
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE DATA-QUALITY ILLUSION: RETHINKING
CLASSIFIER-BASED QUALITY FILTERING FOR LLM
PRETRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-scale models are pretrained on massive web-crawled datasets containing
documents of mixed quality, making data filtering essential. A popular method
is Classifier-based Quality Filtering (CQF), which trains a binary classifier to
distinguish between pretraining data and a small, high-quality set. It assigns each
pretraining document a quality score defined as the classifier’s score and retains
only the top-scoring ones. We provide an in-depth analysis of CQF. We show
that while CQF improves downstream task performance, it does not necessarily
enhance language modeling on the high-quality dataset. We explain this paradox
by the fact that CQF implicitly filters the high-quality dataset as well. We further
compare the behavior of models trained with CQF to those trained on synthetic
data of increasing quality, obtained via random token permutations, and find starkly
different trends. Our results challenge the view that CQF captures a meaningful
notion of data quality.

1 INTRODUCTION

Large-scale models are pretrained on large amounts of data, and the quality of these data is a
critical factor in achieving state-of-the-art performance. Among various heuristics for leveraging data
quality to improve on downstream tasks, Classifier-based Quality Filtering (CQF) is recognized as a
cornerstone of data processing. CQF has now become widely adopted and is, for instance, part of
established pretraining pipelines like those of GPT3 (Brown et al., 2020), LLama (Touvron et al.,
2023), and PALM (Chowdhery et al., 2023). It is also a key component of several widely used public
datasets, such as DCLM (Li et al., 2024) or the SmolLM corpus (Ben Allal et al., 2024).

CQF, as illustrated in Figure 1, trains a binary classifier to distinguish documents from a large,
low-quality pretraining set (LQ set) from those of a small, high-quality dataset (HQ set). It then
assigns a scalar quality score to each document within the LQ set, defined by the classifier’s score.
The filtered dataset is formed by selecting the top k fraction of documents in the pretraining set,
ranked by their quality score.

The goal of this paper is to understand the mechanics behind CQF, its impact on downstream
performance, and to challenge the underlying notion of quality it defines. Concretely, does CQF truly
select data that resemble the HQ set, as it is commonly believed? Does the quality score it incurs
match the general intuition about data quality?

We start by highlighting a paradox in how CQF works: although CQF consistently improves per-
formance on downstream tasks, it does not necessarily improve language modeling on the HQ set.
This finding challenges the widely held belief that CQF improves models by selecting training data
that are similar to the HQ data. We explain this paradox by the fact that CQF is akin to an implicit
quality filtering of the HQ set itself, which upweights data in the HQ set that are far from the LQ
set. This means that models trained with CQF are not necessarily good at language modeling on the
whole HQ set, but rather on a higher-quality subset of it. Moreover, we show that this filtering of the
HQ set aligns with downstream tasks for most choices of HQ sets, which explains the paradox. We
then compare CQF to importance sampling methods (Xie et al., 2023; Grangier et al., 2024), which
explicitly attempt to resample the LQ set to follow a distribution close to the HQ set. We highlight a
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Figure 1: Classifier-based Quality Filtering (CQF) pipeline. A document embedding model (e.g.
sBert, Artic-Embed or FastText) embeds documents from a high-quality dataset and the pretraining
set. A binary classifier is trained on those embeddings to distinguish the HQ set from the pretraining
set. Scores assigned by the classifier are used to rank documents from the pretraining set. The top k
fraction of those documents constitutes the new filtered CQF dataset.

stark difference between the two methods: importance sampling yields better language modeling on
the HQ set, but it does not benefit from the aforementioned implicit filtering of the HQ set.

