orthogonality condition, closely 934

approximating the set of decomposed A-matrices 935

in MuLA-F. It allows the optimization problem 936

with orthogonal constraints to be framed within 937

Riemannian optimization, making its convergence 938

less questionable. Specifically, the gradient in the 939

embedding space (in Euclidean space) is calculated 940

as: 941

G = ∇W f(W ), 942

where f(W ) is the objective function being mini- 943

mized, and is then projected onto the tangent space 944

of the Stiefel manifold at the point W : 945

gradf(W ) = Projw(G) = G−W ·sym(W TG), 946

After that, during the optimization process, the tan- 947

gent vector p can be further projected back to the 948

manifold (similar to the Cayley transform) to main- 949

tain its orthogonality: 950

Rw(p) = (I − s

2
p)−1(I +

s

2
p)W, 951

where s represents the step size. If the actual step 952

size used during updates satisfies the Wolfe con- 953

ditions, then this gradient descent can converge to 954

a stable point within the framework of Rieman- 955

nian gradient descent. This means that the various 956

language centers are sufficiently modularized and 957

orthogonalized. At the same time, in addition to 958

reducing catastrophic forgetting, this also avoids ir- 959

rational update directions and updates on redundant 960

parameters, enhancing numerical stability. 961
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Figure 10: Impact of LoRA Rank across MuLA-F and three important baselines (Dataset: MD3D (Sp-2), CONAN,
MM-COVID (Sp-2); Base model: Qwen-2.5-14B; Metric: Fed-F1)

Table 2: Comprehensive evaluations on multilingual set-
tings where part of clients are monolingual (Base Model:
Qwen-2.5-7B, Metrics: Fed-F1). The best results that
pass p ≤ 0.005 paired t-test are shaded

Model MM-COVID Sp-3 MD3D Sp-3

FedAVG 89.15 ± 0.19 89.34 ± 0.32
Vanilla 89.12 ± 0.57 89.22 ± 0.83

FFA-LoRA 90.01 ± 0.36 91.67 ± 0.33
FedSA 90.27 ± 0.24 92.23 ± 0.30
FLoRA 90.12 ± 0.66 92.45 ± 0.28
FlexLoRA 90.55 ± 0.61 92.81 ± 0.50

