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Abstract

Agents based on large language models (LLMs) for machine learning engineering
(MLE) can automatically implement ML models via code generation. However,
existing approaches to build such agents often rely heavily on inherent LLM
knowledge and employ coarse exploration strategies that modify the entire code
structure at once. This limits their ability to select effective task-specific models
and perform deep exploration within specific components, such as experimenting
extensively with feature engineering options. To overcome these, we propose MLE-
STAR, a novel approach to build MLE agents. MLE-STAR first leverages external
knowledge by using a search engine to retrieve effective models from the web,
forming an initial solution, then iteratively refines it by exploring various strategies
targeting specific ML components. This exploration is guided by ablation studies
analyzing the impact of individual code blocks. Furthermore, we introduce a novel
ensembling method using an effective strategy suggested by MLE-STAR. Our
experimental results show that MLE-STAR achieves medals in 64% of the Kaggle
competitions on the MLE-bench, significantly outperforming the best alternative.'

1 Introduction

The proliferation of machine learning (ML) has driven high-performance applications across diverse
real-world scenarios, from fundamental tasks like tabular classification [1, 2, 3] to complex ones such
as image denoising [4]. Despite these advances, developing such models remains a labor-intensive
process for data scientists, involving extensive iterative experimentation and data engineering [5, 6].
To streamline such intensive workflows, recent research has focused on employing large language
models (LLMs) [7, 8, 9] as machine learning engineering (MLE) agents [10, 11, 12]. By harnessing
the coding and reasoning capabilities inherent in LLMs [13, 14], these agents conceptualize ML tasks
as code optimization problems. They then navigate the potential code solutions ultimately producing
executable code (e.g., a Python script) based on a provided task description and dataset (see Figure 1).

Despite their promise as pioneering efforts, current MLE agents face several obstacles that limit
their effectiveness. First, due to their strong reliance on inherent LLM knowledge, they are often
biased toward familiar and frequently used methods (e.g., the scikit-learn library [15] for tabular data),
neglecting potentially promising task-specific methods. Additionally, these agents [10, 12] typically
employ an exploration strategy that modifies the entire code structure at once in each iteration. This
often results in agents pivoting prematurely to other steps (e.g., model selection or hyperparameter
tuning) because they lack the ability to perform deep, iterative exploration within specific pipeline
components, such as experimenting different feature engineering options extensively.
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Figure 1: Problem setup. ML Engineering agents are designed to process a task description
and datasets across various modalities (e.g., tabular, text, image, audio, etc.) with the objective
of determining the optimal solution for a given machine learning problem, such as classification,
regression, sequence-to-sequence generation, image denoising, text normalization, etc.

Contributions. We propose MLE-STAR, a novel ML Engineering agent that integrates web Search
and TArgeted code block Refinement (see Figure 2 for an overview). Specifically, generating initial
solution code, MLE-STAR utilizes Google Search to retrieve relevant and potentially state-of-the-art
approaches that could be effective towards building a model. Moreover, to improve the solution,
MLE-STAR extracts a specific code block that represents a distinct ML pipeline component, such
as feature engineering or ensemble building, and then concentrates on exploring strategies that are
targeted to that component, using previous attempts as feedback to reflect on. Here, to identify the
code block that has the greatest impact on performance, MLE-STAR performs an ablation study that
evaluates the contribution of each ML component. This refinement process is repeated, modifying
various code blocks (i.e., other ML components). In addition, we introduce a novel method to
generate ensembles. MLE-STAR first proposes multiple candidate solutions. Then, instead of relying
on a simple voting based on validation scores, MLE-STAR merges these candidates into a single
improved solution using an ensemble strategy proposed by the agent itself. This ensemble strategy is
iteratively refined based on the performance of the previous strategies.

To verify the effectiveness, we conduct comprehensive evaluations of MLE-STAR using the MLE-
bench’s Kaggle competitions [16]. The experimental results demonstrate that MLE-STAR, requiring
only minimal human effort (e.g., defining initial prompts that are generalizable to any tasks), signifi-
cantly outperforms previous methods [12], including those requiring manual labor to collect strategies
from Kaggle [10]. In particular, MLE-STAR achieves a substantial gain in medal achievement,
improving it from 36.6% to 63.6% when compared to the top-performing baseline. Additionally, we
show that our proposed ensemble technique provides a meaningful improvement to MLE-STAR.

