
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE DATA-QUALITY ILLUSION: RETHINKING
CLASSIFIER-BASED QUALITY FILTERING FOR LLM
PRETRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-scale models are pretrained on massive web-crawled datasets containing
documents of mixed quality, making data filtering essential. A popular method
is Classifier-based Quality Filtering (CQF), which trains a binary classifier to
distinguish between pretraining data and a small, high-quality set. It assigns each
pretraining document a quality score defined as the classifier’s score and retains
only the top-scoring ones. We provide an in-depth analysis of CQF. We show
that while CQF improves downstream task performance, it does not necessarily
enhance language modeling on the high-quality dataset. We explain this paradox
by the fact that CQF implicitly filters the high-quality dataset as well. We further
compare the behavior of models trained with CQF to those trained on synthetic
data of increasing quality, obtained via random token permutations, and find starkly
different trends. Our results challenge the view that CQF captures a meaningful
notion of data quality.

1 INTRODUCTION

Large-scale models are pretrained on large amounts of data, and the quality of these data is a
critical factor in achieving state-of-the-art performance. Among various heuristics for leveraging data
quality to improve on downstream tasks, Classifier-based Quality Filtering (CQF) is recognized as a
cornerstone of data processing. CQF has now become widely adopted and is, for instance, part of
established pretraining pipelines like those of GPT3 (Brown et al., 2020), LLama (Touvron et al.,
2023), and PALM (Chowdhery et al., 2023). It is also a key component of several widely used public
datasets, such as DCLM (Li et al., 2024) or the SmolLM corpus (Ben Allal et al., 2024).

CQF, as illustrated in Figure 1, trains a binary classifier to distinguish documents from a large,
low-quality pretraining set (LQ set) from those of a small, high-quality dataset (HQ set). It then
assigns a scalar quality score to each document within the LQ set, defined by the classifier’s score.
The filtered dataset is formed by selecting the top k fraction of documents in the pretraining set,
ranked by their quality score.

The goal of this paper is to understand the mechanics behind CQF, its impact on downstream
performance, and to challenge the underlying notion of quality it defines. Concretely, does CQF truly
select data that resemble the HQ set, as it is commonly believed? Does the quality score it incurs
match the general intuition about data quality?

We start by highlighting a paradox in how CQF works: although CQF consistently improves per-
formance on downstream tasks, it does not necessarily improve language modeling on the HQ set.
This finding challenges the widely held belief that CQF improves models by selecting training data
that are similar to the HQ data. We explain this paradox by the fact that CQF is akin to an implicit
quality filtering of the HQ set itself, which upweights data in the HQ set that are far from the LQ
set. This means that models trained with CQF are not necessarily good at language modeling on the
whole HQ set, but rather on a higher-quality subset of it. Moreover, we show that this filtering of the
HQ set aligns with downstream tasks for most choices of HQ sets, which explains the paradox. We
then compare CQF to importance sampling methods (Xie et al., 2023; Grangier et al., 2024), which
explicitly attempt to resample the LQ set to follow a distribution close to the HQ set. We highlight a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

High-Quality Set

Pretraining Set Embed Score Pretraining Set

k = 10 %

Classifier score
distribution

k = 25 %

k = 50 %

0 1

Classifier
Select
top k

CQF Set

k = 5 %

<latexit sha1_base64="WCulPo+PYVdQFN7dqfEOKsYxlB8=">AAAB/HicbVDLTgIxFL3jE/GFunTTSExYkRnja0l04xKNPBKYkE7pQEOnM2nvmBCCX+BWv8Cdceu/+AH+hwVmIeBJmpycc2/u6QkSKQy67rezsrq2vrGZ28pv7+zu7RcODusmTjXjNRbLWDcDargUitdQoOTNRHMaBZI3gsHtxG88cW1ErB5xmHA/oj0lQsEoWunBlDqFolt2pyDLxMtIETJUO4WfdjdmacQVMkmNaXlugv6IahRM8nG+nRqeUDagPd6yVNGIG380TTomp1bpkjDW9ikkU/XvxohGxgyjwE5GFPtm0ZuI/3mtFMNrfyRUkiJXbHYoTCXBmEy+TbpCc4ZyaAllWtishPWppgxtOXNXUNjA47ztxVtsYZnUz8reZfni/rxYuckaysExnEAJPLiCCtxBFWrAIIQXeIU359l5dz6cz9noipPtHMEcnK9frLaVPg==</latexit>

s(
<latexit sha1_base64="MV7TMx2o1t01RTckb/5+bypDu0Y=">AAAB+3icbVDJSgNBFOyJW4xb1KOXxiDoJcyI2zHoxWMCZoFkCD2dN0mTnoXuN0IY5gu86hd4E69+jB/gf9hJ5mASCxqKqvd41eXFUmi07W+rsLa+sblV3C7t7O7tH5QPj1o6ShSHJo9kpDoe0yBFCE0UKKETK2CBJ6HtjR+mfvsZlBZR+ISTGNyADUPhC87QSI2LfrliV+0Z6CpxclIhOer98k9vEPEkgBC5ZFp3HTtGN2UKBZeQlXqJhpjxMRtC19CQBaDddBY0o2dGGVA/UuaFSGfq342UBVpPAs9MBgxHetmbiv953QT9OzcVYZwghHx+yE8kxYhOf00HQgFHOTGEcSVMVspHTDGOppuFKyhM4KxkenGWW1glrcuqc1O9blxVavd5Q0VyQk7JOXHILamRR1InTcIJkBfySt6szHq3PqzP+WjByneOyQKsr1/R/5TC</latexit>

)

Figure 1: Classifier-based Quality Filtering (CQF) pipeline. A document embedding model (e.g.
sBert, Artic-Embed or FastText) embeds documents from a high-quality dataset and the pretraining
set. A binary classifier is trained on those embeddings to distinguish the HQ set from the pretraining
set. Scores assigned by the classifier are used to rank documents from the pretraining set. The top k
fraction of those documents constitutes the new filtered CQF dataset.

stark difference between the two methods: importance sampling yields better language modeling on
the HQ set, but it does not benefit from the aforementioned implicit filtering of the HQ set.

Beyond these paradoxes, we introduce a new lens to probe whether CQF induces a meaningful notion
of quality. Specifically, we formalize the notion of data conditioning: along a true quality axis,
training on “clean” data should give better performance on “dirty” test distributions than training
directly on the dirty distribution. This behavior fundamentally depends on the optimization algorithm
used to approximately minimize the training loss. Indeed, if the training algorithm were perfect,
training on the dirty data itself would always yield the best possible loss on that very data. Therefore,
this phenomenon can only arise because optimization on the clean dataset is easier, hence the term
data conditioning. We demonstrate that this desirable property is clearly observed when constructing
datasets with ground-truth mixtures of clean and dirty documents, as inspired by Kallini et al. (2024).
In contrast, subsets selected by CQF fail to exhibit any such data-conditioning ordering, suggesting
that the notion of quality CQF captures is more limited and closely related to stylistic or domain
similarity—contexts in which “training cleaner” does not universally help.

