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Abstract

Score-based Generative Models (SGMs) approximate a data distribution by perturbing it
with Gaussian noise and subsequently denoising it via a learned reverse diffusion process.
These models excel at modeling complex data distributions and generating diverse samples,
achieving state-of-the-art performance across domains such as computer vision, audio gen-
eration, reinforcement learning, and computational biology. Despite their empirical success,
existing Wasserstein-2 convergence analysis typically assume strong regularity conditions–
such as smoothness or strict log-concavity of the data distribution–that are rarely satisfied
in practice. In this work, we establish the first non-asymptotic Wasserstein-2 convergence
guarantees for SGMs targeting semiconvex distributions with potentially discontinuous gra-
dients. Our upper bounds are explicit and sharp in key parameters, achieving optimal
dependence of O(

√
d) on the data dimension d and convergence rate of order one. The frame-

work accommodates a wide class of practically relevant distributions, including symmetric
modified half-normal distributions, Gaussian mixtures, double-well potentials, and elastic
net potentials. By leveraging semiconvexity without requiring smoothness assumptions on
the potential such as differentiability, our results substantially broaden the theoretical foun-
dations of SGMs, bridging the gap between empirical success and rigorous guarantees in
non-smooth, complex data regimes.

1 Introduction

Score-based Generative Models (SGMs), also known as diffusion-based generative models (Song & Ermon,
2019; Song et al., 2021; Sohl-Dickstein et al., 2015; Ho et al., 2020), have rapidly emerged over the past few
years as a popular approach in modern generative modelling due to their remarkable capabilities in generating
complex data, surpassing previous state-of-the-art models, such as Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014) and Variational AutoEncoders (VAEs) (Kingma & Welling, 2014). These models
are now widely adopted in computer vision and audio generation tasks (Kong et al., 2020; Chen et al., 2021;
Mittal et al., 2021; Avrahami et al., 2021; Kim et al., 2021; Bansal et al., 2023; Saharia et al., 2022; Po et al.,
2023; Zhang et al., 2023), text generation (Li et al., 2022; Yu et al., 2022; Lovelace et al., 2023), sequential
data modeling (Alcaraz & Strodthoff, 2023; Tashiro et al., 2021; Tevet et al., 2023), reinforcement learning
and control (Pearce et al., 2023; Chi et al., 2023; Hansen-Estruch et al., 2023; Reuss et al., 2023; Zhu et al.,
2023; Ding & Jin, 2024), as well as life-science (Chung & Ye, 2021; Jing et al., 2022; Watson et al., 2023;
Song et al., 2022; Weiss et al., 2023). We refer the reader to the survey papers Yang et al. (2023); Chen
et al. (2024) for a more comprehensive exposition of their applications.

The primary goal of SGMs is to generate synthetic data that closely match a target data distribution πD,
given a sample set. In particular, these models generate approximate data samples from high-dimensional
data distributions by combining two diffusion processes, a forward and a backward process in time. The
forward process is used to iteratively and smoothly transform samples from the unknown data distribution
into (Gaussian) noise, while the associated backward process reverses the noising procedure to generate new
samples from the starting unknown data distribution. A key role in these models is played by the score
function, i.e. the gradient of the log-density of the solution of the forward process, which appears in the
drift of the stochastic differential equation (SDE) associated with the backward process. Since this quantity
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depends on the unknown data distribution, an estimator of the score must be constructed during the noising
step using score-matching techniques (Hyvärinen, 2005; Vincent, 2011).

The widespread applicability and success of SGMs have been accompanied by a growing interest in the
theoretical understandings of these models, particularly in the convergence analysis under different metrics
such as Total Variation (TV) distance, Kullback Leibler (KL) divergence, Wasserstein distance, e.g., Block
et al. (2020); De Bortoli et al. (2021); Bortoli (2022); Lee et al. (2022); Yang & Wibisono (2022); Kwon et al.
(2022); Liu et al. (2022); Oko et al. (2023); Lee et al. (2023); Chen et al. (2023a;b); Li et al. (2024); Pedrotti
et al. (2024); Conforti et al. (2025); Benton et al. (2024); Strasman et al. (2025); Bruno et al. (2025); Tang
& Zhao (2024); Mimikos-Stamatopoulos et al. (2024); Wang & Wang (2024); Silveri & Ocello (2025); Yu
& Yu (2025). In this work, we provide a non-asymptotic convergence analysis in Wasserstein distance of
order two, as this metric is often considered more practical and informative for estimation tasks (see e.g.,
equation 4), and is closely connected to the popular Fréchet Inception Distance (FID) used to assess the
quality of images in generative modeling (see, e.g., Section 4). A significant limitation of prior analysis in
Wasserstein-2, e.g., Strasman et al. (2025); Gao et al. (2025); Bruno et al. (2025); Tang & Zhao (2024); Wang
& Wang (2024); Yu & Yu (2025), is their reliance on strong regularity conditions–such as smoothness or
strict log-concavity – of the data distribution and its potential. These assumptions facilitate mathematical
tractability but limit the applicability of theoretical results to more general settings, especially when the
data distribution is only semiconvex and the potential’s gradient may be discontinuous. The only exception
outside the strict log-concavity regime is the recent contribution in Silveri & Ocello (2025), where the authors
assumes that the data distribution is weakly convex. However, their analysis still requires the potential to be
twice continuously differentiable (see, e.g., Silveri & Ocello (2025, Proofs of Propositions B.1 and B.2)), and
the stepsize of their generative algorithm must be bounded by a quantity inversely proportional to the one-
sided Lipschitz constant of the potential (see Silveri & Ocello (2025, equation (30))). Still, such conditions on
πD in existing Wasserstein-2 convergence analysis do not fully reflect the complexity of real-world data, which
often exhibit non-smooth or non-log-concave distributions. Therefore, the aim of this work is to address the
following fundamental question:

Can Score-based Generative Models be guaranteed to converge in Wasserstein-2 distance when the data
distribution is only semiconvex and the potential admits discontinuous gradients?

We provide a positive answer to this question by combining recent findings in non-smooth, non-log-concave
sampling, with standard stochastic analysis tools, thereby presenting the first contributions in the Score-based
generative modeling literature for non-smooth potentials. We establish explicit, non-asymptotic Wasserstein-
2 convergence bounds for SGMs under semiconvexity assumptions on the data distribution, accommodating
potentials with discontinuous gradients. This framework covers a variety of practically relevant distributions
arising in Bayesian statistical methods, including symmetric modified half-normal distributions, Gaussian
mixtures, double-well potentials, and elastic net potentials, all of which satisfy our relaxed assumptions.

In addition, our estimates are explicit and exhibit the best known optimal dependencies in terms of data
dimension, i.e., O(

√
d) in Theorem 19, and rate of convergence, i.e., O(γ) in Theorem 21. In contrast to

prior works under the same metric Silveri & Ocello (2025); Gao et al. (2025); Strasman et al. (2025); Tang
& Zhao (2024), our estimates in Theorem 19 and Theorem 21 are derived without imposing any restrictions
on the stepsize of the generative algorithm1, making them more suitable for practical implementation. By
circumventing the need for strict regularity conditions on the score function and allowing discontinuities in
the gradients of the potentials, our work significantly expands the theoretical foundation of SGMs. This
advancement not only bridges the gap between empirical success and theoretical guarantees but also opens
new avenues for the application of diffusion models to data distributions with non-smooth potentials.

One source of error in the construction of the generative algorithm arises from replacing the initial condition
of the backward process with the invariant measure of the forward process. To ensure this error remains
small, the drift terms of both SDEs must satisfy, for instance, a monotonicity property with a time-dependent

1The results in Silveri & Ocello (2025); Gao et al. (2025); Strasman et al. (2025); Tang & Zhao (2024) require the stepsize
to be controlled in terms of the Lipschitz constant or the strong convexity constant of the target data distribution; see, e.g.,
Table 2 below. The only exceptions are the results in Bruno et al. (2025, Remark 12 and Theorem 10), which, however, requires
stronger assumptions on the data distribution than Assumption 2 below.
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bound that meets an appropriate integrability condition (see, e.g., equation 19 and equation 23 below). To
address this, we identify a time horizon for the generative algorithm that ensures the paths of the two
backward processes become contractive. Notably, the integrability condition on the monotonicity bound
depends only on the known constants in Assumption 2, making it significantly easier to verify in practice
compared to the analogous condition in Silveri & Ocello (2025, Appendix C), which relies on weak convexity
constants that are often difficult to estimate.

In conclusion, we present the first explicit, dimension- and parameter-dependent W2-convergence guarantees
for Score-based Generative models operating on data distributions having potentials with discontinuous
gradients. Our results mark an important step forward in the rigorous analysis of SGMs, providing both
theoretical insights and practical tools for advancing generative modeling in challenging, non-smooth regimes.

Notation. Let (Ω,F ,P) be a fixed probability space. We denote by E[X] the expectation of a random variable
X. For 1 ≤ p < ∞, Lp is used to denote the usual space of p-integrable real-valued random variables. The
Lp-integrability of a random variable X is defined as E[|X|p] < ∞. Fix an integer d ≥ 1. For an Rd-valued
random variable X, its law on B(Rd), i.e. the Borel sigma-algebra of Rd is denoted by L(X). Let T > 0
denote a time horizon. For a positive real number b, we denote its integer part by ⌊b⌋. The Euclidean scalar
product is denoted by ⟨·, ·⟩, with | · | standing for the corresponding norm (where the dimension of the space
may vary depending on the context). Let f : Rd → R be a continuously differentiable function. The gradient
of f is denote by ∇f . For any integer q ≥ 1, let P(Rq) be the set of probability measures on B(Rq). For µ,
ν ∈ P(Rd), let C(µ, ν) denote the set of probability measures ζ on B(R2d) such that its respective marginals
are µ and ν. For any µ and ν ∈ P(Rd), the Wasserstein distance of order 2 is defined as

W2(µ, ν) =
(

inf
ζ∈C(µ,ν)

∫
Rd

∫
Rd

|x− y|2 dζ(x, y)
) 1

2

.

