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ABSTRACT

Neural speech codecs (NSCs) enable high-quality real-time communication (RTC)
at low bit rates, making them efficient for bandwidth-constrained environments.
However, customizing or modifying the timbre of transmitted voices still relies on
separate voice conversion (VC) systems, creating a gap in fully integrated systems
that can simultaneously optimize efficient transmission and streaming VC with no
additional latency. In this paper, we propose a high-efficiency VChangeCodec,
which integrates the Voice Changer model directly into the speech Codec. This
design seamlessly switches between the original voice mode and customized voice
change mode in real-time. Specifically, leveraging the target speaker’s embedding,
we incorporate a lightweight causal projection network within the encoding module
of VChangeCodec to adapt timbre at the token level. These adapted tokens are
quantized and transmitted to the decoding module, to generate the converted speech
of the target speaker. The integrated framework achieves an ultra-low latency of
just 40 ms and requires fewer than 1 million parameters, making it ideal for RTC
scenarios such as online conferencing. Our comprehensive evaluations, including
subjective listening tests and objective performance assessments, demonstrate that
VChangeCodec excels in timbre adaptation capabilities compared to state-of-the-
art (SOTA) VC models. We are confident that VChangeCodec provides an efficient
and flexible framework for RTC systems, tailored to specific operator requirements.

1 INTRODUCTION

Speech coding is an essential module in real-time communication (RTC) services. It aims to compress
waveforms into representations at a lower bitrate at the sender side and decompress to reconstruct
the signal at the receiver side. Recent end-to-end (E2E) neural speech codecs (NSCs) achieve
high-quality, low-bitrate communication through advanced compression, especially in bandwidth-
constrained network environments, enhancing the user experience in various RTC services such as
online meetings and voice calls. As mobile live streaming surges in popularity (Chen et al., |2024),
users are increasingly interested in modifying their timbre to match personal preferences. And some
voice changers (i.e., Conan’s bow tie voice changer) have been applied as sound effects processing in
live streaming. However, existing NSCs cannot directly provide customized timbre capabilities.

The demand for customized voice changer has driven the exploration of voice conversion (VC)
technologies, which involve altering the stylistic characteristics of speech while preserving its
linguistic content. Substantial progress in neural network has catalyzed their broad integration into
VC methodologies. These include a variety of models such as Transformers (Tanaka et al.| 2019;
Kameoka et al.| 2020), Auto-encoders (Qian et al.,|2019), Generative Adversarial Networks (GAN)
(Kaneko et al.,|2019; Kaneko & Kameokal 2018; Nguyen & Cardinaux}|2022),and diffusion models
(Popov et al.} 20215 [Liu et al.,|2021a). Nevertheless, their non-streamable architecture and reliance
on full utterance inputs severely impede RTC applications.

Later, streaming VC with causal processing is proposed to address these challenges. Recent ap-
proaches (Chen et al., 2023} Liu et al., | 2021b}; |Guo et al.,[2023} |Li et al., |2023; [Kovela et al.,[2023)
adopt pre-trained feature extraction networks (e.g., HuBERT (Hsu et al.,|2021) and WavLM (Chen
et al., 2022))) to obtain the speech content and use the phoneme-posteriorgram (PPG) (Chen et al.,
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Figure 1: Flowchart comparison of the NSC with built-in voice changer solution and existing VC
solutions. Blue waveform denotes a source speech and yellow waveform is a target speech. (a)
SOTA VC solution as the pre-processing in RTC. (b) Customized voice change only integrated in
the encoding module in RTC. Blue block represents a universal pre-trained codec. Yellow block
represents the VC module. The switch determines voice change activation.

2023} Liu et al.,2021bj Kovela et al.| [2023} Wang et al., 2023) methodology to reconstruct the speech
waveform. Additionally, a prevalent strategy (Hayashi et al.,|2022; |[Ning et al., 2024) incorporates
a teacher model to guide the training of the streaming model or to transfer knowledge from a non-
streaming VC model. These models have shown promise in their ability to capture the stylistic
features of speech, offering a potential way to customized VC. However, traditional VC architectures
are typically deployed offline on the user side, by adding a pre-processing system before speech codec.
These approaches often struggle with the real-time processing demands of continuous bitstreams due
to high latency. Moreover, integrating speech compression with real-time voice changers in RTC
systems remains a challenge.

Unlike the existing streaming VC models, we consider the voice changer from the perspective of
real-time voice communication. In Figure|l|(a), mainstream VC is the pre-processing module in the
entire RTC processing chain, and it requires a universal codec to transmit the converted waveform.
Long algorithmic delays are unavoidable to such VC processing. Due to the rapid development of
NSCs, it is possible to add the feature of customized voice changer into the codec, directly. An ideal
NSC would compress speech into compact tokens rich of all speech information. Specifically, in
FigurdT] (b), users can switch the voice change mode at any time according to personal preferences
at the sender side and generate new adapted timbre tokens. The new token is fed to the decoding
networks at the receiver side to reconstruct the altered speech without any changes to the decoding
part. This design not only avoids protocol compatibility issues in RTC systems but also minimizes
the impact on online services by updating the encoding part only. In addition, we emphasize that our
method is tailored for deployment through operator networks rather than peer-to-peer scenarios. In
our system, VC is a built-in part of the voice communication module, with internal configurations
managed by operators, ensuring users cannot arbitrarily modify settings and thus minimizing privacy
risks. Detailed usage scenarios of VChangeCodec in operator networks are provided in[A.1]

Following the pipeline in Figure|l|(b), we propose VChangeCodec, a lightweight and low-latency
speech codec that integrates the Voice Changer model into the Codec for an operator-oriented
network, to mitigate the high complexity and audio artifacts in the recent neural codecs (Pons
et al., 2021} such as SoundStream (Zeghidour et al., 2021)) and EnCodec (Défossez et al., [2022)
partially satisfy these properties. Specifically, we use scalar quantization (SQ) to replace residual
vector quantization (RVQ) in VChangeCodec. For voice changer, we propose a lightweight causal
projection network in the encoder to perform timbre adaptation on tokens extracted by the pre-trained
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codec. Then, these adapted tokens are dequantized and decoded to realize a customized voice changer
in the decoder. The target timbre customization is achieved using near-parallel training data generated
through open-source voice conversion toolkits. We introduce a new commitment loss between the
target token and the predicted token. Besides, we keep the generator-discriminator training strategy
used in pre-trained codec. Consequently, our VChangeCodec can deploy all operations at the encoder
side, and support seamless online switching between the original and customized voice changer
modes. The experiment results prove the merit of our voice changer compared with SOTA VC
models and demonstrate that the tokens from high-quality VChangeCodec preserve intrinsic speech
information. We provide speech samples in the demonstration page|'} We encourage the reader
to listen. Our contributions are summarized as follows:

* We develop a new lightweight and high-quality speech codec, VChangeCodec, which can
integrate customized voice changer directly. Compared to Descript-Audio-Codec (Kumar|
et al.,[2024)), the number of parameters is reduced by 70x and achieves comparable quality.