1.1 RELATED WORK

Recent surveys (Albalak et al., 2024; Longpre et al., 2024) provide comprehensive overviews of data
selection pipelines and identify classifier- and perplexity-based filtering as the most widely used
techniques, with classifier-based methods being the most effective in practice (Li et al., 2024). A
common underlying assumption across these approaches is that pretraining on data resembling a small,
trusted high-quality (HQ) set (e.g., Wikipedia, books, curated instructions) improves downstream
performance. This belief has motivated two main strategies that operate at the document level:
directly mimicking the HQ distribution via importance sampling or indirectly approximating it
through classifier-based filtering. In the importance sampling paradigm, Xie et al. (2023) approximate
the likelihood ratio between HQ and LQ data to guide resampling of the LQ set, while CRISP
(Grangier et al., 2024) uses clustering of the pretraining data to best match the HQ set.

CQF, on the other hand, uses a classifier to score LQ documents by learning boundaries between HQ
and LQ samples. CQF is widely adopted in state-of-the-art pipelines: GPT-3 (Brown et al., 2020)
employs a classifier with Pareto-biased sampling; LLaMA (Touvron et al., 2023) filters Common
Crawl using Wikipedia as HQ; GLaM (Du et al., 2022), PaLM (Chowdhery et al., 2023), and
RedPajama (Weber et al., 2024) similarly rely on Wikipedia and books. More recently, Li et al. (2024)
introduced DCLM, a large-scale filtered dataset centered on CQF, using ELI5 (Fan et al., 2019) and
OpenHermes (Lian et al., 2023) as HQ sources. Wang et al. (2025) study methods to build HQ sets,
and Soldaini et al. (2024) propose the Dolma Toolkit, featuring CQF that is applied to the Dolma
dataset iteself. RefinedWeb (Penedo et al., 2023) and FineWeb (Penedo et al., 2024) use classifiers to
extract English documents. Artic-Embed (Merrick et al., 2024) is a popular document embedder for
training quality classifiers, underlying Python-edu and FineWebEdu (Ben Allal et al., 2024) datasets.
Recently, Mizrahi et al. (2025) analyzed how aggressive filtering should be as function of model and
data scales. Finally, classifiers can also be used to filter toxic content (Welbl et al., 2021).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Dataset Number of Documents Source
OpenOrca (Lian et al., 2023) 3M GPT-4/GPT-3.5
ELI5 (Fan et al., 2019) 325k Reddit
OpenHermes (Teknium, 2023) 240k GPT-4
KnowledgePile (Fei et al., 2024) 1M Scientific blog & papers
openwebmath (Paster et al., 2023) 6.3M Mathematical webtext
ARC Easy (Clark et al., 2018) 2.25k grade-school level MCQA

Table 1: Overview of the “high-quality” datasets used for CQF in our study.

Beyond CQF and importance sampling, recent works learn proxy scores directly linked to downstream
performance rather than assuming and imposing any fixed notion of quality. For example, Mizrahi
et al. (2025) train regressors to predict closeness to evaluation tasks, Zhuang et al. (2025) combine
multiple quality dimensions into learned mixtures, and older methods rely on LLM perplexity
(Wenzek et al., 2020). These methods suggest that the best data may not necessarily resemble a
specific HQ corpus, but rather satisfy task-relevant criteria that can be discovered during training.

2 CLASSIFIER-BASED QUALITY-FILTERING

We describe the Classifier-based Quality-Filtering (CQF) method as it is used in the literature and
in this paper. CQF takes as inputs a high-quality (HQ) dataset, DHQ, a pretraining dataset that is
generally of low quality, DLQ, and a selection fraction k between 0 and 100%.

Low-quality (LQ) dataset. This is a standard pretraining set, which, in the context of LLM pre-
training, contains curated documents gathered from a large web crawl spanning diverse data sources.
While the dataset is huge—containing enough tokens to train large models without repetitions—it
also includes many low-quality, badly formatted, or uninformative documents. The overall goal of
data selection is to select a subset of this LQ set that leads to better model performance. In this paper,
we take RedPajama-V2 as our LQ set, which contains 32T tokens.

High-quality (HQ) dataset. This is a high-quality dataset made of documents from a highly curated
source. These documents are well formatted, have relevant content and are sometimes manually
annotated. They can be data coming from proofread websites such as Wikipedia, or sentences
generated by a sufficiently good language model. However, the HQ dataset is typically quite small
and insufficient on its own to train a model. Instead, it serves two key purposes to guide the data
selection process: 1) as a target for selection, where data in the LQ set that resemble the HQ set
are considered high quality, and 2) as a benchmark to evaluate the effectiveness of data selection,
with models achieving low loss on this dataset considered to be performing well. Table 1 gives an
overview of HQ sets used in this work.

CQF is a widely used method for data selection that filters data from the LQ set, guided by the HQ
set. We now describe its practical implementation, which is illustrated in Figure 1.

Embedding. Each document in the HQ and LQ datasets is embedded in a vector space Rp. Since the
whole LQ set has to be embedded, the embedding method needs to be scalable. In practice, we use
sBert, with p = 384. Another popular choice is FastText (Joulin et al., 2016).

Classifier training. A training set made of n embeddings from the HQ set and n others from the LQ
set is used to train an L2-regularized logistic regression. The regularization coefficient is taken as
the one maximizing accuracy on a held-out set. Once this classifier is trained, it defines the CQF
score function s(x) ∈ [0, 1], that, for any document x, defines a scalar that measures how likely the
classifier is to identify this document as a member of the HQ set. This score s(x) is often called
quality signal (Weber et al., 2024), which is why, in the context of CQF, we will refer to it as quality
of document x. A goal of this paper is to understand whether this definition of quality is appropriate.

“Quality” filtering. In order to estimate the distribution of the scores on the LQ dataset, a subset of
the LQ dataset is scored, which allows us to estimate the cumulative density C(s̃) = P(s(x) ≤ s̃|x ∈
DLQ) for all s̃ ∈ [0, 1]. Then, for a given selection fraction k, only the top k fraction of documents
in the LQ set is kept, resulting in a filtered dataset DCQF = {x ∈ DLQ| C(s(x)) ≥ 1 − k}.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

50.0

60.0

D
ow

ns
tr

ea
m

A
cc

. HQ set: OpenOrca

50.0

60.0
HQ set: KnowledgePile

50.0

60.0
HQ set: OH+ELI5

50.0

60.0
HQ set: openwebmath

50.0

60.0
HQ set: ARC Easy

2.75

3.00

3.25

L
Q

se
tl

os
s

2.75

3.00

3.25

2.75

3.00

3.25

2.75

3.00

3.25

2.75

3.00

3.25

1%5%20%100%

2.75

2.80

2.85

H
Q

se
tl

os
s

1%5%20%100%

2.90

2.95

1%5%20%100%
2.5

2.6

2.7

1%5%20%100%
2.6

2.8

1%5%20%100%
3.0

3.5

CQF Selection Fraction k

Figure 2: Top row: Models trained on increasingly selective data show improved performance on
downstream tasks. Bottom row: When evaluated on the HQ dataset itself, these models do not
necessarily improve as there is a non-increasing relationship between downstream performance and
loss on the HQ set. The performance of a model trained on the LQ set is given by the leftmost point
in each figure, corresponding to k = 100%