Table 4 (Appendix E) lists the main symbols used throughout this work along with references to where they
are defined.

2 Technical Background for OU-based SGMs

In this section, we briefly summarize the construction of score-based generative models (SGMs) via diffusion
processes, as introduced by Song et al. (2021). The core idea behind SGMs is to employ an ergodic (for-
ward) diffusion process that gradually transforms the unknown data distribution πD ∈ P(Rd) into a known
prior distribution. A backward (in time) process is then learned to transform the prior back to the target
distribution πD by estimating the score function of the forward process. In our analysis, we consider the
forward process (Xt)t∈[0,T ] to be an Ornstein-Uhlenbeck (OU) process, consistent with the choice in the
original paper Song et al. (2021)

dXt = −Xt dt+
√

2 dBt, X0 ∼ πD, (1)

where (Bt)t∈[0,T ] is an d-dimensional Brownian motion and we assume that E[|X0|2] < ∞. For target data
distributions πD that are absolutely continuous with respect to the Lebesgue measure, and whose densities
are continuous and integrable, the backward process (Yt)t∈[0,T ] = (XT−t)t∈[0,T ] is well defined 2 (Millet et al.,
1989; Haussmann & Pardoux, 1986), and is given by

dYt = (Yt + 2∇ log pT−t(Yt)) dt+
√

2 dB̄t, Y0 ∼ L(XT ), (2)

where {pt}t∈[0,T ] is the family of densities of {L(Xt)}t∈(0,T ] with respect to the Lebesgue measure, B̄t is
an another Brownian motion independent of Bt in 1 defined on (Ω,F ,P). In practice, however, the initial
distribution is taken to be the invariant measure of the forward process, which corresponds to the standard
Gaussian distribution. As a result, the backward process in 2 becomes

dỸt = (Ỹt + 2 ∇ log pT−t(Ỹt)) dt+
√

2 dB̄t, Ỹ0 ∼ π∞ = N (0, Id). (3)
2The regularity of the Ornstein–Uhlenbeck semigroup for all t ∈ (0, T ] (see Appendix A, and Conforti et al. (2025, Proof of

Proposition 3.1)) ensures that the necessary and sufficient conditions for the reversibility of the diffusion process are satisfied;
see, e.g., Millet et al. (1989, Theorem 2.2) or (Haussmann & Pardoux, 1986, Theorem 2.1). These conditions on πD are included
in Assumption 2.
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Since the target distribution πD is unknown, the score function ∇ log pt in 2 cannot be computed exactly. To
overcome this limitation, an estimator s(·, θ∗, ·) is learned based on a family of functions s : [0, T ]×RM×Rd →
Rd parametrized in θ, aiming at approximating the score of the ergodic forward process 4 over a fixed time
window [0, T ]. In practice, s are neural networks and in particular cases, e.g., the motivating example in
Bruno et al. (2025, Section 3.1), the functions s can be carefully designed. The optimal value θ∗ of the
parameter θ is determined by optimizing the following score-matching objective

Rd ∋ θ 7→ E

[∫ T

0
|∇ log pt(Xt) − s(t, θ,Xt)|2 dt

]
. (4)

An explicit expression of the stochastic gradient of 4 derived via denoising score matching (Vincent, 2011)
is provided in Bruno et al. (2025, equation (8), Section 2). Following Bruno et al. (2025, Section 2), we
define an auxiliary process (Y aux

t )t∈[0,T ] that incorporates the approximating function s, which depends on
the (random) estimator of θ∗ denoted by θ̂. For t ∈ [0, T ], this process is given by

dY aux
t = (Y aux

t + 2 s(T − t, θ̂, Y aux
t )) dt+

√
2 dB̄t, Y aux

0 ∼ π∞ = N (0, Id). (5)

The auxiliary process 5 serves as a bridge between the backward process 3 and the numerical scheme 7, and
it facilitates the analysis of the convergence of the diffusion model (see the upper bounds involving Y aux

t in
the proof of Theorem 19 in Appendix C for further details). We now introduce the numerical scheme. Let
the step size γj = γ ∈ (0, 1) for each j = 0, . . . , J , where J ∈ N. The discrete process (Y EM

j )j∈{0,...,J+1} of
the Euler–Maruyama approximation of 5 is given, for any j ∈ {0, . . . , J}, as follows

Y EM
j+1 = Y EM

j + γ(Y EM
j + 2 s(T − tj , θ̂, Y

EM
j )) +

√
2γ Z̄j+1, Y EM

0 ∼ π∞ = N (0, Id), (6)

where {Z̄j}j∈{0,...,J+1} is a sequence of independent d-dimensional Gaussian random variables with zero
mean and identity covariance matrix. The continuous-time interpolation of 6, for t ∈ [0, T ], is given by

dŶ EM
t = (Ŷ EM

⌊t/γ⌋γ + 2 s(T − ⌊t/γ⌋γ, θ̂, Ŷ EM
⌊t/γ⌋γ)) dt+

√
2 dB̄t, Ŷ EM

0 ∼ π∞ = N (0, Id), (7)

where L(Ŷ EM
j ) = L(Y EM

j ) at grid points for each j ∈ {0, . . . , J + 1}.

3 Wasserstein Convergence Analysis for SGMs

In this section, we provide the full non-asymptotic estimates in Wasserstein distance of order two between
the target data distribution πD and the generative distribution of the diffusion model under the assumptions
stated below. As discussed in Bruno et al. (2025, Section 2 and Appendix A), it may be necessary to restrict
t ∈ [ϵ, T ] for ϵ ∈ (0, 1) in 4 to account for numerical instabilities that can arise during training and sampling
near t = 0 as also observed in practice in Song et al. (2021, Appendix C), and for the possibility that the
integral of the score function in 4 may diverge when t = 0. Therefore, we truncate the integration in the
backward diffusion at T − ϵ and consider the process (Yt)t∈[0,T−ϵ].

3.1 Assumptions

We begin by stating the main assumptions of our setting. The optimization problem in 4 can be solved
using algorithms such as stochastic gradient descent (Jentzen et al., 2021), ADAM (Kingma & Ba, 2015),
Stochastic Gradient Langevin Dynamics (Bruno et al., 2025, Section 3.1), and TheoPouLa (Lim & Sabanis,
2024), provided they satisfy the following assumption.
Assumption 1. Let θ∗ be a minimiser3 of 4 and let θ̂ be the (random) estimator of θ∗ obtained through
some approximation procedure such that E[|θ̂|2] < ∞. There exists ε̃AL > 0 such that

E[|θ̂ − θ∗|2] < ε̃AL.

3The score-matching optimization problem 4 is not necessarily (strongly) convex.
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Remark 1. As a consequence of Assumption 1, one obtains E[|θ̂|2] < 2ε̃AL + 2|θ∗|2.

In this work, we consider the potentials to be semiconvex functions– a broad generalization of convex func-
tions that includes non-convex functions whose curvature is bounded from below. This class allows for
discontinuities in the gradient while retaining key analytical properties of convex functions, such as the
existence of well-defined subgradients.
Definition 2. A function U is semiconvex if there exists K ≥ 0 such that U + K

2 | · |2 is convex.

Semiconvexity has received significant attention4 in the machine learning community (Davis et al., 2018; Sun
& Yu, 2019; Richards & Rabbat, 2021; Liu et al., 2021; Rafique et al., 2022), optimization (Li et al., 2020; Ma
et al., 2020; Li & Xu, 2021; Hu et al., 2025), optimal control (Cannarsa & Sinestrari, 2004), and the study
of fully nonlinear partial differential equations (Braga et al., 2019; Payne & Redaelli, 2023). We refer the
reader to Duda & Zajıcek (2009); Cattiaux & Guillin (2014) for comprehensive overviews of the mathematical
challenges associated with this class. Importantly, semiconvex functions may admit discontinuous gradients
which are characterized using the Fréchet subdifferential (Bazaraa et al., 1974; Alberti et al., 1992).
Definition 3. For a function U : Rd → R, we define the subdifferential ∂U(x) of U at x ∈ Rd as

∂U(x) =
{
p̃ ∈ Rd : lim inf

z→x

U(z) − U(x) − ⟨p̃, z − x⟩
|z − x|

≥ 0
}
. (8)

The set 8 is closed and convex, and may be empty in general. We say that U is Fréchet subdifferentiable
at x if ∂U(x) ̸= ∅. Any element h(x) ∈ ∂U(x) is called a Fréchet subgradient of U at x ∈ Rd. When
U is differentiable at x, the subdifferential reduces to ∂U(x) = {∇U(x)}. Crucially, semiconvex functions
are Fréchet subdifferentiable at every points in Rd, i.e. ∂U(x) ̸= ∅ for all x (Alberti et al., 1992; Cannarsa
& Sinestrari, 2004). In this case, h(x) + Kx corresponds to the classical convex subgradient (Vial, 1983,
Proposition 4.6). Moreover, every element of the subdifferential of a semiconvex function satisfies a one-sided
Lipschitz condition, ensuring the existence of h(x) ∈ ∂U(x). The following lemma– adapted from (Alberti
et al., 1992, Proposition 2.1) and presented in (Johnston et al., 2025, Lemma 1)–and its subsequent corollary
formalize this property.
Lemma 4. (Alberti et al., 1992, Modification of Proposition 2.1) Let U be a semiconvex function. Then, U
is locally Lipschitz continuous, the subdifferential set ∂U is non-empty, compact, and p̃ ∈ ∂U(x), if and only
if

U(z) − U(x) − ⟨p̃, z − x⟩ ≥ −K

2 |z − x|2,

for all x, z ∈ Rd.
Corollary 5. (Johnston et al., 2025, Corollary 1) Let x, z ∈ Rd, p̃ ∈ ∂U(x), and q̃ ∈ ∂U(z). Then,

⟨p̃− q̃, x− z⟩ ≥ −K|x− z|2.