FedLFC 90.72 ± 0.19 92.96 ± 0.24
MuLA-F 91.43 ± 0.41 93.50 ± 0.35

A.4 Evaluations on Client Settings with962

Monolingual Clients.963

Although the proposed MuLA-F dedicatedly tar-964

gets scenarios where the clients are multilingual,965

in the context of SNS content anomaly detection,966

some clients might still be considered monolingual967

(e.g., Yahoo, which has a highly localized user968

profile). At the same time, there are also potential969

concerns about whether MuLA-F still performs out-970

standingly in settings where monolingual clients971

are present. Therefore, it would be meaningful to972

compare MuLA-F with baseline methods in mul-973

tilingual scenarios where part of clients are mono-974

lingual. In consideration of this, by respectively975

creating an additional monolingual client for each976

language involved (based on Sp-1), we create a977

special client setting on MM-COVID and MD3D,978

named as Sp-3 (details see in Appendix B.2). We979

use the Qwen-2.5-7B model as the base model and980

report the experimental results in Table 2.981

The results show that there is a noticeable re- 982

duction in the performance advantage of MuLA-F. 983

The main reason for this phenomenon is, when 984

a client is monolingual, it implies that the client- 985

side multilingual disentanglement module (Para 986

3.1) of MuLA-F methodologically doesn’t work. 987

However, overall, the advantage of MuLA-F still 988

remains statistically significant. 989

A.5 Evaluations on Extra LLM Base Model 990

When selecting base LLMs for the main experi- 991

ments, we encounter a minor challenge — as the 992

language composition of our data is quite rich, most 993

of the widely-used small LLMs are not suitable 994

for the language composition of our multilingual 995

SNS anomaly detection tasks (e.g., LLaMA 3.1- 996

8B is only applicable to English, Spanish, German, 997

French, Hindi, Thai, Italian, and Portuguese; Mis- 998

tral is mainly suitable for English, French, German, 999

and Spanish). Therefore, we could only choose 1000

qwen-2.5-7B and qwen-2.5-14B as base LLM mod- 1001

els, as their training corpus covers all the languages 1002

appeared in the datasets of our experiments. How- 1003

ever, to alleviate potential concerns regarding the 1004

singularity of base LLM selection, we conduct ad- 1005

ditional evaluations using LLaMA-3.1-8B as the 1006

base LLM model only on MM-COVID and CO- 1007

NAN. The results of MuLA-F and four most com- 1008

petitive baseline methods are reported in Table 3. 1009

The experimental results show that the perfor- 1010

mance advantage of MuLA-F compared to the base- 1011

lines is still sufficiently significant. Additionally, 1012

FlexLoRA and FedLFC remain the most compet- 1013

itive baselines. The findings indicate that base 1014

model selection does not affect the overall experi- 1015

mental conclusions. 1016

13



Table 3: Comprehensive evaluations using LLaMA-3.1-8B as base model (Metrics: Fed-F1, Dataset: MM-COVID,
CONAN (LLaMA-3.1-8B does not support Chinese, Japanese and Korean appeared in MD3D)).The best results
that pass p ≤ 0.005 paired t-test are shaded

Method MM-COVID Sp-1 MM-COVID Sp-2 CONAN Sp-1

FFA-LoRA 87.72 ± 0.20 86.65 ± 0.49 86.85 ± 0.72
FedSA 88.69 ± 0.31 87.48 ± 0.65 87.21 ± 0.44
FLexLoRA 90.01 ± 0.28 87.60 ± 0.53 87.74 ± 0.46

FedLFC 89.16 ± 0.27 88.11 ± 0.61 88.09 ± 0.21
MuLA-F 90.78 ± 0.37 88.87 ± 0.48 88.93 ± 0.25

Table 4: Time overhead statistics (Base Model: Qwen-
2.5-7B; Metrics: GPU-Hour).