Table 2: Hyperparameters used for training
models

Size 125M 350M 1.3B
Architecture
Vocab Size 32K 32K 32k
Embedding dim. 768 1,024 2,048
Latent dim. 3072 4,096 8,192
Num. heads 16 16 16
Depth 12 24 24
Context lenght 1,024 1,024 1,024

Optimization
Batch size (tokens) 115K 32K 115K
Learning rate scheduler lin. decay lin. decay lin. decay
Learning rate peak 1e−4 1e−4 1e−4

Grad clipping 5.0 5.0 5.0
Steps 64K 256K 1M
Num. train tokens 8B 8B 120B

This selects the documents in the LQ set that are most
likely to belong to the HQ set, based on the score
defined by the classifier, and are therefore “higher-
quality” documents. This dataset is then used to
train models in place of the low-quality dataset. One
clear limitation of CQF is that the number of training
tokens available in the dataset is k×D where D is the
total number of tokens in the LQ set. Too small values
of k lead to scarce datasets on which models cannot
be trained without repeating data or even overfitting.
In this paper, we step away from this limitation and
always use values of k such that there are enough
data in DCQF to train a model without repeating data.
This allows us to focus solely on the impact of data
quality rather than on the effects of repeated training
examples.

Evaluations. After pretraining, models are evaluated by scoring them on evaluation benchmarks,
such as general knowledge question answering. Performance on these datasets is indicative of
the usefulness of models after post-training. In this work, we consider evaluations on ARC-Easy,
ARC-Challenge, MMLU, and reward-bench. The bulk of our experiments is done on ARC-Easy,
which has better-than-random performance at small scales. Model architectures are found in Table 2.

3 CQF IMPROVES MODEL EVALUATIONS

We begin with the observation that motivates the wide adoption of CQF. We train 350M models
on CQF datasets with different HQ datasets and values of k. We then evaluate those models by
computing their accuracy on ARC-Easy. We also use ARC-Easy itself as the HQ set. We display
the results in Figure 2, top row. Among all HQ sets, using ARC-Easy leads to the best downstream
performance. We observe that the performance on the downstream task generally improves as we
select datasets of higher quality, with smaller values of k. This occurs for OpenOrca, KnowledgePile,
OH+ELI5, and ARC-Easy, but for openwebmath, we observe a performance dip if we select a value
of k that is too small. A simple explanation is that CQF with openwebmath selects too specialized

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

top 100%

top 80%

top 60%

top 40%

top 20%

top 1%

C
Q

F
sc

or
esDataset

CQF
Target Benchmark
RedPajamaV2

HQ set
ARC-Challenge
ARC-Easy
mmlu
reward-bench

KnowledgePile
OH+ELI5
OpenOrca
openwebmath

Figure 3: Two-dimensional PCA projections of sBert embeddings from quality buckets defined
by classifiers, each using a different HQ set.. Quality buckets across classifiers (CQF) used in the
literature exhibit alignment towards benchmark datasets. When considering the top 100%, we fall
back to the original pretraining dataset (RedPajama-V2) regardless of the HQ set used.

−10 −5 0

x
−10 −5 0

x

assign to buckets

L
ow

es
t

←
qu

al
ity

→
H

ig
he

st

CQF log-score

RedPajamaV2 OpenOrca Joint PCA of CQF and HQ set

Domain
HQ set: OpenOrca
CQF in top 100%
CQF in top 25%
CQF in top 2%
CQF in top 1%

Figure 4: CQF works by filtering out the low-quality data (red), not because the retained data
(green) resemble the HQ set (orange). This is clear both from the raw log-scores of the classifier
(left), and in 2D PCA of the sBert latent space (right). TSNE show similar patterns in Appendix C.

documents. We confirm this alignment between data selected by CQF and common benchmarks in
Figure 3 by examining a 2D PCA of their latent space.

4 CQF DOES NOT SELECT DATA THAT RESEMBLE THE HIGH-QUALITY SET

CQF ranks data based on likelihood ratios. Assuming that the binary classifier trained in CQF is
Bayes-optimal, the CQF quality score of a document x is s(x) = pHQ(x)

pHQ(x)+pLQ(x) (Hastie et al., 2009).

As such, scores are an increasing function of the density ratio: s(x) = ϕ
(

pHQ(x)
pLQ(x)

)
with ϕ(t) = t

t+1 .
The ordering of documents implicitly defined by CQF is therefore that of the likelihood ratio: a
document x is of “higher quality” than a document y if pHQ(x)

pLQ(x) ≥
pHQ(y)
pLQ(y) . This contrasts with the

"importance sampling" ranking, which would rank x higher than y solely based on their likelihood
under the HQ distribution, i. e., if pHQ(x) ≥ pHQ(y). A simple conclusion is that, since in general
the LQ set is not uniformly distributed, CQF does not select samples that are most likely to come
from the HQ set only. Instead, it prefers documents that are both likely under the HQ distribution
(high pHQ(x)) and unlikely under the LQ distribution (low pLQ(x)). In other words, with CQF, data
are filtered based on a trade-off between being close to the HQ set and far from the LQ set. This
phenomenon is clear when plotting the score densities of data filtered by CQF in Figure 4.

4.1 KULLBACK-LEIBLER DIVERGENCE BETWEEN DATASETS

For each model trained in section 3, we also compute its next-token prediction loss on the HQ set
(Figure 2, bottom row). We observe U-shaped curves for all HQ datasets except ARC-Easy. For these
HQ sets, the optimal k that yields the smallest loss is often large. Remarkably, small values of k can
result in models that perform even worse on the HQ set than a model trained on the full LQ set, as
seen with OpenOrca or KnowledgePile. This behavior contrasts with using ARC-Easy as HQ set,
where reducing k consistently improves both model performance and language modeling.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1%2%5%20%100%
CQF selection fraction k

2.8

2.9

3.0

3.1

3.2

L
os

s

Full HQ set
HQ score deciles

L
ow

es
t←

qu
al

ity
→

H
ig

he
st

1%20%40%60%80%100%
HQ score deciles

1.5

2.0

D
is

ta
nc

e
to

A
R

C
E

as
y

the top bucket is closest
to ARC Easy

L
ow

es
t←

qu
al

ity
→

H
ig

he
st

Figure 5: CQF implicitly filters the HQ set. We split the HQ set (KnowledgePile) into 10 deciles of
CQF scores. Left. For each model trained with CQF at a given fraction k, we report the loss of the
model on each of these 10 deciles. The reddest curve corresponds to the loss on the HQ elements
with the bottom 10% scores, while the greenest curve corresponds to the top 10%. Our findings
indicate that only the high-quality deciles of the HQ set exhibit a decreasing loss. This suggests that
the classifier effectively identifies and learns the features within these deciles, enabling the models to
make better predictions. However, on average over all the deciles (dotted line), the loss is a U-curve,
recovering the loss in Figure 2 (second row and column). Right. In sBert latent space, we compute
the distance between the barycenter of ARC-Easy to the barycenter of each HQ decile. This distance
correlates well with performance on the ARC-Easy benchmark itself.