We state the assumption on the target data distribution πD below. Recall that h(x) ∈ ∂U(x) is the Fréchet
subgradient of U at x ∈ Rd.
Assumption 2. The data distribution πD has a finite second moment and it is absolutely continuous with
respect to the Lebesgue measure with πD(dx) = exp(−U(x)) dx for some U : Rd → R. Moreover,

(i) The potential U is continuous and its gradient exists almost everywhere.

(ii) The potential U is K-semiconvex (on a ball). That is, there exists K,R ≥ 0, such that for all
x, x̄ ∈ Rd,

⟨h(x) − h(x̄), x− x̄⟩ ≥ −K|x− x̄|2, when |x− x̄| < R,

4Some of these references refer to semiconvex functions as weakly convex. We avoid this terminology to prevent confusion
with the notion of weak convexity introduced in Definition 10 below.
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(iii) The potential U is µ-strongly convex at infinity5. That is, there exists µ > 0 such that for all
x, x̄ ∈ Rd,

⟨h(x) − h(x̄), x− x̄⟩ ≥ µ|x− x̄|2, when |x− x̄| ≥ R, (9)
where R is the same as in point (ii).

Remark 6. As a consequence of Proposition 23, due to Conforti et al. (2025, Proposition 3.1), and As-
sumption 2-(i), we have that, for any t ∈ (0, T ), the map x 7→ ∇pt(x) is continuously differentiable, and for
any x ∈ Rd, the map t 7→ pt(x) is continuously differentiable on (0, T ]. Moreover, Assumption 2 implies that
the processes in 2 and 3 have a unique strong solution.

Next, we consider the following assumption on the approximating function s, which is also adopted in Bruno
et al. (2025, Assumption 3.a).
Assumption 3.a. The function s : [0, T ]×RM ×Rd → Rd is continuously differentiable in x ∈ Rd. Let D1 :
RM×RM → R+, D2 : [0, T ]×[0, T ] → R+ and D3 : [0, T ]×[0, T ] → R+ be such that

∫ T
ϵ

∫ T
ϵ
D2(t, t̄) dt dt̄ < ∞

and
∫ T
ϵ

∫ T
ϵ
D3(t, t̄) dt dt̄ < ∞. For α ∈

[ 1
2 , 1
]

and for all t, t̄ ∈ [0, T ], x, x̄ ∈ Rd, and θ, θ̄ ∈ RM , we have that

|s(t, θ, x) − s(t̄, θ̄, x̄)| ≤ D1(θ, θ̄)|t− t̄|α +D2(t, t̄)|θ − θ̄| +D3(t, t̄)|x− x̄|,

where D1, D2 and D3 have the following growth in each variable: i.e., there exist K1, K2, and K3 > 0 such
that for each t, t̄ ∈ [0, T ] and θ, θ̄ ∈ RM ,

|D1(θ, θ̄)| ≤ K1(1 + |θ| + |θ̄|), |D2(t, t̄)| ≤ K2(1 + |t|α + |t̄|α),
|D3(t, t̄)| ≤ K3(1 + |t|α + |t̄|α).

Remark 7. Assumption 3.a requires that the approximating function s is Lipschitz continuous in both the
input variable x and the parameter θ. In time t, it allows s to be either Hölder continuous (for α ∈ [ 1

2 , 1))
or Lipschitz continuous (for α = 1). This relaxed continuity in t for the drift term of 7 is standard for the
Euler–Maruyama schemes for SDEs. Crucially, we show in Theorems 19 and 21 that this weaker condition
in t still guarantees convergence of the generative algorithm to πD. As noted by Bruno et al. (2025, Remark
6) in the context of neural network-based approximations, Assumption 3.a, when α = 1, covers the case where
s is implemented as a neural network with a hyperbolic tangent or sigmoid activation function at the final
layer. Moreover, Assumption 3.a implies that the process in 5, 6, and 7 have a unique strong solution.
Remark 8. Let KTotal := K1 + K2 + K3 + |s(0, 0, 0)| > 0. Using Assumption 3.a, one obtains

|s(t, θ, x)| ≤ KTotal(1 + |t|α)(1 + |θ| + |x|).

The proof of Remark 8 can be found, e.g., in Bruno et al. (2025, Appendix D.3). By imposing an additional
condition on the gradient of s in Assumption 3.a—as done in Bruno et al. (2025, Assumption 3.b)—, we
obtain the optimal convergence rate established in Theorem 21 below.
Assumption 3.b. Let s be as in Assumption 3.a and there exists K4 > 0 such that, for all x, x̄ ∈ Rd and
for any k = 1, . . . d,

|∇xs
(k)(t, θ, x) − ∇x̄s

(k)(t, θ, x̄)| ≤ K4(1 + 2|t|α)|x− x̄|.

For the following assumption on the score approximation, we let θ̂ be as in Assumption 1 and we let
(Y aux
t )t∈[0,T ] be the auxiliary process defined in 5.

Assumption 4. There exists εSN > 0 such that

E
∫ T−ϵ

0
|∇ log pT−r(Y aux

r ) − s(T − r, θ̂, Y aux
r )|2 dr < εSN. (10)

Remark 9. Assumption 4 is now a standard assumption considered in the literature, see, e.g., Gao et al.
(2025); Bruno et al. (2025); Strasman et al. (2025); Silveri & Ocello (2025), and its theoretical and practical
soundedness is discussed, e.g., in Bruno et al. (2025, Remark 7, 8, and 9).

5Intuitively, outside a sufficiently large region, U bends upwards at least as much as a quadratic function.
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3.2 Assumption 2 and Weak Convexity of the Data Distribution

We start by introducing the definition of weak convexity, a concept that has been widely used in conjunction
with coupling techniques to analyze the long-time behavior of gradient flows SDEs (Conforti, 2023; 2024;
Conforti et al., 2023b;a)6, and we extend its application here to subgradients of U .
Definition 10. The potential U : Rd → R is weakly convex if its weak convexity profile κU : [0,∞) → R
defined as

κU (r) = inf
x,x̄∈Rd: |x−x̄|=r

{
⟨h(x) − h(x̄), x− x̄⟩

|x− x̄|2

}
, (11)

where h(x) ∈ ∂U(x) is the subgradient of U at x ∈ Rd, satisfies

κU (r) ≥ β − r−1fL(r), for all r > 0, (12)

for some constants β, L > 0, where the function fL : [0,∞] → [0,∞] is defined as

fL(r) = 2L1/2 tanh((rL1/2)/2). (13)

Remark 11. The weak convexity profile κU in 11 serves as an averaged/integrated convexity lower bound for
the potential U , evaluated over pairs of points separated by a distance r > 0. Unlike the standard convexity
condition κU ≥ 0, which characterizes convex (or log-concave) potentials, Definition 10 allows κU to vary
with r, thereby admitting non-uniform lower bounds. This generalization yields a broader and more flexible
notion of convexity that extends beyond classical log-concavity, making Definition 10 substantially weaker
than log-concavity (Conforti, 2023; 2024; Conforti et al., 2023b;a; Silveri & Ocello, 2025).

We modify Conforti et al. (2023b, Lemma 5.9) to our setting, namely when β > 07 to have an explicit
expression of the weak convexity constant at each t ∈ (0, T ].
Lemma 12. (Conforti et al., 2023b, Modification of Lemma 5.9) Assume that U is weakly convex as in
Definition 10 and fix t ∈ (0, T ]. Then, the function x 7→ − log pt(x) is weakly convex with weak convexity
profile κ− log pt(x) satisfying

κ− log pt
(r) ≥ β

β + (1 − β)e−2t − e−t

β + (1 − β)e−2t
1
r
fL

(
e−t

β + (1 − β)e−2t r

)
.

In particular, the score function satisfies

⟨∇ log pt(x) − ∇ log pt(x̄), x− x̄⟩ ≤ −Ĉt|x− x̄|2, for x, x̄ ∈ Rd, (14)

with
Ĉt = β

β + (1 − β)e−2t − e−2t

(β + (1 − β)e−2t)2L. (15)

We show that Assumption 2-(ii) and Assumption 2-(iii) are related to the notion of weak convexity (Definition
10) in the sense made precise in Proposition 13 below. An overview of the proof of Proposition 13 below can
be found in Appendix B.
Proposition 13. Let the data distribution πD be in Assumption 2, and let fL and L > 0 be as in Definition
10. Then the potential U is weakly convex as in Definition 10 with

κU (r) ≥ µ− r−1fL(r), for all r > 0, (16)

where µ > 0 in 16 is the strong convexity at infinity constant from Assumption 2-(iii). Conversely, if U is
weakly convex as in Definition 10 with lower bound 16 for some known constants µ and L > 0, then

6Recently, this notion has been used in the context of score-based generative models in Silveri & Ocello (2025, Definition
3.1).

7See Silveri & Ocello (2025, Lemma B.4) for a similar statement.
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1. The potential U is µ̃-strongly convex at infinity with µ̃ := µ − R−1fL(R) > 08, such that for all
x, x̄ ∈ Rd, we have

⟨h(x) − h(x̄), x− x̄⟩ ≥ µ̃|x− x̄|2, when |x− x̄| ≥ R, (17)

which holds for all R > 0 when µ > L and for R ≥ R0 = 2z0
L1/2 with z0 being the solution of 45 when

µ ≤ L.

2. The potential U is K-semiconvex, such that there exists K ≥ 0 for all x, x̄ ∈ Rd,

⟨h(x) − h(x̄), x− x̄⟩ ≥ −K|x− x̄|2, when |x− x̄| < R, (18)

where R is the same as in point (2).