* VChangeCodec can perform the original voice mode and seamlessly switches the customized
voice changer by introducing a lightweight causal projection network (Converter). It is
noted that, Converter can be easily and efficiently combined with other existing encoder-
quantizer-decoder architecture codecs to achieve VC.

* We identify a critical issue in applying VC models in RTC systems due to the high complexity
and long latency. Our new framework combines the compression and VC into a single
end-to-end model, to fulfill actual technical requirements with latency of 40 ms.

* Our research is operator-oriented and pertains to non-peer-to-peer communication, offering
the potential to introduce innovative features to existing voice communication systems with
minimizing the privacy infringement.

2 RELATED WORK

For detailed related work on Neural speech compression models and streaming voice conversion
(VO), please refer to the Appendix

To our knowledge, neural speech compression has not yet successfully been combined with VC
tasks. The earliest work (Strecha et al., [ 2005)) achieves VC directly by re-using the feature of speech
codec based on the code excited linear predictive (CELP) (Bessette et al.,[2002)) to warp the spectral
envelope. The StreamVoice in (Wang et al.l 2024) employs a low latency streaming codec Audiodec
(Wu et al.| 2023)) as a speaker prompt for the causal context-aware language model. The overall
pipeline latency is 124.3 ms on an A100 GPU. StreamVC (Yang et al.,[2024b) utilizes SoundStream
Zeghidour et al.| (2021) and a pre-trained HuBERT |Hsu et al.|(2021) model to generate pseudo-labels,
enabling real-time processing even on mobile devices, and modifies the communication protocol for
both transmission and reception by incorporating the target speaker’s embedding. However, there is
still a lack of integrated solutions that can achieve efficient transmission and real-time VC without
additional latency. Our proposed method has the following key differences: 1) We aim to ensure
seamless switching between the original voice mode and voice change mode in the RTC services.
2) We design VChangeCodec in such a way that compression and voice changer can be carried out
jointly by the same codec. 3) We insert a lightweight causal projection network between the encoder
and decoder, allowing us to achieve the conversion of the target speaker’s timbre with low latency.

3 VCHANGECODEC

The diagram of VChangeCodec is shown in Figure[2] Our VChangeCodec uses the fully causal
convolutional encoder-decoder network, that performs temporal downsampling with a pre-defined
striding factor. We quantize the latent feature using a scalar quantization (SQ) to reduce complexity
in RTC systems. To better understand the workflow, we show the VChangeCodec’s network structure
and specific training and inference workflows of the original voice mode in Figure din Appendix
[A.2] For voice changer, we take the metadata of target speaker and the quantized token from SQ as
input to a lightweight causal projection network (Converter).

'https://anonymous666-speech. github.io/Demo-VChangeCodec/
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Figure 2: Overview of the proposed VChangeCodec. The number left on each block represents
the output dimension of the structure. Causal Conv1D in the encoder and decoder denote the pre-
processing layer and post-processing layer. Residual Unit in the encoder and decoder denote the
downsampling blocks and upsampling blocks. (a) The encoder of VChangeCodec. (b) The scalar
quantization. (c) The pre-defined metadata (deep grey block). (d) The converter network. (e) The
decoder of VChangeCodec. (f) The discriminator.

3.1 BASIC STRUCTURE OF VCHANGECODEC

Generator. The generator is composed of three components, the encoder, the quantization and the
decoder. The input signal represented as x with a frame length 20 ms, the signal z is divided into
320 bins. The sampling rate is 16000Hz. The encoder network utilizes a multi-scale downsampling
convolutional neural network (CNN) to process the input signal x and distill it into a low-dimensional
latent feature z. The encoder network consists of a one-dimensional (1D) convolutional layer, a
preprocessing layer, and multiple downsampling blocks based on a serial of the dilated CNN and
residual unit, and a 1D convolution layer with tanh() activation function to convert into the latent
feature z € Vj, where Vis an IN-dimensional space (N = 84). For each frame of 320 samples,
the initial 1D convolutional layer extracts intrinsic features from the input signal, yielding an M-
channel (M=16) feature. The subsequent preprocessing layer, which includes a causal convolution
followed by a ReLLU activation and average pooling with a downsampling factor of 2, maintains the
M -channel output. Then, four consecutive downsampling blocks continue the information extraction,
and the number of output channels of each downsampling block is 2x of the previous downsampling
block. Each downsampling block is composed of four dilated residual units with a dilation rate
d = {1, 3,5, 7}, and an average pooling by a pre-defined downsampling factor r4 = {2,4,4,5}. The
output feature after four downsampling blocks is 256 x 1 with 320x compression.

Residual Vector Quantization (RVQ) in neural codecs can lead to substantial codebooks, thereby
increasing the storage demands of RTC services. Inspired by previous work (Mentzer et al.| 2023},
Yang et al., 2024a), to mitigate high complexity, we introduce a scalar quantization (SQ) to each
dimension of z between the encoder network and the decoder network. We claim that our approach is
distinct, tailoring the codebook size and implementation to optimize speech codec performance. The
SQ discretes the original value with a certain codebook uniformly distributed in [—1.0, 1.0]. We set
the R to adjust the range of z, which can help adapt to the target bitrate. The value of R is 2 in our
study. We obtain the value of quantization Z, which is calculated as follows:

round(z * R)

1
7 ey

2:

For different parameter configurations, the calculation of bit rate can refer to the Appendix
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Regarding to the decoder network, the decoder reconstructs the speech signal using the quantized
feature tokens 2. It is a mirror version of the encoder network. The decoder component employs
upsampling layers in contrast to the downsampling layers utilized in the encoder. To alleviate
calculation complexity, we substitute the transpose convolution with a simpler repeat operation.
Additionally, the upsampling rates are applied in the inverse sequence of the downsampling rates.
Finally, the final 1D convolution layer is used to generate 320 speech samples.