Model MM-COVID MD3D

FedSA 18.6 11.8
FLexLoRA 21.9 14.2
FedLFC 20.3 13.5
MuLA-F 24.4 15.7

A.6 Time Overhead Analysis1017

The most obvious limitation of MuLA-F is that,1018

due to the need to perform inference on each in-1019

dividual singular value as described in Section1020

3.1—although in a layer-by-layer manner—its time1021

overhead will be higher than that of other FedLo-1022

RAs. To evaluate this, we take Qwen-2.5-7B base1023

model as an example and record the time overhead1024

(average of Sp-1 and Sp-2 for MM-COVID and1025

MD3D) incurred by each method up to the check-1026

point round. The results are reported in Table 4.1027

Experimental results show that although MuLA-1028

F has slightly higher time overhead, the difference1029

compared to baseline methods is not substantial.1030

This is because the dominant source of the time1031

cost in FedLoRA still lies in the LoRA PEFT train-1032

ing across multiple epochs in each round. Never-1033

theless, as shown in Figure 6, MuLA-F requires1034

only about 70% of the federated communication1035

rounds on average, compared to the baseline meth-1036

ods. This indicates that, in practical SNS scenarios,1037

compared to others, MuLA-F’s participants can1038

share parameters for fewer times, thereby lower-1039

ing the collaboration threshold, which can also be1040

regarded as a compensation for the higher time1041

overhead.1042

Table 5: Global Statistics of Datasets

Dataset Train + Val Test

MM-COVID 48268 8519
CoNAN 8027 1417
MD3D 20262 3576

B Experiment Details 1043

B.1 Datasets 1044

The detailed description of the datasets is provided 1045

below. The global language composition statistics 1046

and data statistics are respectively shown in Figure 1047

11 and Table 5. 1048

1049

MM-COVID (Li et al., 2020): This dataset 1050

consists of English, Spanish, Portuguese, Hindi, 1051

French, and Italian. Among these, English, 1052

Spanish, and Portuguese are high-resource lan- 1053

guages, while Italian, French, Hindi are considered 1054

a low-resource language. Given the extreme 1055

distribution of the original dataset, we perform 1056

50% downsampling on the following categories: 1057

en-real, en-fake, fr-fake, pt-fake, and es-fake. 1058

1059

CONAN (Chung et al., 2019): The high- 1060

quality, manually constructed dataset includes 1061

three languages—English, French, and Italian. 1062

We retain all original pairs and augmented pairs. 1063

However, for each pair, we only keep one of the 1064

positive or negative samples. Additionally, we 1065

discard all English-translated pairs, as they might 1066

introduce information leakage into the samples 1067

from other languages. 1068

1069

MD3D: We leverage three publicly avail- 1070

able datasets to construct MD3D (Note that the 1071

dataset can be also referred to as MU3D. All data 1072

consist of social media posts): 1073
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Figure 11: Global language composition statistics of full datasets (%).