As a consequence of Proposition 13 and Lemma 12, one obtains the explicit form of Ĉt in 14 in our setting,
which is given in the following corollary.
Corollary 14. Let U be K-semiconvex as in Assumption 2-(ii) and be µ-strongly convex at infinity as in
Assumption 2-(iii) and fix t ∈ (0, T ]. Then

⟨∇ log pt(x) − ∇ log pt(x̄), x− x̄⟩ ≤ −βOS
t |x− x̄|2, for x, x̄ ∈ Rd, (19)

where
βOS
t = µ

µ+ (1 − µ)e−2t − e−2t

(µ+ (1 − µ)e−2t)2L, (20)

for some L > 0 satisfying 16.
Remark 15. By Corollary 14 and the proof of Proposition 13, we have

lim
t→0

βOS
t = µ− L < −K, (21)

which shows that −βOS
t is not the lowest bound for the left-hand side of 19. We emphasize that the gap

between the limit on the left-hand side of 21 and the semiconvexity constant K is due to the particular
choice of fL in 13 in Proposition 13. This gap may vanish if we replace fL with an appropriate function
f ∈ F̃(Conforti et al., 2023a, Section 2.1.2), (Conforti et al., 2023b, Section 5.3.1), where

F̃ :=
{
f ∈ C2((0,∞),R+) : r 7→ r1/2f(r1/2), non-decreasing, concave, bounded such that

lim
r↓0

rf(r) = 0, f
′

≥ 0, 2f
′′

+ ff
′

≤ 0
}
.

Note that F̃ is non-empty and contains r 7→ 2 tanh(r/2). For this reason, we use the constant K + µ as a
proxy of the constant L and replace 20 with the following monotonicity bound

βOS,K,µ
t = µ

µ+ (1 − µ)e−2t − e−2t

(µ+ (1 − µ)e−2t)2 (K + µ). (22)

Moreover, it holds that
lim
t→0

βOS,K,µ
t = −K9,

and
lim
t→∞

βOS
t = lim

t→∞
βOS,K,µ
t = 1,

which is consistent with π∞ ∼ N (0, Id), the invariant distribution of the OU process.
8We refer to the proof of Proposition 13 in Appendix B below for the derivation of this constant.
9Indeed, this shows that - βOS,K,µ

0 < −βOS
0 for the right-hand side of 19 in Corollary 14.

8
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Figure 1: Score function 25 for fixed x and time t̄.

Using the explicit expression of 22, we are able to find a time for which the integral of the monotonicity
bound10 βOS,K,µ

t is positive. The proof of the following result is postponed to Appendix B.
Proposition 16. Let µ > 0 and K ≥ 0. The time integral of βOS,K,µ

t from Remark 15 is

B(t, 0, µ,K) =
∫ t

0

(
µ

µ+ (1 − µ)e−2s − e−2s

(µ+ (1 − µ)e−2s)2 (K + µ)
)

ds

= 1
2

[
log
(
µ(e2t − 1) + 1

)
+
(
K

µ
+ 1
)(

1
µ(e2t − 1) + 1 − 1

)]
> 0,

(23)

when t > t⋆ > t̄ := ln
(√

1 + K
µ2

)
with t⋆ := inf {t > 0 : B(t, 0, µ,K) > 0}.

Remark 17. If we consider the case when K = 0 in Assumption 2-(ii), then 23 is satisfied for all t > 0.

Remark 18. We provide a numerical illustration of the critical time of Proposition 23 when a non-log-
concave distribution becomes log-concave in the case when πD is a one-dimensional Gaussian mixture with
two equi-weighted modes η = 2, each mode having same variance s2 = 9, namely

πD(dx) = (2(18π)1/2)−1
(

exp
(

−|x− 2|2

18

)
+ exp

(
−|x+ 2|2

18

))
dx. (24)

For this choice of πD, the semiconvexity constant K = 2η2

(s2)2 = 8
81 , and the strong convexity at infinity

constant µ = s2−2η2

(s2)2 = 1
81 . Here, R ≥ 0. The score function of 24 is given by

∇ log pt(x) = − x

9m2
t + σ2

t

+ 2mt

9m2
t + σ2

t

exp
{

−(x−2mt)2

2(9m2
t +σ2

t )

}
− exp

{
−(x+2mt)2

2(9m2
t +σ2

t )

}
exp

{
−(x−2mt)2

2(9m2
t +σ2

t )

}
+ exp

{
−(x+2mt)2

2(9m2
t +σ2

t )

} , t ∈ [0, T ], x ∈ R, (25)

where mt = e−t and σ2
t = 1 − e−2t comes from the representation of the OU process in 52. Figure 1 displays

the time behaviour of score function 25 over the time interval [0, 10] for fixed values x = −0.8 and x = 0.5.
We also indicate the time t̄ = ln

(√
1 + K

µ2

)
≈ 3.2377 < t⋆ from Proposition 25. The score function in Figure

1 converges to ∇ log(π∞(x)) = −x, where π∞ = N (0, 1).
10Note that βOS,K,µ

t is a function of time.
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3.3 Main Results - Optimal Data Dimensional Dependence and Rate of Convergence

The main results are stated as follows. An overview of their proofs can be found in Appendix C.
Theorem 19. Let Assumptions 1, 2, 3.a and 4 hold. Then, there exist constants C1, C2, C3 and C4 > 0
such that for any T > 0 and γ, ϵ ∈ (0, 1),

W2(L(Y EM
J ), πD) ≤ C1

√
ϵ+ C2e

−2
∫ T

ϵ
βOS,K,µ

t dt−ϵ + C3(T, ϵ)
√
εSN + C4(T, ϵ)γ1/2, (26)

where C1, C2, C3 and C4 are given explicitly in Table 3 (Appendix E), βOS,K,µ
t is defined in 22, and its

integral is computed in Proposition 16. In addition, the result in 26 implies that for any δ > 0, if we choose
0 < ϵ < ϵδ, T > Tδ, 0 < εSN < εSN,δ and 0 < γ < γδ with ϵδ, Tδ, εSN,δ, and γδ given in Table 3, then

W2(L(Y EM
J ), πD) < δ.

Remark 20. The constant C4(T, ϵ) in the error bound in 26 contains the optimal dependence of the data
dimension, i.e. O(

√
d), which has been found under the more strict assumption of strong-log concavity of πD

in Bruno et al. (2025, Theorem 1 and Remark 12). However, the optimal dependence of the dimension is
achieved at the expenses of a worst rate of covergence of order 1/2.

The optimal rate of convergence of order α ∈ [ 1
2 , 1] for the Euler or Milstein scheme of SDEs with constant

diffusion coefficients can be attained in Theorem 19 provided that E[|θ̂|4] < ∞ and that Assumption 3.a is
replaced by Assumption 3.b, as stated in Theorem 21 below.
Theorem 21. Let Assumptions 1, 2, 3.b and 4 hold, and assume that E[|θ̂|4] < ∞ Then, there exist constants
C1, C2, C3 and C̃4 > 0 such that for any T > 0 and γ, ϵ ∈ (0, 1),

W2(L(Y EM
J ), πD) ≤ C1

√
ϵ+ C2e

−2
∫ T

ϵ
βOS,K,µ

t dt−ϵ + C3(T, ϵ)
√
εSN + C̃4(T, ϵ)γα, (27)

where C1, C2, C3 and C̃4 are given explicitly in Table 3 (Appendix E), βOS,K,µ
t is defined in 22, and its

integral is computed in Proposition 16. In addition, the result in 27 implies that for any δ > 0, if we choose
0 < ϵ < ϵδ, T > Tδ, 0 < εSN < εSN,δ and 0 < γ < γ̃δ with ϵδ, Tδ, εSN,δ, and γ̃δ given in Table 3, then

W2(L(Y EM
J ), πD) < δ. (28)

Remark 22. The constant C̃4, explicitly given in Table 3 (Appendix E) exhibits a linear dependence on the
data dimension, i.e., O(d). This scaling arises from the explicit Milstein scheme developed in Kumar &
Sabanis (2019) , which relies on Assumption 3.b and is leveraged in the proof of Theorem 21 to achieve the
optimal convergence rate of order α ∈ [ 1

2 , 1]. This explicit Milstein scheme requires control on the fourth
moment of the one-step discretization, see for instance, Lemma 25 (Appendix C) which enables a convergence
rate in W2 consistent with the known optimal rate of convergence for the Euler or Milstein scheme of SDEs
with constant diffusion coefficients. However, this comes at the cost of a worse dependence on the data
dimension.

3.4 Examples of potentials satisfying by Assumption 2

We present several examples to demonstrate the wide applicability of our Assumption 2 to a broad class of
data distributions, some of which are not covered by previous results in Wasserstein distance of order two
(Silveri & Ocello, 2025; Strasman et al., 2025; Gao et al., 2025; Bruno et al., 2025; Tang & Zhao, 2024; Yu
& Yu, 2025).

3.4.1 Symmetric modified half-normal distribution

We consider the case of a one-dimensional symmetric modified half-normal distribution

πD(dx) =
√
ξ exp

(
−ξx2 − |x|

)
Ψ
(

1
2 ,

−1√
ξ

) dx, x ∈ R, (29)

10
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for some unknown ξ > 0 and normalizing constant

Ψ
(

1
2 ,

−1√
ξ

)
:=

∞∑
n=0

Γ
( 1

2 + n
2
)

Γ(n)
(−1)nξ−n/2

n! ,

where Γ(n) is the Gamma function. We refer the reader to Appendix D for additional details about the
derivation of 29. As highlighted in Sun et al. (2023, Section 2), the modified half-normal distribution
appears in several Bayesian statistical methods as a posterior distribution to sample from in Bayesian Binary
regression, analysis of directional data, and Bayesian graphical models.

Assumption 2-(i) is satisfied for U(x) = ξx2 + |x|. In addition, we have, for all x, x̄ ∈ R

⟨h(x) − h(x̄), x− x̄⟩ = 2
(
ξ|x− x̄|2 + (x− x̄)1x>0, x̄<0 − (x− x̄)1x<0, x̄>0

)
≥ 2ξ|x− x̄|2,

(30)

which shows that Assumption 2-(ii) is verified for any K ≥ 0, and Assumption 2-(iii) is verified for µ = 2ξ.
Therefore, we can conclude that 29 satisfies Assumption 2.

