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ABSTRACT

Due to its human-interpretability and invariance properties, Directed Acyclic
Graph (DAG) has been a foundational tool across various areas of AI research.
However, DAG learning remains highly challenging, due to its super-exponential
growth in computational cost and identifiability issues, particularly in small-
sample regimes. To address these two challenges, we leverage the recent success
of transformers and develop a foundation model approach for discovering mul-
tiple DAGs across tasks. In particular, we propose Attention-DAG (ADAG), a
novel attention-mechanism-based architecture for learning multiple linear Struc-
tural Equation Models (SEMs). ADAG learns the mapping from observed data
to both graph structure and parameters via a nonlinear attention-based kernel,
enabling efficient multi-task generalization of the underlying linear SEMs. By
formulating the learning process across multiple domains as a continuous opti-
mization problem, the pre-trained ADAG model captures the common structural
properties as a shared low-dimensional prior, thereby reducing the ill-posedness
of downstream DAG tasks in small-sample regimes. We evaluate our proposed ap-
proach on benchmark synthetic datasets and find that ADAG achieves substantial
improvements in both DAG learning accuracy and zero-shot inference efficiency.
To the best of our knowledge, this is the first practical approach for pre-training
a foundation model for unsupervised DAG learning, representing a step toward
more efficient and generalizable down-stream applications in causal discovery.

1 INTRODUCTION

Causality plays a fundamental role in explaining the underlying mechanisms of systems in many sci-
entific decision-making domains (Pearl et al., 2000; Sachs et al., 2005; Lu et al., 2021; Subbaswamy
& Saria, 2020). This has led to significant interest within the machine learning community in devel-
oping advanced methods for causal discovery. A common approach to model causal relationships is
to identify causal models among a set of random variables in the form of Directed Acyclic Graphs
(DAGs), which offer a compact, interpretable, and theoretically grounded representation of the un-
derlying data-generating process. However, learning DAGs from observational data remains highly
challenging due to the super-exponential space of possible graph structures, inherent identifiability
issues, and data scarcity in real-world applications. Moreover, most existing approaches operate
on a per-task basis, lacking the ability to generalize across tasks or domains. As a result, there is
growing interest in developing foundation models that can transfer knowledge across causal tasks.

Inspired by the recent success of foundation models and their capacity to encode vast amounts of
transferable information, we propose to address the high computational cost and poor performance in
low-sample regimes by pre-training a DAG-learning foundation model that generalizes across tasks
to infer DAGs accurately and efficiently. Specifically, we introduce a novel attention-mechanism-
based formulation for learning Structural Equation Models (SEMs). As illustrated in Figure 1, the
key of our approach is to define a nonlinear kernel mapping using the attention blocks, which takes
observational data as the input and the corresponding weighted adjacency matrices as the output.
During the pre-training phase, the model is trained across multiple tasks, which each task treated
as a DAG discovery problem (recovering a hidden DAG from a set of data observations). As such,
the weighted adjacency matrix is inferred in an unsupervised way, and the model is capable to
capture both the structural causal relationships and the associated causal mechanisms. The multi-
task training and attention mechanism-based blocks were known to possess advantages in inferring
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Figure 1: The schematic of the proposed training and inference procedures for unsupervised DAG
learning. Given data from multiple domains, we begin by training a nonlinear kernel mapping from
data to the corresponding hidden DAG. The trained model is then capable of zero-shot DAG infer-
ence, allowing it to predict weighted adjacency matrices when given data from new test domains.

shared low-dimensional structure across tasks and applying such a structure in the downstream test
tasks (Lu & Yu, 2025). Therefore, our proposed ADAG architecture is anticipated to reduce the
ill-posedness of individual DAG estimation problems and improve recovery of both graph structure
and parameters, especially in data-scarce settings. Furthermore, once trained, our model enables
zero-shot inference on previously unseen tasks, offering significant improvements in both accuracy
and efficiency for downstream causal discovery. Notably, our framework does not require ground
truth graphs, as the DAG kernel mapping is learned automatically using a data reconstruction loss,
which differs from supervised DAG learning approaches (Li et al., 2020) such as the amortized
methods (Lorch et al., 2022; Ke et al., 2022).

To the best of our knowledge, this is the first work to propose a practical approach for pre-training a
foundation model for unsupervised DAG learning. Existing efforts to integrate causality with foun-
dation models have very different focuses, such as causal inference (Zhang et al., 2024a) or semantic
information extraction from existing large language models (Ban et al., 2023; Wan et al., 2024; Wu
et al., 2024), as they do not directly train foundation models to estimate DAG structures and under-
lying causal model parameters from observed data alone. While several prior works (Chen et al.,
2021; Lu & Gao, 2023; Zhang et al., 2017; Zhou et al., 2022) have developed advanced algorithms
for multi-task DAG learning, they do not generalize to unseen tasks without further optimization or
training steps. In contrast, our approach does not require ground-truth graphs and supports zero-shot
generalization to new tasks. This sets the stage for a new direction in causal discovery: building scal-
able, pre-trained foundation models capable of generalizing structural knowledge across domains.

Major Contributions. 1. We propose a novel attention-mechanism-based formulation for DAG
learning, that learns a nonlinear kernel mapping from observational data to the underlying causal
graph structure and associated parameters. 2. We obtain a foundation model for DAG learning. This
model captures shared low-dimensional structures and enables zero-shot inference on unseen tasks.
3. We demonstrate that our method significantly outperforms both state-of-the-art DAG learning
baselines in inference efficiency and accuracy, especially in small-sample regimes.

