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ABSTRACT

Class-incremental learning (CIL) enables models to acquire new knowledge while
retaining prior knowledge, thereby adapting to continuous data streams. Because
parameter drift and distribution shifts are inevitable, it suffers from catastrophic
forgetting and the stability—plasticity dilemma. There are various strategies to ad-
dress these challenges. Nevertheless, they still remain limited by the homogeneous
representations, which reduce inter-class diversity and exacerbate forgetting. To
overcome this bottleneck, we introduce dendritic learning (DeL), a biologically
inspired framework that reduces homogeneous representations and thereby miti-
gates catastrophic forgetting. DeL leverages synaptic plasticity and multi-branch
dendrites to extract diverse, discriminative features, fostering heterogeneous rep-
resentation learning. A membrane layer integrates these features, and a subsequent
somatic layer adapts them for downstream classification. By strengthening class-
specific features, DeL. also promotes robust memory consolidation. Experiments
show that augmenting state-of-the-art CIL methods with DeL consistently boosts
accuracy. Furthermore, DeL encourages more efficient representation learning,
allowing the model to rely on fewer discriminative features. Code is available at
https://github.com/anonymous/DeL.

1 INTRODUCTION

Artificial intelligence has achieved significant success across a wide range of real-world applica-
tions. Numerous specialized models have been developed to address specific tasks. However, a
model that performs well on one class often struggles with another because of feature and param-
eter shifts |[Zhou et al.| (2024b). To maintain performance, such models typically require retraining
or fine-tuning through transfer learning, which incurs additional computational cost. Real-world
scenarios frequently produce non-stationary data streams that demand a model capable of contin-
uously learning novel classes, called as class-incremental learning (CIL). However, CIL faces the
chronic problem of catastrophic forgetting, whereby the model gradually loses previously learned
knowledge while assimilating new information. In contrast, humans exhibit a remarkable ability to
preserve and integrate knowledge over time.

To achieve human-level learning, researchers have proposed various strategies to mitigate catas-
trophic forgetting. Because the loss of earlier knowledge is its principal cause |[Robins| (1995),
rehearsal-based CIL methods allocate a buffer that stores salient examples of past data, drawing
inspiration from human memory consolidation [Zhuang et al.| (2022). The model periodically re-
visits these samples while acquiring new information. Nevertheless, in conditions where historical
data are scarce or privacy constraints preclude storage, rehearsal buffers cannot sufficiently preserve
old knowledge, thereby degrading performance. Besides, parameter drift also contributes to forget-
ting. Expansion-based CIL approaches [Zhou et al.| (2024a)); [Wu et al.| (2022)) therefore instantiate
multiple lightweight subnetworks, each dedicated to a subset of classes, to minimize inter-class pa-
rameter drift. Although effective, both rehearsal- and expansion-based methods entail substantial
computational overhead, the former is limited by buffer capacity, whereas the latter suffers from un-
bounded model growth. Parameter-regularization approaches Kirkpatrick et al.|(2017) first estimate
how much each parameter contributes to previously learned tasks, then actively constrain the pa-
rameters they judge critical, thereby preserving prior knowledge. Although conceptually appealing,
these methods perform poorly in CIL because importance estimates obtained at one incremental step
often conflict with those required later |Van de Ven et al.[(2022)). Currently, knowledge-distillation
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techniques rank among the most attention research directions for mitigating forgetting in CIL |Li
et al.[(2025). In this paradigm, a model trained on earlier tasks acts as a teacher that transfers its
learned representations to a student model as the latter acquires new classes. CIL typically adopts a
self-distillation variant, the teacher and student share an identical backbone while maintaining sepa-
rate classification heads, enabling the teacher’s predictions to guide the student and incorporate new
knowledge without erasing the old. Although numerous strategies have been proposed to alleviate
catastrophic forgetting by balancing the acquisition of new information with the retention of old
knowledge, they still struggle to resolve the stability—plasticity dilemma, resulting in a persistent
performance gap between artificial models and humans.