Beyond these paradoxes, we introduce a new lens to probe whether CQF induces a meaningful notion
of quality. Specifically, we formalize the notion of data conditioning: along a true quality axis,
training on “clean” data should give better performance on “dirty” test distributions than training
directly on the dirty distribution. This behavior fundamentally depends on the optimization algorithm
used to approximately minimize the training loss. Indeed, if the training algorithm were perfect,
training on the dirty data itself would always yield the best possible loss on that very data. Therefore,
this phenomenon can only arise because optimization on the clean dataset is easier, hence the term
data conditioning. We demonstrate that this desirable property is clearly observed when constructing
datasets with ground-truth mixtures of clean and dirty documents, as inspired by Kallini et al. (2024).
In contrast, subsets selected by CQF fail to exhibit any such data-conditioning ordering, suggesting
that the notion of quality CQF captures is more limited and closely related to stylistic or domain
similarity—contexts in which “training cleaner” does not universally help.

1.1 RELATED WORK

Recent surveys (Albalak et al., 2024; Longpre et al., 2024) provide comprehensive overviews of data
selection pipelines and identify classifier- and perplexity-based filtering as the most widely used
techniques, with classifier-based methods being the most effective in practice (Li et al., 2024). A
common underlying assumption across these approaches is that pretraining on data resembling a small,
trusted high-quality (HQ) set (e.g., Wikipedia, books, curated instructions) improves downstream
performance. This belief has motivated two main strategies that operate at the document level:
directly mimicking the HQ distribution via importance sampling or indirectly approximating it
through classifier-based filtering. In the importance sampling paradigm, Xie et al. (2023) approximate
the likelihood ratio between HQ and LQ data to guide resampling of the LQ set, while CRISP
(Grangier et al., 2024) uses clustering of the pretraining data to best match the HQ set.

CQF, on the other hand, uses a classifier to score LQ documents by learning boundaries between HQ
and LQ samples. CQF is widely adopted in state-of-the-art pipelines: GPT-3 (Brown et al., 2020)
employs a classifier with Pareto-biased sampling; LLaMA (Touvron et al., 2023) filters Common
Crawl using Wikipedia as HQ; GLaM (Du et al., 2022), PaLM (Chowdhery et al., 2023), and
RedPajama (Weber et al., 2024) similarly rely on Wikipedia and books. More recently, Li et al. (2024)
introduced DCLM, a large-scale filtered dataset centered on CQF, using ELI5 (Fan et al., 2019) and
OpenHermes (Lian et al., 2023) as HQ sources. Wang et al. (2025) study methods to build HQ sets,
and Soldaini et al. (2024) propose the Dolma Toolkit, featuring CQF that is applied to the Dolma
dataset iteself. RefinedWeb (Penedo et al., 2023) and FineWeb (Penedo et al., 2024) use classifiers to
extract English documents. Artic-Embed (Merrick et al., 2024) is a popular document embedder for
training quality classifiers, underlying Python-edu and FineWebEdu (Ben Allal et al., 2024) datasets.
Recently, Mizrahi et al. (2025) analyzed how aggressive filtering should be as function of model and
data scales. Finally, classifiers can also be used to filter toxic content (Welbl et al., 2021).
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Dataset Number of Documents Source
OpenOrca (Lian et al., 2023) 3M GPT-4/GPT-3.5
ELI5 (Fan et al., 2019) 325k Reddit
OpenHermes (Teknium, 2023) 240k GPT-4
KnowledgePile (Fei et al., 2024) 1M Scientific blog & papers
openwebmath (Paster et al., 2023) 6.3M Mathematical webtext
ARC Easy (Clark et al., 2018) 2.25k grade-school level MCQA

Table 1: Overview of the “high-quality” datasets used for CQF in our study.

Beyond CQF and importance sampling, recent works learn proxy scores directly linked to downstream
performance rather than assuming and imposing any fixed notion of quality. For example, Mizrahi
et al. (2025) train regressors to predict closeness to evaluation tasks, Zhuang et al. (2025) combine
multiple quality dimensions into learned mixtures, and older methods rely on LLM perplexity
(Wenzek et al., 2020). These methods suggest that the best data may not necessarily resemble a
specific HQ corpus, but rather satisfy task-relevant criteria that can be discovered during training.

2 CLASSIFIER-BASED QUALITY-FILTERING

We describe the Classifier-based Quality-Filtering (CQF) method as it is used in the literature and
in this paper. CQF takes as inputs a high-quality (HQ) dataset, DHQ, a pretraining dataset that is
generally of low quality, DLQ, and a selection fraction k between 0 and 100%.