2 Related work

LLM agents. Recent advances in LLMs have led to an active research in autonomous agents.
General-purpose agents like ReAct [17] and HuggingGPT [18] typically use external tools to analyze
various problems. Specialized agents, such as Voyager [19] for Minecraft or AlphaCode [20] for code
generation, excel in specific domains, often using execution feedback to iteratively improve their
approach. Extending these, we introduce MLE-STAR, an LLM agent that specialized in ML tasks.

Automated machine learning. Automated machine learning (AutoML) aims to reduce reliance on
human experts by automating end-to-end ML pipelines [21, 22, 23]. Auto-WEKA [24], TPOT [25],
and recent advances such as AutoGluon [26], have made progress through exploring within predefined
model or hyperparameter spaces. AutoML research also specializes in areas such as neural network
design [27, 28, 29, 30], and feature engineering [31, 32, 33, 34, 35]. However, these methods rely on
predefined search spaces, which often require domain expertise to define. To address this, LLM-based
MLE agents [10, 12], including MLE-STAR, are emerging, since they employ effective exploration
strategies directly in the code space, without the need of manually-curated search spaces.

MLE agents. Leveraging coding and reasoning capabilities of LLMs [13, 14], research has been
conducted on use of LLMs as MLE agents [11, 36, 37], which generate solution code, to automate ML,
workflows. While MLAB [38] and OpenHands [39] take general actions by calling tools to perform
ML tasks, several studies specialize in ML automation. AIDE [12] generates candidate solutions
in a tree structure to facilitate code space exploration. However, its heavy reliance on the LLM’s
internal knowledge can lead to outdated or overly simple model choices, and its refinement may
prematurely shift focus between pipeline stages. DS-Agent [10] uses case-based reasoning [40, 41]
to discover strategies for solution generation by utilizing manually curated cases (primarily from
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Figure 2: Overview of MLE-STAR. (a) Using search as a tool, MLE-STAR retrieves task-specific
models and uses them to generate an initial solution. (b) In each refinement step, MLE-STAR performs
an ablation study to extract the code block that have the greatest impact. Previously modified code
blocks are also provided as feedback for diversity. (c) The extracted code block is iteratively refined
based on plans suggested by the LLM, which explores various plans using previous experiments
as feedback (i.e., inner loop), and the target code block is also selected repeatedly (i.e., outer loop,
where the improved solution of (c) becomes the previous solution in (b)).

Kaggle). However, DS-Agent suffers from scalability issues due to its reliance on a manually built
case bank, which requires significant human effort and can lead to solutions that are overfit to
the source patterns. Also, it restricts applicability to novel task types (like complex multi-modal
problems). Our method addresses these limitations. Instead of attempting to explore the broader code
space or relying on a static case bank, MLE-STAR strategically explores implementation options for
specific ML pipeline components. It also improves scalability by using LLMs with search as tool to
retrieve effective models that fit the task beyond the constraints of a fixed case bank.

3 MLE-STAR

We introduce the proposed framework for MLE agents, MLE-STAR, that effectively leverages the
coding and reasoning capabilities of LLMs to solve ML tasks. In a nutshell, our approach is based
on first generating an initial solution by using web search as a tool (Section 3.1), and then refining
solutions via nested loops. The outer loop targets one code block, which corresponds to the specific
ML component extracted through an ablation study. The inner loop iteratively refines only this
block until the outer loop moves to the next target (Section 3.2). We propose a novel ensemble
method that improves the performance using the plan proposed by LLMs, which is iteratively refined
(Section 3.3). To mitigate potential undesirable behaviors from LLMs, such as using test sample
statistics for missing value imputation, we introduce specific modules (detailed in Section 3.4). The
prompts and algorithms used in each step can be found in Appendix A and B, respectively.

Problem setup. Formally, our goal is to find an optimal solution s* = arg maxes h(s), where
S is the space of possible solutions (i.e., Python scripts) and h : S — R is a score function (e.g.,
validation accuracy) [12]. To obtain s*, we propose a multi-agent framework .4, which takes datasets
D (that might contain multiple files) and a task description 7¢,sx (Which includes task types, data



modalities, score functions, etc.) as input.” Here, .A consists of n LLM agents (Aj,- - ,A,). Each
agent A; possesses specific functionalities, which are elaborated upon in following sections.