Discriminator. Our adversarial training framework relies on multi-resolution STFT-based (MR-
STFT) patch discriminators, which capture spectral structures across varying frequency resolutions.
6 different scales are used with FFT points of K = {60, 120, 240, 480, 960, 1920}. Each discrim-
inator takes the magnitude spectrum and its logarithmic spectrum is concatenated as input. The
discriminators are constructed with seven 2D convolutional layers, with a kernel size of (3, 3).

3.2 CUSTOMIZED VOICE CHANGER

Problem Formulation. First, a speaker identity U is a random variable drawn from the speaker
population py; (+). Then, an acoustic vector Z = Z(1 : T') is a random process drawn from the joint
acoustic distribution pz(-|U). In this paper, Z is drawn from the quantized feature token 2. Here
acoustic refers to the phonetic, prosodic, content and timbre information and etc. Finally, given the
speaker identity and acoustic, the speech segment X = X (1 : T') is a random process randomly
sampled from the speech distribution, i.e. px (:|Z(U)), which characterizes the distribution of the
speaker U ’s speech uttering the acoustic Z. In this paper, we will be working on speech waveform.

Our goal is to design a voice converter that produces the conversion output, X1.,2, which preserves
the acoustic in X except timbre information, but matches the speaker characteristics of speaker Us.
Formally, an ideal speech converter should have the following desirable property:

Px,.,(12(U2) = 21(u2)) = px (|1Z(U) = 21(u2)) 2

Eq. (2) means that we replace the speaker information U; = w4 in the source speech Z; = z; with
the target speaker’s identity Us = uo, the converted speech should sound like wuo uttering z;.

Metadata from opensmile. We follow an open-source implementation E] to acquire attributes
of the target speaker, namely metadata of the target speaker. We extract 88-dimensional acoustic
features with openSMILE (Eyben et al., 2010) including fy, loudness, f; — f3 frequency, Mel-
frequency cepstral coefficient (MFCC), and etc. Specifically, we use the pre-defined feature set of
eGeMAPSv02. We anticipate that these acoustic features can represent speaker identity (timbre
information) and capture the subtle emotional variations in speech. We do not employ pre-trained
speaker embeddings such as (Wan et al.| 2018)). It takes into account the computational costs and
storage space considerations inherent in RTC services. This approach also minimizes training
overhead, allowing us to focus our efforts on VChangeCodec.

Causal projection network (Converter). We design a lightweight projection network to achieve
timbre adaptation of tokens, which can be conceptualized as a process of “coloring” the source
speaker’s tokens to resemble those of the target speaker. We utilize the encoder described in section
to extract discrete tokens, while the decoder is employed for speech generation. The parameters
of both encoder and decoder are frozen, meaning we directly load the parameters from the pre-trained
codec of the original voice mode. Our subsequent intuitive justification in [3|demonstrates that no
further training is necessary to achieve high-quality timbre adaptation of tokens.

As mentioned in Figure[T} we construct the projection network (namely Converter) of voice changer
using causal convolutions to enable streaming inference, restricting each output frame to only depend
on current and past input frames. Compared to standard convolution, causal convolution shifts
padding to precede rather than trail inputs along the time dimension. Specifically, the Converter
is composed of three grouped residual units with dilated convolutional layers in Figure We
concatenate the metadata of target speaker uy and quantized tokens 2; as input to Converter. So
the input channels of the first grouped residual unit is /N + 88, and the three grouped residual units
with dilation rate d = {1, 3,9}. The kernel sizes of all convolutional layers are 3, and the number of

“https://github.com/audeering/opensmile-python
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channels is 128, 256, 128 successively in the converter. We also use the SQ on the adapted tokens
obtained from the three grouped residual units. Finally, the quantized tokens 25 = 21 (u2) are mapped
to /N-channel to input the decoder of VChangeCodec for target speech generation. In particular,
our converter network introduces no additional latency and is well compatible with the encoding
module and decoding module. Our converter is a plug-and-play module that can be combined with
any end-to-end encoder-quantizer-decoder codec.

Computational latency. To profile inference latency, we run the encoder, converter and decoder on
a single CPU core of a smartphone iPhone X takes 2 ms for each 20 ms chunk of speech. It is tested
that the entire pipeline can run continuously in real-time in a streaming fashion. The end-to-end
latency, a combination of architectural and inference latency, is thus 40+ ms in this environment.

3.3 TRAINING STRATEGY

For training of VChangeCodec, we refer to the generator-discriminator training strategy. We employ
a combination of reconstruction loss L, adversarial (GAN) loss L,q,, feature match loss L,
perceptual loss IL,,.. The detailed description is provided in Appendix For Converter network, we
continue to use the multiple loss components mentioned above, with the ground truth being replaced
by the target speech. Moreover, we introduce a token commitment loss for timbre adaptation.

Token commitment loss. For acquiring the better token adaptation, we design a commitment loss
between the ground-truth token of target speech at the encoder, and the predicted token from source
speech at the causal projection network. This equation assumes the target speech can be perfectly
recovered through VChangeCodec. The converter aims to obtain high-quality target speech, so it
is desirable for the quantized values obtained from the source speech through the causal projection
network and those obtained from the target speech through the encoder to be as close as possible.
Token commitment loss is defined as follow:

Lr(z) = [|2(z)) — C(2(2))| ©)

where 2(x) and 2(Z) denote the quantized value of source speech at the causal projection network
and the quantized value of target speech at the encoder value respectively. C' is the Converter network.
Therefore, the overall loss is a weighted summation of the above loss functions.