2 RELATED WORKS

Attention Mechanism for Inverse Problems. In recent years, the transformer based on the atten-
tion mechanism has been increasingly adopted to tackle diverse scientific problems. It has been
found that the attention mechanism is capable of modeling complex dependencies within sequential
or structured data, leading to novel applications in various domains (Guo et al., 2023; Ovadia et al.,
2024; Yu et al., 2024; Evangelista et al., 2023; Chen et al., 2023; Cao, 2021). Unlike many inves-
tigations on applying the attention mechanism for forward problems (Vladymyrov et al., 2024; Lu
et al., 2024; Zhang et al., 2024b), causal discovery and graph structure learning in general fall in the
regime of inverse problems. In inverse problems, the objective is not merely to predict future out-
puts, but to infer the underlying relationship that generates the observed data. To the authors’ best
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knowledge, the attention mechanism and transformer in general have been relatively underexplored
in the context of inverse problems, despite their potential to complement existing deep learning
strategies (Afkham et al., 2021; Evangelista et al., 2025).

Optimization-Based DAG Learning. Existing DAG learning approaches either quantify condi-
tional independence relationships among variables through statistical tests or search for the optimal
DAG by maximizing a predefined score using various search strategies. A notable shift was in-
troduced by Zheng et al. (2018), who proposed reformulating the DAG learning problem from a
combinatorial optimization task into a constrained continuous optimization problem, allowing for
the use of gradient-based optimization methods. Subsequent works have improved various aspects
of the continuous optimization framework (Yu et al., 2019; Bello et al., 2022; Ng et al., 2020; Yu
et al., 2021; Khemakhem et al., 2021; Yin et al., 2024; Zheng et al., 2020; Lachapelle et al., 2019;
Deng et al., 2024). Despite these advances, DAG learning remains NP-hard (Chickering, 2002), with
the number of possible DAGs growing super-exponentially with the number of variables. Although
the continuous optimization framework improves tractability, it does not eliminate the high com-
putational cost. Moreover, existing approaches require a sufficient amount of data that accurately
captures all underlying causal dependencies and their performance degrades when data is scarce
in real-world scenarios. These two challenges motivate us to develop pre-trained models that are
expressive enough to encode rich and transferable representations from available training data and
generalize to unseen data, enabling efficient and accurate DAG inference even in small-data regimes.

Beyond Single Domain DAG Learning. Since our training procedure involves recovering the un-
derlying mechanisms between data observations and DAGs by jointly performing DAG learning
across multiple training domains, the problem naturally falls within the multi-task learning setting.
We therefore review existing works on multi-task DAG learning. In particular, Chen et al. (2021)
assumes that data from different tasks are generated by distinct DAGs that share a common topolog-
ical order. Lu & Gao (2023) and Zhang et al. (2017) assume that the underlying DAG structure is
shared across tasks, while the data generation mechanisms (i.e., causal mechanisms) vary.

Amortized DAG learning. Amortized DAG learning seeks to train models that can directly predict
a DAG from data. Prior work includes supervised approaches where models are trained to output
binary DAG structures (Lorch et al., 2022; Ke et al., 2022). Montagna et al. (2024) focus on bivariate
causal models, providing analyses of identifiability and generalization, while Scetbon et al. (2024)
propose a two-step framework that first infers causal orderings with an amortized model and then
estimates the causal graph conditioned on those orderings. A common characteristic of existing
approaches is their reliance on supervised training to produce binary DAGs directly.

3 MATHEMATICAL FORMULATION

3.1 LINEAR STRUCTURAL EQUATION MODEL FOR MULTI-DOMAIN DATA
We begin by introducing our proposed attention-mechanism-based formulation for DAG learning.
Given a set of d random variables X = [X1, X2, · · · , Xd] ∈ Rd, the linear Structural Equation
Model (SEM) with additive noise is defined as:

X = ATX + E (1)

where A ∈ Rd×d is the weighted adjacency matrix representing the DAG. The entries of A encode
both the causal structure and the causal mechanisms, such that a nonzero entry A[i, j] ̸= 0 indicates
a causal link Xi → Xj . The noise vector E = [E1, E2, · · · , Ed] ∈ Rd consists of mutually
independent exogenous noise variables.

In our setting, we assume the availability of M domains of observations over the same set of d
variables, denoted as D = {Xη

1:d}Mη=1. The corresponding SEM for the η-th domain is

Xη
1:d = (Aη)TXη

1:d + E (2)

where Aη ∈ Rd×d denotes the adjacency matrix of the DAG in the ηth domain. for each domain η,
n observations of Xη

1:d are collected. We denote the collected data in domain η as {Xη
1:d(j)}nj=1.

Our goal is to infer the corresponding Aη from the data {Xη
1:d(j)}nj=1 on the η−th domain.

3.2 NONLINEAR MAPPING FROM DATA TO GRAPH STRUCTURE AND PARAMETERS

To recover the domain-specific adjacency matrix Aη from the observed data Xη
1:d, we propose lever-

aging the expressive power of attention mechanisms to learn the underlying mapping between the
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observed data and the corresponding causal structure. To this end, we first model the weighted adja-
cency matrix Aη as a function of the data Xη

1:d. Given the collected data in domain η, {Xη
1:d(j)}nj=1,

we first transfer it to tokens Xη(1 : n):

Xη(1 : n) =
(
Xη(1);Xη(2); · · · ;Xη(n)

)
=

(
Xη

1:d(1);X
η
1:d(2); · · · ;X

η
1:d(n)

)
∈ Rd×n. (3)

Here, each token represents the data from a variable, and it consists a vector of size n, concatenating
the information from all n samples on this domain. The weighted adjacency matrix Aη can then be
modeled as a function of the tokens Xη(1 : n), dependent on trainable parameters Θ:

Aη = A[Xη(1 : n); Θ]. (4)

We point out that although a linear SEM is considered in this work, the kernel map from the input
Xη(1 : n) ∈ Rd×n to the output, the weighted adjacency matrix Aη ∈ Rd×d, is highly nonlinear.
To capture this complex nonlinear relation, we parameterize the function Aη[·; Θ] by designing an
L-layer attention model:

Hη
in =Hη

(0) := Xη(1 : n) ∈ Rd×n,

Hη
(l) :=Attn[Hη

(l−1); θl]H
η
(l−1) +Hη

(l−1) ∈ Rd×n, 1 ≤ l ≤ L,

Aη :=Attn[Hη
(L); θout] ∈ Rd×d,

(5)

where the attention block writes:

Attn[Hη
(l−1); θl] = σ

( 1√
d
Hη

(l−1)W
Q
l (W

K
l )T (Hη

(l−1))
T
)
∈ Rd×d. (6)

In the lth attention block, the trainable parameters are θl = {WQ
l ∈ Rn×k,WK

l ∈ Rn×k}, and σ(·)
is the activation function1. In the last layer, we output the weighted adjacency matrix as:

Aη = Attn[Hη
(L); θout] = WP,x

out σ
( 1√

d
Hη

(L)W
Q
out(W

K
out)

T (Hη
(L))

T
)
, (7)

where the trainable parameters are θout = {WP,x
out ∈ Rd×d,WQ

out ∈ Rn×k,WK
out ∈ Rn×k}. By

substituting the above formulation into the SEM in equation 2, we have:

Xη
1:d(1 : n) = AT [Xη

1:d(1 : n); Θ]Xη
1:d(1 : n) + E(1 : n), (8)

with Θ = {θl}Ll=1 ∪ θout.

3.3 ATTENTION MECHANISM-BASED DAG LEARNING

Similar to prior continuous optimization-based DAG learning methods, we propose to learn a non-
linear kernel map by solving the following optimization problem:

min
Θ:={θout,θ1:L}

M∑
η=1

∥Xη
1:d(1 : n)−AT [Xη

1:d(1 : n); Θ]Xη
1:d(1 : n)∥2F

s.t. h(A[Xη
1:d(1 : n); Θ]) = 0,∀η ∈ {1, 2, · · · ,M}.

(9)

Here, h(A[Xη
1:d(1 : n); Θ]) = h(Aη) = tr(eA

η◦Aη

)− d = 0 is the acyclicity constraint proposed in
Zheng et al. (2018), which ensures that Aη represents the weighted adjacency matrix of a DAG. Our
method does not impose restrictions on the choice of acyclicity constraint; alternative formulations
of the DAG constraint from Bello et al. (2022) and Zhang et al. (2022) can also be used.

As shown in equation 9, our goal is to learn a nonlinear kernel map from data observations to
weighted adjacency matrices by jointly performing DAG learning across multiple data domains.
This makes the optimization problem substantially more challenging than in the single-task DAG
learning setting. Although recent methods for single DAG learning (Bello et al., 2022; Ng et al.,
2020; Yu et al., 2021) have improved efficiency by avoiding time-consuming iterative optimization,
they are either not directly applicable to our pre-training scenario or yield suboptimal performance.

1σ(·) is set to be the identity activation function in the paper, because it enables a more efficient implemen-
tation using linear attention (Liu & Yu, 2025). However, other activation functions can also be used.
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To ensure the accuracy of the weighted adjacency matrices used in learning the nonlinear kernel map,
we adopt the augmented Lagrangian method during training and solve a sequence of optimization
subproblems. With a slight abuse of notation, we re-write the optimization problem as:

max
α∈R

min
Θ
Lrec

(
X1:M

1:d (1 : n);A1:M
)
+

ρ

2

M∑
η=1

|h(Aη)|2 + α

M∑
η=1

h(Aη),

Lrec
(
X1:M

1:d (1 : n);A1:M
)
:=

1

2n

M∑
η=1

n∑
j=1

d∑
i=1

(
Xη

i (j)−AT
[
Xη

1:d(1 : n); Θ
]
[i, :]Xη

1:d(j)
)2

.

(10)

where we denote A[Xη
1:d(1 : n); Θ] as Aη for simplicity in equation 10. For each time, we solve the

following optimization with the updated α value:

Θ∗
α =argmin

Θ
Lrec

(
X1:M

1:d (1 : n);A1:M
)
+

ρ

2

M∑
η=1

|h(Aη)|2 + α

M∑
η=1

h(Aη), (11)

then update A1:M and α with equation 12.

(Aη)∗α ← A[Xη
1:d(1 : n); Θ∗

α], α← α+ ρ

M∑
η=1

h
(
(Aη)∗α

)
. (12)

We summarize the proposed algorithm in Algorithm 1.

Algorithm 1 Attention-DAG (ADAG) Training Process
1: Input: Training domain data X1:M

1:d (1 : n), initial guesses of Θ0 and α0, progress rate c ∈ (0, 1),
tolerance ϵ > 0, threshold ω > 0

2: for t← 1 to n do
3: Solve Θt+1 ← argminΘ Lrec

(
X1;M

1:d (1 : n);A1:M
)
+ ρ

2

∑M
η=1 |h(Aη)|2+αt

∑M
η=1 h(A

η),

with ρ such that
∑M

η=1 h(A
η
t+1) < c

∑M
η=1 h(A

η
t ). ▷ Use Adam optimizer

4: Update A1:M
t+1 ← A[X1:M

1:d (1 : n); Θt+1].
5: Update αt+1 ← αt + ρ

∑M
η=1 h(A

η
t+1).

6: if
∑M

η=1 h(A
η
t+1) < ϵ then

7: Θ̂ = Θt+1 and break.
8: end if
9: end for

10: return the optimal parameters Θ̂ for the nonlinear kernel map A[·; Θ].

Nonlinear SEM Extension. Although we formulate our attention-mechanism-based DAG learning
problem under the linear SEM assumption, the idea can be easily extended to the nonlinear SEM
setting by first applying nonlinear transformations to the input Xη

1:d(1 : n) before multiplying it
with weighted adjacency matrices. In fact, we can use shared attention layers for both the nonlinear
kernel map and the nonlinear transformation, and multiply A with Hη

(L) instead of Xη
1:d(1 : n)

in equation 8.