3.1 Generating an initial solution using web search as a tool

Candidate model search. MLE-STAR starts by generating an initial solution. For high performance
in ML tasks, selecting the appropriate model is paramount. However, relying solely on an LLM for
model suggestions can lead to suboptimal choices. For instance, we observe that LLMs propose
models like logistic regression [15] even for competitions like jigsaw-toxic-comment-classification,
which is a text classification task, potentially because LLMs favor familiar patterns from their pre-
training data over up-to-date information. To mitigate this, we propose using web search as a tool for
MLE-STAR first to retrieve M effective, state-of-the-art models for the given task. This retrieved
context is then used to guide the LLM in generating a more informed initial solution. Formally:

] 3 M
{7I—nzode1’ c7ode i=1 — Aretriever(ﬁask)v (D

where Tpoqe1 represents the description of a retrieved model, while 7¢.4. provides corresponding
example code. This example code is needed since the LLM can be unfamiliar with the model and
cannot generate the executable code without proper guidance. Then, MLE-STAR involves evaluating
of the performance of model i. To achieve this, candidate evaluation agent A;,;+ first generates code,
S using the retrieved model to solve the given ML task. This process is formally defined as:

Sgnit = -Ainit (7;&51{’ 7;1zodel’ clode)' (2)

We evaluate the performance of each s using a task-specific metric i on dataset D. We denote the
resulting score by h(s), which encapsulates the entire process done in s: splitting D into training
and validation sets, training the model specified in s using the training data, and calculating h on
the validation data. TJI\I; performance for s% ;. is thus h(s! ;). As a result, a set of code scripts

Sinit = {814, , ML} and their performance scores {h (sl i), - ,h(s)L,)} are obtained.

%
init®

Merging candidate models for initial solution. After the evaluation of the M retrieved models, a
consolidated initial solution sg is constructed through an iterative merging procedure. Specifically,
we first define 7 be a permutation of the indices such that the scores are sorted in descending order:

h(sTH) > n(sT2)) > oo > h(sF]). Then, we initialize the initial solution sy with the top-

performing script, and record the current best score, i.e., So < S(1), Npest < h(so), where S(k)

denote the script sféft) for simplicity. Finally, we sequentially attempt to incorporate the remaining

scripts s(y) for k = 2,- -+, M into so. For each k, MLE-STAR creates a candidate merged script by
leveraging an agent Aperger that attempts to integrate s(x) into the current sq. Formally,

S0 Amerger(SOv S(k))a hbest <~ h(SO) (3)

where, Aperger is guided to introduce a simple average ensemble to merge multiple models. Finally,
we merge the models until the validation score hyest no longer improves (see Appendix B).

3.2 Refining a code block for solution improvement

The iterative refinement phase begins with an initial solution sy and proceeds for a predetermined
number of 7" outer loop steps, indexed by t = 0,1,--- ,T — 1. At each step ¢, the goal is to improve
the current solution s, to obtain s; 1, optimizing for a performance metric h. This process involves
two main stages: targeted code block extraction and code block refinement.

Targeted code block extraction. To effectively explore specialized improvement strategies, MLE-
STAR identifies and targets specific code blocks within the ML pipeline represented by s;. This
selection is guided by an ablation study performed by an agent A.p1. Specifically, the agent Aap;
generates a code a; designed to perform an ablation study on s;. This script creates variations of s
by modifying or disabling specific components. To encourage exploration of different pipeline parts
across iterations, Ajp receives the summaries of previous ablation studies {75, E;é as input:

ay = Aabl(st;{ aibl E;é)- S

MLE-STAR works across any data modalities (e.g., tabular, image, text, audio) and task types (e.g.,
classification, image-to-image, sequence-to-sequence) — it is not restricted to specific inputs or objectives.
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Figure 3: Ensembling solutions. MLE-STAR iteratively proposes effective ensemble strategies
based on previous attempts, integrating multiple solutions generated in parallel into a single solution.

Then, a; is executed, producing output results r; (see examples in Appendix C). A summarization
module Agummarize processes the script and its results to generate a concise ablation summary 7%,

7-atb1 = Asu.mmarize (ata 'rt)~ 5)

Finally, MLE-STAR selects a critical block which has the most significant impact on performance.
To achieve this, an extractor module Agyiractor analyzes the Tbl to identify the code block ¢; within
s¢ whose modification had the most significant impact on performance. To prioritize refinement of
blocks not previously targeted, the set of already refined blocks {¢; E;(l) is provided as context:

Ct,Po = Aextractor(,]—:blv St, {Ci 2;;(1)) (6)

Here, MLE-STAR also generates the initial plan pg for code block refinement at the same time, since
Tap1 can provide a good starting point by analyzing the modification of corresponding component.