(1) Depression detection data 2 collected from1074

a Korean daily-learning app, as well as from1075

Twitter in English, Korean, and Japanese-speaking1076

regions.1077

(2) Depression detection data collected from Weibo1078

(a Chinese alternative to Twitter) 3. Specifically,1079

we perform 50% downsampling on the user set.1080

Since each user has multiple posts, we concatenate1081

the longest and most recent posts from each user1082

to form a representative post for that user.1083

(3) Posts from suspected depression patients on1084

Reddit 4.1085

B.2 Client Construction1086

Considering the generally low applicability of the1087

LLaMA-3 series to East Asian languages, we se-1088

lect Qwen-2.5-7B and Qwen-2.5-14B as the local1089

LLM backbones. Our hypothesis suggests that,1090

while there are shared commonalities, different lan-1091

guages have distinct characteristics, which is what1092

introduces data heterogeneity among clients in our1093

scenario.1094

Thus, MuLA-F differs from other existing Fed-1095

LoRAs that sample global datasets using a Dirich-1096

let distribution to create clients with heterogeneous1097

data. In MuLA-F’s data partitioning, for each local1098

dataset, the language set is a subset of the global1099

language set, and the elements within this subset1100

exhibit some degree of relatedness (in terms of1101

linguistic or socio-cultural background).1102

Overall, each client consists of 2-4 languages.1103

"Sp-1" refers to a dataset split with data from 51104

clients, while "Sp-2" refers to a dataset split with1105

data from 10 clients. Note that, due to the multi-1106

lingualism nature, only MM-COVID and MD3D1107

have an Sp-2 split setting. Additionally, the data1108

splitting strategy varies across each dataset.1109

The details of client construction are listed1110

below:1111

2https://github.com/dxlabskku/Mental-
Health/tree/main/data

3https://github.com/aidenwang9867/Weibo-User-
Depression-Detection-Dataset

4https://github.com/usmaann/Depression_Severity_Dataset

1112

MM-COVID: During the data splitting pro- 1113

cess, we make every effort to ensure that languages 1114

from the Romance language family, which are 1115

closely related, appear together on certain clients. 1116

For bilingual, trilingual, and quadrilingual clients, 1117

the proportion of the primary language is set to be 1118

greater than 60%, greater than 50%, and greater 1119

than 40%, respectively. Among these, languages 1120

within the Romance language family exhibit a 1121

high degree of affinity. The language splits are as 1122

follows: Sp-1: (1) en-fr-it (2) pt-es-en (3) hi-en; 1123

(4) en-es-fr-it; (5) es-pt-it-fr Sp-2: (1); (2); (3); 1124

(4); (5); (6) en-fr-it; (7) es-pt-fr; (8) en-hi; (9) 1125

en-es-it-fr (10) pt-es-fr-it. 1126

1127

CONAN: The local clients’ language com- 1128

position is as follows: (1) en-fr; (2) fr-en; (3) 1129

en-it; (4) it-en; (5) fr-it-en. The proportion 1130

of the primary language for each client is be- 1131

tween 60% and 80%. We prioritize sampling data 1132

from clients where English is the primary language. 1133

1134

MD3D: We provide two client and data split 1135

strategies, Sp-1 and Sp-2. Overall, 60% of the 1136

clients are bilingual, while 40% are trilingual. 1137

To simulate a realistic industry ecosystem, the 1138

language composition of each client is as follows 1139

(with the primary language listed first): Sp-1: 1140

(1) jp-en; (2) kr-en; (3) zh-en; (4) en-kr-jp; (5) 1141

zh-jp-kr. Sp-2: (1); (2); (3); (4); (5); (6) en-jp; 1142

(7) en-kr; (8) zh-en; (9) zh-en-jp; (10) zh-en-kr. 1143

For each bilingual client, the primary language 1144

accounts for 60%-95% of the data; for each 1145

trilingual client, the primary language accounts for 1146

50%-95%. Since the amount of data for Japanese 1147

and Korean is relatively small, prior to the data 1148

split, we first designate 50% of the data for these 1149

two languages to construct clients where either 1150

Japanese or Korean is the primary language. The 1151

remaining data is then allocated to other clients 1152

involving these two languages according to a 1153

Dirichlet distribution. Specifically, for clients 1154
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Table 6: An Example of multilingual local instruction-tuning datasets for MuLA-F and FedLoRA baselines (using
"client (1)" and "client (5)" in MD3D-Sp-1 as the clients). Other multilingual examples in Chinese, Japanese and
Korean are respectively shown in Figure 12, Figure 13 and Figure 14.

Task Type Multilingual Depression Detection

Post Content Language English
Client ID 1 (MD3D-Sp-1)
Local Language Composition Japanese, English
Task Instruction You will receive a social media post written by an English user

who is at risk of depression. You must analyze whether the post
clearly shows depression or subtly suggests depressive tendencies
through word choice, phrasing, or viewpoints. Based on your
analysis, assess whether the user has depression.

Input (Post Content) When I felt the coldness from water on the skin of my temple. I
thought I would feel fear but all I felt was relief and how easy it
would have been to end my overthinking, torturing anxiety brain.
I think about everything I’ve said and done and it feels like fight
of flight all the time.

Output (Label) [“Depressed”]
Explanation for Readers The author suffers from severe anxiety and suicidal tendencies.