These limitations arise primarily from the biologically implausible architectures of conventional
artificial neural networks Bellitto et al.| (2024). Contemporary models employ oversimplified Mc-
Culloch-Pitts (MCP) neurons that interact solely through weighted summations. Consequently,
their plasticity and stability depend almost entirely on architectural design and parameter values,
especially in classifiers based on fully connected networks. This homogeneous processing drives
successive layers to generate highly correlated activations, hindering any principled trade-off be-
tween stability and plasticity. In contrast, the human brain consolidates memories through precise
synaptic and dendritic connectivity patterns, thereby forming stable long-term engrams |[Ryan et al.
(2015). Synaptic plasticity, which modulates the strength of these connections, provides the physi-
ological substrate that enables humans to assimilate new information while preserving prior knowl-
edge Mansvelder et al.| (2019). Motivated by this evidence, we argue that embedding biologically
inspired mechanisms, specifically, synaptic plasticity for rapid adaptation and structured connec-
tivity for durable memory, could markedly narrow the stability—plasticity gap in class-incremental
learning.

To this end, we propose a biologically plausible dendritic learning (DeL) for CIL. DeL. models neu-
rons with a more realistic structure than the traditional MCP abstraction, incorporating a synaptic
layer, a dendritic layer, a membrane layer, and a somatic layer. The synaptic layer that receives
features from the backbone and promotes diverse activations to highlight discriminative features.
The dendritic layer is composed of multiple branches that repeatedly process synaptic signals with
distinct plasticity profiles, thereby sustaining long-term potentiation, which is an essential mecha-
nism for memory formation Toni et al.| (1999)). Finally, the membrane and the somatic layers that
integrate the dendritic responses to produce class-specific outputs. DeL is model-agnostic and can
be attached to any CIL method. We integrate DeL into several representative CIL paradigms and
observe consistent accuracy improvements, confirming its ability to mitigate catastrophic forgetting.
We further evaluate DelL on multiple benchmarks to characterize its stability—plasticity trade-off
and conduct extensive ablation studies to quantify the contribution of each architectural component.
Collectively, these results demonstrate that a biologically plausible dendritic learner can extract dis-
criminative features from streaming data and perform robust incremental classification.

2 RELATED WORK

Class-incremental Learning (CIL) seeks to prevent catastrophic forgetting while balancing model
stability and plasticity. Prior work can be summarized into four main categories. Rehearsal-based
methods mimic human complementary learning by periodically revisiting a small buffer of past sam-
ples. The key challenge is selecting representative exemplars that preserve the discriminative struc-
ture of previous tasks. Recent work adopts multi-criteria selection to identify such exemplars |Rol-
nick et al.| (2019); Zhuang et al.| (2022)). Parameter-regularization methods estimate the importance
of each parameter to previously learned classes and constrain important ones during subsequent
training. EWC [Kirkpatrick et al.[(2017) introduces this paradigm, storing a Fisher-based importance
matrix that matches the network’s dimensionality. Expansion-based methods dynamically grow
their architectures, allocating new capacity for incoming tasks to mitigate parameter drift. DER [Yan
et al|(2021) appends an additional backbone for each new task and aggregates features through an
enlarged fully connected layer. Although such methods often achieve state-of-the-art accuracy, they
demand substantial memory and computation. Knowledge-distillation methods transfer information
from a frozen “teacher” to a “student”, learning new classes. LwF [Li & Hoiem| (2018)) first applied
logits-based distillation to align outputs of model across tasks. iCaRL Rebuffi et al.|(2017) augments
it with prototype rehearsal exemplars. Subsequent work incorporates feature-level distillation to pre-
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Figure 1: Overview of class-incremental learning with DeL. Left: The CIL process incorporating
DeL. Right: The detailed architecture of the DeL. module.

serve intermediate representations. TagFex [Zheng et al.|(2025) combines task-agnostic expansion
with simultaneous feature and logits distillation to encourage diverse representation learning.