As a result, there is a clear discrepancy between the loss on the HQ set—which reflects how closely
the pretraining data resemble the HQ distribution—from the achieved downstream performance
(ARC-Easy). This challenges the standard belief that CQF filters data to get closer to the HQ set.

Loss on the HQ set as a proxy for the distance between CQF and HQ set. The loss measured
on the HQ set can be interpreted as a measure of how different the filtered data are from the HQ
set in terms of Kullback-Leibler (KL) divergence, under the assumption that the model has infinite
capacity (Cover, 1999). Indeed, in this case, the model’s parameters θ are such that the model trained
on the filtered set by CQF would perfectly represent its data distribution, i.e., pθ(x) ≈ pCQF(x).

Evaluating this model on the HQ set yields a next-token prediction loss equal to
Ex∼DHQ

[− log pCQF(x)]. This quantity can be decomposed as,

H(DHQ) + KL(DHQ∥DCQF),

where H(DHQ) is the entropy of the HQ distribution (a constant when changing k), and
KL(DHQ∥DCQF) is the KL divergence from the HQ distribution and the distribution of data filtered
by CQF. Hence, under the hypothesis that the models trained in these experiments accurately represent
pCQF, the observed increase in HQ loss for small k means that the corresponding pretraining sets
diverge further away from the HQ distribution. To our knowledge, this phenomenon has not been
previously identified. In the next section, we investigate the reasons behind it.

4.2 CQF IMPLICITLY FILTERS THE HIGH-QUALITY DATASET AS WELL

One way to interpret the CQF selection rule is that it is a reweighting of the distribution of the HQ
set, with non-uniform weights: it puts a larger weight on documents that are far from the LQ set.

As a result, CQF can be understood as 1) selecting data in the HQ set that are far from the LQ set
and then 2) selecting data in the LQ set that are close to that portion of the HQ set. To validate this
interpretation, we further partition the HQ set itself into 10 "quality" buckets according to their CQF
scores. We then measure the next-token prediction loss on these 10 domains achieved by models
trained with CQF by varying k in Figure 5. Interestingly, the loss on the top-scoring documents
from the HQ set behaves very differently than the loss on the bottom-scoring data from the same
set. More precisely, the loss on the top-scoring HQ data is monotonic with k, while the loss on the
bottom-scoring HQ data rises sharply as k decreases. This analysis decomposes the overall U-shaped
loss reported in the previous section into the average loss across different quality levels within the HQ
set. Notably, this implicit filtering of the HQ set itself is beneficial. In fact, data in the HQ set that

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

MMLU, base: 25%
ARC Easy, base: 60%

ARC Challenge, base: 28%
Reward Bench, base: 57%

0

1

2

3

4

 A
cc

ura
cy

 %
 vs

 ba
se KnowledgePile

Top 10% of KnowledgePile
OpenOrca
Top 10% of OpenOrca

Figure 6: Finetuning a 1.3B model on HQ sets and on their top decile. We report the best
performances during fine-tuning; no bar means that fine-tuning on that set does not improve the
performance on that benchmark. Darker colors indicate finetuning on the top 10% of the HQ set
according to the CQF classifier, while light colors indicate finetuning on the whole HQ set. The same
number of tokens is used in both scenarios. OpenOrca aligns most closely with MMLU, whereas
KnowledgePile shows stronger alignment with ARC-Easy, supporting the trend observed in Figure 3.

resemble data from the LQ set are likely to be of lower quality, since the LQ set contains a significant
amount of noisy data. This resolves the earlier paradox: top-scoring data within the HQ set are more
aligned with the evaluation task than those from the HQ set with lowest scores; see Figure 5.

We further validate that these top deciles of HQ sets are aligned with downstream evaluations by
finetuning a 1.3B model on them, as well as on the full HQ set. We report the corresponding gains
in accuracy in Figure 6. This again shows that the top decile of KnowledgePile is aligned with
ARC-Easy, while the full set is not. We now formalize this implicit filtering intuition.

CQF as a reweighting of the HQ set. Letting r(x) =
pHQ(x)
pLQ(x) be the likelihood ratio, CQF selects

data in the LQ set such that r(x) ≥ τ , where τ is calibrated so that only a fraction k of the LQ set is
selected. The CQF dataset’s density can be rewritten as

pCQF(x) =
1

Z
1r(x)≥τpLQ(x) = w(x)pHQ(x), where w(x) ∝ 1r(x)≥τ

r(x)
, (1)

which means that it is a reweighted version of the HQ set density, with weights w(x), and where Z is
a normalization constant. The most upsampled points in the HQ set, which have a high value w(x),
are therefore those such that r(x) is above τ while being small. This is akin to a filtering of the HQ
set based on the likelihood ratio value r(x). This explains the results in Figure 5: as the fraction k
reduces, pCQF gets close to a filtered version of pHQ where only top-scoring samples are kept.

5 CQF IS NOT IMPORTANCE SAMPLING

A common belief behind the use of CQF is: “Ideally, we would train on the HQ set,
but we don’t have enough data. So we use CQF to mimic data from the HQ set.”

2.7 2.8

50%

60%

D
ow

ns
tr

ea
m

A
cc

.

HQ set: OpenOrca

3.0 3.5

HQ set: ARC Easy

L
ow

es
t←

qu
al

ity
→

H
ig

he
st

Loss on HQ set

CQF CRISP on HQ set

Figure 7: Performance comparison between
CQF and importance sampling-based approach
(CRISP). CQF induces a data selection that is sub-
stantially different from the HQ set. Colors indi-
cate more (green) or less (red) filtering.

As we have seen in the previous section, assum-
ing that the classifier is Bayes-optimal, CQF
draws samples from the LQ set following the
density w(x)pHQ(x), where w(x) is not uni-
formly equal to 1. On the other hand, impor-
tance sampling methods try to sample elements
from the LQ set that directly follow the density
pHQ. We use the CRISP method (Grangier et al.,
2024) in order to implement importance sam-
pling, with the same models as in section 3, with
OpenOrca and ARC-Easy as HQ sets. We re-
port the loss on the HQ set and the downstream
accuracy in Figure 7, as well as those of the
models trained with CQF. OpenOrca being di-
verse and multi-topic, we found that C = 4096
clusters are sufficient to capture that distribution

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

well, whereas ARC-Easy requires C = 260k
clusters. We observe that importance sampling
indeed leads to good language modeling on the
HQ set, which translates to better downstream performance when the HQ set is the downstream task
itself (right), but not when the HQ set is a curated dataset (left). In that case, CQF leads to better
downstream performance than importance sampling.

Training with CQF can be better than training on an infinite HQ set A widely spread idea
about the use of CQF is that if we had enough data from the HQ set, we would train models on
the HQ set itself. We now argue that this is not necessarily the case and that training on the CQF
set can be better than on the HQ set, even with limited data from the HQ set. To do so, we use a
base HQ set with limited tokens, Dbase

HQ ; in practice, we use OpenOrca. We define a new HQ set
as DHQ = CQF(Dbase

HQ , 20%), i.e. the CQF with k = 20% of the base HQ set. Now, this new
high-quality set contains enough tokens to train large-scale models, since it contains 20% of the LQ
set. We then construct a new CQF set using that new HQ set, and train a model on the top 1% of data.
We observe that the accuracy of a model trained on the HQ set is 50.1%, while the accuracy of the
new model trained on the CQF set is 53.8%. In summary, we obtain better models by using CQF
than by training directly on the HQ set, illustrating once again the benefits of the implicit filtering
provided by CQF. This opens a promising avenue for data selection, where CQF is used as a way to
improve on the HQ set.

