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Abstract

Cropland mapping is an essential task in addressing environmental, agricultural,
and food security challenges. Unfortunately, most research works and products only
offer low to medium-sized resolution cropland mapping based on satellite imagery,
and their practical usage in Africa is often limited. Creating high-resolution
cropland maps requires extensive human labeling, which is a bottleneck for scaling.
This paper suggests a new method that leverages K-means clustering to improve
existing weak labels (e.g. from noisy global cropland maps) that can be used
to train higher-resolution cropland mapping models. The human and improved
weak labels can then be used in a deep semantic segmentation neural network to
detect the croplands. We perform simulations that showcase the added value of the
improved weak labels we generated.

1 Introduction

Up-to-date and high-resolution data on the spatial distribution of crop fields is critical for environmen-
tal, agricultural, and food security policies, especially in Africa, as most of the countries’ economies
heavily depend on agriculture. Cropland mapping from satellite imagery has been an essential topic
for the research community [1, 2, 3, 4, 5, 6]. Unfortunately, most research works and products only
offer low to medium-sized resolution cropland mapping based on satellite imagery datasets such as
Landsat [7]. Additionally, as they heavily rely on machine learning (ML) methods trained on data
from Western fields, their practical usage in Africa is often limited.

Semantic segmentation has been used extensively for cropland mapping and, more broadly, land
cover mapping [8, 9, 10, 11, 12]. In this work, we use the Torchgeo package [13] to implement a
deep semantic segmentation training workflow on satellite imagery, specifically a U-Net [14] with
a Resnet-50 [15] backbone model. To increase the size and coverage of our training dataset, we
developed a method that improves existing weak labels using the K-means unsupervised clustering
method [16, 17]. Our simulations reveal that the improved weak labels, mostly the negative samples,
can improve the cropland mapping system in a scenario where human labels are limited.
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(a) An area from the CHEF and TNC weak labels (b) K-means polygons before and after filtering
Note: The red areas are the potential cropland areas

2 Problem statement

Consider an area of interest (AOI) represented by a k× k dimensional matrix A where aij is the pixel
from A located at (i, j). We assume that we have a corresponding mask M with the same dimensions,
where each pixel from M , mij ∈ {0, 1, 2}, and where 0 = unknown, 1 = non − cropland,
2 = cropland. In a cropland mapping semantic segmentation problem, let’s consider the distribution
of M ’s pixels in different scenarios:

1. Complete ground truth (CGT): we would like the distribution of mij to be {0 : 0, 1 :
1− p, 2 : p}, where p ∈ [0, 1] is the ground truth proportion of pixels covering croplands.
This scenario matches with the case where we have ground truth labeling for every single
pixel in M . This is the idealistic situation but the least realistic in real-life scenarios, given
the large AOIs used for semantic segmentation and the limited budget and time organizations
and researchers have for their projects.

2. Complete labeling (CL): in this case, we may want to label through a labeling tool every
single pixel aij . In this case, we can reasonably assume that the distribution of mij is
{0 : 0, 1 : 1− (p− ϵ), 2 : p− ϵ} where (p− ϵ) ∈ [0, 1] and ϵ ∈ [0, 1] is the level of noise
(mislabels) introduced by the labeling. Lower ϵ, the better the labeling. In a perfect labeling
scenario, though most of the time unrealistic, ϵ = 0.

3. Partial labeling (PL): in this case, labeling is not performed on the whole AOI, which is often
the case in real-life settings. So, the distribution of mij is {0 : q, 1 : 1− (p− ϵ+ αq), 2 :
p − (ϵ + (1 − α)q)} where (p − (ϵ + (1 − α)q) ∈ [0, 1]), and q ∈ [0, 1] is the share of
unknown/unlabeled pixels.

Considering the PL scenario as the most realistic one, many techniques have been developed by
the community to leverage weak labels for semantic segmentation tasks [18, 19, 20]. The goal is
to decrease q as much as possible without affecting ϵ too much. It is straightforward to virtually
decrease the missing labels proportion q, but it is hard to decrease it without substantially increasing
ϵ. For instance, we can reach q = 0 by simply classifying any pixel aij randomly, but this would
increase ϵ by a large margin and likely hurt our segmentation model training more. In this work, we
propose an approach to decrease q, by leveraging existing weak labels, while keeping the noise ϵ as
low as possible. In such a case, we hypothesize the semantic segmentation model should be improved
by using the proposed data augmentation approach.