Collectively, these four research streams provide complementary perspectives on mitigating for-
getting, yet each still faces trade-offs among accuracy, efficiency, and biological plausibility. By
contrast, our method introduces a fully articulated dendritic architecture that leverages synaptic
plasticity to boost feature diversity and safeguard long-term knowledge. Furthermore, its dendritic
branches adaptively modulate the connection strengths between synapses and dendrites, enabling
the model to extract discriminative features more effectively during incremental learning.

3 METHOD

3.1 PROBLEM DEFINITION

CIL seeks to build a unified classifier that can assimilate new classes from a continuously evolving
data stream while preserving knowledge of previously learned classes. Let the data stream be D =
{D1,D2,...,D 1}, where the /th incremental batch is ©; = {(x/,y!)}",, containing n; samples.
Each instance x} € RP is paired with a label y} € Y}, in which Y] is the label sets of incremental
class [. Notably, Vi # 1, Y;NY; = (. A corresponding testsetis D' = {D{ D ... D} }. Under the
non-rehearsal assumption, samples from earlier increments are not reused when learning subsequent
ones. After the /th increment, the model is evaluated on the cumulative label set )V, = U2:1 Y.,
thereby measuring its ability both to acquire new knowledge and to retain what it has previously
learned.

3.2 DEL: BIOLOGICALLY PLAUSIBLE DENDRITIC LEARNING

Our method is grounded in neurophysiological evidence showing that behavioral learning leads
to changes in synaptic strength, and that manipulating synaptic strength can alter the information
stored in memory |Whitlock et al.|(2006); [Nabavi et al.|(2014])). Synaptic plasticity mechanisms that
enhance synaptic strength contribute not only to the formation of memory traces but also to their
reactivation during memory recall Ryan et al.|(2015); Nonaka et al.|(2014). We embed these mech-
anisms in a dendritic learning (DeL) network to emulate human learning and memory formation,
as well as to confront the challenges of CIL. DeL comprises four functional layers, i.e., synaptic,
dendritic, membrane, and somatic, working in concert to balance plasticity and stability throughout
incremental learning, as shown in Figure[T] Moreover, conventional models process information ho-
mogeneously, therefore, they must learn many redundant features to separate classes, which strains
memory capacity Jaini et al.| (2018). Once parameter or distribution shifts, such models struggle
to generate reliable features, leading to rapid forgetting. Mitigating these shifts typically requires
either adopting architectures with additional parameters or using more distinctive features, both of
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Figure 2: Grad-CAM [Selvaraju et al.| (2017) visualizations for the fully-connection (FC) and DeL
networks. The upper image corresponds to the FC model, and the lower image to DeL. DeL con-
centrates on highly discriminative regions, thereby reducing memory pressure.

which lessen memory pressure and diminish catastrophic forgetting. DeL’s biologically inspired
architecture and adaptive synaptic scaling extract discriminative features with far less redundancy.
Figure 2 highlights this advantage. DeL is attention to highly distinctive features than conventional
ones, and utilize them to make accurate classification. In addition, DeL is model-agnostic and can
be seamlessly integrated into any CIL method by replacing the original logit classifier with DeL.
In the case of knowledge distillation—based models, only logit distillation through DeL is required,
without the need for any additional modifications.

3.2.1 SYNAPTIC LAYER

The layer ingests the feature stream produced by the backbone at every incremental step. To over-
come the limitation of homogeneous representations, it must discriminate and refine task-specific
features. Because class distributions differ, treating all inputs uniformly degrades performance. Bi-
ological neurons modulate synaptic strength in response to each input, amplifying salient signals
and attenuating less informative ones, before forwarding them to the dendrites. We emulate this
synapse plasticity by applying a learnable sigmoid function that maps each feature to the interval of
(0,1). Meanwhile, considering the distribution difference of activations from backbone, we utilize
the learnable function to evaluate their synaptic strength, i.e.,

1
Si,j = 1 _|_e—(wi1jwi—9¢,j)

(D

where w; ; and 0; ; denote the weight and threshold parameters of the learnable sigmoid that modu-
lates the synaptic strength of dendrite j, thereby producing diverse connection patterns. The details
of the synaptic layer are given in the supplementary file.