3.4.2 Multidimensional Gaussian mixture distribution

We consider a multidimensional Gaussian mixture data distribution with unknown mean and variance, i.e.,

πD(dx) =
I∑
i=1

ξ̃i
1

(2πs2
i )d/2 exp

(
−|x− ηi|2

2s2
i

)
dx, x ∈ Rd, (31)

with si > 0, ηi ∈ Rd, and ξ̃i ∈ [0, 1] for i ∈ {1, . . . , I} such that
∑J
i=1 ξ̃i = 1. The authors in Silveri

& Ocello (2025, Appendix A) show that the score function of 31 is Lipschitz continuous and − log πD is
weakly convex. Therefore, Assumption 2 is satisfied. In addition, the distribution 31 covers also case of the
double-well potential:

U(x) = x4 − |x|2, x ∈ Rd, (32)

which is 2-semiconvex and strongly convex at infinity.

3.4.3 Multi-dimensional Potentials

Similarly as in Section 3.4.1, one can proves that the elastic net potential:

U(x) = |x|2 +
d∑
i=1

|xi|, x ∈ Rd, (33)

satisfies Assumption 2. Moreover, the following potential

U(x) = max
{

|x|, |x|2
}
, x ∈ Rd, (34)

verifies Assumption 2 with K = 0, R = 1, and µ = 2 as well as the following non-convex potential presented
in Johnston et al. (2025, Example 4.2):

U(x) = max
{

|x|, |x|2
}

− 1
2 |x|2, x ∈ Rd. (35)

4 Related Work and Comparison

In recent years, there has been a rapidly expanding body of research on the convergence theory of Score-
based Generative Models. Existing works for convergence bounds can be divided into two main approaches,
depending on the divergence or distance used.

11
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The first approach focuses on α-divergences, particularly the Kullback–Leibler (KL) divergence and Total
Variation (TV) distance (e.g., Benton et al. (2024); Conforti et al. (2025); Yang & Wibisono (2023); Li &
Cai (2024); Block et al. (2020); De Bortoli et al. (2021); Lee et al. (2022); Li et al. (2024); Lee et al. (2023);
Chen et al. (2023a;b); Oko et al. (2023); Liang et al. (2025); Yang & Wibisono (2022)), which are the vast
majority of the results available in the literature. Crucially, bounds on KL divergence imply bounds on TV
distance via Pinsker’s inequality, strengthening their wide applicability. We provide a brief and selective
overview of some of the findings following this first approach. The results in TV distance in Lee et al. (2022)
and in KL divergence Yang & Wibisono (2023) established convergence bounds characterized by polynomial
complexity under the assumption that the data distribution satisfies a logarithmic Sobolev inequality and
that the score function is Lipschitz continuous. By replacing the requirement that the data distribution
satisfies a functional inequality with the assumption that πD has finite KL divergence with respect to the
standard Gaussian and by assuming that the score function for the forward process is Lipschitz, the authors
in Chen et al. (2023b) managed to derive bounds in TV distance which scale polynomially in all the problem
parameters. By requiring only the Lipschitzness of the score at the initial time rather than along the full
trajectory, the authors in Chen et al. (2023a, Theorem 2.5) managed to establish, using an exponentially
decreasing then linear step size, convergence bounds in KL divergence with quadratic dimensional dependence
and logarithmic complexity in the Lipschitz constant. Later, Benton et al. (2024) provided KL convergence
bounds that are linear in the data dimension, up to logarithmic factors, by assuming finite second moments
of the data distribution and employing early stopping. However, both the results of Chen et al. (2023a,
Theorem 2.5) and Benton et al. (2024, Theorem 1 and Corollary 1) still require the uniqueness of solutions
for the backward SDE 2, and therefore additional assumptions on the score function are needed. For further
discussion on this point, we refer the reader to Bruno et al. (2025, Section 4.2). Assuming finite second
moments and using an exponential integrator (EI) scheme with both constant and exponentially decaying
step sizes, the authors in Conforti et al. (2025, Corollary 2.4) derive a KL divergence bound with early
stopping, which scales linearly in the data dimension up to logarithmic factors. Bounds in KL without early
stopping have been derived in Conforti et al. (2025) for data distributions with finite Fisher information with
respect to the standard Gaussian distribution. We note that this condition on πD stated in Conforti et al.
(2025, Assumption H2) still requires that the potential U ∈ C1(Rd). The KL bounds provided in Conforti
et al. (2025, Theorem 2.1 and 2.2) scale linearly in the Fisher information when an EI discretization scheme
with constant step size is used, and logarithmically in the Fisher information when an exponential-then-
constant step size Conforti et al. (2025, Theorem 2.3) is employed.

The second approach focuses on convergence bounds in Wasserstein distance, a metric which is often consid-
ered more practical and informative for estimation tasks. We can relate results following this approach with
the results of the first approach only when πD is a strongly log-concave distribution. In this case, W2-bounds
in terms of KL divergence follow from an extension of Talagrand’s inequality (Gozlan & Léonard, 2010,
Corollary 7.2). However, for two general data distributions, there is no known relationship between their
KL divergence and their W2. Therefore, we cannot compare our findings in Theorem 19 and Theorem 21
with the results derived following the first approach. One line of work within the second approach assumes
(at least) strong log-concavity of the data distribution (Strasman et al., 2025; Gao et al., 2025; Bruno et al.,
2025; Tang & Zhao, 2024; Yu & Yu, 2025). Under this (strict) assumption, Bruno et al. (2025, Remark 12)
achieved optimal data dimensional dependence, i.e., reaching O(

√
d). The recent bound in Silveri & Ocello

(2025, Theorem D.1) exhibits similar scaling in d while relaxing the strong log-concavity assumption on πD
to weakly log-concavity, but still requiring that the potential ∇2U exists (see, e.g., Silveri & Ocello (2025,
Proof of Proposition B.1 and B.2)). Our Assumption 2 is much weaker than this requirement and it allows to
consider the case of potentials with discontinuous gradients covering a wider range of distributions as outlined
in Section 3.4. Another line of work following this approach focuses on specific structural assumptions of the
data distribution. For instance, convergence bounds in Wasserstein distance of order one with exponential
dependence on the problem parameters have been obtained in Bortoli (2022) under the so-called manifold
hypothesis, namely assuming that the target distribution is supported on a lower-dimensional manifold or is
given by some empirical distribution. Under the same metric, the authors in Mimikos-Stamatopoulos et al.
(2024) provide a convergence analysis when the data distribution is defined on a torus. Under the W2 metric,
Wang & Wang (2024) derive convergence bounds assuming that the tail of πD is Gaussian and that U ∈ C2,
which is a stronger condition than merely requiring ∇U to be Lipschitz. We summarize in Table 1 and the

12
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best results obtained in W2, i.e., Bruno et al. (2025); Silveri & Ocello (2025) and compare with our best
result, which scale polynomially in the data dimension, i.e. O(

√
d) in Theorem 19. As mentioned in the

Introduction, previous W2 bounds (Silveri & Ocello, 2025; Gao et al., 2025; Strasman et al., 2025; Tang &
Zhao, 2024) require the stepsize γ of the generative algorithm to be tuned based on quantities that are often
difficult to compute in practice, such as the Lipschitz or strong convexity constant of the data distribution,
which can lead to very small stepsizes. In contrast, Theorem 19 and Theorem 21 impose no such restrictions,
making them more suitable for practical use. Table 2 summarizes the assumptions on γ in prior works and
compares them with ours.

We close this section by briefly commenting on the choice of deriving our results in Wasserstein distance of
order two. Beyond its theoretical relevance, this choice is motivated by practical considerations in generative
modeling. First, the Wasserstein distance is often regarded as a more informative and robust metric for
estimation tasks. Second, a widely used performance metric for evaluating the quality of images produced
by generative models is the Fréchet Inception Distance (FID) Heusel et al. (2017), which measures the
Fréchet distance between the distributions of generated and real samples, assuming Gaussian distributions.
In particular, this Fréchet distance is equivalent to the Wasserstein-2 distance. Thus, providing convergence
results under the Wasserstein-2 metric enhances the practical relevance of our theoretical findings.

Table 1: Summary of previous bounds for W2(L(Ŷ EM
J ), πD) and our result in Theorem 19. All the bounds

assume that πD(dx) ∝ e−U(x)dx has finite second moments.
Assumption on
πD

Error bound Reference

U strongly
convex,
∇ log pt(0) ∈
L2([ϵ, T ]), and
Assumption 4

O(
√
d)

√
ϵ + O(

√
d)e−2L̂MO(T−ϵ)−ϵ + O(e(1+ζ−2L̂MO)(T−ϵ))√εSN +

O(
√
deT

2α+1
T 2α+1ε̃

1/2
AL )γ1/2,

with L̂MO > 0 lower bound of the strongly convex constant of U , see
e.g., Bruno et al. (2025, Remark 4).

Bruno et al.
(2025, Re-
mark 12)

U ∈ C2(Rd),
weakly convex,
and Assumption
4

e(2LU +5)η(β,L,(2LU +5)2γ/2)[e−TW2(πD, π∞) + 4εSN(T − η(β, L, 0)) +√
2γ(4LU

√
d+ 6

√
d+

√
d+ E[|X0|2])(T − η(β, L, 0))],

with LU ≥ 0 one-sided Lipschitz constant for ∇U , see e.g., Silveri &
Ocello (2025, Assumption H1), η(β, L, γ) defined in (Silveri & Ocello,
2025, equation (29)), and γ < 2/(2LU + 5)2 .

Silveri &
Ocello (2025,
Theorem
D.1)

Assumption 2
and Assumption
4

O(
√
d)

√
ϵ+O(

√
d)e−2

∫ T

ϵ
βOS,K,µ

t dt−ϵ

+O(e(1+ζ)(T−ϵ)−2
∫ T

ϵ
βOS,K,µ

t dt)
√
εSN +O(

√
deT

2α+1
T 3α+1ε̃

1/2
AL )γ1/2.