]Loverall(X> = )\sp * Lsp + )\ad'u * Ladv+

4
Afm ¥ Lipm + Ape * Lipe + A x L “)

4 EXPERIMENTS

4.1 SETUP

Data sources. For the speech codec VChangeCodec, the training set is divided into two classes.
The clean speech is from LibriTTS (Zen et al.,|2019), DNS Challenge (Reddy et al.|[2020). The mixed
speech is generated by combining clean speech and background interference (e.g., noise), including
DNS Challenge, MIR-1K (Hsu & Jang, |[2009) and FMA (Defferrard et al.,[2016)). In addition, the
training set includes English and Mandarin utterances, all utterances are sampled at 16 kHz. There
are 68 independent test utterances including English and Mandarin selected for objective quality
measurement. We present additional details of datasets used for training in[A.3] For the voice changer,
we use VCTK (Veaux et al., 2016) and AISHELL-3 (Shi et al., 2020) as the source utterances, they
are internally expressive multi-speaker English and Mandarin corpus. All speech utterances are at
a sampling rate of 16 kHz. We select one male and one female speaker from the internal datasets
which contain 1-hour data, respectively, to serve as the target timbre. Then we utilize the open source
Retrieval-based-Voice-Conversion (RVC) projectE]to construct approximately parallel data. This
project yields satisfactory subjective test results for VC, and the GPU inference speed is fast. For
the test datasets, we select 42 unseen utterances (15 English corpus, 15 Mandarin corpus, 12 internal
corpus) from 42 different speakers.

*https://github.com/RVC-Project/Retrieval-based- Voice-Conversion-WebUI
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Metrics of original voice mode. For evaluating the speech codec, we perform evaluations along
four axes: POLQA, ViSQOL, STOI and DCRMOS. POLQA (ITU-T} 2011)) is selected as the
primary objective evaluation metric, which predicts the Mean Opinion Score (MOS) by comparing
the spectrum of the reference and degraded signals. The predicted MOS score ranges from 1.0 to
4.75, and the average MOS of each system is calculated for evaluation. ViSQOL (Chinen et al.,
2020) is an intrusive perceptual quality metric that uses spectral similarity to the ground truth to
estimate a MOS. STOI (Taal et al., 2011)) shows a high correlation with the intelligibility of noisy and
time-frequency weighted noisy speech. Moreover, we organize a subjective listening test by referring
to the ITU-T P.800 recommendation (ITU-T||1996), and the quality evaluation is performed by using
the Degradation Category Rating (DCR) method. We select eight Chinese speech utterances and
invite 24 native listeners to participate in the listening test.

Metrics of voice changer mode. For evaluating the voice changer, the evaluations are performed
along four axes: naturalness, intelligibility, Mel Cepstral Distortion (MCD) and speaker sim-
ilarity. Naturalness is rated by DNSMOS (Reddy et al., 2021)) which consists of three scores for
the quality of speech (SIG), noise (BAK), overall (OVRL), P.808 MOS. Intelligibility is assessed by
word and character error rate obtained using the Whisper (Radford et al.,|2023) ASR model. Note
that the evaluation is conducted only on the English utterances. MCD measures the distance between
the Mel-cepstral coefficients of the converted and reference audios. We follow (Guo et al., [2023) by
using ResemblyzerE]to rate speaker similarity.

Model and training recipe. We use the AdamW optimizer (Loshchilov & Hutter, [2017)) and the
Exponential LR scheduler to train the model. For the VChangeCodec of the original mode, the batch
size is set to 16. For each training iteration, we randomly select speech clips with a duration of 2
seconds. For the Converter network of voice changer mode, we fix the encoder and decoder of the
proposed VChangeCodec. The batch size is set to 8 with two V100 GPUs. The learning rate is
set 0.0002. The parameters of the discriminator remain consistent under two modes. The weights
{Asps Aado Afm, Ape, AT} are set to {1,2,1, 20, 50}. The only difference is that in the original voice
mode, the goal is to reconstruct the clean speech, whereas in the voice changer mode, we need to
predict the target speaker’s timbre.

Table 1: Comparison with SOTA speech codec on different metrics. Optimal and suboptimal
performance is highlighted. Underline: Optimal performance at low/medium bitrates is underlined.

METHOD BITRATE POLQA 1+ ViSQOL 1 STOI?t
8 kbps 2.79 3.71 85.35
OPUS (Valin et al,, 2012) 10 kbps 3.46 4.15 88.99
16 kbps 4.29 4.46 91.96
7.2 kbps 3.69 3.96 95.24
EVS (3GPP, 2014) 9.6 kbps 3.89 3.87 96.28
. 6 kbps 3.45 4.12 94.82
LYRA2 9.2 kbps 3.60 4.16 95.71
12 kbps 3.70 4.22 97.28
ENCODEC (Défossez et al.,[2022) 24 Kbps 4.06 4.93 98.02
DESCRIPT AUDIO CODEC (Kumar et al.|[2024) 8 kbps 4.30 4.43 98.25
6 kbps (N = 56) 4.02 4.40 96.81
VCHANGECODEC (OURS) 95kbps (N =84)  4.10 447 97.86

*https://github.com/resemble-ai/Resemblyzer
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4.2 QUALITY COMPARISON WITH SOTA SPEECH CODEC

To evaluate the performance of the proposed VChangeCodec, we conduct a comparison with the
OPUS (Valin et al.} |2012), EVS (3GPP, |2014) and SOTA open-source neural codecs, LyraZEL and
Encodec (Défossez et al.| 2022) at different bitrates. We also compared it with the most competitive
Descript Audio Codec (DAC) (Kumar et al.,[2024). We provide a comprehensive description of the
these codecs’ configuration in the Appendix [A.5] The POLQA, ViSQOL and STOI scores of all
codecs are illustrated in Table [} We observe that the proposed VChangeCodec exhibits superior
performance compared to OPUS, EVS, Lyra2 and Encodec at similar bitrates. It is noted that the
POLQA MOS of VChangeCodec is beyond 4.0, and it even outperforms the Encodec at 24 kbps.
Similarly, the ViSQOL score is the highest in all speech codecs. It indicates the merit of the proposed
VChangeCodec according to the objective measurement. We analyze the parameter size in the
complexity analysis in Table ] Notably, the comparsion with DAC proves that our VChangeCodec
achieves similar performance with much lower parameters (70x reduction).

Furthermore, we present the subjective listening test result as illustrated in Figure[3] Due to DAC and
Encodec’s lower real-time performance compared to Lyra2, we present complementary subjective
evaluation results in Table[9] We observe that the subjective quality of the proposed VChangeCodec
is better than other systems under all bitrates. The absolute subjective MOS of VChangeCodec is
comparable to OPUS at 16 kbps, which proves that the quality of VChangeCodec at low bitrates
is comparable to SP-based approaches at medium and high bitrates. Our VChangeCodec can
reconstruct audio with high fidelity and free of artifacts and achieve a high level of compression to
learn a compact token that preserves high-level structure. This indicates that our VChangeCodec is
capable of effectively reconstructing speech in the original voice mode, which also lays a foundation
for the subsequent voice changer.