3.2.2 DENDRITIC LAYER

The dendritic layer receives heterogeneous synaptic signals and executes complementary functions.
The synaptic layer forces discriminative features and can down-weight less informative connections,
thereby reducing the feature set. However, over-pruning still risks degrading classification accuracy.
To balance selectivity and coverage, we introduce a dendritic layer with multi-branch that mirrors
the anatomical complexity of biological dendrites. Given the same input, each branch applies a dis-
tinct pattern of synaptic plasticity, enabling the network to capture diverse functional combinations
and lessening its reliance on any single feature subset. Dendritic layer integrates synaptic outputs
as D; = Zi\;l S; j» where S; ; is the ith synaptic signal on dendrite j. NN is the input size. This
repeated aggregation strengthens plasticity events, promoting robust learning and memory consoli-
dation.
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Table 1: Average and last performance comparison on six datasets with ResNet-18 as the backbone.

We report all compared methods with their source-code provided by PyCIL library and trained from

scratch. The best performance is shown in bold.
Methods CIFAR100 CUB200 _VTAB ImageNet-A  ImageNet-R OmniBench

A Apr A Ar A Ar A Ar A Ar A Ap

Finetune 25.75 9.00 21.72 1039 4130 29.70 6.73 257 1410 6.60 2434 8.89
w/DeL 2678 9.20 25.88 11.32 42.81 2699 7.8 211 1496 735 24.61 8.96
Replay 60.60 43.66 38.30 29.81 53.72 47774 6.06 230 2323 15.67 5154 3432
w/Del.  64.01 47.45 46.83 38.80 58.83 4990 6.24 191 2840 21.28 5393 36.37
LwF 46.27 2631 2750 1298 4472 27.10 6.60 3.03 18.67 9.25 37.63 19.67
w/DeL  52.70 30.32 33.34 18.62 4849 31.27 836 3.23 23.27 12.52 40.90 20.50
iCarL 60.72 43.65 36.77 25.06 58.09 53.16 6.87 244 2220 1447 51.60 31.81
w/Del  64.06 46.59 4533 3329 6249 54.61 6.83 2.57 27.56 18.63 53.42 33.78
DER 7292 62.77 4572 40.50 58.03 51.07 7.10 250 33.06 30.88 65.74 55.99
w/Del.  74.68 6431 5048 4398 64.51 56.22 6.30 2.50 37.74 34.50 66.69 58.45
TagFex  73.69 6255 51.08 4427 61.79 4854 589 0.07 41.66 38.08 6545 56.78
w/Del. 7525 65.68 5543 48.52 6541 56.19 6.81 230 4515 40.83 66.07 57.76

3.2.3 MEMBRANE LAYER

The membrane layer aggregates the outputs of the dendritic branches. Because each dendrite per-

forms a distinct function, the membrane applies a weighted fusion, i.e., [ = Z]A/i1 g;D;, where g;

is a learnable, branch-specific gain. The adaptive gain further strengthens the model’s capacity to
learn novel information while preserving previously acquired knowledge.

3.2.4 SOMATIC LAYER

The somatic layer performs the final transformation, adapting the aggregated signal to the require-
ments of the downstream task, O = f (I — A), where f(-) is the activation function and A is a
learnable threshold that adjusts to different tasks. Typically, the somatic layer applies a sigmoid
function to the outputs of the membrane layer, producing the logits for each class. In classification
problems, these logits reflect the model’s confidence in each class, with larger values indicating
higher certainty.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP
4.1.1 DATASETS

Follow the work |Sun et al.| (2025), we use six datasets to verify the performance, including CI-
FAR100 Krizhevsky et al.[{(2009), CUB200/Wah et al.| (201 1), ImageNet-A Hendrycks et al.[(2021b)),
ImageNet-R [Hendrycks et al.|(2021a), VTAB [Zhai et al.| (2019)), and OmniBenchmark Zhang et al.
(2022). These datasets contain 100, 200, 200, 200, 50, and 300 classes, respectively, and we con-
struct incremental streams of 10, 10, 20, 20, 10, and 30 new classes per step, starting from an initial
zero-class state. Their details are summarized in the supplementary file.