6 DISCUSSION: DOES CQF DEFINE A SOUND NOTION OF QUALITY?

The goal of this section is to offer a different perspective on the concept of quality by introducing a
formal definition based upon optimization considerations. Within this framework, we (i) explore a
semi-synthetic setting where quality can be clearly defined and controlled, and (ii) move beyond the
limitations of earlier experiments, such as fixed model size and finite training horizon, which only
offer snapshots of the following analysis.

6.1 DATA CONDITIONING: DATA-QUALITY AS AN OPTIMIZATION CATALYST

Central to our analysis is the concept of data conditioning, which we define as a desirable property of
data quality. Informally, a dataset Dclean is better data conditioned than another dataset Ddirty if a
model trained on Dclean outperforms a model trained on Ddirty when evaluated on Ddirty.

We describe it formally as follows. Given an objective function ℓ and a dataset D, we define the loss
function as L(θ,D) := Ex∼D[ℓ(x; θ)]. This loss is typically approximately minimized by running a
stochastic optimization algorithm A on the samples xi:

θnDdirty
← A(xi), with (xi)

n
i=1 ∼ Ddirty, (2)

where xi’s are n i.i.d. samples from Ddirty. Instead of training on Ddirty, one can also train on
Dclean and obtain parameters θnDclean

. We propose an axiomatic definition of quality:

Data-conditioning. We write Dclean ≻ Ddirty and say that a dataset Dclean is better data-
conditioned than Ddirty, relative to the learning rule A and the horizon n ∈ N if

L(θnDclean
, Ddirty) ≤ L(θnDdirty

, Ddirty). (3)

We coin this phenomenon “data conditioning”, drawing from the optimization literature, where
conditioning typically describes how easily a loss function can be minimized. In our context, data
conditioning captures how the structure of a dataset accelerates optimization. Indeed, in standard
large-scale settings, data are seldom repeated, and models generalize well, which means that the
training loss closely approximates the validation loss. Therefore, if we had a perfect minimiza-
tion oracle, A(xi) = argminθ∈Θ

1
n

∑n
i=1 ℓ(xi, θ), we would have by definition of the minimizer

L(θnDdirty
, Ddirty) ≃ 1

n

∑n
i=1 ℓ(xi, θ

n
Ddirty

) ≤ 1
n

∑n
i=1 ℓ(xi, θ

n
Dclean

) ≃ L(θnDclean
, Ddirty). This

would forbid the existence of better data-conditioned datasets. However, the existence of better-
conditioned datasets has been reported many times in the literature, and is at the root of curriculum

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

50% 22% 12% 4% 1%
Test on top k'

50%

22%

12%

4%

1%
Tr

ain
 on

 to
p k

Perm

100% 30% 15% 5% 1%
Test on top k'

100%

30%

15%

5%

1%
CQF

70% 37% 17% 6% 1%
Test on top k'

70%

37%

17%

6%

1%
Exclusive CQF

0.10

0.05

0.00

0.05

0.10

 L
os

s v
s T

rai
n o

n k
'

Figure 8: Data conditioning experiment. We use three different ways to define an axis of “quality”,
which are datasets indexed by a scalar k ∈ [0, 1], where k = 0 means higher quality. Perm defines
it as (1 − k) where k is the probability of randomly permuting a document. CQF defines it as
the fraction of documents kept in the pretraining set, where the HQ set is OpenOrca. Exclusive
CQF defines it as documents that have scores between two thresholds. Each of these datasets is
parameterized by a quality knob, k. We train models for a grid of values k, and compute their test
loss on the dataset k′, L(k, k′). The figure displays the matrices with entries L(k, k′)− L(k′, k′). A
negative value for the coefficient k, k′ means k ≻ k′, as defined in Equation 3.

learning (Bengio et al., 2009), dataset distillation (Wang et al., 2018), or mixture optimization (Zhang
et al., 2025; Shukor et al., 2025). Thus, our definition of quality arises from imperfect optimization.

We believe that data-conditioning can act as a guiding principle for data filtering. Indeed, if one
has two datasets such that Dclean ≻ Ddirty, there is no use in training on Ddirty, if we have enough
tokens in Dclean, because it would yield an inferior model even on the distribution it is trained on.
This can therefore be seen as a data-selection principle: how can we select a subset in Ddirty that is
better data-conditioned than Ddirty itself?

6.2 CQF THROUGH THE LENS OF DATA-CONDITIONING

To illustrate this notion of data conditioning, we explore different ways of creating a spectrum of
“quality”, using families of datasets indexed by one variable k ∈ [0, 1], where, intuitively, lower
values of k correspond to higher-quality datasets, and higher values indicate lower-quality ones.

First, we create semi-synthetic text datasets with varying levels of quality, inspired by Kallini et al.
(2024). Using RedPajama-V2 as our base dataset representing the highest quality, we simulate
different quality levels by constructing a family of datasets Perm(k) for k ∈ [0, 1]. Each Perm(k)
is created by sampling documents whose tokens are randomly permuted with probability k, or kept
unchanged with probability 1− k. Similarly, we define another family of datasets CQF(k), where k
denotes the selection fraction, using CQF with OpenOrca as the HQ set. We define Exclusive CQF by
taking documents whose score lies in a given interval. We compare the scaling behaviors of models
trained on each of these datasets, by varying the number of parameters N , training tokens D, and the
“quality” level k. We report the next-token prediction loss of these models on each “quality” level k′.

Static analysis. We begin by training models of a fixed size for a fixed number of iterations on each
quality bucket k in Figure 8. Each index (k, k′) shows the value L(k, k′)−L(k′, k′), where L(k, k′)
is the loss on quality bucket k′ for a model trained on quality bucket k. For the synthetic case, we
observe a mostly upper-triangular structure, which means that training on better quality domains also
improves models on lower quality domains, apart from the edge case of training on non-permuted
tokens. In other words, organizing data by quality deciles leads to structured performance gains in
this controlled setting, where higher-quality data results in greater improvements, aligning with our
intuition of quality as a concept. In Appendix E we extend our investigation of this binary relation.