Theorem 19

13
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Table 2: Summary of restrictions on the stepsizes of the generative algorithm Ŷ EM
J used in the previous

bounds for W2(L(Ŷ EM
J ), πD) and our results in Theorem 19 and Theorem 21. All the bounds assume that

πD(dx) ∝ e−U(x)dx has finite second moments.
Assumption on
πD

Restriction on the stepsize Reference

U strongly
convex, ∇U
Lipschitz con-
tinuous, and
Assumption 4

0 < γ ≤ min
0≤t≤T

(
1 − e−2t( 1

m0
− 1)

(1 + e−2t( 1
m0

− 1))(1 + 4(L̃(t))2 + 2M1)

)
and

0 < γ ≤ min
0≤t≤T

(
1 + ( 1

m0
− 1)e−2t

1 − ( 1
m0

− 1)e−2t

)
,

with m0 > 0 strong convexity constant for U , see e.g., Gao et al. (2025,
Assumption 1), M1 > 0 defined in Gao et al. (2025, Assumption 2),
L̃(t) = min0≤t≤T ((1 − e−2t)−1, e2tL0) Lipschitz constant of ∇ log pt(x),
and L0 > 0 Lipschitz constant for ∇U , see e.g., Gao et al. (2025, As-
sumption 1).

Gao et al.
(2025, As-
sumption 4)
used in Gao
et al. (2025,
Theorem 2)

U strongly
convex,
∇ log pt(0) ∈
L2([ϵ, T ]), and
Assumption 4

γ ∈ (0, 1).
Bruno et al.
(2025, Re-
mark 12)

U strongly
convex, and
∇U Lipschitz
continuous

0 < γ <
C(T − t)(

maxtj≤s≤tj+1 L(T − s)
)
L(T − t)

e−(tj+1−tj),

with {tj , 0 ≤ j ≤ J} regular discretization of [0, T ], CT−t and LT−t are
strong log-concavity and Lipschitz constant, respectively for ∇ log pt

φσ2
,

where φσ2 is the density function of a mean zero Gaussian distribution
with variance σ2Id.

Strasman
et al. (2025,
Proposition
C.3) used
in Strasman
et al. (2025,
Theorem
4.2)

U strongly
convex, ∇U
Lipschitz con-
tinuous, and
Assumption 4

0 < γ < min
(

1
2 ,

κ

2T (1 + κ)

)
,

with κ > 0 strong convexity constant.

Tang & Zhao
(2024, Theo-
rem 3)

U ∈ C2(Rd),
weakly convex,
and Assumption
4

0 < γ <
2

(2LU + 5)2 ,

with LU ≥ 0 one-sided Lipschitz constant for ∇U , see e.g., Silveri &
Ocello (2025, Assumption H1).

Silveri &
Ocello (2025,
Theorem
D.1)

Assumption 2,
and Assumption
4

γ ∈ (0, 1).
Theorem
19, and
Theorem 21.
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Appendix

A Regularity of the Score Function

We recall the following result to justify the smoothness of the map

(0, T ] × Rd ∋ (t, x) 7→ pt(x) ∈ R+, (36)

where pt density of the forward process defined in Section 2.
Proposition 23. (Conforti et al., 2025, Proposition 3.1) Let πD be absolutely continuous with respect to
the Lebesgue measure, and denote its density by p0. The map defined in 36 is positive and solution of the
following Fokker–Planck equation on (0, T ] × Rd:

∂tpt(x) − div(x pt) − ∆pt(x) = 0, for (t, x) ∈ (0, T ] × Rd.

Moreover, it belongs to C1,2((0, T ]×Rd); i.e. for any t ∈ (0, T ), x 7→ pt(x) is twice continuously differentiable,
and for any x ∈ Rd, t 7→ pt(x) is continuously differentiable on (0, T ].

B Further Details on Assumption 2 and Weak Convexity of the Data Distribution

We provide the proofs of Section 3.2.

Proof of Proposition 13. We begin by considering that πD satisfies Assumption 2. Recall that fL is defined
as in 13. Note that r 7→ r−1fL(r) is non-increasing on (0,∞) and f

′

L(0) = L > r−1fL(r) for r ∈ (0, R]. We
look for L > 0 satisfying

inf
r∈(0,R]

r−1fL(r) = R−1fL(R) = 2R−1L1/2 tanh((RL1/2)/2) = K + µ. (37)

Equivalently, we look for x = L1/2R/2 > 0 such that

x tanh(x) = K + µ

4 R2, subject to x >

√
K + µ

2 R, (38)
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so as L > K + µ. Note that tanh(x) ≤ x for all x ≥ 0 . Therefore, if we choose x =
√
K+µ
2 R, then

√
K + µ

2 R tanh
(√

K + µ

2 R

)
≤ K + µ

4 R2. (39)

Using 39 and limx↑∞ x tanh(x) = ∞, we deduce that there exists x⋆ > 0 such that

x⋆ tanh(x⋆) = K + µ

4 R2, (40)

with x⋆ >

√
K+µ
2 R, since x 7→ x tanh(x) is non-decreasing on (0,∞). By Assumption 2 and 37, we have

kU (r) ≥ µ− (K + µ)
≥ µ− r−1fL(r), for r ≤ R.

(41)

Moreover,

kU (r) ≥ µ

≥ µ− r−1fL(r), for r > R,

where it is used that r−1fL(r) > 0 for all r > 0. This proves the first part of the statement in Proposition
13, i.e. the lower bound 16.

Conversely, assume that U is weakly convex as in Definition 10 with lower bound 16 for some known constants
µ and L > 0. We look for R such that

κU (r) ≥ µ− r−1fL(r)
≥ µ−R−1fL(R)
> 0, ∀ r > R,

(42)

where it is used that r−1fL(r) is decreasing on (0,∞). Let µ̃ := µ−R−1fL(R), so 42 becomes κU (r) ≥ µ̃ > 0,
for all r > R. One notes that

µ̃ = µ− L
tanh((RL1/2)/2)

(RL1/2)/2
> 0. (43)

If µ > L, 43 is satisfied for all R > 0. If µ ≤ L, 43 holds for R ≥ R0, where R0 is the unique solution to

µ = 2L1/2

R
tanh

(
RL1/2

2

)
. (44)

Let z = RL1/2

2 , then R0 = 2z0
L1/2 , where z0 solves

tanh(z)
z

= µ

L
. (45)

Since tanh(z)
z monotonically decreases from 1 to 0 as z increases, a unique z0 > 0 solving 45 exists for µ < L.

Therefore, 42 is satisfied for R ≥ R0 = 2z0
L1/2 . This proves that U is µ̃-strongly convex at infinity, and therefore

17. Using the assumption that U is weakly convex as in Definition 10, one obtains that

κU (r) ≥ µ− r−1fL(r)
≥ µ− L, for r ≤ R.

(46)

We distinguish two cases for the lower bound in 46. If µ > L, then κU (r) ≥ −K for r ≤ R for all R > 0
and K ≥ 0. If µ ≤ L, then, by setting K = L − µ in 45, we have κU (r) ≥ −K for r ≤ R for all R > 0.
This proves that U is K-semiconvex, and therefore 18. This concludes the proof for the second part of the
statement in Proposition 13.
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Proof of Proposition 16. We look for t⋆ satisfying

B(t⋆, 0, µ,K) = 1
2

[
log
(
µ(e2t⋆ − 1) + 1

)
+
(
K

µ
+ 1
)(

1
µ(e2t⋆ − 1) + 1 − 1

)]
> 0. (47)

Equivalently, we look for x := e2t⋆ − 1 such that

g(µx+ 1) = log(µx+ 1) −
(
K

µ
+ 1
)

µx

µx+ 1 > 0. (48)

Note that 48 is satisfied for all x > 0 when K = 0. In addition, we have

lim
x→0+

g(µx+ 1) = 0,

lim
x→+∞

g(µx+ 1) = ∞,
(49)

and
d

dxg(µx+ 1) = µ

µx+ 1 − K + µ

(µx+ 1)2 ≥ 0 when x ≥ K

µ2 .

d2

dx2 g(µx+ 1) = − µ2

(µx+ 1)2 + 2(K + µ)µ
(µx+ 1)3 ≥ 0 when x ≤ 2K

µ2 + 1
µ
.

(50)

By 50, the function g in 48 has a minimum at K
µ2 and

g

(
K

µ
+ 1
)

= log
(
K

µ
+ 1
)

− K

µ
< 0,

for all K,µ > 0. By 49 and 50, there exists x > K
µ2 such that 48 is strictly positive. Therefore, there exists

t⋆ > ln
(√

1 + K
µ2

)
such that 47 holds.

C Proof of the Main Results

In this section, we present the proofs of Theorem 19 and Theorem 21. We begin by recalling an upper
bound on the moments of the process (Ŷ EM

t )t∈[0,T−ϵ] defined in 7, along with an estimate for its one-step
discretization error. These results will be instrumental in the subsequent proofs.
Lemma 24. (Bruno et al., 2025, Lemma 20) Let Assumptions 1 and 3.a hold, and suppose that E[|θ̂|p] < ∞
for any p ∈ [2, 4]. Then, for any t ∈ [0, T − ϵ],

sup
0≤s≤t

E
[
|Ŷ EM
s |p

]
≤ CEM,p(t),

where

CEM,p(t) := et(3p−1− 2
p +22p−1Kp

Total(1+Tαp))

×
(
E
[
|Ŷ EM

0 |p
]

+ 23p−2KpTotalt(1 + E[|θ̂|p])(1 + Tαp) + 2
p

(pd+ p(p− 2))
p
2 t

)
,

and KTotal is defined in Remark 8.
Lemma 25. (Bruno et al., 2025, Lemma 21) Let Assumptions 1 and 3.a hold, and suppose that E[|θ̂|p] < ∞
for any p ∈ [2, 4]. Then, for any t ∈ [0, T − ϵ],

E
[
|Ŷ EM
t − Ŷ EM

⌊t/γ⌋γ |p
]

≤ γ
p
2CEMose,p,

where
CEMose,p := 2p−1(CEM,p(T ) + KpTotal(1 + Tαp)(23p−2CEM,p(T ) + 24p−3(1 + E[|θ̂|p])))

+ (dp(p− 1))
p
2 ,

CEM,p and KTotal are defined in Lemma 24 and in Remark 8, respectively.
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Proof of Theorem 19. We derive the non-asymptotic estimate for W2(L(Y EM
J ), πD) using the splitting

W2(L(Y EM
J ), πD) ≤ W2(πD,L(YtJ )) +W2(L(YtJ ),L(ỸtJ ))

+W2(L(ỸtJ ),L(Y aux
tJ )) +W2(L(Y aux

tJ ),L(Y EM
J )).