4.1.2 BASELINE METHODS

To evaluate Del’s performance, we integrated it into six representative CIL algorithms. Fine-
tune serves as a plain baseline that employs no forgetting-mitigation strategy. Replay represents
rehearsal-based methods, whereas DER |Yan et al.| (2021} follows an expansion strategy. LwF |Li
& Hoiem| (2018)) and iCaRL Rebuffi et al.[|(2017) both rely on knowledge distillation, and TagFex
Zheng et al.|(2025) combines knowledge distillation with rehearsal and dynamic expansion. More
details of all models are provided in the supplementary file.
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Figure 3: Performance curve of different methods with and without DeL. The solid and dot-line
denote the variant with and without DeL, respectively.

Table 2: The ablation study of Synaptic Plasticity on CIFAR 100 with DER. The best performance
is shown in bold.

CIFAR100 “VTAB
A AL A AL

X X 7193 61.18 5803 49.30
v X 7468 6431 6451 56.22
vV VvV 7369 6358 6385 56.19

SA SN

4.1.3 IMPLEMENTATION DETAILS

For a fair comparison, we keep the training and evaluation protocols identical across all methods.
Every model is implemented in PyTorch using the PyCIL Sun et al.|(2023) and trained from scratch
on an NVIDIA RTX 3090 GPU with ResNet18 backbone. Optimization is performed with SGD
(initial learning rate = 0.1, weight decay = 5 x 10~%). The initial task is trained for 200 epochs.
We use the random seed of 1993 to guarantee the consistency of data partition.

4.1.4 MEASUREMENT METRIC

We assess model performance with two complementary metrics. One of them is the top-1 accuracy
after the final increment (Ay), another one is the average incremental accuracy A. Let A;(I =
1,...,L) denote the top-1 accuracy measured after the I/th increment on the cumulative test set
that includes every class learned thus far. The average incremental accuracy is calculated as A =

1 L
) El:l A
4.2 PERFORMANCE RESULTS

For each model, we compute both A and Aj, then compare those with the DeL-enhanced variants.
The experimental results are summarized in Table |1} DeL boosts replay methods by 4.1% in A and
3.7% in Ap, and raises LwF, a knowledge-distillation approach, by 4.2% and 3.0%, respectively.
It achieves improvements of 3.9% and 3.1% in iCaRL. As baselines, the expansion-based methods,
DER and TagFex, outperform other types of methods, which indicates that larger parameters effi-
ciently inhibit parameter shift and store more features to prevent forgetting. DeL further improves
their performance. The experimental results strongly demonstrate that synaptic plasticity in DelL
produces heterogeneous and highly discriminative representations, enabling the network to rely on a
smaller yet more informative feature set and thus reducing memory overhead while mitigating catas-
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Table 3: The parameter analysis of Del. on VTAB with DER. The best performance is shown in
bold.

M 1 2 4 8
A 6373 6451 6443 62.54
Ap 5491 5622 56.09 55.80

Figure 4: Grad-CAM visualizations across incremental tasks 73 to T5. Top: Grad-CAM results from
iCaRL. Bottom: Grad-CAM results from iCaRL with DeL.
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Figure 5: The Grad-CAM of activation maximization maps, which are prone to catastrophic forget-
ting due to their dependence on the classifier.

trophic forgetting. Furthermore, we give the performance curve in Figure 3] showing that methods
with DeL achieve a large performance gap compared to methods without it. Moreover, the additional
computation and train time are reported in supplementary file.

4.3 ABLATION STUDY

We conduct an ablation study on CIFAR-100 and VTAB to quantify the contribution of synap-
tic plasticity in DeL. The results are summarized in Table 2] SA denotes the learnable synaptic-
plasticity function, whereas SN performs input normalization through layer normalization Ba et al.|
(2016). The results reveal that incorporating synaptic plasticity markedly improves performance
of the model. Moreover, the modest drop when incorporating normalization is removed suggests
that the synaptic layer accommodates substantial distribution shifts, allowing the model to learn ef-
fectively from streaming data. DeL therefore maintains strong performance even without explicit
normalization.