How does data conditioning depend on scale? For the Perm quality axis, we repeat the previous
experiment at different model scales and training horizons, with model scales ranging from 125M to
1.3B parameters. Then, for each train/validation pair k, k′, we fit a scaling law that predicts the loss
L(k, k′) as a function of N , the model size, and D, the number of seen tokens. We fit the Chinchilla

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

50% 22% 12% 4% 1%
Test on top k'

50%

22%

12%

4%

1%
Tr

ain
 on

 to
p k

N=1B, D=20N

50% 22% 12% 4% 1%
Test on top k'

50%

22%

12%

4%

1%
N=1B, D=1000N

50% 22% 12% 4% 1%
Test on top k'

50%

22%

12%

4%

1%
N=D=+

0.02

0.00

0.02

 L
os

s v
s T

rai
n o

n k
'

Figure 9: Data conditioning scaling. We fit scaling laws in order to have a dynamic view of
Figure 8 (left). We then report the predicted loss of models of size N trained with D tokens. When
N = D = +∞, we use the irreducible error term E predicted by the scaling law as a proxy for the
loss. We observe that the regions of better data-conditioning (orange) are mostly kept the same as we
scale models. When scaling in the large D direction, we observe that the effect gets narrower.

scaling law (Hoffmann et al., 2022):

L(k, k′)N,D = E +
A

Nα
+

B

Dβ

where the parameters E,A,B, α, β depend on the train/validation pairs k, k′. This enables us to
obtain a dynamic version of Figure 8 in 9, where the model sizes and number of tokens are variable.
These findings validate that data-conditioning is only mildly dependent on the model and data scale. It
means that data-conditioning can be validated through small-scale proxy models, and then leveraged
with large-scale models.

CONCLUSION

Classifier-based Quality Filtering is a tool used to train most state-of-the-art models, yet our analysis
shows that its inner workings are more subtle than previously believed. While CQF reliably improves
downstream evaluations, these gains are not attributable to the fact that filtered data are closer to the
high-quality set. Instead, we uncover an implicit filtering phenomenon, where CQF emphasizes HQ
examples that are far from the bulk of the LQ set, and are therefore most likely to be of higher quality.
Quality filtering is about removing the “bad”, not imitating the “good”.

Finally, we challenge the notion of quality defined by CQF, demonstrating that it does not satisfy the
desirable property of data conditioning: training on “better quality” data, according to CQF, does not
accelerate learning on lower quality subsets. CQF should not be taken as a universal quality measure,
but instead as a way to better align with downstream evaluations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection
for language models. arXiv preprint arXiv:2402.16827, 2024.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von
Werra. Smollm-corpus, July 2024. URL https://huggingface.co/datasets/
HuggingFaceTB/smollm-corpus.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language models
with mixture-of-experts. In International conference on machine learning, pp. 5547–5569. PMLR,
2022.

Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. ELI5:
long form question answering. In Anna Korhonen, David R. Traum, and Lluís Màrquez (eds.),
Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 3558–3567. Association for
Computational Linguistics, 2019. doi: 10.18653/v1/p19-1346. URL https://doi.org/10.
18653/v1/p19-1346.

Zhaoye Fei, Yunfan Shao, Linyang Li, Zhiyuan Zeng, Hang Yan, Xipeng Qiu, and Dahua Lin. Query
of cc: Unearthing large scale domain-specific knowledge from public corpora. arXiv preprint
arXiv:2401.14624, 2024.

David Grangier, Simin Fan, Skyler Seto, and Pierre Ablin. Task-adaptive pretrained language models
via clustered-importance sampling. arXiv preprint arXiv:2410.03735, 2024.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, et al. The elements of statistical learning, 2009.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
Fasttext. zip: Compressing text classification models. arXiv preprint arXiv:1612.03651, 2016.

Julie Kallini, Isabel Papadimitriou, Richard Futrell, Kyle Mahowald, and Christopher Potts. Mission:
Impossible language models. arXiv preprint arXiv:2401.06416, 2024.

11

https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://doi.org/10.18653/v1/p19-1346
https://doi.org/10.18653/v1/p19-1346

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi.
RewardBench: Evaluating reward models for language modeling. In Findings of the Association
for Computational Linguistics: NAACL 2025, pp. 1755–1797. Association for Computational
Linguistics, April 2025. doi: 10.18653/v1/2025.findings-naacl.96.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-lm: In search of the
next generation of training sets for language models. Advances in Neural Information Processing
Systems, 37:14200–14282, 2024.

Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, and Chanvichet Vong. Teknium.
Openorca: An open dataset of gpt augmented flan reasoning traces. https://https://huggingface.
co/Open-Orca/OpenOrca, 2023.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
Zhou, Jason Wei, Kevin Robinson, David Mimno, et al. A pretrainer’s guide to training data:
Measuring the effects of data age, domain coverage, quality, & toxicity. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 3245–3276, 2024.

Luke Merrick, Danmei Xu, Gaurav Nuti, and Daniel Campos. Arctic-embed: Scalable, efficient, and
accurate text embedding models. arXiv preprint arXiv:2405.05374, 2024.

David Mizrahi, Anders Boesen Lindbo Larsen, Jesse Allardice, Suzie Petryk, Yuri Gorokhov, Jeffrey
Li, Alex Fang, Josh Gardner, Tom Gunter, and Afshin Dehghan. Language models improve when
pretraining data matches target tasks. arXiv preprint arXiv:2507.12466, 2025.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text, 2023.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobeidli,
Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon llm: Outperforming curated corpora with web data only. Advances in Neural
Information Processing Systems, 36:79155–79172, 2023.

Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
scale. Advances in Neural Information Processing Systems, 37:30811–30849, 2024.

Mustafa Shukor, Louis Bethune, Dan Busbridge, David Grangier, Enrico Fini, Alaaeldin El-Nouby,
and Pierre Ablin. Scaling laws for optimal data mixtures. arXiv preprint arXiv:2507.09404, 2025.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Raghavi Chandu, Jennifer Dumas, Yanai Elazar, et al. Dolma: an open corpus
of three trillion tokens for language model pretraining research. In ACL (1), 2024.

Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants, 2023.
URL https://huggingface.co/datasets/teknium/OpenHermes-2.5.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018.

Yudong Wang, Zixuan Fu, Jie Cai, Peijun Tang, Hongya Lyu, Yewei Fang, Zhi Zheng, Jie Zhou,
Guoyang Zeng, Chaojun Xiao, et al. Ultra-fineweb: Efficient data filtering and verification for
high-quality llm training data. arXiv preprint arXiv:2505.05427, 2025.

12

https://huggingface.co/datasets/teknium/OpenHermes-2.5

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Maurice Weber, Daniel Y. Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Chalamala,
Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and Ce Zhang.
Redpajama: an open dataset for training large language models. NeurIPS Datasets and Benchmarks
Track, 2024.

Johannes Welbl, Amelia Glaese, Jonathan Uesato, Sumanth Dathathri, John Mellor, Lisa Anne
Hendricks, Kirsty Anderson, Pushmeet Kohli, Ben Coppin, and Po-Sen Huang. Challenges in
detoxifying language models. In Findings of the Association for Computational Linguistics:
EMNLP 2021, pp. 2447–2469, 2021.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán,
Armand Joulin, and Édouard Grave. Ccnet: Extracting high quality monolingual datasets from
web crawl data. In Proceedings of the Twelfth Language Resources and Evaluation Conference,
pp. 4003–4012, 2020.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language
models via importance resampling. Advances in Neural Information Processing Systems, 36:
34201–34227, 2023.

Mozhi Zhang, Howe Tissue, Lu Wang, and Xipeng Qiu. Domain2vec: Vectorizing datasets to find
the optimal data mixture without training. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=kJ5i29FejW.