4.3 COMPARISON TO OTHER VC METHODS

We first select a male timbre for comparative ex-
. . . 5.0 Ref = 4.82
periments, with the results for the female timbre =~ 7 p--mimmms s
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presented in Appendix We select three re- . H Ours

cently proposed VC models capable of one-shot 45 = ¢ a2

many-to-many synthesis as the baselines: Diff- . ¢ Evs

VC (Popov et al} 2021), VQMIVC (Wang etal, § *° ¢

2021)), QuickVC (Guo et al., 2023), DDDM- g OpUS
s

VC|Choi et al.| (2024), FACodec Ju et al. (2024).
These solutions are trained on the VCTK, Lib-
riTTS or Librilight dataset, respectively. Base-
line VC results are produced by the pre-trained
VC models provided in official GitHub reposito- 0 5 10 15 20

ries. The evaluation results are shown in Table[2 Bitrates (kbps)

The DNSMOS score shows that VQMIVC, Diff-

VC, QuickVC, DDDM-VC, FACodec and our Figure 3: Subjective listening test results.
method achieve similar ratings, all with the over-

all (OVRL) results better than the target speech.

And our method acquires the best MOS score. Compared with other VC methods, we obtained
the lowest MCD score of 5.76, indicating that our spectral reconstruction is close to perfect and
can successfully convert the spectrogram to the style of ground truth. For intelligibility, QuickVC
achieves high performance by incorporating text transcriptions of source utterances, leveraging
the Hubert speech recognition module for supervisory guidance. In contrast, our model operates
without text-based supervision, relying solely on acoustic features. As detailed in the Appendix [A.6]
particularly in the case of female voice timbres, our codec model has significantly narrowed this gap.
Further, our method achieves suboptimal performance and outperforms VQMIVC and Diff-VCTK.
Importantly, we have obtained the best speaker similarity score, surpassing Diff-VC by 8.33% and
FACodec by 6.99%. The test results in Table [2{demonstrate that our model performs significantly
better than the baselines in terms of four evaluations. This proves that our method not only satisfies
practical voice timbre customization needs but also offers a high-efficiency codec that excels in

3.0

*https://opensource.googleblog.com/2022/09/lyra-v2-a-better-faster-and-more-versatile-speech-codec.html
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objective performance at low bit rates, beneficial for voice changer. This also demonstrates that the
superior timbre adaptation achieved by our token-level VC approach.

To more accurately represent voice quality, we have supplemented the subjective evaluation of our
voice change mode experiments by including the latest VC benchmarks, DDDM-VC and FACodec.
We provide a comprehensive description of the subjective evaluation of N-MOS and S-SMOS in the
Appendix Our method is particularly tailored to specific target timbres, offering superior quality
in the voice conversion. In summary, VChangeCodec demonstrates superior performance for VC,
achieving lower latency, better MCD scores, higher speaker similarity and competitive subjective
evaluation compared to baseline methods. These comprehensive improvements make it well-suited
for real-time VC.

Table 2: Comparison with SOTA VC methods. Optimal and suboptimal performance is highlighted.
Our method achieves competitive if not the best performance on all metrics.

Naturalness 1 MCD | Intelligibility | Similarity 1
SIG BAK OVRL MOS MCD WER CER Resemblyzer

VQMIVC (Wang et al.}[2021) 3.48 3.94 3.15 3.42 7.02 26.24% 14.56% 66.06%

METHOD

Diff-VC (Popov et al..|2021) 3.31 4.12 3.08 3.70 7.81 22.60% 11.15% 79.74%

QuickVC (Guo et al.||2023) 3.44 3.89 3.07 3.68 7.01 10.22 % 4.55 % 58.33%
DDDM-VC|Choi et al.|(2024)  2.66 3.52 2.35 3.30 7.92 42.39% 25.02% 78.19%
FACodec|Ju et al.|(2024) 2.99 3.71 2.63 3.29 6.87 17.18% 10.33% 81.08 %
OURS 3.35 4.11 3.11 3.71 5.76 16.19 % 7.67 % 88.07 %
Oracles (Target) 3.29 4.04 3.06 3.84 — — — 100.00%

Table 3: Results of the ablation study on our proposed VChangeCodec integrated the voice changer.

Naturalness 1 MCD | Intelligibility | Similarity 1
ABLATION ON
SIG BAK OVRL MOS MCD WER CER Resemblyzer
OURS 335 411 3.11 3.71 5.76 16.19 %  7.67 % 88.07 %
- wo Metadata 3.30 4.08 3.05 3.69 5.91 19.19%  9.52% 86.37%
- Dims = 128 3.18 394 3.02 3.62 6.12 22.38%  12.78% 86.76%
- Dims =512 3.34 413 3.71 3.42 5.90 20.01% 11.20% 88.06%
-Ar=0 3.24  4.07 2.98 3.68 5.93 19.30%  10.25% 87.76%
-Ar =30 3.22  4.06 2.97 3.72 5.88 19.95%  11.06% 88.06%

- Encoder-tuning  3.25  4.08 3.00 3.69 6.04 25.11%  14.38% 87.73%

4.4  ABLATION STUDY

We perform a thorough ablation study on our model, systematically varying individual elements of
our training strategy and model settings. For model comparison, we employ the four objective metrics
detailed in Section[£.1] We conduct ablation studies across four dimensions: metadata, dimensions
of the Converter network, loss weights of the token commitment loss, and retraining of the encoder.
For the decoder, we aim for the system to maintain constant parameters at the decoding stage and
possess the characteristic of direct decoding. The outcomes of the ablation study are detailed in Table
[3] For our ablation study, we train each model with a batch size of 8 and select the model by the best
validation performance. Our model uses the metadata from Opensimle as input, the parameter of Ap
is 50. The dimension of the Converter is 256 and the encoder is frozen.