Low-quality (LQ) dataset. This is a standard pretraining set, which, in the context of LLM pre-
training, contains curated documents gathered from a large web crawl spanning diverse data sources.
While the dataset is huge—containing enough tokens to train large models without repetitions—it
also includes many low-quality, badly formatted, or uninformative documents. The overall goal of
data selection is to select a subset of this LQ set that leads to better model performance. In this paper,
we take RedPajama-V2 as our LQ set, which contains 32T tokens.

High-quality (HQ) dataset. This is a high-quality dataset made of documents from a highly curated
source. These documents are well formatted, have relevant content and are sometimes manually
annotated. They can be data coming from proofread websites such as Wikipedia, or sentences
generated by a sufficiently good language model. However, the HQ dataset is typically quite small
and insufficient on its own to train a model. Instead, it serves two key purposes to guide the data
selection process: 1) as a target for selection, where data in the LQ set that resemble the HQ set
are considered high quality, and 2) as a benchmark to evaluate the effectiveness of data selection,
with models achieving low loss on this dataset considered to be performing well. Table 1 gives an
overview of HQ sets used in this work.

CQF is a widely used method for data selection that filters data from the LQ set, guided by the HQ
set. We now describe its practical implementation, which is illustrated in Figure 1.

Embedding. Each document in the HQ and LQ datasets is embedded in a vector space Rp. Since the
whole LQ set has to be embedded, the embedding method needs to be scalable. In practice, we use
sBert, with p = 384. Another popular choice is FastText (Joulin et al., 2016).

Classifier training. A training set made of n embeddings from the HQ set and n others from the LQ
set is used to train an L2-regularized logistic regression. The regularization coefficient is taken as
the one maximizing accuracy on a held-out set. Once this classifier is trained, it defines the CQF
score function s(x) ∈ [0, 1], that, for any document x, defines a scalar that measures how likely the
classifier is to identify this document as a member of the HQ set. This score s(x) is often called
quality signal (Weber et al., 2024), which is why, in the context of CQF, we will refer to it as quality
of document x. A goal of this paper is to understand whether this definition of quality is appropriate.

“Quality” filtering. In order to estimate the distribution of the scores on the LQ dataset, a subset of
the LQ dataset is scored, which allows us to estimate the cumulative density C(s̃) = P(s(x) ≤ s̃|x ∈
DLQ) for all s̃ ∈ [0, 1]. Then, for a given selection fraction k, only the top k fraction of documents
in the LQ set is kept, resulting in a filtered dataset DCQF = {x ∈ DLQ| C(s(x)) ≥ 1 − k}.
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Figure 2: Top row: Models trained on increasingly selective data show improved performance on
downstream tasks. Bottom row: When evaluated on the HQ dataset itself, these models do not
necessarily improve as there is a non-increasing relationship between downstream performance and
loss on the HQ set. The performance of a model trained on the LQ set is given by the leftmost point
in each figure, corresponding to k = 100%

Table 2: Hyperparameters used for training
models

Size 125M 350M 1.3B
Architecture
Vocab Size 32K 32K 32k
Embedding dim. 768 1,024 2,048
Latent dim. 3072 4,096 8,192
Num. heads 16 16 16
Depth 12 24 24
Context lenght 1,024 1,024 1,024

Optimization
Batch size (tokens) 115K 32K 115K
Learning rate scheduler lin. decay lin. decay lin. decay
Learning rate peak 1e−4 1e−4 1e−4

Grad clipping 5.0 5.0 5.0
Steps 64K 256K 1M
Num. train tokens 8B 8B 120B

This selects the documents in the LQ set that are most
likely to belong to the HQ set, based on the score
defined by the classifier, and are therefore “higher-
quality” documents. This dataset is then used to
train models in place of the low-quality dataset. One
clear limitation of CQF is that the number of training
tokens available in the dataset is k×D where D is the
total number of tokens in the LQ set. Too small values
of k lead to scarce datasets on which models cannot
be trained without repeating data or even overfitting.
In this paper, we step away from this limitation and
always use values of k such that there are enough
data in DCQF to train a model without repeating data.
This allows us to focus solely on the impact of data
quality rather than on the effects of repeated training
examples.