Code block refinement. Once the targeted code block ¢; is defined, MLE-STAR explores various
refinement strategies to improve the metric h. This involves an inner loop exploring K potential
refinement for ¢;. An agent Acoge first implements py, transforming c; into a refined block ¢?, i.e.,
& = Acoger(ct, po). A candidate solution s? is formed by substituting c? into s;:

s(t) = s'.replace(c, cg), @

where, replace denotes the code replacement operation. Finally, the performance h(sY) is evaluated.

To discover potentially more effective or novel refinement strategies, MLE-STAR iteratively generates

and evaluates further plans. For k = 1,--- , K — 1, a planning agent Ay} anner proposes the next plan
pi. This agent leverages the previous attempts within the current outer step ¢ as feedback:
Pk = Aplanner(ctu {(pj7 h(sljf)) ;C;(%) (8)

For each plan pg, the coding agent generates the corresponding refined block, i.e. Cf = Acoder (Ct, Pk )s
creates the candidate solution s¥ = s;.replace(c;, cf), and evaluates its performance h(sF). After
exploring K refinement strategies (indexed k£ = 0, - - — 1), the best-performing candidate
solution is identified: k* = arg maxyeqo,... K —1} h(sk). The solution for the next outer step, S¢y1, 1S

updated to s¥" only if an improvement over s, is found. This iterative process continues until ¢ = 7.

3.3 Further improvement by exploring ensemble strategies

To further improve upon the best single solution generated, we introduce a novel ensembling procedure
(Figure 3). Standard practice might involve generating multiple candidate solutions and selecting
the one with the highest score [42] according to metric h. However, analogous to model ensembling,
we posit that suboptimal solutions might contain complementary strengths, and combining multiple
solutions could lead to superior performance compared to relying on any single one. Therefore, we
employ the planning capabilities of MLE-STAR to automatically discover effective strategies for
ensembling. Specifically, let {sl}lL:1 be a set of L distinct solutions obtained (e.g., from parallel runs
of the process described earlier). Our goal is to find an effective ensemble plan e that merges these
solutions, which mirrors the structure of the targeted code block refinement stage. We start with an
initial ensemble plan ep (e.g., a simple strategy like averaging the final predictions obtained from the
models trained using each solution s;), proposed by MLE-STAR itself. After the performance h(s%,,)
for the initial plan eg is calculated, for a fixed number of iterations, » = 1,--- | R, the planning
agent Aens_Planner, specialized in suggesting ensemble plans, proposes subsequent ensemble plans e,..



This agent uses the history of previously attempted ensemble plans and their resulting performance
as feedback, i.e., €, = Aens pramner ({81}121, {(€j, h(slns))}g). Each e, is implemented via

ens j=0
1 T .
Aensenbier to Obtain si

Szns = Aensembler (67‘7 {Sl}lel)- (9)
Finally, after exploring R ensemble strategies, the ensemble result that achieves the highest
performance is selected as the final output, yielding the final ensembled result s, = s, _:

r* = argmax,c{o,...,r} P(Stys). This procedure allows MLE-STAR to autonomously explore

and identify potentially novel and effective ways to combine multiple complex solutions.

3.4 Additional modules for robust MLE agents

Debugging agent. We detail the design of our debugging agent within MLE-STAR. If the execution
of a Python script s triggers an error, resulting in a record Ty (e.g., a traceback), MLE-STAR employs
a debugging module Agepygger to attempt correction. This process iteratively updates the script:

S -Adebugger(sa Rug)- (10)

The debugging step is repeated until either the script executes successfully, or a predefined maximum
number of debugging rounds is reached. If the bug cannot be resolved, MLE-STAR proceeds to the
next task using the latest version of the script that is known to be executable.

Data leakage checker. We observe that LLM-generated Python scripts might have the risk of
introducing data leakage, for example, by improperly accessing information from a test dataset during
training dataset preparation (see Figure 6). To address this, we introduce a checker agent, A;caxage;
which analyzes the solution script s prior to its execution. Recognizing that full-script analysis can be
inefficient for lengthy code, we adopt a targeted approach. First, we extract the code block cgat, Where
data preprocessing is done. Second, cqata is passed to the checker. If Ajeaxage detects potential data
leakage, it generates a corrected Version c3,;,: Ciaga = Aleakage (Caata)- Finally, the original script s is
updated by replacing the identified segment with its corrected version: s <— s.replace(Caata; Ciara)-
If no leakage is detected in Caata DY Aieaxage, the script s remains unmodified. All generated solutions
are passed through a data leakage checker, Aleakage, prior to their execution for evaluation.