3 Using K-means to strengthen cropland weak labels

Semantic segmentation is an essential task in computer vision that involves classifying each pixel
in an image into one of multiple categories. By utilizing unsupervised learning, we aim to generate
enhanced weak labels to augment the existing strong/human labels available to train the segmentation
model.

For the experiments in this paper, we use cropland weak labels obtained from The Nature Conservancy
(TNC). These labels cover the Central Highlands Ecoregion Foodscape (CHEF) in Kenya. However,
these labels seem ambiguous1, making them challenging to be used to train a segmentation model
(Figure 1a). For the input imagery, we use Planetscope Basemap imagery provided by theNorwegian
International Climate and Forests Initiative (NICFI).

The K-means algorithm is used to cluster the pixels in the PlanetScope imagery into 10 clusters
based on their spectral characteristics. The goal is to generate weak labels with better boundaries.

1The cropland boundaries are not well delineated.
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After clustering, we convert each cluster of pixels produced into a polygon and filtered out tiny and
too-large polygons to reduce noise. The filtering of tiny and very large polygons is done sequentially
using a quantile-based approach, where polygons covering areas smaller than a threshold are filtered
out. Specifically, the 99th area quantile threshold is first used to filter out tiny polygons. Then the
top 25% polygons (from the first filter) in terms of area are filtered out. This approach has been
validated visually as the vast majority of the clusters are tiny and overlay other clusters of pixels
while a tiny fraction of the clusters represents very large areas. The input of the K-means is made of a
concatenation of pixels randomly sampled from the 88 imagery quads covering the CHEF region. We
randomly sample 1 million pixels out of the 4096× 4096 = 16, 777, 216 pixels per quad, resulting in
a sample size of 88 million pixels, each with five features representing each band. Finally, we predict
the cluster class for each pixel in the original quad (4096x4096), save the prediction as a GeoTIFF,
and extract polygons from the pixel clusters (e.g. see figure 1b). Following this, we estimate the
proportion of crop cover in each polygon by measuring the area of the polygon that intersects with
the TNC label polygons. The determination of cropland vs. non-cropland is then based on a threshold
value of the intersection. From visual inspection, we classify as cropland any polygon with an
intersection strictly greater than 0.8 and as non-cropland any polygon with an intersection strictly
lower than 20%. These enhanced weak labels are then used to augment the original training dataset
for the semantic segmentation task.

4 Simulation experiments

To validate our method, we run simulation experiments where we consider an ideal case and more
realistic scenarios. The experiments help to identify the best way to leverage the weak labels and
quantify their potential benefit for cropland semantic segmentation. Our experiments are as follows:

1. Human labels: we train the model on the AOI with the complete set of human labels, and
we evaluate on the exact same AOI. This experiment is conducted for the sole reason of
having the best performance level our system can potentially achieve given a more limited
or noisier set of labels. In this experiment, we have 67 human labels (polygons) covering
4.056% of the AOI.

2. Human mined labels: we train the model on the AOI with the complete set of human labels
and improved weak (mined) labels.

3. Human mined negative labels: we train the model on the AOI with the complete set of
human labels and improved weak (mined) negative labels (i.e., Non-cropland labels only).

4. Human mined positive labels: we train the model on the AOI with the complete set of human
labels and improved weak (mined) positive labels.

5. Half human labels [mined [negative/positive] labels]: we conduct the same experiment
as previously but with only half human labels. This case is for simulating more realistic
real-world scenarios where we only have a fraction of the whole data labeled by humans.

6. Human TNC labels: we train the model on the AOI with the complete set of human labels
and TNC’s raw positive weak labels.

7. Human TNC mined negative labels: we train the model on the AOI with the complete set of
human labels, TNC’s raw positive weak labels, and the improved weak (mined) negative
labels.

We run experiments on the L15-1237E-1025N quad and evaluate on the same AOI but only on strong
(human) labels. This means that the training and testing sets only overlap with the part of human
labels contained in the training set. Our baseline segmentation model is based on the well-known
U-Net architecture [14] with a ResNet50 backbone [15]. It is trained using a cross-entropy loss
function and the Adam optimization algorithm [21]. The trained model is used to make predictions
on the same imagery. The output produced by the model is a binary mask that shows the location of
cropped regions in the input imagery.

Table 1 presents the F1 scores and additional metrics2 of the cropland mapping segmentation task in
different experiment settings, and across the two label classes Cropland and Non-Cropland.