(51)

We provide upper bounds on the error made by the early stopping, i.e. W2(πD,L(YtJ )), the error made by ap-
proximating the initial condition of the backward process Y0 ∼ L(XT ) with Ỹ0 ∼ π∞, i.e. W2(L(YtJ ),L(ỸtJ )),
the error made by approximating the score function with s, i.e. W2(L(ỸtJ ),L(Y aux

tJ )), and the discretisation
error, i.e. W2(L(Y aux

tJ ),L(Y EM
J )), separately.

Upper bound on W2(πD,L(YtJ )). This bound can be established by following the same argument as in
(Bruno et al., 2025, Proof of Theorem 10), which relies on the representation of the OU process

Xt
a.s.= mtX0 + σtZt, mt = e−t, σ2

t = 1 − e−2t, Zt ∼ N (0, Id), (52)

where a.s.= denotes almost sure equality. Therefore, we have

W2(πD,L(YtJ )) ≤ 2
√
ϵ(
√
E[|X0|2] +

√
d), (53)

where tJ = T − ϵ.

Upper bound on W2(L(YtJ ),L(ỸtJ )). Using Itô’s formula, we have, for any t ∈ [0, T − ϵ],

d|Yt − Ỹt|2 = 2⟨Yt − Ỹt, Yt + 2∇ log pT−t(Yt) − Ỹt − 2∇ log pT−t(Ỹt)⟩ dt

= 2|Yt − Ỹt|2 dt+ 4⟨Yt − Ỹt,∇ log pT−t(Yt) − ∇ log pT−t(Ỹt)⟩ dt.
(54)

By integrating and taking on both sides in 54, we have

E
[
|YtJ − ỸtJ |2

]
= E

[
|Y0 − Ỹ0|2

]
+
∫ tJ

0
2E
[
|Yt − Ỹt|2

]
dt

+
∫ tJ

0
4E
[
⟨Yt − Ỹt,∇ log pT−t(Yt) − ∇ log pT−t(Ỹt)⟩

]
dt.

(55)

By integrating, taking expectations on both sides in 55, using Corollary 14, the representation 52 with
ZT

d= Ỹ0 (where d= denotes equality in distribution), the inequality 1 − σt ≤ mt for any t ∈ [0, T ], we have

E
[
|YtJ − ỸtJ |2

]
≤ E

[
|Y0 − Ỹ0|2

]
+ 2

∫ tJ

0
E
[
|Yt − Ỹt|2

]
dt− 4

∫ tJ

0
βOS
T−tE

[
|Yt − Ỹt|2

]
dt

≤ E[|Y0 − Ỹ0|2]e2[tJ −2
∫ tJ

0
βOS

T −t dt]

= E[|mTX0 + (σT − 1)Ỹ0|2]e2[tJ −2
∫ tJ

0
βOS

T −t dt]

≤ 2
(
E[|X0|2] + d

)
e

2[tJ −2
∫ tJ

0
βOS

T −t dt]−2T
.

(56)

Using 56, Remark 15, and and tJ = T − ϵ, we have

W2(L(YtJ ),L(ỸtJ )) ≤
√
E[|YtJ − ỸtJ |2]

≤
√

2(
√
E[|X0|2] +

√
d)e−2

∫ T

ϵ
βOS,K,µ

t dt−ϵ
.

(57)
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Upper bound on W2(L(ỸtJ ),L(Y aux
tJ )). Using Itô’s formula, we have, for t ∈ [0, T − ϵ],

d|Ỹt − Y aux
t |2 = 2⟨Ỹt − Y aux

t , Ỹt + 2 ∇ log pT−t(Ỹt) − Y aux
t − 2 s(T − t, θ̂, Y aux

t )⟩ dt

= 2|Ỹt − Y aux
t |2 dt+ 4 ⟨Ỹt − Y aux

t ,∇ log pT−t(Ỹt) − ∇ log pT−t(Y aux
t )⟩ dt

+ 4 ⟨Ỹt − Y aux
t ,∇ log pT−t(Y aux

t ) − s(T − t, θ̂, Y aux
t )⟩ dt.

(58)

By integrating and taking the expectation on both sides in 58, using Corollary 14, Young’s inequality with
ζ ∈ (0, 1) and Assumption 4, we have

E[|ỸT−ϵ − Y aux
T−ϵ|2] = 2

∫ T−ϵ

0
E[|Ỹs − Y aux

s |2] ds

+ 4
∫ T−ϵ

0
E[⟨Ỹs − Y aux

s ,∇ log pT−s(Ỹs) − ∇ log pT−s(Y aux
s )⟩] ds

+ 4
∫ T−ϵ

0
E[⟨Ỹs − Y aux

s ,∇ log pT−s(Y aux
s ) − s(T − s, θ̂, Y aux

s )⟩] ds

≤
∫ T−ϵ

0
2(1 + ζ) E[|Ỹs − Y aux

s |2] ds

− 4
∫ tJ

0
βOS
T−sE

[
|Ỹs − Y aux

s |2
]

dt+ 2ζ−1εSN

≤ 2e2(1+ζ)(T−ϵ)−4
∫ tJ

0
βOS

T −t dt
ζ−1εSN.

(59)

Using 59, Remark 15, and tJ = T − ϵ, we have

W2(L(ỸtJ ),L(Y aux
tJ )) ≤

√
E[|ỸtJ − Y aux

tJ |2]

≤
√

2ζ−1e
(1+ζ)(T−ϵ)−2

∫ T

ϵ
βOS,K,µ

t dt√
εSN.

(60)

Upper bound on W2(L(Y aux
tJ ),L(Ŷ EM

t )). Using Itô’s formula, we have, for t ∈ [0, T − ϵ],

d|Y aux
t − Ŷ EM

t |2

= 2⟨Y aux
t − Ŷ EM

t , Y aux
t + 2 s(T − t, θ̂, Y aux

t ) − Ŷ EM
⌊t/γ⌋γ − 2 s(T − ⌊t/γ⌋γ, θ̂, Ŷ EM

⌊t/γ⌋γ)⟩ dt

= 2|Y aux
t − Ŷ EM

t |2 dt+ 2⟨Y aux
t − Ŷ EM

t , Ŷ EM
t − Ŷ EM

⌊t/γ⌋γ⟩ dt

+ 4⟨Y aux
t − Ŷ EM

t , s(T − t, θ̂, Y aux
t ) − s(T − t, θ̂, Ŷ EM

t )⟩ dt

+ 4⟨Y aux
t − Ŷ EM

t , s(T − t, θ̂, Ŷ EM
t ) − s(T − ⌊t/γ⌋γ, θ̂, Ŷ EM

⌊t/γ⌋γ)⟩ dt.

(61)
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Integrating and taking the expectation on both sides in 61, using Young’s inequality for ζ ∈ (0, 1), Cauchy
Schwarz inequality, Assumption 3.a, Lemma 25, and Remark 1, we have

E
[
|Y aux
T−ϵ − Ŷ EM

T−ϵ|2
]

≤ (2 + 3ζ)
∫ T−ϵ

0
E[|Y aux

t − Ŷ EM
t |2] dt+ ζ−1

∫ T−ϵ

0
E[|Ŷ EM

t − Ŷ EM
⌊t/γ⌋γ |2] dt

+ 4K3(1 + 2Tα)
∫ T−ϵ

0
E[|Y aux

t − Ŷ EM
t |2]dt

+ 2ζ−1
∫ T−ϵ

0
E[|s(T − t, θ̂, Ŷ EM

t ) − s(T − ⌊t/γ⌋γ, θ̂, Ŷ EM
⌊t/γ⌋γ |2]dt

≤ (2 + 3ζ + 4K3(1 + 2Tα))
∫ T−ϵ

0
E[|Y aux

t − Ŷ EM
t |2] dt

+ ζ−1γ(T − ϵ)CEMose,2 + 8ζ−1γ2α(T − ϵ)K2
1(1 + 4E[|θ̂|2])

+ 4ζ−1K2
3(1 + 2Tα)2

∫ T−ϵ

0
E[|Ŷ EM

t − Ŷ EM
⌊t/γ⌋γ |2]dt

≤ (2 + 3ζ + 4K3(1 + 2Tα))
∫ T−ϵ

0
E[|Y aux

t − Ŷ EM
t |2] dt

+ ζ−1γ(T − ϵ)CEMose,2(1 + 4K2
3(1 + 2Tα)2)

+ 8ζ−1γ2α(T − ϵ)K2
1(1 + 8ε̃AL + 8|θ∗|2)

≤ e(2+3ζ+4K3(1+2Tα))(T−ϵ)

×

(
ζ−1γ(T − ϵ)CEMose,2(1 + 4K2

3(1 + 2Tα)2)

+ 8ζ−1γ2α(T − ϵ)K2
1(1 + 8ε̃AL + 8|θ∗|2)

)
.

(62)

Using 62 and tJ = T − ϵ, we have

W2(L(Y aux
T−ϵ),L(Ŷ EM

T−ϵ)) ≤ γ1/2ζ−1/2(T − ϵ)1/2e(1+(3/2)ζ+2K3(1+2Tα))(T−ϵ)

× (C1/2
EMose,2(1 + 2K3(1 + 2Tα)) + 2

√
2K1(1 + 8ε̃AL + 8|θ∗|2)1/2).