Discover the Prior to Enhance Identifiability. While most single-task DAG learning methods
mainly consider sufficient rank problems (n ≫ d), in this work we consider a more challenging
scenario with small observed data in each domain. In the latter case, the inverse problem may
become under-determined, making the learning non-identifiable. As shown in Lu & Yu (2025), the
linear transformer is capable of alleviating this issue, by implicitly discovering the low-dimensional
shared structure from the training dataset of multiple domains and automatically applying it as prior
information in downstream test tasks. Hence, we anticipate that the linear attention mechanism is
capable of discovering the shared structural consistencies, so as to mitigate the deficiency rank issue
in small observed data DAG learning problems. In our empirical experiments, we validate these
prospectives by showing that: 1) the linear transformer finds a low-dimensional structure in the
prior distribution where the ground-truth A is drawn (see Figure 2); and 2) our ADAG is capable of
recovering both the correct graph structure and the parameters in A, even with a relatively small n.
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4 EXPERIMENTS

In this section we evaluate the performance of our proposed ADAG algorithm, focusing on three
key aspects: 1) The attention-mechanism-based kernel map learned by ADAG successfully captures
the underlying mechanisms between data observations and their generative processes, which are
encoded in a DAG. 2) We extensively assess ADAG’s zero-shot DAG inference performance in
terms of accuracy and efficiency on synthetic data generated across a wide range of graph settings.
For comprehensive evaluation, we also applied our trained ADAG model on test data that comes
from different distributions as the training data. 2) We evaluate our ADAG approach on realistic
data, showing its practicability in real-world applications. We present the main results that best
support our claims in the main paper and provide additional results in Supplementary C.

Dataset Settings. We follow standard protocols for generating synthetic graphs and data. The
ground-truth DAGs are sampled from Erdős–Rényi (ER) graphs with a degree k = {1, 2, 4}2. We
consider graphs of varying sizes with d = {5, 10, 20, 50} nodes. Data is then generated using a linear
SEM, where the coefficients for each edge are drawn from U [−2,−0.5] ∪ U [0.5, 2]. We categorize
the data into three types, each defined by progressively weaker assumptions: (1) Heterogeneous data,
generated following the procedure in (Lu & Gao, 2023). For training, we generate M domains, each
with n samples, using the same DAG structure but with varying edge weights. An additional 1000
domains are held out for testing and are not seen during pre-training. (2) Order-consistent data,
generated following the procedure in (Chen et al., 2021). Here, each domain contains n samples
generated from different DAGs that share the same topological ordering. We again generate M
domains for training and 1000 for zero-shot DAG inference. (3) General data, where no assumptions
are made about the DAG structure. We randomly generate M training domains, each with n samples
drawn from a different random DAG, and generate an additional 1000 samples for zero-shot DAG
inference. We provide visualization regarding the heterogeneous data and order-consistent data in
Supplementary B.

Implementation Details. All experiments are conducted on a single NVIDIA GeForce RTX 5090
GPU using the Adam optimizer for training. Detailed hyperparameter settings—such as the num-
ber of layers nb, the attention head dimension k, batch size, learning rate, total training epochs,
and the initialization values for the augmented Lagrangian multipliers ρ and λ—are provided in
Supplementary A. Each experiment is repeated for three times, and we report the average results.

Covariance of estimated 𝐴 Covariance of ground truth 𝐴

Corresponding eigenvalue 1.44 Corresponding eigenvalue 1.39 Corresponding eigenvalue 1.37 Corresponding eigenvalue 1.32 Corresponding eigenvalue 1.24

b). Eigenvectors corresponding to the dominant eigenvalues.

a). Covariance matrices for estimation and ground-truth of weighted adjacency matrix 

Figure 2: Illustration of the learned kernel map on the heterogeneous data generated from an ER1
graph with d = 5. Figure (a) shows the covariance matrices of the estimated and ground-truth
weighted adjacency matrices. Figure (b) shows the principal components across different domains,
by expending adjacency matrix Aη as a vector and performing PCA on them. Results shows that all
Aηs are on a dimention-5 space, which are aligned with the ground-truth DAGs.

2Graphs with degree k have an expected number of edges equal to kd.
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4.1 GENERALIZATION OF THE NONLINEAR KERNEL MAP

Differences 𝐴" 	− 𝐴!"Estimation 𝐴" Ground Truth 𝐴!" Differences 𝐴" 	− 𝐴!"

ER1 d5 Heterogeneous Data

Estimation 𝐴" Ground Truth 𝐴!"

ER1 d10 Heterogeneous Data

Figure 3: Visualization of the estimation and ground-truth weighted adjacency matrices, along with
their difference on the heterogeneous data generated from ER1 graph with d = 5 and d = 10.

In this section, we show that the attention-mechanism-based kernel map we learned by solving
multiple DAG learning problems on training data can generalize well to unseen held-out domains
if the DAG structure has appeared in the training set. First, we illustrate that the learned kernel
map can identify the common low-dimensional structure across domains. Specifically, we apply the
trained kernel map to infer the weighted adjacency matrices Atest,η ∈ Rd×d for 1000 held-out test
domains generated from heterogeneous data with d = 5. On 1000 test domains, each presented by
an n× d data matrix, our model maps the input tensor of shape 1000× n× d to an output of shape
1000 × d × d, corresponding to the estimated weighted adjacency matrices. Then, we treat each
weighted adjacency matrix as a size d2 vector, and find the principal component among all 1000
test domains by flattening the output to 1000× d2 and and computing its covariance matrix. Taking
the heterogeneous data scenario for instance, since all domains share the same graph, the dimension
among all weighted adjacency matrices should be equal to the number of edges in this hidden graph,
and that should be the number of dominant principle components in the above analysis, as observed
in Figure 2. Therefore, the dominant diagonal entries (corresponding to the principal components of
the weighted adjacency matrixes) align well with those from the ground-truth weighted adjacency
matrices. This alignment suggests that the model successfully captures the true manifold in the
underlying graphs.