First, we eliminated metadata to assess its impact and observed a speaker similarity metric of 88.07%.
Removing metadata led to a roughly 2% decrease in performance, suggesting that indicates that
metadata is beneficial to the target timbre, presumably because features such as fj within the metadata
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play a positive role. Consequently, we retained the metadata. Subsequently, we discovered that
the Converter dimension significantly influences performance, with lower dimensions consistently
yielding inferior metrics. A 128-dimensional model tends to underperform while increasing the
dimensions to 512 yields a marginal performance improvement. However, considering the number
of parameters, we set the dimension to 256. The introduction of a token commitment loss leads
to a noticeable enhancement in performance, particularly in terms of target timbre similarity and
MCD. Finally, retraining the encoder proves to be unnecessary, as it results in a decline across
multiple metrics. The above comprehensive ablation experiments illustrate the optimal parameter
configuration of our model.

Table 4: The number of parameters on different speech codecs

Neural codecs Bitrate  # Params (M)
Lyra2 6 24-84
Descript-Audio-Codec (DAC) 8 76
VChangeCodec (Ours) 6 0.88
VChangeCodec (Ours) 9.5 0.97

Complexity analysis. We get the number of parameters using PyTorch ptflops. The parameter
sizes of other codec methods come from their original papers. Our VChangeCodec runs at different
bitrates due to different encoder dimensions N. The number of parameters are listed in Table[d] The
parameter size of our VChangeCodec in original voice mode is minimal, which is crucial to meet
real-time deployment requirements. In contrast, the large parameter counts of other methods may
impact their application in the RTC services.

We compare the real-time factor (RTF) over different neural codecs. RTF is defined as the ratio
between the temporal length of the input audio and the time needed for the encoder/decoder and
converter. We implement our method on a single thread MacBookPro 2021 (Apple M1 Pro chips)
and the RTF results are listed in Table[5] The experimental results indicate that the proposed codec
outperforms Lyra2 and the increased complexity from the converter is reasonable.

Table 5: Real time factor (RTF) of our proposed method.

Neural codecs Encoder Decoder Converter
Lyra2 0.009 0.012 -
Original voice mode 0.007 0.007 -
Voice changer mode 0.007 0.007 0.003

5 CONCLUSION

We present a novel speech codec framework, VChangeCodec, which seamlessly integrates customized
voice changer capabilities directly into its architecture. This integration facilitates real-time switching
between the original voice mode and the customized voice change mode. Our approach combines
scalar quantization techniques with timbre adaptation using a lightweight causal projection network at
the token level. Both subjective and objective evaluations against existing speech codecs demonstrate
the superiority of our pre-trained codec model, establishing a promising foundation for voice changers.
Extensive experiments and comprehensive ablation studies validate the advantages of our model over
state-of-the-art voice conversion methods, achieving ultra-low latency of 40 ms for real-time voice
conversion. We aim to establish an innovative methodology for voice changers within the real-time
communication ecosystem.
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6 ETHICAL STATEMENT.

Our codec is primarily designed for deployment through an operator’s network, rather than for peer-to-
peer communication scenarios. Specifically, our lightweight VChangeCodec is embedded within real-
time communication systems, where the encoder and decoder are immutable and maintained by the
operators. The embedded speaker representation is injected at the sender side and is also maintained
by the operators, with the designated timbres being pre-defined and inaccessible to ordinary users.
Our method can restrict to a limited target voice, preventing its misuse for impersonating specific
targets outside this pre-defined range. We recommend that operators display a notification label on
the screen during calls and meetings, such as “Current content is generated by AI!”.

7 REPRODUCIBILITY STATEMENTS

For the implementation of our model, we provide Figure 2]and a description of the model architecture
in Section along with the hyper-parameter of the model configuration in Section We
have shown training and inference processes, and model details in Appendix [A.2] To ensure the
reproducibility of our experiments, we also share the model details. There are also training loss
functions in the Appendix as well as specific parameter settings. We have uploaded demo
samples and we plan to make the inference code public. If our potential legal issues can be resolved,
we are prepared to publish the full training implementation for research purposes.
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A APPENDIX

A.1 USAGE SCENARIOS OF VCHANGECODEC

Specifically, our lightweight VChangeCodec is embedded within RTC systems, where the encoder
and decoder are immutable and maintained by the operators. The embedded speaker representation
is injected at the sending end and is also maintained by the operators, with the designated timbres
being pre-defined and inaccessible to ordinary users. In contrast, previous voice conversion models,
if positioned on the user side, would allow users to arbitrarily modify the pre-defined timbres before
they pass through the sender’s encoder. The converted timbre, then transmitted through the operator’s
codec, could raise issues of timbre infringement.

A.2 FLOWCHART OF VCHANGECODEC
We add the detailed training and inference workflows for the original voice mode. We also give the

internal structure of the Residual Unit. It is composed of three layers of dialted convolution.

Train

Inference lX Mﬂ*‘
X et X et ®

(a) (e) MR-STFT
16 ConvlD 16 ConvlD Discriminator

(Causal ConvlD Causal Conv1D)
Unit
256 Residual. Unit 05z Residual Unit
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Figure 4: Overview of the proposed VChangeCodec in original mode and the detail of residual unit.
(a) The encoder of VChangeCodec. (b) The scalar quantization. (e) The decoder of VChangeCodec.
(f) demonstrates the discriminator.

A.3 BITRATE CALCULATION

Given the target bitrate r, the dimension of latent feature [V, the theoretical bitrate in each frame
is computed as —1 * N * logz(ﬁ). In this paper, the value of R is 2. For the 84-dimensional
codec model, using a codebook size of 5, the bit rate calculation using Shannon’s formula is
—1 % 84 x logQ(ﬁ) % 50/1000 = 9.75 kbps. Since we are considering a uniform distribution
where entropy is maximized, the actual bit rate will be lower, at 9.5 kbps.
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A.4 TRANING STRATEGY

The training loss contains multiple components.

Reconstruction loss. The first one is the reconstruction spectrum loss (Arik et al., 2018)). It refers
to the reconstruction spectrum loss of multi-resolution STFT (MR-STFT) which targets minimizing
the spectrum convergence loss and L1 loss in the logarithmic magnitude spectrum with multiple FFT
lengths, which is calculated as follows:

A 1Xa — Xl
Lop(X) = (I[log(Xa) — log(Xa) £, + ——5—) o)

d Xa
where X and X, are the spectrum of ground-truth speech and predicted speech with an FFT length
of 2.
Adversial loss. Secondly, we also adopt the adversarial training scheme and incorporate it into the
training loss function (Mao et al.,[2017). The adversial loss function (generator (G)) is defined in:

Laay(2) = E[(1 - D(G(x)))’] (©)
where z is the signal in the time domain.
Feature match loss. In addition, the feature match loss (Kumar et all [2019) is appended to

minimize the L, loss between the feature maps of the discriminator for real and generated signal,
which is expressed as:

L-1
1
Lym(z) = E[7 Y [Di(x) = Di(Gx))| @)
1=0
where Lis the number of layers of the discriminator.