where Japanese or Korean is not the primary1155

language, we prioritize constructing clients (6) and1156

(7), followed by (4) and (5), then (9) and (10), and1157

finally others.1158

A similar strategy is also applied to the data1159

splitting for MM-COVID and CONAN.1160

Overall, each local dataset after data-split shows1161

data characteristics that can be mapped to a real-1162

world social media platform. For each local dataset,1163

we divide the data into training, valid and test sets1164

at a 75%/10%/15% ratio. Since each round of1165

local LoRA-PEFT only involves two epochs (un-1166

changed), we do not use the validation set to sched-1167

ule the local epoch.1168

It’s important to note that, to intuitively demon-1169

strate the effects of locally trained instruction-1170

tuning data and prompts, we provide one example1171

per language using the MD3D dataset. These ex-1172

amples can be found in Table 6, Figure 12, Figure1173

13, and Figure 14.1174

B.3 Baselines1175

Details of the baseline methods in this paper are1176

listed below.1177

1178

FedAVG: The most classic baseline method,1179

used to demonstrate that MuLA-F indeed makes a1180

positive contribution.1181

1182

Vanilla: Almost all FedLoRA researchers1183

have considered performing federated aggregation 1184

with dual centers on the A and B matrices, which 1185

can be written as: However, unfortunately, terms 1186

like BiAj , without special conditions, would 1187

introduce significant noise, making its performance 1188

unstable compared to FedAVG. Nevertheless, this 1189

method still needs to be mentioned and compared 1190

in experiments. 1191

1192

FFA-LoRA: A simple yet SOTA FedLoRA 1193

baseline method, with a conflicting perspective 1194

against ours. It ignores and freezes A , only 1195

performing FedAVG on B. 1196

1197

FedSA: A simple yet SOTA general Fed- 1198

LoRA, which is a compromise between the 1199

previous method and MuLA-F in terms of core 1200

ideas. It acknowledges the importance of federated 1201

aggregation for A but downplays the significance 1202

of A on local heterogeneous datasets. The core 1203

insight of FedSA is to use the asymmetry of LoRA 1204

to globally aggregate A and locally personalize 1205

B. The underlying logic for utilizing asymmetry 1206

conflicts with the perspective of MuLA-F. 1207

1208

FLORA: The authors of FLoRA argue that 1209

additive aggregation operation is the root cause 1210

of the problem. In light of this, they modify it to 1211

stacking A and B. 1212

1213
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Figure 12: A Chinese example of multilingual local
instruction-tuning data for MuLA-F and FedLoRAs.

FlexLoRA: A novel FedLoRA, SOTA for1214

clients with heterogeneous data or resources.1215

FlexLoRA performs global SVD on the server1216

side and, based on the characteristics of local data1217

in terms of statistical distribution and resources,1218

assigns different low-rank reconstruction matrices1219

to each client.1220

1221

FedLFC: A recent SOTA multilingual Fed-1222

LoRA based on language clustering. In the1223

original task scenario of FedLFC, multilinguality1224

only exists from the server’s perspective, i.e.,1225

each local dataset is monolingual. FedLFC1226

performs multi-center aggregation on the low-rank1227

reconstruction matrix of each local LoRA block1228

based on its language family. Note that when1229

selecting baselines, we skip FedHLT (Guo et al.,1230

2024b) because FedLFC and FedHLT have a1231

strong theoretical relationship, with the latter being1232

a lower-level alternative to the former.1233

B.4 Implementation Details1234

In our experiment, for each local client, we set the1235

rank of LoRA to 16 and the LoRA- α to 32. In1236

each federated round, the local client performs two1237

LoRA tuning epochs, followed by disentanglement1238

and upload. We set the number of selected singular1239

values in MuLA-F as 8. For the two orthogonal-1240

ization coefficients, we assume that the absolute1241

Figure 13: A Japanese example of multilingual local
instruction-tuning data for MuLA-F and FedLoRAs.

values of α and β are equal, and then conduct a grid 1242

search for the optimal setting from the set 0.1, 0.5, 1243

1, 5. We also perform a grid search for the learning 1244

rate in the range 1e-4, 5e-4, 1e-3, 5e-3. We set 1245

the maximum federated communication round as 1246

20, with an early-stopping patience as 5. All ex- 1247

periments are carried out using two NVIDIA A800 1248

80GB GPUs. 1249

C Additional Discussions 1250

We provide further clarification and discussion on 1251

certain statements in the Methodology and Limita- 1252

tion sections that may cause confusion. 1253

C.1 Why Diff-eRANK + SVD ? 1254

In this part, we discuss our theoretical motivation 1255

regarding why we combine Diff-eRank and SVD 1256

for client-side multilingual knowledge disentangle- 1257

ment. 1258

According to the theoretical analysis provided 1259

by the original Diff-eRANK paper (Wei et al., 1260

2024), if after model weight updates (Fine-tuning), 1261

a post’s token representations become highly struc- 1262

tured or compressed, we can conclude that this up- 1263

date reduces the uncertainty in the representation 1264

space (from an information-theoretic perspective) 1265

and removes redundant information irrelevant to 1266

general tasks (from an empirical perspective). It 1267

also implies that the model can more effectively ex- 1268

tract patterns and regularities from the data. More- 1269

over, it is well acknowledged that a weight matrix 1270

can be reconstructed through SVD decomposition 1271

into a linearly independent combination of several 1272

low-rank matrix components (as does B × A ), 1273

where each low-rank matrix can be regarded as 1274

a feature which represents a direction/semantic 1275
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Figure 14: A Korean example of multilingual local
instruction-tuning data for MuLA-F and FedLoRAs.