Beyond its ability to identify the common low-dimensional structure, we also show that the learned
kernel map is expressive enough to accurately predict the coefficients of the edges in the DAGs. As
shown in Figure 3, the weighted adjacency matrices predicted by the learned kernel map closely
match the ground-truth weighted adjacency matrices. We observe that this generalization capability
hinges on having a sufficient number of domains in the training set. To further investigate this, we
conduct an ablation study by varying the number of training domains. As the number of domains
increases, the performance of the learned kernel map improves, leading to lower input reconstruc-
tion error and reduced relative error between the estimated and ground-truth weighted adjacency
matrices. Please refer to Supplementary C.2 for more details.

4.2 ZERO-SHOT DAG INFERENCE

We evaluate the zero-shot DAG inference performance of our proposed ADAG algorithm. Specif-
ically, we apply the learned kernel map, trained on the M training domains, to infer the weighted
adjacency matrices for 1000 held-out test domains. Following the common practice in DAG learn-
ing (Zheng et al., 2018), a threshold is applied on the inferred weighted adjacency matrices, with a
fixed value of 0.3 across all experiments. To assess accuracy, we use the Structural Hamming Dis-
tance (SHD), which counts the number of extra, missing, and reversed edges in the inferred DAGs
relative to the ground-truth DAGs. Additionally, we report the runtime of the inference process to
demonstrate the efficiency of our approach.

We compare the performance of ADAG with two state-of-the-art single-task baselines:
NOTEARS (Zheng et al., 2018), DAGMA (Bello et al., 2022); three multi-task baselines: CD-
NOD (Zhang et al., 2017), MetaDAG (Lu & Gao, 2023), and MultiDAG (Chen et al., 2021); and
two amortized DAG learning baselines: AVICI (Lorch et al., 2022) and FIP (Scetbon et al., 2024).
For the single-task methods NOTEARS and DAGMA, we apply each algorithm independently to ev-
ery domain. For the multi-task methods MetaDAG and MultiDAG, we run the algorithms jointly on
the 1000 test domains to simultaneously learn the domain-specific weighted adjacency matrices. For
CD-NOD, which is a constraint-based method that returns a DAG skeleton rather than a weighted
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Heterogeneous Data Order-consist Data General Data

ER1

ER2

ER4

Figure 4: The empirical results of our ADAG approach against state-of-the-art baselines across ER1,
ER2 and ER4 graphs on three types of data.

adjacency matrix, we concatenate all observations from the 1000 test domains and use the combined
dataset as input. For amortized approaches, we either use a pre-trained model (AVICI) or conduct
additional learning after determining the order (FIP). To ensure a fair comparison across all meth-
ods, we either extensively tune the hyperparameters or adopt the recommended settings reported in
the original papers.

Table 1: Evaluation of the zero-shot DAG inference efficiency performance average over all types
of graphs (ER1, ER2, and ER4) and data types (heterogeneous data, order-consistent data and
general data) with varying scales.

d NOTEARS DAGMA MetaDAG MultiDAG AVICI FIP ADAG

5 0.07 0.38 75.10 0.02 0.20 0.15 3e-4
10 0.38 0.45 213.97 00.16 0.20 0.18 4e-4
20 2.15 0.70 456.53 0.45 0.20 1.05 4e-4
50 84.35 3.6 > 5 min > 5 min 5.12 0.25 6e-4

We report the DAG learning accuracy performance in Figure 4 and efficiency performance in Table
1. All results are averaged over the 1000 test domains and three independent runs. According to
Figure 4 and Table 1, we observe that our ADAG approach achieves the best overall performance
in terms of DAG inference accuracy (lowest SHD) and zero-shot inference efficiency, consistently
outperforming all state-of-the-art baselines. Moreover, we observe that the advantages of our ADAG
approach become more pronounced in challenging cases with large d and in general data without
additional assumptions on the DAG structures.

Evaluation on realistic dataset. We evaluate our ADAG approach on two realistic datasets,
Sachs (Sachs et al., 2005) and Sergio (Dibaeinia & Sinha, 2020). The Sachs dataset contains flow
cytometry measurements modeling protein signaling pathways, consisting of 11 continuous vari-
ables and 853 observations. We pre-train an ADAG model with d = 11 and n = 100 on general
data, then test it on Sachs using 100 observations randomly sampled from the full dataset. This pro-
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cess is repeated 10 times, and we report the mean SHD against several baselines in Table 2. For the
Sergio dataset, due to limited computational resources, we do not scale to the full 100-gene E. coli
network. Instead, we sample subgraphs with 10 variables per domain to generate a test dataset with
1000 domains. We then apply our ADAG model pre-trained on the d = 10 general case and report
the results in Table 2. Empirical results demonstrate that pre-trained ADAG models, when trained

Table 2: Empirical Results on Realistic Data Sachs and Sergio

Methods Sachs Sergio-Eco.li-subgraphs
SHD(↓) # estimated edges Inference time (s) SHD(↓) Inference time (s)

NOTEARS 15 17 0.48 3.61 0.57
DAGMA 14 6 0.30 3.40 0.75

AVICI 22 12 0.20 6.41 0.02
ADAG 12.45 17 3e-4 2.48 3e-4

on a sufficient number of domains, achieve strong DAG learning performance on realistic datasets.

Although the true distribution of realistic data is unknown, it is generally assumed to involve non-
linear causal relationships between variables, raising the question of how well our ADAG model,
pre-trained under linear SEM assumptions, can generalize to data generated from nonlinear SEMs.

Evaluation on nonlinear synthetic dataset. We generate nonlinear data using the ground-truth
graphs from the held-out test domain and directly evaluate our pre-trained ADAG models on this
data under the ER2-d10 graph setting, with results reported in Table 3. Empirical results show
that, even when evaluated on data generated from different types of SEMs, our model retains a
certain level of generalizability and achieves performance comparable to baseline DAG learning
approaches.