Perceptual loss. Then we incorporate the perceptual loss proposed in (X1ao et al.| [2023) which
evaluates the perceptual loss by comparing the power of the spectrum in equivalent rectangular
bandwidth (ERB) of the ground-truth and predicted spectrum, defined in:

Lype(2) = [[P(z) = P(2)| L, ®)

where P is the ERB power of ground-truth spectrum () and predicted spectrum (z).

Table 6: Comparison with SOTA VC methods. Optimal and suboptimal performance is highlighted.
Our method achieves competitive if not the best performance on all metrics.

Naturalness 1 MCD | Intelligibility | Similarity 1
SIG BAK OVRL MOS MCD WER CER Resemblyzer
VQMIVC (Wang et al.}|[2021)  3.44 3.87 3.07 3.15 7.52 32.43% 19.85% 52.70%

METHOD

Diff-VC (Popov et al.||2021) 3.49 4.05 3.20 3.60 8.41 30.27% 14.70% 70.13%

QuickVC (Guo et al.|[2023) 3.53 4.11 3.27 3.58 7.37 14.32 % 7.43 % 47.30%
DDDM-VC|Choi et al.|(2024)  3.54 3.92 3.19 3.23 7.11 29.73% 17.57% 73.80%
FACodec Ju et al.|(2024) 3.50 3.99 3.23 3.40 6.78 16.20% 8.29% 74.11 %
OURS 3.50 3.98 3.21 3.56 6.28 15.71 % 8.38 % 84.80 %
Oracles (Target) 3.54 3.94 3.20 3.70 - — - 100.00%

A.5 EXPERIMENTAL DETAILS

Datasets details. Regarding the training set in original voice mode, we use DNS challenge 2020
dataset and the LibriTTS dataset as the speech part of the training set. Recognizing that neural speech
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coding is inherently data-driven, we incorporated mixed speech segments, to enhance the robustness
of our scheme. Extra mixed speech utterances (mixed with noise or music) are also included, in
which the noise clips are from the DNS challenge, and music clips are from MIR-1k and FMA. This
configuration is designed for actual RTC scenarios, including pure voice communications, or voice
with background interference (e.g. office noise, background music playback, etc). We randomly
selected noise crops and adjusted the mixing gain of the noise component using SNR, and the target
SNR is 15 dB. SNR = 10l0og10(S5?/(kN)?), S denotes clean signal energy and N is noisy signal
energy. For all training data, we randomly sample 98% of the dataset for train, 1% for valid and 1%
for test. Finally, the unseen test set is strictly an out-of-domain dataset, ensuring it was not exposed
to any model during training.

Details of neural codecs. For RTC service, 16kHz is the standard sampling rate, as the voice is the
primary component in-service. Higher sampling rates are typically for audio (including music), but
we focus on speech, operating at a sampling rate of 16kHz. For fair comparison in our experiments,
systems (DAC, Encodec, Lyra2) with higher sampling rates were downsampled to 16kHz to ensure
consistent evaluation conditions. Specifically, we used the official Encodec versions for 12 kbps
(ng = 16) and 24 kbps (n, = 32), with the model’s sampling rate at 24kHz. We downsampled the
original test audio from 48kHz to 24 kHz for input into the encoder model and downsampled the
output speech to 16kHz to compare the quality at the same sampling rate. Similarly, for DAC, we
used the official configured at 16kHz, the default 8kbps model for inference. For Lyra2, we conducted
evaluations using the official 16 kHz, default 6kbps and 9.2 kbps model for inference.

A.6 COMPARISON TO OTHER VC METHODS ON THE FEMALE TARGET SPEAKER

We conduct the same comparative experiments as described in Section4.3] with the target female
timbre in Table [ We use the same four metrics for evaluation. The experimental outcomes are
largely in alignment with our prior findings, yet it is observable that QuickVC demonstrates superior
performance across multiple metrics. However, its speaker similarity performance is comparatively
poor. Overall, we have achieved comparable performance to other VC methods. This demonstrates
that our voice change mode is capable of delivering personalized voice services.

A.7 SUBIJECTIVE EVALUATIONS ON THE TARGET TIMBRE

Details of subjective evaluations. We evaluated six VC systems, focusing on two target timbres
(one male and one female). The test set includes two male and three female speakers. This resulted in
five conversion pairs for each specific target timbre, leading to a total of 30 converted utterances from
the six VC systems evaluated by each subject. Subjects scored naturalness (NMOS) and similarity
(SMOS) for 30 converted utterances for the specific target timbre. The subjective results are presented
in the Table[7]and Table

Table 7: N-MOS and S-MOS on Male timbre (Correspondence Table 2)

METHOD N-MOS S-MOS Resemblyzer
VQMIVC (Wang et al.|[2021)) 3.24 2.18 66.06%
Diff-VC (Popov et al.,[2021)) 2.94 2.60 79.74%
QuickVC (Guo et al.} 2023) 4.05 2.60 58.33%
DDDM-VC|Choi et al.|(2024) 2.00 2.60 78.19%
FACodec|Ju et al.| (2024) 2.73 2.82 81.08%
OURS 3.55 3.98 88.07 %

Based on our findings, we can confidently state that our model attains the highest scores in subjective
evaluation for S-MOS and the near-optimal performance in N-MOS. Our method is particularly
tailored to specific target timbres, offering less versatility in timbre conversion but superior quality in
the conversion of selected timbres.
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Table 8: N-MOS and S-MOS on Male timbre (Correspondence Table 6)

METHOD N-MOS S-MOS Resemblyzer
VQMIVC (Wang et al.; 2021) 2.88 2.17 52.70%
Diff-VC (Popov et al.,[2021)) 3.02 2.05 70.13%
QuickVC (Guo et al.}2023) 4.07 2.01 47.30%
DDDM-VC|Choi et al.|(2024) 2.71 2.36 73.80%
FACodec Ju et al.| (2024) 3.35 2.61 74.11%
OURS 4.00 4.38 84.80 %

A.8 SUBJECTIVE EVALUATIONS ON SOTA NEURAL SPEECH CODECS

We clarify why DAC and Encodec were not included in Figure 3. Specifically, our method addresses
Real-Time Communication (RTC) requirements through a fully streaming architecture with low
computational complexity. Current implementations of codecs like Descript Audio Codec (DAC)
and Encodec face significant limitations in meeting these RTC requirements. Specifically, DAC’s
architecture, with its 75 million parameters (VChangeCodec only needs 1 million parameters), does
not support streaming inference, making it unsuitable for real-time applications. While Encodec does
offer streaming capabilities, its processing speed (measured in Real-Time Factor, RTF) is significantly
lower than Lyra2, which processes audio approximately 10 times faster in real-time scenarios.