Data usage checker. We observe that LLM-generated scripts sometimes neglect using provided data
sources, focusing solely on simple formats like CSVs (see Figure 7). To ensure the utilization of all
relevant provided data, MLE-STAR introduces a data usage checker agent, Agata. Specifically, before
MLE-STAR starts refinement, A4, checks the initial solution sy along with the task description
Teask. If relevant provided data is not adequately used, Ag.:. revises the initial script as:

So Adata(sﬂa ﬁask) (11)

4 Experiments

In this section, we validate the effectiveness of MLE-STAR using 22 Kaggle competitions from
MLE-bench Lite [16]. Our results demonstrate that MLE-STAR significantly outperforms baselines,
including those employing various LLMs (Section 4.1). Furthermore, we show that using better
models and leveraging our proposed ensemble strategy effectively improves performance (Section 4.2).
We also provide the example solutions generated by MLE-STAR, in Appendix D.

Common setup. All experiments are conducted on 22 Kaggle competitions from MLE-bench
Lite [16] using three random seeds, unless otherwise specified. Here, we use an agent Ay, Which
takes the task description and the final solution as input, and outputs the code that incorporates
loading test sample and creating a submission file (see Appendix E for details). MLE-STAR begins by
retrieving four model candidates. MLE-STAR refines for four inner loops, while exploring four outer
loops. For ensemble, MLE-STAR generates two solutions in parallel, and explore ensemble strategies
for five rounds. Following the MLE-bench’s setup, we set a maximum time limit of 24 hours for
a fair comparison (see computation analysis in Appendix F). We primarily consider AIDE [12] as
our main baseline, given its state-of-the-art performance on MLE-bench. It is important to note that
other baselines often limit their generalizability across various task types (e.g., audio classification,
sequence-to-sequence), frequently showcasing results only on simpler modalities like tabular [11, 37].
For instance, DS-Agent [10] requires a manually constructed case bank, and their current GitHub
repository lacks cases for audio classification, sequence-to-sequence, image classification, etc.



Table 1: Main results from MLE-bench Lite. Each experiment is repeated using three seeds,
except for ol-preview (AIDE) and GPT-40 (AIDE), which use 16 and 36 seeds, respectively. All
results are taken from the GitHub repository of MLE-bench paper [16], except for the model using
Gemini-2.0-Flash and Gemini-2.5-Pro. Scores represent the mean and one standard error of the mean.

Made Valid Above Bronze Silver Gold Ay
Model Submission Submission Median (%) (%) (%) Medal
(%) (%) (%) ’ ’ ’ (%)
MLE-STAR (Ours)
gemini-2.5-pro 100.0+00 100.0-+0.0 833446 6.1+30 212450 36.4+60  63.6+60
gemini-2.0-flash 95.5+26 95.5+26 63.6+60 9.1+356 4.5+26  303+57  43.9+62
AIDE [12]
gemini-2.0-flash 87.9+40 78.8+50 39.4+60 4.5+26 9.1+3s  12.1+40  25.8454
ol-preview 99.7+03 90.3+16 58.2+26 4.8+11 11.1+17 20.7+22  36.6+26
gpt-40 82.1+14 65.7+17 29.9+16 3.4+06 5.8+08 9.3+10 18.6+14
Ilama-3.1-405b-instruct 72.7+s5 51.5+62 18.2-+47 0.0+00 4.5+26 6.1+29 10.6+3.8
claude-3-5-sonnet 81.8+47 66.7+53 333453 3.0+21 6.1+29  10.6+33 19.7+49
MLAB [38]
gpt-40 84.8+44 63.6+59 7.6+33 3.0+21 1.5+15 1.5+15 6.1+29
OpenHands [39]
gpt-4o 81.8+47 71.24+56 16.7+46 3.0+21 3.0+21 6.1+29 12.1+40
Table 2: Comparison with DS-Agent. Table 3: Performance with Claude-Sonnet-4.
Task Metric DS-Agent MLE-STAR Task Metric 2.0-Flash ~ Sonnet-4
WBY MAE ({) 213 166 DDD RMSE ({) 0.0681 0.0155
MCC RMLSE ({) 0.2964 0.2911 DBI  LogLoss () 0.4535 0.3114
ST  Accuracy (1) 0.7982 0.8091 SAI  LogLoss(})  0.2797 0.2610
ES AUROC (1) 0.8727 0.9101 WCR  AUROC (1) 0.9903 0.9888