Table 3: The performance on nonlinear data on ER2 d = 10 settings.
Methods Heteogeneous Data Order-consist Data General Data

NOTEARS 0.52 0.46 0.67
DAGMA 0.41 0.32 0.53

AVICI 2.58 4.32 6.10
ADAG 0.42 0.35 0.45

Additionally, we further investigate the capability of our kernel map from ADAG in mitigating the
ill-posedness of DAG learning in low-sample regimes. Empirical results demosntrate that ADAG
approach can perform accurate DAG inference even when test domains have severely limited data.
Such flexibility and adaptability make our model particularly well-suited for real-world applications,
where data scarcity is common and collecting additional observations can be costly or infeasible.
More numerical results can be find in Appendix.

5 CONCLUSION

In this paper, we propose ADAG, a novel attention mechanism-based approach for training a foun-
dation model for DAG learning. The core of our method is a nonlinear kernel mapping that captures
the relationship between data observations and their underlying causal structures and mechanisms.
By jointly training the model with optimization-based DAG learning approach across multiple do-
mains, ADAG is designed to generalize effectively to test domains with unseen DAGs and mech-
anisms. Empirically, we demonstrate that the learned kernel map accurately captures the common
low-dimensional causal structure and predicts edge coefficients with high precision. Evaluations
on benchmark synthetic datasets show that ADAG achieves significant improvements in both DAG
learning accuracy and zero-shot inference efficiency. Furthermore, our model exhibits strong ro-
bustness in low-sample regimes.

Limitations and Broader Impact. Due to computational resource limit, our experiments focus
on learning from data generated by linear models with variable size up to d ≤ 50. It would be
beneficial to test the proposed method to even larger variable sizes. Our work takes a meaningful
first step toward building generalizable and data-efficient causal discovery systems by introducing
a foundation model pre-trained for DAG learning. This has the potential to benefit domains where
causal inference is critical but labeled or interventional data are scarce.
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A IMPLEMENTATION DETAILS

In this section, we discuss our implementation in terms of three aspects: attention mechanism model,
training procedure, and the augmented Lagrangian optimization.

Attention Mechanism Model. We implement our nonlinear kernel map between data observations
and weighted adjacency matrices using linear transformers. The key hyperparameters include the
number of attention heads r, the number of transformer layers nb, and the dimension k for the pa-
rameters WQ

1:L and WK
1:L. These parameters are chosen to ensure that the kernel map is expressive

enough to generalize to unseen data observations. Specifically, we set r = 1 across all settings. For
the number of layers, we use nb = 15 when d = 5 or d = 10, and nb = 20 when d = 20. The di-
mension k is used to reduce the input observation size n, and we typically set k =

√
n. Accordingly,

we choose k = 10 for n = 100 and n = 50, and k = 5 for n = 25.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Augmented Lagrangian Optimization. We initialize the Lagrangian multipliers with α = 0 and
ρ = 1. The progress rate is set to c = 1

4 , and the convergence tolerance is ϵ = 10−5. For each
value of α, we evaluate the acyclicity constraint

∑M
η=1 h(Â

η). If the constraint does not decrease
by a factor of c (i.e., is not reduced to 1

4 of its previous value), we increase ρ by a factor of 10 and
repeat the optimization. If the reduction criterion is met, we update the multiplier as α ← α +

ρ
∑M

η=1 h(Â
η). The optimization terminates once the constraint value satisfies

∑M
η=1 h(Â

η) < ϵ.

Training Procedures. We use the Adam optimizer across all settings with a fixed batch size of 100.
When α = 0 and ρ = 1, we train for 5000 epochs with an initial learning rate of 3 × 10−4. The
learning rate decays by a factor of 0.7 every 1000 steps. For subsequent values of the Lagrangian
multiplier, we reduce the number of training epochs to 100 and set the learning rate to 1× 10−4.

B DATA VISUALIZATION

We describe the data generation process for both heterogeneous and order-consistent settings. Since
both types use the same linear SEM with additive noise to generate observations from ground-
truth weighted adjacency matrices, the primary difference lies in the structure of these matrices.
Therefore, we illustrate the possible sets of ground-truth adjacency matrices Agt for each setting in
Figure 5. As shown in Figure 5(a), the ground-truth weighted adjacency matrices for heterogeneous
data share the same DAG structure but differ in their edge weights. According to Figure 5(b), the
weighted adjacency matrices for order-consistent data vary in structure but all respect the same
underlying topological order.

Figure 5: Visualization of the Ground Truth Weighted Adjacency Matrices for Heterogeneous Data
and Order Consist Data.

C DETAILED EMPIRICAL RESULTS

To provide a comprehensive evaluation of our proposed ADAG method, we conduct an ablation
study in Section C.2 to examine how the number of training domains influences the generalization
ability of the pre-trained model. This study offers empirical insights into the amount of data required
for effective pre-training. Furthermore, in Section C.3, we demonstrate that ADAG remains effective
under linear SEMs with non-Gaussian noise.
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C.1 LOW-SAMPLE ROBUSTNESS

We further investigate the capability of our kernel map from ADAG in mitigating the ill-posedness
of DAG learning in low-sample regimes. To evaluate this, we reduce the number of available obser-
vations per domain in both the training and test sets to n = 25 and n = 50 for the d = 5 setting. We
then assess the performance of our method and all baselines under these limited-data scenarios and
summarize the results in Table 4. While other baselines experience severe performance degradation
at n = 25 and n = 50, our method experiences a relatively modest drop in accuracy, demonstrating
greater robustness in the low-sample regime. Additionally, it is of interests to see if our pre-trained
foundation model can generalize to test tasks with small samples. To this end, we train ADGA with
n = 100 observations per domain and apply it to infer the weighted adjacency matrices for test do-
mains with only 25 or 50 observations per domain. To perform the downstream tests, we randomly
sample from the available n = 25 or 50 observations in each test domain, and augment them with
duplicates until the total reaches 100. Then, we use this augmented data as the input for inference
in ADAG. As shown in Table 4, models trained with larger n values consistently improve DAG
learning accuracy, though at the cost of slightly increased inference time. These results highlight
a key advantage of our ADAG approach: its ability to generalize effectively from high-resource
to low-resource settings. By pre-training on domains with sufficient data, the model can perform
accurate DAG inference even when test domains have severely limited data, simply by leveraging
augmentation strategies to align with the pre-training regime. Such flexibility and adaptability make
our model particularly well-suited for real-world applications, where data scarcity is common and
collecting additional observations can be costly or infeasible.