Xinlin Zhuang, Jiahui Peng, Ren Ma, Yinfan Wang, Tianyi Bai, Xingjian Wei, Jiantao Qiu, Chi
Zhang, Ying Qian, and Conghui He. Meta-rater: A multi-dimensional data selection method for
pre-training language models. arXiv preprint arXiv:2504.14194, 2025.

13

https://openreview.net/forum?id=kJ5i29FejW

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

1.1 Related Work . 2

2 Classifier-Based Quality-filtering 3

3 CQF improves model evaluations 4

4 CQF does not select data that resemble the high-quality set 5

4.1 Kullback-Leibler divergence between datasets . 5

4.2 CQF implicitly filters the high-quality dataset as well 6

5 CQF is not importance sampling 7

6 Discussion: Does CQF define a sound notion of quality? 8

6.1 Data conditioning: Data-quality as an optimization catalyst 8

6.2 CQF through the lens of data-conditioning . 9

A Appendix organization 15

B Optimal thresholds vary with compute 15

C Do classifiers used in CQF exhibit undesired biases? 16

D No HQ set is superior to all others across all tasks 18

E Data conditioning 18

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX ORGANIZATION

The appendix is organized as follows:

• In Appendix B, we study how the optimal fraction k of selected data in CQF varies with
model size and training compute, the HQ set and the downstream task.

• In Appendix C, we highlight that CQF classifiers are prone to learning spurious features,
such as context length, and we evaluate the effectiveness of a simple mitigation strategy.
This illustrates a broader phenomenon: CQF can induce undesired biases that cause the
selected pretraining data to diverge significantly from the HQ set.

• In Appendix D, we reveal that no single HQ set leads to universally better downstream per-
formance, and that different classifiers implicitly align with different benchmarks, revealing
task-specific inductive biases.

• In Appendix E, we visualize the binary relation induced quality filtering as a graph, high-
lighting how its structure evolves from the semi-synthetic setting to CQF used in practice.

• In ??, we provide the reader with further implementation details.

B OPTIMAL THRESHOLDS VARY WITH COMPUTE

How to chose the optimal k when picking the top k% documents from CQF? To answer this, we
conducted a series of ablations over k, training models on the top k% of the pretraining data, as
ranked by CQF, using various HQ sets. These experiments span multiple model sizes N and training
horizons D (i.e., number of seen tokens), such that the total training compute in FLOPs is measured
as 6ND. The results are summarized in Figure 10, where we report downstream accuracy as a
function of training FLOPs and highlight the optimal k in each setting.

Although our setup directly illustrates CQF, making it more representative of real-world data filtering
pipelines, Mizrahi et al. (2025) concurrently explore a related direction. Their approach differs in that
they select LQ data based on direct proximity to target benchmarks, bypassing the need for a proxy
HQ dataset. Despite this, our findings do not align: we observe no clear trend once the noise level is
accounted for, leading to relatively inconclusive results. We also note that Mizrahi et al. (2025)’s
conclusions rely on extrapolation, which probably explains the divergence.

0.24

0.26

O
pe

nO
rc

a

MMLU

0.24

0.26

0.28

MMLC

0.56

0.58

reward-bench

0.20

0.25

ARC-Challenge

0.3

0.4

0.5

0.6

ARC-Easy

0.24

0.26

O
H

+E
L

I5

0.24

0.26

0.28

0.30

0.56

0.58

0.20

0.25

0.30

0.4

0.5

0.6

1019 1020

FLOPs

0.23

0.24

0.25

0.26

K
no

w
le

dg
eP

ile

1019 1020

FLOPs

0.24

0.26

0.28

1019 1020

FLOPs

0.56

0.58

1019 1020

FLOPs

0.15

0.20

0.25

0.30

1019 1020

FLOPs

0.3

0.4

0.5

0.6

100% 50% 10% 5% 2% 1%
Train on top

Model size
125M 350M 700M 1.3B

Figure 10: The optimal top k% of pretraining data depends on available compute. For each
setting, we highlight the value of k that yields the best performance under a fixed compute budget.
Rows: different HQ sets used for CQF. Columns: various downstream performance metrics.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C DO CLASSIFIERS USED IN CQF EXHIBIT UNDESIRED BIASES?

Even when downstream performance improves, the selected data can drift from the intended target
distribution—revealing not only a failure to capture genuine quality, but also an undesirable inductive
bias, where the classifier overemphasizes unrelated features.

Whilst it is not trivial to exhibit such unwanted features among the learned ones by the classifier, we
managed to identify one of these for OpenOrca as HQ set: the classifier seems to associate quality
with the sequence length, and shorter sentences have higher chances to be classified as high quality
ones, see Figure 11.

1%2%5%10%25%50%100%

500

600

700

800

900

E
ff

ec
tiv

e
se

qu
en

ce
le

ng
th

KnowledgePile

1%2%5%10%25%50%100%

200

400

600

800

OpenOrca

1%2%5%10%25%50%100%

200

400

600

800

OpenOrca debiased – Long positives

1%2%5%10%25%50%100%
200

400

600

OpenOrca debiased – Short negatives

0 1 2 3 4 5 6 7 8 9

Classifier quality estimates for the Positives

Figure 11: CQF classifiers suffer from inductive biases. Because the OpenOrca dataset (HQ set)
contains shorter sequences than RedPajama (LQ set), the classifier in CQF learns to use sequence
length as proxy for quality scores (second column). This bias persists even after filtering out long
documents from OpenOrca (third column), and only disappears when we subsample the negative
class to match shorter sequence lengths (fourth column). In contrast, the classifier from CQF using
KnowledgePile as a HQ set (first column) does not exhibit this behavior. The red dotted line indicate
the effective sequence length in the HQ set, while the blue line shows the sequence length of data
filtered by CQF at different selection ratios along the x-axis. The HQ set is divided into 10 quality
deciles, and the sequence lengths for each decile are shown as solid horizontal lines, with color
indicating quality level.

When sampling from the positive class (OpenOrca dataset) prior to training the corresponding
classifier, we subsample documents with an imposed sequence length of at least 500 or 700. We then
use this classifier to produce a partition of RedPajama with an updated notion of quality, that we hope
to be seemingly better or at least not mistakenly taking sequence as a proxy for quality; see columns
3 and 4 of Figure 11. We train 350M models on the resulting partitions of RedPajama and evaluate
them on ARC (Clark et al., 2018), MMLU (Hendrycks et al., 2021), and Reward Bench (Lambert
et al., 2025). We show in Figure 12 the result of such experiments, averaged across 3 runs.

1%5%25%100%

Train on top

0.23

0.24

0.25

MMLU

1%5%25%100%

Train on top

0.255

0.260

MMLC

1%5%25%100%

Train on top

0.55

0.56

0.57

reward-bench

1%5%25%100%

Train on top

0.46

0.48

0.50

0.52

ARC-Easy

1%5%25%100%

Train on top

0.20

0.22

0.24
ARC-Challenge

OpenOrca OpenOrca debiased — Long positives OpenOrca debiased — Short negatives

Figure 12: Performance after debiasing the classifier from CQF with OpenOrca as a HQ set.
The classifier was retrained with a subsampled HQ set (OpenOrca) using minimum sequence lengths,
in an effort to remove length-based bias in quality scores.