(which can also be understood as neurons). Hence,1276

we discover an interesting collaboration between1277

Diff-eRANK and SVD: Suppose a local client’s1278

data comprises three languages, and given the1279

asymmetry function of LoRA as demonstrated in1280

the paper "Asymmetry in low rank adapters of foun-1281

dation models" (Zhu et al.) (also demonstrated1282

in Figure 5 in our paper) the expected role of A-1283

Matrices in Fed-LoRA is inherently "more effective1284

extraction of patterns and regularities from data, re-1285

ducing uncertainty in the representation space, and1286

isolating general features relevant to specific tasks",1287

which is highly similar to the focus of Diff-eRank.1288

The reconstructed low-rank matrices are orthogo-1289

nal to each other, naturally leading one to consider,1290

"how much each low-rank matrix contributes from1291

this perspective to the local data of each language."1292

1293

Additionally, previous works on lifting the mul-1294

tilingual curse, such as the paper "Lifting the curse1295

of multilinguality by pre-training modular trans-1296

formers", have already provided clear empirical1297

conclusions: Despite the overlap and conflict be-1298

tween domain adaptation knowledge across vari-1299

ous languages, they can be disentangled during the1300

PEFT process through modularization (and the re-1301

constructed low-rank matrices are themselves in an1302

overly disentangled state). Thus, in this client, a1303

logically sound reasoning is that the knowledge as-1304

sociated with each language can be approximated1305

as a combination of several selected reconstructed1306

low-rank matrices, to simulate an appropriate level1307

Table 7: Quantitative evaluations for "over-decoupling".
(Metrics: Fed-F1.)

Method MM-COVID Sp-1 MM-COVID Sp-2

FedSA 92.47 90.44
FlexLoRA 92.09 89.60
FedLFC 92.85 90.11

MuLA-F 92.66 91.24
MuLA-F-C 93.01 91.69

of disentanglement. This selection, as mentioned, 1308

is aptly handled by Diff-eRank in our task scenario. 1309

For each local language, low Diff-eRank score ma- 1310

trices can be seen as a concrete representation of 1311

the multilingual curse. 1312

C.2 An Illustration of "Over-Decoupling" 1313

In the Limitation section, we express a poten- 1314

tial concern that MuLA-F might lead to over- 1315

decoupling across languages. In this part, we aim 1316

to quantitatively evaluate the possible impact of 1317

the concern. First, we’d like to give a more de- 1318

tailed explanation of the concern. In multilingual 1319

experimental settings, due to linguistic features and 1320

other reasons, the affinity/differences between lan- 1321

guages could vary. Some languages may share part 1322

of vocabularies, grammatical structures, or exhibit 1323

a high degree of similarity in expression patterns 1324

(especially in a specific task scenario), thus having 1325

many shared features. In such cases, they are more 1326

suited to share a single language center, rather than 1327

having separate ones. 1328

In light of this, we conduct an additional ex- 1329

periment to evaluate its potential impact. For the 1330

MM-COVID dataset, we keep data in only three 1331

languages: French, Portuguese, and Spanish, to 1332

construct a degraded version. On this degraded 1333

MM-COVID, we created a variant of MuLA-F, 1334

namely MuLA-F-C, where considering the strong 1335

affinity between Portuguese and Spanish, we build 1336

only two language centers: one for French, and one 1337

shared by Spanish and Portuguese. Using Qwen- 1338

2.5-14B as the base model, our experimental results 1339

are shown in Table 6 (FedSA uses the same lan- 1340

guage division as MuLA-F-C, while FedLFC and 1341

FlexLoRA are unaffected). 1342

The experimental results reported in Table 7 1343

show that, due to the excessive disentangling and 1344

decoupling of the A-Matrices related to Spanish 1345

and Portuguese, the performance of MuLA-F is 1346
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not as good as that of MuLA-F-C, which shares1347