To make our assessment more complete and credible, we have added the subjective evaluation results
of DAC@8kbps, Encodec@ 12kbps, and SpeechTokenizer. We selected 10 subjects to conduct
DCRMOS evaluation on 4 Mandarin corpora. Each subject compared the quality of the four systems
and the reference audio, scoring them on a 1-5 scale. The results are shown in the following table.
It should be emphasized that we have a streaming structure. Our subjective scores indicate that the
competitive quality is achieved with the lowest delay and parameter quantity.

Table 9: Subjective evaluation on different neural speech codecs.

Neural codecs VChangeCodec (Ours) DAC  Encodec  SpeechTokenizer
Bitrate 9.5kbps 8kbps  12kbps -
MOS 4.54 4.55 3.52 3.74

A.9 RETRAINED SOTA VC ON THE TARGET TIMBRE

Table 10: Comparison with the retrained/finetuned SOTA VC methods. Optimal and suboptimal

performance is highlighted. Our method achieves competitive if not the best performance on all
metrics.

Naturalness T MCD | Intelligibility | Similarity 1
SIG BAK OVRL MOS MCD WER CER Resemblyzer

METHOD

VQMIVC (Wang et al.|2021)  3.46 3.82 3.03 2.95 6.58 118.96%  89.71% 56.61%

QuickVC (Guo et al.||2023) 3.38 4.11 3.16 3.74 6.31 9.07 % 4.96 % 87.57%
DDDM-VC Choi et al.|(2024)  2.21 3.28 1.96 3.34 6.73 29.49% 13.97% 83.00%
OURS 3.35 4.11 3.11 3.71 5.76 16.19 % 7.67 % 88.07 %
Oracles (Target) 3.29 4.04 3.06 3.84 — — — 100.00%

To comprehensively evaluate our model’s competitiveness, we conducted fair experiments by retrain-
ing selected baseline VC systems with our target timbre dataset in Table [L0] (Male timbre, corre-
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spondence Table 2). While Diff-VC and FACodec were excluded due to unavailable fy/spectrogram
extraction scripts and training procedures respectively, we focused on three advanced systems:
VQMIVC, QuickVC, and the recent DDDM-VC.

Retraining details are as follows: VQMIVC: Trained from scratch for 500 epochs using extracted fy
and spectral features from target male timbre data. QuickVC: Fine-tuned for 3200k steps on their
provided base model at 1200k steps (due to significant training time requirements). DDDM-VC:
Trained from scratch for 200k steps with offline-extracted f.

The objective evaluation results are presented in the table below. VQMIVC showed decreased
performance, likely due to the need for retraining a dataset-specific vocoder, which needs more
complexity. QuickVC demonstrated significant improvement in timbre similarity, though still
not reaching our performance. DDDM-VC showed improvements across all objective metrics.
Nevertheless, VChangeCodec maintains superior timbre adaptation capabilities and competitive voice
quality. Crucially, our system achieves these results with full streaming capability and a lightweight
architecture of less than 1 million parameters.

A.10 RELATED WORK

Neural speech compression models. The VQ-VAEs (Van Den Oord et al.,[2017) is a dominant
paradigm to train NSCs (Garbacea et al., 2019), which adopts a convolutional encoder and an
autoregressive wavenet (Van Den Oord et al., 2016)) decoder. SoundStream (Zeghidour et al., 2021)
incorporates the encoder-decoder network and residual vector quantizer (RVQ), combining adversarial
and reconstruction losses to achieve excellent generation quality and supporting streamable inference
on a smartphone CPU. Encodec (Défossez et al.,[2022) uses a multiscale STFT-based (MS-STFT)
discriminator to reduce artifacts and produced high-quality samples. They introduce a loss balancer
to stabilize training based on the varying scale of gradients coming from the discriminator. Descript-
audio-codec (Kumar et al.,2024) can achieve 90x compression with minimal loss in quality and fewer
artifacts by improved RVQGAN. However, existing neural speech coding|Zhang et al.|(2024); Du et al.
(2023)) models rely on higher parameter quantities to train neural networks to ensure speech quality.
Our VChangeCodec adopts scalar quantization instead of RVQ, which enables lighter streaming
inference and maintains high fidelity at lower bitrates.

Streaming voice conversion (VC). Diff-VC (Popov et al.,[2021) presents a scalable high-quality
method based on diffusion probabilistic modeling and considers real-time applications by developing
a faster forward Stochastic Differential Equations solver. VQMIVC (Wang et al.| [2021) employs
vector quantization (VQ) for content encoding and introduces mutual information (MI) as correlation
metrics to achieve disentanglement of content, speaker and pitch representations. QuickVC (Guo
et al.| |2023) proposes a lightweight VC model based on faster VITS (Kim et al.l [2021)) and uses
HuBERT-soft model to extract content information features. Recent solution (Chen et al., [2023)
tackles the streaming VC problem, but the inference latency of the entire streaming VC pipeline is
270 ms on a desktop CPU. The lightest AC-VC (Ronssin & Cernakl |2021)) model to our knowledge ,
when run on a CPU, exhibits an algorithmic delay of 57.5 ms. Considering the additional 10 ms delay
of the LPCNet pitch predictor in this system, and the 40 ms delay of the speech codec, the delay
will reach a cumulative latency of over 107.5 ms. However, all these solutions require long latency,
making it difficult to apply them in RTC scenarios. Our voice changer based on VChangeCodec can
be implemented on a smartphone with a low inference latency of 40+ ms.
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