(63)

Final upper bound on W2(L(Y EM
J ), πD). Substituting 53, 57, 60, and 63 into 51, we have

W2(L(Y EM
J ), πD) ≤ (

√
E[|X0|2] +

√
d)2

√
ϵ

+
√

2(
√
E[|X0|2] +

√
d)e−2

∫ T

ϵ
βOS,K,µ

t dt−ϵ

+
√

2ζ−1e
(1+ζ)(T−ϵ)−2

∫ T

ϵ
βOS,K,µ

t dt√
εSN

+ γ1/2ζ−1/2(T − ϵ)1/2e(1+(3/2)ζ+2K3(1+2Tα))(T−ϵ)

× (C1/2
EMose,2(1 + 2K3(1 + 2Tα)) + 2

√
2K1(1 + 8ε̃AL + 8|θ∗|2)1/2).

(64)

The bound for W2(L(Ŷ EM
J ), πD) in 64 can be made arbitrarily small by appropriately choosing parameters

including ϵ, T, εSN and γ. More precisely, for any δ > 0, we first choose 0 < ϵ < ϵδ with ϵδ given in Table 3
such that the first term on the right-hand side of 64 is

(
√

E[|X0|2] +
√
d)2

√
ϵ < δ/4. (65)

Next, we choose T > Tδ with Tδ given in Table 3 such that the second term on the right-hand side of 64 is

√
2(
√

E[|X0|2] +
√
d)e−2

∫ T

ϵ
βOS,K,µ

t dt−ϵ
< δ/4. (66)

25



Under review as submission to TMLR

Next, we turn to the third term on the right-hand side of 64. We choose 0 < εSN < εSN,δ with εSN,δ given
in Table 3 such that √

2ζ−1e
(1+ζ)(T−ϵ)−2

∫ T

ϵ
βOS,K,µ

t dt√
εSN < δ/4. (67)

Finally, we choose 0 < γ < γδ with γδ given in Table 3 such that the fourth term on the right-hand side of
64 is

γ1/2ζ−1/2(T − ϵ)1/2e(1+(3/2)ζ+2K3(1+2Tα))(T−ϵ)

× (C1/2
EMose,2(1 + 2K3(1 + 2Tα)) + 2

√
2K1(1 + 8ε̃AL + 8|θ∗|2)1/2) < δ/4.

(68)

Using 65, 66, 67, and 68, we obtain W2(L(Ŷ EM
J ), πD) < δ.

Proof of Theorem 21. Using the splitting 51, the proof follows along the same lines of the Proof of The-
orem 19 for the estimation of the error bounds of the terms W2(πD,L(YtJ )), W2(L(YtJ ),L(ỸtJ )), and
W2(L(ỸtJ ),L(Y aux

tJ )). The error bound for W2(L(Y aux
tJ ),L(Y EM

J )) is derived along the same lines of Bruno
et al. (2025, Proof of Theorem 10). Putting these four estimates together leads to 27 and 28.

D Modified Half-Normal Distribution

In this section, we recall the probability density function of the modified half-normal distribution, see e.g.,
Sun et al. (2023), used in Section 3.4.1 and defined as

g(x) =
2ξ υ

2 xυ−1 exp
(
−ξx2 + ψx

)
Ψ
(
υ
2 ,

ψ√
ξ

) , x ≥ 0, (69)

where υ, ξ > 0, ψ ∈ R, and the normalizing constant

Ψ
(
υ

2 ,
ψ√
β

)
:=

∞∑
n=0

Γ
(
υ
2 + n

2
)

Γ(n)
ψnξ−n/2

n! ,

is the Fox–Wright function (Fox, 1928; Wright, 1935). We point out that the half-normal distribution,
truncated normal distribution, gamma distribution, and square root of the gamma distribution are all special
cases of the modified Half-Normal distribution 69. The distribution 29 follows by taking the symmetric
extension of 69, i.e. g(|x|)/2, and choosing υ = 1 and ψ = −1.

E Table of Constants

Table 3 displays full expressions for constants which appear in Theorem 19 and Theorem 21.
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Table 3: Explicit expressions for the constants in Theorem 19 and Theorem 21.

Constant Dependency Full Expression

C1 O(
√
d) 2(

√
E[|X0|2] +

√
d)

C2 O(
√
d)

√
2
(√

E[|X0|2] +
√
d

)
C3(T, ϵ) O(e

(1+ζ)(T −ϵ)−2
∫ T

ϵ
β

OS,K,µ
t

dt
)

√
2ζ−1e

(1+ζ)(T −ϵ)−2
∫ T

ϵ
β

OS,K,µ
t

dt

CEM,2(T ) O(MeT 2α+1
T 2α+1ε̃AL)

e
T (4+8K2

Total(1+T 2α))

× (E[|Ŷ EM
0 |2] + 16K2

TotalT (1 + 2ε̃AL + 2|θ∗|2)(1 + T
2α) + 2dT )

CEM,4(T ) O(d2eT 4α+1
T 4α+1)

e
T ( 21

2 +128K4
Total(1+T 4α))

× (E[|Ŷ EM
0 |4] + 1024K4

TotalT (1 + E[|θ̂|4])(1 + T
4α) + 8(d2 + 4d + 4)T )

CEMose,2 O(deT 2α+1
T 4α+1ε̃AL) 2(CEM,2(T ) + K2

Total(1 + T
2α)(16CEM,2(T ) + 32(1 + 2ε̃AL + 2|θ∗|2))) + 2d

C4(T, ϵ) O(
√
deT 2α+1

T 3α+1ε̃
1/2
AL )

ζ
−1/2(T − ϵ)1/2

e
(1+(3/2)ζ+2K3(1+2T α))(T −ϵ)

× (C1/2
EMose,2(1 + 2K3(1 + 2Tα)) + 2

√
2K1(1 + 8ε̃AL + 8|θ∗|2)1/2)

CEMose,4 O(d2eT 4α+1
T 8α+1) 8(CEM,4(T ) + K4

Total(1 + T
4α)(1024CEM,4(T ) + 8192(1 + E[|θ̂|4]))) + 144d2

C̃4(T, ϵ) O(deT 4α+1
T 4α+1ε̃

1/4
AL )

√
2e2(1+ζ+K3(1+2T α+4K3(1+4T 2α)))(T −ϵ)

√
T − ϵ

×

(
K2

4ζ
−1(1 + 4T 2α)CEMose,4 + 4d(1 + 8K2

3(1 + 4T 2α))

+ 2ζ−1K2
1(1 + 8(ε̃AL + |θ∗|2))

+ 4ζ−1
d(1 + 8K2

3(1 + 4T 2α))

× [(1 + 16K2
Total(1 + T

2α))CEM,2(T )

+ 32K2
Total(1 + T

2α)(1 + 2ε̃AL + 2|θ∗|2)]

+ 2[(1 + 8K2
3(1 + 4T 2α))1/2

C
1/2
EMose,2 + 2K1(1 + 8ε̃AL + 8|θ∗|2)1/2]

× [d
√

2(1 + 8K2
3(1 + 4T 2α))1/2]

)1/2

ϵδ - δ2/(64(
√

E[|X0|2] +
√
d)2)

Tδ -

Obtained solving T > Tδ using Proposition 16, i.e.,
ln(µ(e2T − 1) + 1) + (K/µ + 1)/(µ(e2T − 1) + 1)

> ln(4
√

2((E[|X0|2])1/2 +
√
d)/δ) + 2

∫ ϵ

0

β
OS,K,µ
t dt + K/µ + 1 − ϵ

εSN,δ - (δ2
ζ/32)e

−2(1+ζ)(T −ϵ)+4
∫ T

ϵ
β

OS,K,µ
t

dt

γδ -
(δ2

ζ/16)(T − ϵ)−1
e

−2(1+(3/2)ζ+2K3(1+2T α))(T −ϵ)

× (C1/2
EMose,2(1 + 2K3(1 + 2Tα)) + 2

√
2K1(1 + 8ε̃AL + 8|θ∗|2)1/2)−2

γ̃δ -

min

{
(δ/(4

√
2))1/α(T − ϵ)−1/(2α)

e
−(2/α)(1+ζ+K3(1+2T α+4K3(1+4T 2α)))(T −ϵ)

×

(
K2

4ζ
−1(1 + 4T 2α)CEMose,4 + 4d(1 + 8K2

3(1 + 4T 2α))

+ 2ζ−1K2
1(1 + 8(ε̃AL + |θ∗|2))

+ 4ζ−1
d(1 + 8K2

3(1 + 4T 2α))

× [(1 + 16K2
Total(1 + T

2α))CEM,2(T )

+ 32K2
Total(1 + T

2α)(1 + 2ε̃AL + 2|θ∗|2)]

+ 2[(1 + 8K2
3(1 + 4T 2α))1/2

C
1/2
EMose,2 + 2K1(1 + 8ε̃AL + 8|θ∗|2)1/2]

× [d
√

2(1 + 8K2
3(1 + 4T 2α))1/2]

)−1/(2α)

, 1

}
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Table 4 provides the main notation used throughout this work and indicates where each symbol is introduced.

Table 4: List of the main notation.
Symbol Reference in the text
πD Equation 1
θ̂ Assumption 1
ε̃AL Assumption 1
∂U Definition 3
K Assumption 2-(ii)
µ Assumption 2-(iii)
α Assumption 3.a
εSN Assumption 4
κU Definition 11
fL Equation 13
βOS,K,µ
t Equation 22
B(t, 0, µ,K) Equation 23

28


	Introduction
	Technical Background for OU-based SGMs
	Wasserstein Convergence Analysis for SGMs
	Assumptions
	Assumption 2 and Weak Convexity of the Data Distribution
	Main Results - Optimal Data Dimensional Dependence and Rate of Convergence
	Examples of potentials satisfying by Assumption 2
	Symmetric modified half-normal distribution
	Multidimensional Gaussian mixture distribution
	Multi-dimensional Potentials


	Related Work and Comparison
	Regularity of the Score Function
	Further Details on Assumption 2 and Weak Convexity of the Data Distribution
	Proof of the Main Results
	Modified Half-Normal Distribution
	Table of Constants