Dendritic morphology endows the network with greater computational capacity and robust learning
dynamics [Chavlis & Poirazi| (2025). It also modulates plasticity; therefore, we examine how the
number of dendritic branches M affects performance, as shown in Table[3] In principle, increasing
M enhances synaptic plasticity and nonlinear expressiveness, yet excessive plasticity undermines
stability. Our results show that M = 2 offers the best trade-off, whereas larger or smaller values
lead to performance declines.

4.4  VISUALIZATIONS

We employ Grad-CAM [Selvaraju et al| (2017) to visualize model’s attention regions and assess the
impact of homogeneous representations. As Figure ] illustrates, baseline iCaRL attends dispropor-
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Figure 6: The weight probability density functions after class-incremental learning for iCaRL with
and without DeL.
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Figure 7: Information entropy distributions for iCaRL with and without DeL. Entropies are com-
puted from classifier activations on all test images of the CUB dataset during class-incremental
learning.

tionately to non-target regions, generating spurious memories that accelerate subsequent forgetting,
which evidences that networks built on MCP neurons struggle to isolate class-relevant features due
to homogeneous representation. In contrast, iCaRL enhanced with DeL consistently focuses on truly
discriminative cues, most notably the bird’s body and head, thereby preserving salient attention pat-
terns and maintaining robust feature representations. This advantage is particularly pronounced at
step T5. These observations suggest that DeL effectively curbs representation drift and efficiently
store memory, yielding a more favorable plasticity—stability trade-off.

Furthermore, Figure[5|shows that the baseline iCaRL model correctly attends to the bird’s body in the
early tasks, however, as class-incremental learning progresses its attention drifts toward background
regions, indicating catastrophic forgetting. By the final tasks, Grad-CAM no longer highlights crit-
ical features such as the head, chest, and wings, and the representations of earlier classes have
markedly decayed. In contrast, once we embed DeL, the model’s attention remains stable across
all ten tasks. High-response regions (in red) consistently cover key features, chiefly the chest and
back. Therefore, even after the final task the model localizes these regions while relying on fewer
overall attention areas. This behavior evidences that Del. enhances neural selectivity, preserves
memory, and effectively resists catastrophic forgetting by suppressing homogeneous representations
and promoting truly discriminative features.

4.5 ANALYSIS OF EFFECTIVENESS

To better understand how DeL mitigates catastrophic forgetting, we analyze its weight distribution
after each incremental step on the CUB dataset in Figure [l From this figure, the weight distri-
bution of conventional iCaRL shifts at every stage, revealing parameter drift that drives forgetting.
By contrast, incorporating DeL can suppress the distribution drift to a certain extent. Importantly,
DeL exhibits a more concentrated distribution, showing that DeL can efficiently utilize weights to
constrain drift and concentrate model capacity on the most salient features via synaptic plasticity.
Thereby it can preserve earlier knowledge while assimilating new classes.

Furthermore, we compute information entropy for each neuron to quantify its class specificity and
importance for classification results. High entropy indicates mixed selectivity, meaning a neuron
responds to multiple classes, whereas low entropy reflects class-specific tuning. Figure|[/|plots the



Under review as a conference paper at ICLR 2026

iCaRL

71

w)‘ ‘ ~ —— ——

20 20 40 4 60 60 80 100 100 120 120 140 140 160 160 180 180 200

0.6
0.4

0.2

iCaRL w/ Del.