Beyond this specific case of sequence length bias, we investigate whether CQF classifiers exhibit
similar issues, when trained on HQ sets drawn directly from target benchmarks. To assess this, we
compute sBert embeddings for RedPajama documents grouped by CQF quality scores and compare
them to embeddings of the benchmark data. As shown in Figure 13, we visualize the centroids
of each quality bucket using a two-dimensional UMAP projection. Ideally, higher-quality buckets
as ranked by CQF (darker colors) would be closer to the benchmark embeddings. We provide the
same visualization in Figure 14 using a PCA. Surprisingly, this is often not the case, suggesting that
classifiers may still rely on spurious correlations or unrepresentative features of the entire HQ set.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

−10 −5 0 5 10 15 20

−10

−5

0

5

10 Benchmarks
mmlu
reward-bench
ARC-Easy
ARC-Challenge

Classifiers
mmlu
reward-bench
ARC-Easy
ARC-Challenge

Classifiers
mmlu
reward-bench
ARC-Easy
ARC-Challenge

Figure 13: UMAP of sBert centroids for each (exclusive) quality bucket. Even when quality
classifiers are trained directly on the target data, they may still capture undesirable features. Conse-
quently, the top-rated RedPajama quality buckets (darker colors) are not always the closest to the
target benchmark embeddings.

Figure 14: PCA of sBert embeddings of (exclusive) quality buckets induced by different classi-
fiers. Even when quality classifiers are trained directly on the target downstream tasks, they may still
capture undesirable features. Consequently, the top-rated RedPajama quality buckets (darker colors)
are not always the closest to the target benchmark embeddings.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Finally, we provide a 2D visualization of the sBert latent space using a tSNE from which similar
conclusions can be drawn in that only a subset of the HQ set is matched by the data retained from
CQF.

Joint TSNE of CQF and HQ set

Domain
HQ set: OpenOrca
CQF in top 100%
CQF in top 25%
CQF in top 2%
CQF in top 1%

Figure 15: 2D TSNE of sBert embeddings of OpenOrca and CQF samples. The TSNE reveals the
same insights as the 2D PCA in Figure 4. This method also shades lights on the difficulty of properly
projecting and representing in 2D a 384-dim geometry.

D NO HQ SET IS SUPERIOR TO ALL OTHERS ACROSS ALL TASKS

While various HQ sets are used in the literature for CQF, no single HQ consistently outperforms
others across all downstream tasks. Figure 16 shows that varying HQ sets yield various performance
across tasks, with no universal dominance. Downstream evaluations are noisy, but we observe the
consistent trend that OH+ELI5 is a good baseline across tasks, confirming the findings of Li et al.
(2024). We also notice that KnowledgePile, despite poor diversity in the style, induce a bias toward
data is are more heavily leaning toward knowledge benchmarks like ARC.

This suggests that each HQ set imparts its own inductive biases, influencing which aspects of the
data are emphasized during filtering. To further understand these biases, we visualize the embedding
space of the data selected by each classifier in Figure 18. We observe that quality buckets across
classifiers tend to align with specific benchmark datasets, indicating that classifiers—implicitly or
explicitly—favor data that resembles their respective supervision targets. This aligns with recent
concurrent work from Mizrahi et al. (2025), who show that direct supervision using explicitly target
benchmark data can boost performance on that benchmark, though at the cost of generality. Taken
together, these results highlight a central challenge in CQF: quality is not a universal property, and
each HQ set carries task-specific preferences that limit its transferability.

1%2%5%10%25%50%100%
Train on top

0.24

0.26

MMLU

1%2%5%10%25%50%100%
Train on top

0.25

0.26

0.27
MMLC

1%2%5%10%25%50%100%
Train on top

0.54

0.56

0.58

reward-bench

1%2%5%10%25%50%100%
Train on top

0.45

0.50

0.55

ARC-Easy

1%2%5%10%25%50%100%
Train on top

0.20

0.25

ARC-Challenge

OpenOrca KnowledgePile OH+ELI5 openwebmath All targets

Figure 16: Benchmark performance results from 350M models trained on documents ranked by
quality according to various CQF using various HQ sets.

All the manifold visualizations in Figure 17 and Figure 18 demonstrate the same trend: CQF selects
data closer to benchmarks as quality filtering goes.

E DATA CONDITIONING

We revisit the experiments of Figure 8 by materializing the graph induced by the binary relation ≻.
For an arbitrary algorithm A it is hard to characterize the datasets Dclean and Ddirty. Therefore, we
rely on empirical measurements draw edges when the loss improvement is significant (e.g. bigger
than the standard deviation). The results are given in figs. 19 and 20.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 17: PCA embedding of (exclusive) buckets. This figure differs from Figure 3 by considering
exclusive buckets. Here, we see that the bottom 10% are quite different from each other, and the
buckets of average quality (i.e in the 70-30 range) tend to be similar across quality classifiers.

−5 0 5 10 15 20

−15

−10

−5

0

5

10
Benchmarks

mmlu
reward-bench
ARC-Easy
ARC-Challenge

Classifiers
OpenOrca
KnowledgePile
OH+ELI5
openwebmath

Classifiers
OpenOrca
KnowledgePile
OH+ELI5
openwebmath

Figure 18: Each HQ set used in CQF appears to favor task-specific data. Two-dimensional
UMAP of sBert centroids for each (exclusive) quality bucket as defined by each classifier. Darker
color indicates increasing selection ratio k.

0.0

0.5

1.0

1.5
L

os
s

im
pr

ov
em

en
t

0

20

40

60

80

100

C
on

ta
m

in
at

io
n

(%
)

Figure 19: Data conditioning ≻ on the Perm task. This graph exhibits the properties of a total
ordering, closer to an intuitive notion of quality. The only “backward” edge is linking the the two
worse splits, and the loss difference is within standard deviation.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.00

0.02

0.04

0.06

0.08

0.10

L
os

s
im

pr
ov

em
en

t

0

20

40

60

80

100

C
Q

F
(%

)

Figure 20: Data conditioning ≻ on OpenOrca CQF. On these exclusive buckets, there is no global
ordering. The bottom 30% (red) and the top 5% (green) are dominated by bucket of “average” quality
(possibly with more diversity). The node size is proportional to the number of examples in the bucket.
On this graph, the relation is transitive, which induces an ordering, but this ordering is not total.

20

	Introduction
	Related Work

	Classifier-Based Quality-filtering
	CQF improves model evaluations
	CQF does not select data that resemble the high-quality set
	Kullback-Leibler divergence between datasets
	CQF implicitly filters the high-quality dataset as well

	CQF is not importance sampling
	Discussion: Does CQF define a sound notion of quality?
	Data conditioning: Data-quality as an optimization catalyst
	CQF through the lens of data-conditioning

	Appendix organization
	Optimal thresholds vary with compute
	Do classifiers used in CQF exhibit undesired biases?
	No HQ set is superior to all others across all tasks
	Data conditioning