4.1 Main results

Quantitative results. As demonstrated in Table 1, MLE-STAR significantly enhances the perfor-
mance of various baseline models. For instance, when applied to Gemini-2.0-Flash, MLE-STAR im-
proves AIDE’s any medal achieving rates in Kaggle competitions from 25.8% to 43.9%, representing
an improvement of over 18 percentage points, and rate of above median from 39.4% to 63.6%.
Notably, MLE-STAR with Gemini-2.0-Flash also substantially outperforms AIDE using a powerful
reasoning model (i.e., ol-preview) in terms of achieving gold medals in 10% more tasks. Moreover,
using Gemini-2.5-Pro, MLE-STAR shows a medal achievement of over 60%.

Comparison to DS-Agent. While DS-Agent [10] shows competitive results on ML tasks, it necessi-
tates human effort to curate its case bank from Kaggle. Consequently, a direct comparison between
DS-Agent and AIDE or our method is not feasible, as collecting tasks across diverse modalities,
such as audio classification or image denoising, requires additional effort. Nevertheless, we utilize
four tabular classification tasks, i.e., wild-blueberry-yield (WBY), media-campaign-cost (MCC),
spaceship-titanic (ST), and enzyme-substrate (ES), the same ones employed during DS-Agent’s
development stage [10], for a comparison. All experiments are done for 5 seeds following the original
setup. As shown in Table 2, MLE-STAR significantly outperforms DS-Agent even without human
efforts. See Appendix G for additional results, including comparison with AutoGluon [26].

4.2 Ablation studies

Performance with an advanced reasoning model. To assess if a more advanced reasoning model
could enhance MLE-STAR’s performance, we conduct an experiment with the recently released
advanced reasoning models. First of all, as shown in Table 1, Gemini-2.5-Pro [43] yields better
performance than using Gemini-2.0-Flash. For example, in denoising-dirty-documents competition,
MLE-STAR with Gemini-2.0-Flash scored above the median across all three seeds, failing to achieve
any medals. However, when using Gemini-2.5-Pro, MLE-STAR achieves two gold medals and one
silver medal. These results demonstrate that MLE-STAR is designed to harness the advancements of
rapidly improving reasoning-based LLMs.



Table 4: Ablation on ensemble strategy. Experiment results on MLE-bench Lite, repeated three
seeds using Gemini-2.0-Flash. Scores represent the mean and one standard error of the mean.

Made Valid Above Bronze Silver Gold Any

Ensemble strategy Submission Submission Median (%) (%) (%) Medal
(%) (%) (%) 0 i i (%)

AIDE [12]
None 87.9440 78.8+50 39.44160 4.5426 91435  12.1440  25.8454
MLE-STAR (Ours)
None 955426 95.5126 57.646.1 7.6+33 45426  25.8+54  37.9+60
Best-of-N 955126 95.5126 62.1+60 6.1+30 7.6433  28.8+56 424461
Average ensemble 95.5+26 95.5+26 60.6=6.1 6.1+30 12.1+40  25.8+94  43.9+62
Ours 955126 95.5126 63.6+60 9.1136 45426 303157 439462

Table 5: Sensitivity analysis on the number of ensemble rounds. Experiment results on 4 tasks
from MLE-bench Lite, repeated three seeds using Gemini-2.0-Flash. We report the mean score.

Ensemble Round DDD DBI SAI WCR

nsembie Roun (RMSE; }) (Log Loss; J) (Log Loss; 1) (AUROC; 1)
1 0.07147 0.45351 0.28164 0.98943
3 0.06805 0.45351 0.27967 0.98898
5 0.06805 0.45351 0.27967 0.99028

Table 6: Ablation on proposed components. Experiment results on 4 tasks from MLE-bench Lite,
repeated three seeds using Gemini-2.0-Flash. We report the mean score and bold the best one.

Targeted Search DDD DBI SAI WCR
Refinement Tool (RMSE; |) (Log Loss; J) (Log Loss; |.) (AUROC; 1)
X 0.10818 0.45689 0.29141 0.98532
X 0.09303 0.65242 0.30529 0.96509
0.06805 0.45351 0.27967 0.99028

In addition, we conduct additional experiments using Claude-Sonnet-4. Here, we select four different
type of competitions: image-to-image (denoising-dirty-documents; DDD), image classification
(dog-breed-identification; DBI), text classification (spooky-author-identification, SAI), and audio
classification (the-icml-2013-whale-challenge-right-whale-redux; WCR). We run each competition
for three seeds. As shown in Table 3, Claude-Sonnet-4 also shows promising results, indicating that
our framework is also compatible and generalizable in terms of LLM type.