0 20 20 40 40 60 60 80 80 100 100 120 120 140 140 160 160 180 180 200
Ty T; T3 Ta Ts Te T Tg Ty Tio

0.0
0

Figure 8: Probability density functions of class selectivity. Each histogram illustrates the distribu-
tion of neuron selectivity across classes at each incremental learning stage. The number of bins
corresponds to the total number of classes in the CUB dataset.

entropy distribution after each incremental step. The baseline model shows uniformly high en-
tropy, suggesting that nearly all neurons participate in every classification decision and therefore
struggle to preserve the class-specific features needed to recall old knowledge. In contrast, the DeL-
augmented model displays a broader and often bimodal entropy distribution. Many neurons shift
toward lower entropy values, demonstrating distinct activations for different classes, while a smaller
subset retains higher entropy, preserving flexibility for new tasks. This adaptive redistribution im-
plies that DeL. dynamically adjusts the proportion of class-specific neurons as new classes arrive,
which mitigates catastrophic forgetting. Specifically, the entropy distribution becomes bimodal at
certain increments, suggesting that the model adjusts the proportion of class-specific neurons to
match the current class composition. Detailed calculation procedures appear in the supplementary
file. Overall, the results confirm that DeL’s synaptic-plasticity mechanism fosters a richer pool of
class-specific neurons, enabling the network to remember discriminative features more effectively
during incremental learning.

Besides, the entropy analysis shows that DeL yields a larger pool of class-specific neurons through
synaptic plasticity, yet the exact specificity of these neurons remains uncertain. To clarify how many
classes each neuron represents, we compute a selection index and apply a 0.5 activation threshold
due to the use of sigmoid function. Figure [§] presents the resulting class-activation counts. At
every incremental step, neurons in the baseline model activate predominantly for the most recently
learned classes, with few responses to earlier classes. In contrast, neurons in the Del-enhanced
model respond to a broader range of classes; although the network still favors new information,
it preserves considerably more activations for previously learned classes. These findings provide
additional evidence that DeL effectively mitigates catastrophic forgetting.

5 CONCLUSION

We propose a biologically inspired dendritic learning module (DeL) designed to enhance class-
incremental learning by alleviating the issues of catastrophic forgetting and homogeneous represen-
tation. DeL integrates synaptic plasticity and dendritic computation into a four-layer architecture
that promotes diverse and discriminative feature extraction. Extensive experiments demonstrate that
DeL improves the performance of representative CIL methods across multiple benchmarks. As
model-agnostic, we discuss the performance of DeL by incorporating it into various types of CIL
methods. Grad-CAM visualizations show that DeL captures discriminative features and directs more
attention to task-relevant object regions. Because it requires fewer stored exemplars, DeL alleviates
catastrophic forgetting. Furthermore, through ablation and analysis of effectiveness, we show that
DeL reduces parameter drift, increases the proportion of class-specific neurons, and stabilizes atten-
tion to semantically meaningful image regions. These results confirm that embedding biologically
plausible mechanisms into artificial neural networks can significantly enhance continual learning
performance by improving feature selectivity and memory retention. Although DeL is advances
CIL through biological mechanism, its present architecture lacks flexibility because its hyperparam-
eters are fixed. We will explore dynamic DeL structures to enhance scalability in future work.



Under review as a conference paper at ICLR 2026

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Giovanni Bellitto, Federica Proietto Salanitri, Matteo Pennisi, Matteo Boschini, Lorenzo Bonicelli,
Angelo Porrello, Simone Calderara, Simone Palazzo, and Concetto Spampinato. Saliency-driven
experience replay for continual learning. Advances in Neural Information Processing Systems,
37:103356-103383, 2024.

Spyridon Chavlis and Panayiota Poirazi. Dendrites endow artificial neural networks with accurate,
robust and parameter-efficient learning. Nature Communications, 16(1):943, 2025.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8340-8349,
October 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adver-
sarial examples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 15262-15271, June 2021b.

Priyank Jaini, Pascal Poupart, and Yaoliang Yu. Deep homogeneous mixture models: representation,
separation, and approximation. Advances in Neural Information Processing Systems, 31, 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences,
114(13):3521-3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, 2009.

Songze Li, Tonghua Su, Xu-Yao Zhang, and Zhongjie Wang. Continual learning with knowledge
distillation: A survey. IEEE Transactions on Neural Networks and Learning Systems, 36(6):
9798-9818, 2025.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(12):2935-2947, 2018.