Table 4: Evaluation of the zero-shot DAG inference performance on ER1 heterogeneous data and
order-consistent data under low-samples regime.

n Methods Heterogeneous Data Order-consistent Data

SHD↓ |Â−Agt|
|Agt| ↓ # edges runtime (s)↓ SHD↓ |Â−Agt|

|Agt| ↓ # edges runtime (s)↓

50

NOTEARS 0.6590 0.2139 5.3850 0.0757 0.5400 0.2049 4.4020 0.0945
DAGMA 0.6080 0.2028 5.4110 0.3716 0.5440 0.2061 4.4220 0.3591
MetaDAG 5.8000 1.1018 4.7000 73.9802 5.7000 1.0088 5.0000 72.7758
CD-NOD 2.4000 - - 0.7445 1.2900 - - 0.6622
MultiDAG 0.1110 0.1751 5.0570 0.0114 0.5830 0.2688 4.5430 0.4502

ADAG (n = 50) 0.0550 0.1573 4.9750 0.0004 0.1880 0.1719 4.1320 0.0003
ADAG (n = 100) 0.0540 0.1528 4.9460 0.0006 0.0780 0.1470 4.0260 0.0004

25

NOTEARS 1.1870 0.2989 5.5710 0.0710 1.5110 0.3320 5.2160 0.0960
DAGMA 1.1220 0.2852 5.5880 0.3851 1.5590 0.3408 5.2540 0.3657
MetaDAG 5.7000 1.1016 4.7000 73.8623 5.7000 1.0089 4.9000 72.7697
CD-NOD 3.6000 - - 0.3926 2.3400 - - 0.3041
MultiDAG 0.5610 0.2458 5.3450 0.0097 1.0700 0.3133 4.9180 0.3816

ADAG (n = 25) 0.2710 0.2295 5.0050 0.0004 0.6840 0.2485 4.5200 0.0003
ADAG (n = 100) 0.1250 0.1955 4.8870 0.0006 0.1920 0.1886 4.0820 0.0004

C.2 ABLATION ON NUMBER OF DOMAINS

During the pre-training phase, we observe that a sufficiently large number of training do-
mains is necessary to effectively train the nonlinear kernel map, enabling it to produce accu-
rate weighted adjacency matrix predictions for unseen data observations. Hence, we perform
an ablation study which varies the number of data domains for training and evaluates the pre-
trained models on 1000 test domains data. We set the number of training domains to M =
0, 500, 1000, 5000, 10000, 15000, 20000, 30000, 40000, 50000, 60000, 70000, and report the perfor-
mance in terms of reconstruction loss values and relative errors on the test domains. Figure 6 shows
that as the number of training domains increases, both the reconstructed input data observations and
the estimated weighted adjacency matrices become closer to the ground truth. When M = 70,000,
the reconstruction loss (2.5030) and relative error (0.0386) on the test domains are comparable to
those on the training domains (reconstruction loss: 2.4980, relative error: 0.0242). Hence, we use
M ≥ 70000 domains for training across all settings.

C.3 ABLATION STUDY ON VARIOUS TYPES OF NOISE

We also perform ablation study to apply our ADAG on data generated from linear SEMs but with
non-Gaussian noise. As shown in Table 5, we generate synthetic data with exponential and Gum-
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Figure 6: Nonlinear Kernel Map Generalization vs Number of Domains

bel noise distributions, and compare our ADAG method against the state-of-the-art single-task and
multi-task DAG learning baselines. The empirical results are consistent with those reported in the

Table 5: Empirical Results of Baselines and our ADAG approach on Linear SEM Data Generated
from ER1 d5 Graphs with Various Types of Noise.

Additive Noise Types Methods SHD↓ # edges Relative Error ↓ Runtime(s) ↓

Exponential

NOTEARS 0.5640±0.0238 5.3480±0.0243 0.1620±0.0046 0.0982
DAGMA 0.5590±0.0152 5.3900±0.0147 0.1570±0.0044 0.5414
MetaDAG 5.5000±0.5000 3.0000±1.0000 0.9489±0.0599 0.2801
CD-NOD 1.1500±0.1212 - - 2.8525
MultiDAG 1.3700±0.0363 4.9940±0.1301 0.2755±0.0085 0.0310

ADAG 0.1130±0.0150 4.8970±0.0161 0.2017±0.0080 0.0003

Gumbel

NOTEARS 0.4599±0.0572 5.2969±0.0405 0.1460±0.0071 0.1002
DAGMA 0.4639±0.0575 5.3330±0.0348 0.1428±0.0053 0.5696
MetaDAG 4.5000±0.5000 4.0000±1.5000 0.9132±0.0470 0.2488
CD-NOD 1.2513±0.2029 - - 2.6850
MultiDAG 1.2261±0.0442 6.0031±0.0500 0.2996±0.0007 0.0278

ADAG 0.0570±0.0050 4.9450±0.0057 0.1442±0.0021 0.0003

main paper for data with equal-variance Gaussian noise. Our ADAG method achieves optimal per-
formance in terms of DAG inference accuracy (lowest SHD) and zero-shot inference efficiency.
Additionally, we report the standard deviation of the expected performance over 1,000 domains
across three trials. Compared to all baselines, our method exhibits the smallest standard deviation in
both SHD, highlighting the stability and reliability of the trained kernel map.

D THEORETICAL JUSTIFICATIONS

Intuitively, the optimization problem in our pre-training process can be separated into two sub-
problems: (i) learning the estimated adjacency matrix A for each domain from input data X by
minimizing the reconstruction loss ∥X−ATX∥2F under the acyclicity constraint, which corresponds
to the standard DAG learning problem; and (ii) learning the nonlinear maps from the input data X
of each domain to its corresponding weighted adjacency matrix A. A well-trained ADAG model
requires both sub-problems to be effectively solved.