Effectiveness of proposed ensemble method. As highlighted in Table 4, MLE-STAR demonstrates
a significant performance improvement over the competing baseline, i.e., AIDE, achieving over a
12% higher rate of obtaining any medal even without additional ensemble strategy. Notably, by
ensembling multiple solution candidates, our approach yields even greater performance gains, i.e.,
MLE-STAR consistently improves the success rate for achieving any medal (and specifically gold
medals), also surpassing the median human expert’s performance by a larger margin compared to
scenarios where this ensembling method is not used. While simpler strategies, such as selecting
the solution with the best validation score or averaging final submissions, also offer benefits, MLE-
STAR shows stronger effectiveness, e.g., leading to a higher number of gold medals.

Furthermore, we conduct a sensitivity analysis on the number of ensemble rounds. Here, we utilize
four datasets as same as Table 3. Table 5 indicates that while we utilize five rounds for ensemble
strategy exploration, comparable performance can be achieved with fewer rounds.

Effectiveness of proposed components. Here, we focus on two key components of the proposed
approach: targeted refinement strategy and integrating search as a tool. As shown in Table 6, we
verify the effectiveness of our targeted refinement and the benefits of the search tool integration.
Specifically, our findings indicate that refining only the specific code block identified by the ablation
study agent is more effective than refining the entire codebase. Moreover, our experiments consistently
show that utilizing search as a tool significantly enhances the overall performance.
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Figure 4: Model usage (%) on image classifica-
tion competitions. Other models (11.7%), which
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train df = pd.read csv("./input/train

X
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Figure 5: Human intervention. By manually
adding a model description, MLE-STAR inte-
grates its training into the framework.

Qi model.fit (X train, y_train)

Improperly imputed missing values

Python script before refined by data usage checker 4]

# Combined DataFrame for Consistent Preprocessing data = pd.read_csv('./input/train.csv')

all_df = pd.concat([train_df, test_df])

Python script after refined by data leakage checker
Impute N ical feat ith medi
# Impute Numerica eatures wi median def process_xyz_files(df): # Features using XYZ files

num _cols = ['Age', 'RoomService', 'FoodCourt'] def volume (£ilepath):

for col in num_cols:

if all_df[col].isnull().any():

lines = open(filepath, 'r').readlines()

a_vec = list(map(float, lines[2].split()[1:]))
median_val = all_df[col] .median()

all_df[col] = all_df[col].fillna(median_val)

b_vec = list(map(float, lines[3].split()[1:]))
c_vec = list(map(float, lines[4].split()[1:]))

volume = np.dot(a_vec, np.cross(b_vec, c_vec))

Python script after refined by data leakage checker
# Preprocess Training Set and get fit statistics return abs (volume)
X_train_processed, stats = for index, row in df.iterrows():
preprocess_data(X_train, fit_stats=None) file path = os.path.join(row['id'], 'geometry.xyz')
# Preprocess Test Set using statistics from Train Set df.loc[index, 'atomic_volume'] = volume(file path)

X_test processed = return df

preprocess_data (X_test, fit stats=stats) data = process_xyz_files(data) # Process the train data

Figure 6: MLE-STAR’s data leakage checker
introduces appropriate preprocessing.

Figure 7: MLE-STAR’s data usage checker cap-
tures previously unused information.

5 Discussion

Qualitative observations on selected models. Figure 4 illustrates the model usage of two MLE
agents: AIDE and MLE-STAR. AIDE primarily employs ResNet [44] for image classification. How-
ever, ResNet, released in 2015, is now considered outdated and can result in suboptimal performance.
In contrast, our MLE-STAR primarily utilizes more recent and competitive models like Efficient-
Net [45] or ViT [46], leading to the performance gain, winning 37% of the medals, more than AIDE,
which wins 26% of the image classification challenges.

Human intervention. MLE-STAR readily adopts even more recent models with minimal human
intervention. While MLE-STAR automatically constructs a model description { Tnode1, Tcode } USING
search as tool, a natural extension involves leveraging human expertise for this construction. As shown
in Figure 5, by manually adding a model description for RealMLP [47], MLE-STAR successfully
integrates its training into the framework, a model not previously retrieved. In addition, users can also
specify the target code blocks by replacing the ablation summary with manually written instructions.