2The number of mined labels, the area covered by these labels, the precision, and the recall for each class.
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Experiment Label Mined Labels Mined Area F1 score Precision Recall

Human labels Cropland 0 0.000 0.980 1.000 0.960
Non-Cropland 0 0.000 0.991 1.000 0.982

Human mined labels Cropland 606 11.016 0.979 0.999 0.960
Non-Cropland 369 6.702 0.991 1.000 0.982

Human mined negative labels Cropland 606 11.016 0.979 1.000 0.959
Non-Cropland 369 6.702 0.991 1.000 0.982

Human mined positive labels Cropland 606 11.016 0.979 0.999 0.960
Non-Cropland 369 6.702 0.991 1.000 0.982

Human TNC labels Cropland 0 0.000 0.976 0.995 0.957
Non-Cropland 0 0.000 0.991 1.000 0.982

Human TNC mined negative labels Cropland 606 11.016 0.978 0.997 0.959
Non-Cropland 369 6.702 0.991 1.000 0.982

Half human labels Cropland 0 0.000 0.533 0.408 0.767
Non-Cropland 0 0.000 0.962 0.991 0.935

Half human mined labels Cropland 606 11.016 0.694 0.553 0.931
Non-Cropland 369 6.702 0.974 0.999 0.950

Half human mined negative labels Cropland 606 11.016 0.841 0.916 0.777
Non-Cropland 369 6.702 0.985 0.992 0.979

Half human mined positive labels Cropland 606 11.016 0.324 0.196 0.929
Non-Cropland 369 6.702 0.901 0.998 0.821

Half human TNC labels Cropland 0 0.000 0.289 0.170 0.960
Non-Cropland 0 0.000 0.880 1.000 0.785

Half human TNC mined negative labels Cropland 606 11.016 0.581 0.417 0.959
Non-Cropland 369 6.702 0.961 1.000 0.925

Table 1: Experiment results

Notes: In every experiment, we train and evaluate on the same area. Experiments only differ on the type and number of labels provided during training. A detailed
description of each experiment can be found in the section4.

The first set of experiments leverages the complete human labels combined with eventually other
labels, whether the mined labels or the raw weak labels. This first part simulates the ideal case
where we have the complete set of labels from humans and, eventually, some additional weak labels.
The Human labels experiment for cropland achieves, as expected, a very high F1 score of 0.980,
indicating overfitting of the model. The F1 score for non-cropland is even higher (0.991). And
therefore, we see no added value from the mined/weak labels in this scenario. These results are only
helpful as they indicate results we could achieve if we had all the human labels at our disposal. But
this scenario is usually less likely, and most of the time, we might get only a portion of the human
labels.

The following set of experiments shows results where only half the human labels are used in the
training sets. The results show that as the number of human labels decreases (by half in this case), the
F1 scores globally decrease. The F1 score for cropland in the Half-human labels experiment is only
0.533, indicating a significant drop in performance. This drop is mainly due to a large decrease in the
precision (only 0.408). However, the performance for non-cropland remains high, indicating that
the segmentation task could still identify non-cropland areas relatively well, even with fewer human
labels. Using all the mined labels in addition to half the human labels (Half human mined labels)
improves the cropland F1 score from 0.533 to 0.694. But the highest F1 score is obtained when only
the negative mined samples are used in addition to half the human labels (Half human mined negative
labels). The cropland F1 score, in this case, reaches 0.841, with a precision of 0.916, while the recall
is almost the same as the one obtained with the Half human labels experiment.

Using the raw (positive) weak labels from TNC in addition to half the human labels (Half human TNC
labels), on the contrary, degrades the F1 score for cropland from 0.533 to 0.289. Even by combining
the TNC raw (positive) weak labels, the mined negative labels, and half human labels (Half human
TNC mined negative labels), the F1 score is only 0.581. This confirms our assumption that the raw
weak labels should not be used directly to augment the training set, and implicitly show the added
value of our mining approach.

These experiments indicate the potential of mining weak labels for large-scale cropland mapping.

5 Conclusion

The accurate mapping of cropland fields through high-resolution satellite imagery is crucial for
Africa’s agricultural and food security policies. Unfortunately, labeling is the main bottleneck to
building high-resolution cropland mapping systems. Our study presents a novel methodology to
improve existing weak labels using K-means clustering, in order to augment existing training data,
usually human labeled. The experimental results confirm that human labeling is vital for accurate
results, while mining labels can significantly enhance large-scale cropland mapping. Therefore, the
proposed system could be an essential tool for large-scale cropland mapping.
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