In the following section, we consider order-consistent data. We first discuss whether the weighted
adjacency matrices with the ground-truth DAG structure can be identified for all domains (Sec-
tion D.1), then examine the identifiability of the parameters in the nonlinear kernel map (Sec-
tion D.2).
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D.1 GRAPH IDENTIFIABILITY

During the pre-training phase of our proposed ADAG approach, we inherently perform multi-task
DAG learning across M domains.

When all M domains have sufficient sample complexity, the identifiability problem reduces to
whether the causal graph for each individual domain can be uniquely identified from its corre-
sponding observations. For the linear SEM adopted in our framework, existing identifiability results
show that the causal graph is identifiable under the following conditions: (1) the additive noise is
non-Gaussian (Shimizu et al., 2006), or (2) the additive noise is Gaussian with equal noise vari-
ances (Peters & Bühlmann, 2014). Based on these results, we assert that if the SEMs are linear and
the noise satisfies either of these conditions, our method can identify the unique causal graph for
each domain. These identifiability results may also be extended to nonlinear SEMs with additive
noise, as discussed in Hoyer et al. (2008), Mooij et al. (2009), and Peters et al. (2012).

A more interesting scenario occurs when the observations from some domains are not sufficiently
complex to identify a unique DAG. In Chen et al. (2021), it was shown that by minimizing the joint
data loss from all M domains as discussed in our Section 3.3, this setting is able to recover the order

of non-identifiable graphs if (1) the sample complexity index
d

s

√
n

d log d

(M ′)2

M
is sufficiently large,

(2) the sample size n is also sufficiently large (on the order of logM+(p+1) log d), and (3) the total
domain number M is bounded above by O(d log d). Here, d is the number of random variables, n is
the number of observations in each domain, p is the maximum number of parents in DAGs, s is the
size of the support union, and M ′ is the number of domains with identifiable data among the total
M domains. While we anticipate the same identifiability results hold true for our learning problem,
we also point out that our ADAG focuses on the small data regime, i.e., n is of a similar size as d.
Under this circumstance, conditions (1) and (2) may be violated. It suggests a possible relaxation
of the theoretical results in Chen et al. (2021) and an improved identifiability property under our
foundation model setting. We leave such theoretical investigations to a future work.

D.2 PARAMETER IDENTIFIABILITY OF A

In addition to the capability of identifying the common topological ordering across all domains,
ADAG is also capable of identifying the weighted adjacency matrix parameters, i.e., A. Under this
setting, the learning of parameters can be seen as a discrete version of the learning problem consid-
ered in Yu et al. (2024), and one can show that the space in which the values of A are identifiable
is the closure of a data-adaptive reproducing kernel Hilbert space (RKHS). In particular, when the
common topological order is determined as a permutation π over [1 : d] := (1, 2, · · · , d) over all
domains, we denote the corresponding connectivity matrix as:

[C(π)]ij = 1, if π(i) < π(j),

[C(π)]ij = 0, if π(i) ≥ π(j).

Then, we can rewrite the weighted adjacency matrix A as:

A = Ã ◦ C(π),

where Ãij = 0 if [C(π)]ij = 0, and Ãij = Aij if [C(π)]ij = 1. ◦ denotes the Hadamard product.
One can see that the parameter identifiability problem is equivalent to a learning problem of the
d(d−1)/2 parameters in Ã. Without loss of generality, we consider π to be the identity permutation
to simplify the notations. Then, we have the following result:
Lemma D.1 (Space of Identifiability). The loss function

M∑
η=1

||Xη
1:d(1 : n)− (Ã ◦ C(π))⊤Xη

1:d(1 : n)||2F (13)

has a unique minimizer Ã is the closure of a data-adaptive RKHS HG with a reproducing kernel Ḡ
determined by the training data:

Ḡijk = [ρ′jρ
′
k]

−1Gjk, if π(i) < π(j), π(i) < π(k), else Ḡijk = 0.
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Here ρ′ is the density of the empirical measure ρ defined by

ρ′j :=
1

Z

M∑
η=1

n∑
s=1

|Xη
j (s)|,

with Z being the normalizing constant, and G is defined by

Gjk :=

M∑
η=1

n∑
s=1

Xη
j (s)X

η
k (s).

Proof. The loss function can be expanded as:

M∑
η=1

||Xη
1:d(1 : n)− (Ã ◦ C(π))⊤Xη

1:d(1 : n)||2F

=

M∑
η=1

n∑
s=1

||(Ã ◦ C(π))⊤Xη
1:d(s)||

2 − 2

M∑
η=1

n∑
s=1

(Xη
1:d(s))

⊤(Ãη ◦ C(π))⊤Xη
1:d(s) + Const

=⟨LḠÃ, Ã⟩L2
ρ
− 2⟨Ã, (Ã)D⟩L2

ρ
+ Const.

LḠ is an operator mapping from an upper triangular d× d matrix to another upper triangular d× d
matrix, defined as:

(LḠÃ)ij =

M∑
η=1

n∑
s=1

d∑
k=i+1

ÃikX
η
j (s)X

η
k (s) =

d∑
k=i+1

ÃikḠijk,

and (Ã)D is an upper triangular d× d matrix satisfying:

⟨Ã, (Ã)D⟩L2
ρ
=

M∑
η=1

n∑
s=1

(Xη
1:d(s))

⊤(Ã ◦ C(π))⊤Xη
1:d(s).

This loss function has a unique minimizer in Null(LḠ)
⊥.

Intuitively, increasing M and n helps to include more data, which would enhance the invertibility of
Ḡ and enlarge the space of identifiability for Ã. For further discussions on how linear transformer
functions enhance the identifiability and solve the inverse linear regression problem, we refer to Yu
et al. (2024) and Lu & Yu (2025).
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