Misbehavior of LLMs and corrections. We observe that while the code generated by the LLM
executed correctly, their content is sometime unrealistic, exhibiting hallucination. For example,
Figure 6 illustrates an impractical approach where test data is preprocessed using its own statistics.
Since test data must remain unseen, correction in the code is necessitated, for which, MLE-STAR em-
ploys a data leakage checker A;cakage to identify such issues in the generated Python script. If a
problem is detected, MLE-STAR refines the code. As shown in the Figure, MLE-STAR successfully
identifies the issue and modifies the code by, first extracting statistics from the training data and then
preprocessing the test data using these calculated statistics. In addition, the improvement process
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Figure 8: Solution refinement trajectory.

can fail to generalize when A;cakage is not employed, as exemplified in Table 7. In this example,
the validation accuracy (i.e., the target objective) improves, but the test accuracy drops significantly.
This is attributed to the LLM performing feature engineering using the target variable Transported,
which is not accessible in the test set, leading to data leakage and subsequently, poor test performance.

We also observe that LLMs often generate Python scripts that overlook some of the provided data
sources. For example, in the nomad2018-predicting competition, Gemini-2.0-Flash solely loads
train.csv, neglecting the use of geometry.xyz (see Figure 7). To address this, MLE-STAR employs
Agata, Which reexamines the task description to ensure that all given data is utilized. As shown
in Figure 7, this design enables MLE-STAR to incorporate previously neglected data. As a result,
performance is significantly improved, as shown in Table 8.

Progressive improvement via MLE-STAR refinement. This section details the progressive im-
provement of solutions achieved by MLE-STAR, as measured by validation metrics. Given the
task-specific nature of evaluation metrics, we report the average relative error reduction (%) across
the all 22 challenges in MLE-bench Lite [16]. This metric measures the extent to which MLE-
STAR reduces the error of an initial solution. Figure 8 demonstrates a consistent improvement as
MLE-STAR proceeds through its refinement steps, which each step focusing on refining a single
code block via an inner loop. Significantly, the magnitude of improvement is notable in the early
refinement stages. We posit that this stems from MLE-STAR’s ablation study module which helps to
target the most influential code blocks for modification first.

Discussion on potential plagiarism. Following MLE-bench, we utilize Dolos [48], a source code
plagiarism detection tool, to analyze generated solution code by MLE-STAR, against the top associ-
ated notebooks (i.e., Jupyter notebook) from each Kaggle competition. Our analysis, summarized
in Table 13 (see Appendix L), shows that no final solution code and notebook pair exceeded a
60% similarity score (i.e., a criteria suggested from the MLE-bench paper), indicating no detected
instances of plagiarism. This also shows that MLE-STAR’s solution is sufficiently new compared to
the existing solutions in Kaggle.

6 Conclusion

We propose MLE-STAR, a novel MLE agent designed for various ML tasks. Our key idea is to utilize
a search engine to retrieve effective models and then explore various strategies targeting specific
ML pipeline components to improve the solution. The effectiveness of MLE-STAR is validated by
winning medals in 64% (where 36% are gold medals) of the MLE-bench Kaggle competitions.

Limitation. We acknowledge that MLE-STAR requires higher cost due to increased token usage.
We include corresponding cost analysis in Appendix K. However, it is worth to note that still, with
Gemini-2.0-Flash, the cost of MLE-STAR is only about $0.24 per each ML challenge. In addition,
since Kaggle competitions are publicly accessible, there is a potential risk that LLMs might have been
trained with the relevant discussions about the challenge. Nevertheless, we show that MLE-STAR’s
solution is sufficiently novel (using LLM as a judge) compared to the discussions on Kaggle (see
Appendix H), and also show that its similarity compared to notebooks on Kaggle does not exceed
60%, alleviating such plagiarism issue (see Appendix L).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims in the introduction and abstract accurately reflect the contribution
and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not have a theory in this paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details in Section 4. We also provide all prompts
we use in Appendix A.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: The benchmark is already open-sourced, but we do not currently submit code
when submitting.

Guidelines:

¢ The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide the details in Section 4 and Appendix F.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments are conducted with multiple seeds, and we report one standard
error of the mean.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide compute resources we used in Appendix F.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We do not have any ethical concerns.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts in Appendix .
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: Our framework does not introduce risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited all papers and datasets in Reference.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not have human subject.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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