Huibert D Mansvelder, Matthijs B Verhoog, and Natalia A Goriounova. Synaptic plasticity in human
cortical circuits: cellular mechanisms of learning and memory in the human brain? Current
Opinion in Neurobiology, 54:186-193, 2019.

Sadegh Nabavi, Rocky Fox, Christophe D Proulx, John Y Lin, Roger Y Tsien, and Roberto Malinow.
Engineering a memory with Itd and Itp. Nature, 511(7509):348-352, 2014.

Ayako Nonaka, Takeshi Toyoda, Yuki Miura, Natsuko Hitora-Imamura, Masamitsu Naka, Megumi
Eguchi, Shun Yamaguchi, Yuji Ikegaya, Norio Matsuki, and Hiroshi Nomura. Synaptic plasticity
associated with a memory engram in the basolateral amygdala. Journal of Neuroscience, 34(28):
9305-9309, 2014.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):
123-146, 1995.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in Neural Information Processing Systems, 32, 2019.

10



Under review as a conference paper at ICLR 2026

Tomads J Ryan, Dheeraj S Roy, Michele Pignatelli, Autumn Arons, and Susumu Tonegawa. Engram
cells retain memory under retrograde amnesia. Science, 348(6238):1007-1013, 2015.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE International Conference on Computer Vision, pp. 618626,
2017.

Hai-Long Sun, Da-Wei Zhou, Hanbin Zhao, Le Gan, De-Chuan Zhan, Da-Wei Ye, Han-Jia Zhou,
Fu-Yun Wang, Han-Jia Ye, and De-Chuan Zhan. PyCIL: a python toolbox for class-incremental
learning. Science China Information Sciences, 66(197101), 2023.

Hai-Long Sun, Da-Wei Zhou, Hanbin Zhao, Le Gan, De-Chuan Zhan, and Han-Jia Ye. Mos: Model
surgery for pre-trained model-based class-incremental learning. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 39(19):20699-20707, Apr. 2025.

Nicolas Toni, P-A Buchs, Irina Nikonenko, CR Bron, and Dominique Muller. Ltp promotes for-
mation of multiple spine synapses between a single axon terminal and a dendrite. Nature, 402
(6760):421-425, 1999.

Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
Nature Machine Intelligence, 4(12):1185-1197, 2022.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

Jonathan R Whitlock, Arnold J Heynen, Marshall G Shuler, and Mark F Bear. Learning induces
long-term potentiation in the hippocampus. Science, 313(5790):1093-1097, 2006.

Tz-Ying Wu, Gurumurthy Swaminathan, Zhizhong Li, Avinash Ravichandran, Nuno Vasconcelos,
Rahul Bhotika, and Stefano Soatto. Class-incremental learning with strong pre-trained models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9601-9610, 2022.

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for
class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3014-3023, June 2021.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Yuanhan Zhang, Zhenfei Yin, Jing Shao, and Ziwei Liu. Benchmarking omni-vision representation
through the lens of visual realms. In European Conference on Computer Vision, pp. 594-611.
Springer, 2022.

Bowen Zheng, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Task-agnostic guided feature expan-
sion for class-incremental learning. In Proceedings of the Computer Vision and Pattern Recogni-
tion Conference, pp. 10099-10109, 2025.

Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for
pre-trained model-based class-incremental learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 23554-23564, 2024a.

Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Class-
incremental learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
46(12):9851-9873, 2024b.

Chen Zhuang, Shaoli Huang, Gong Cheng, and Jifeng Ning. Multi-criteria selection of rehearsal
samples for continual learning. Pattern Recognition, 132:108907, 2022.

11



	Introduction
	Related Work
	Method
	Problem Definition
	DeL: Biologically Plausible Dendritic Learning
	Synaptic Layer
	Dendritic Layer
	Membrane Layer
	Somatic Layer


	Experiments
	Experimental Setup
	Datasets
	Baseline Methods
	Implementation Details
	Measurement Metric

	Performance Results
	Ablation Study
	Visualizations
	Analysis of Effectiveness

	Conclusion