this domain adaptation knowledge. Moreover, this1348

phenomenon is not unique to MuLA-F (e.g., also1349

appeared in FedSA). However, the impact is still1350

acceptable in our settings.1351

C.3 Motivations of Our Orthogonal PEFT1352

Strategy1353

In Para 3.3, we convert the process of "sequen-1354

tially aggregating weights for each language cen-1355

ter" into an approximated continual learning pro-1356

cess. Furthermore, supported by the theoretical1357

analysis provided by O-LoRA (Wang et al., 2023b),1358

MuLA-F ensures that the feature subspaces occu-1359

pied by each global language center are more or-1360

thogonal (less overlapping) to each other. Conse-1361

quently, the orthogonality further extends to the1362

language-specific reconstructed A-matrices in each1363

local client, thereby reducing the catastrophic for-1364

getting that might be caused by multilingual con-1365

flicts. The theoretical robustness of Orthogonal1366

LoRA PEFT has also been demonstrated in the1367

original paper of O-LoRA. For B-matrices, how-1368

ever, we utilize the opposite insight (as shown in1369

Figure 5 in our paper, a local B matrix should gen-1370

erally be responsible for feature transformation for1371

the downstream task).1372

C.4 Problem Formulation of FedLoRA1373

We consider a federated learning setting with1374

n clients collaboratively finetuning a LLM base1375

model for a classification task (i.e. multilingual1376

SNS content anomaly detection in our paper). Each1377

client j ∈ {1, 2, . . . , n} holds a private local1378

dataset Dj of size |D||, which may be non-iid1379

across clients. To reduce communication and mem-1380

ory costs, FedLoRAs adopt Low-Rank Adaptation1381

(LoRA) for fine-tuning a shared pretrained model1382

fθ. Rather than updating the full model parame-1383

ters, in each federated round, each client learns a1384

pair of low-rank matrices (Aj , Bj) on the local-1385

side, and the local effective adaptation is given by1386

∆j = BjAj .1387

The overall goal is to collaboratively learn a1388

global LoRA update across clients. The most com-1389

mon pipeline is, following the FedAvg paradigm,1390

in each communication round, clients locally com-1391

pute ∆j based on their data and send it to the server.1392

The server then performs a weighted aggregation1393

of these updates: 1394

∆global =
1∑n

j=1Dj

n∑
j=1

Dj ·∆j , 1395

and broadcasts ∆global back to all clients. Each 1396

client then updates its local model using this ag- 1397

gregated low-rank adaptation on top of the fixed 1398

pretrained weights θ. 1399

The objective is to minimize the average empiri- 1400

cal loss over all clients: 1401

min
∆global

1

n

n∑
j=1

E(x,y)∼Dj

[
ℓ(fθ+∆global(x), y)

]
, 1402

while ensuring collaborative domain adaption and 1403

preserving data privacy. In our paper, the metrics 1404

is set as federated F1-score, which is written as: 1405

Fed-F1 =
2 ·
∑n

j=1 |Dj | · Precisionj · Recallj∑n
j=1 |Dj | · (Precisionj + Recallj)

. 1406

Nevertheless, in many cutting-edge FedLoRA 1407

variants, Bj and Aj are separately processed, 1408

shaped, transformed and exchanged either on the 1409

client-side or on the server side. 1410

C.5 Ethics Statement 1411

In this section, we provide a detailed discussion 1412

of the ethical considerations involved in our work, 1413

with a particular focus on two main aspects: the 1414

use of A.I. assistants in the writing process and the 1415

handling of data ethics in our experimental design. 1416

We believe that addressing these issues explicitly is 1417

essential to ensure transparency, uphold academic 1418

integrity, and align with the ethical guidelines of 1419

the research community. 1420

With respect to the A.I. assistant, all innova- 1421

tions and arguments presented in this paper are 1422

entirely authored by the researchers. GPT-4o is 1423

only employed for limited proofreading and gram- 1424

mar checking during the writing process, which is 1425

fully compliant with the ARR submission guide- 1426

lines. 1427

Regarding data ethics, both the MM-COVID 1428

and CONAN datasets undergo thorough de- 1429

sensitization by their original authors prior to re- 1430

lease. For the MD3D dataset, we carefully remove 1431

all potentially sensitive information—such as IP 1432

addresses, usernames, and user profiles—from the 1433

portion collected from open-source platforms. We 1434

are confident that all our experiments strictly ad- 1435

here to ethical policies. 1436
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