Evaluations. After pretraining, models are evaluated by scoring them on evaluation benchmarks,
such as general knowledge question answering. Performance on these datasets is indicative of
the usefulness of models after post-training. In this work, we consider evaluations on ARC-Easy,
ARC-Challenge, MMLU, and reward-bench. The bulk of our experiments is done on ARC-Easy,
which has better-than-random performance at small scales. Model architectures are found in Table 2.

3 CQF IMPROVES MODEL EVALUATIONS

We begin with the observation that motivates the wide adoption of CQF. We train 350M models
on CQF datasets with different HQ datasets and values of k. We then evaluate those models by
computing their accuracy on ARC-Easy. We also use ARC-Easy itself as the HQ set. We display
the results in Figure 2, top row. Among all HQ sets, using ARC-Easy leads to the best downstream
performance. We observe that the performance on the downstream task generally improves as we
select datasets of higher quality, with smaller values of k. This occurs for OpenOrca, KnowledgePile,
OH+ELI5, and ARC-Easy, but for openwebmath, we observe a performance dip if we select a value
of k that is too small. A simple explanation is that CQF with openwebmath selects too specialized
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Figure 3: Two-dimensional PCA projections of sBert embeddings from quality buckets defined
by classifiers, each using a different HQ set.. Quality buckets across classifiers (CQF) used in the
literature exhibit alignment towards benchmark datasets. When considering the top 100%, we fall
back to the original pretraining dataset (RedPajama-V2) regardless of the HQ set used.
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Figure 4: CQF works by filtering out the low-quality data (red), not because the retained data
(green) resemble the HQ set (orange). This is clear both from the raw log-scores of the classifier
(left), and in 2D PCA of the sBert latent space (right). TSNE show similar patterns in Appendix C.

documents. We confirm this alignment between data selected by CQF and common benchmarks in
Figure 3 by examining a 2D PCA of their latent space.

4 CQF DOES NOT SELECT DATA THAT RESEMBLE THE HIGH-QUALITY SET

CQF ranks data based on likelihood ratios. Assuming that the binary classifier trained in CQF is
Bayes-optimal, the CQF quality score of a document x is s(x) = pHQ(x)

pHQ(x)+pLQ(x) (Hastie et al., 2009).

As such, scores are an increasing function of the density ratio: s(x) = ϕ
(

pHQ(x)
pLQ(x)

)
with ϕ(t) = t

t+1 .
The ordering of documents implicitly defined by CQF is therefore that of the likelihood ratio: a
document x is of “higher quality” than a document y if pHQ(x)

pLQ(x) ≥
pHQ(y)
pLQ(y) . This contrasts with the

"importance sampling" ranking, which would rank x higher than y solely based on their likelihood
under the HQ distribution, i. e., if pHQ(x) ≥ pHQ(y). A simple conclusion is that, since in general
the LQ set is not uniformly distributed, CQF does not select samples that are most likely to come
from the HQ set only. Instead, it prefers documents that are both likely under the HQ distribution
(high pHQ(x)) and unlikely under the LQ distribution (low pLQ(x)). In other words, with CQF, data
are filtered based on a trade-off between being close to the HQ set and far from the LQ set. This
phenomenon is clear when plotting the score densities of data filtered by CQF in Figure 4.

4.1 KULLBACK-LEIBLER DIVERGENCE BETWEEN DATASETS

For each model trained in section 3, we also compute its next-token prediction loss on the HQ set
(Figure 2, bottom row). We observe U-shaped curves for all HQ datasets except ARC-Easy. For these
HQ sets, the optimal k that yields the smallest loss is often large. Remarkably, small values of k can
result in models that perform even worse on the HQ set than a model trained on the full LQ set, as
seen with OpenOrca or KnowledgePile. This behavior contrasts with using ARC-Easy as HQ set,
where reducing k consistently improves both model performance and language modeling.
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Figure 5: CQF implicitly filters the HQ set. We split the HQ set (KnowledgePile) into 10 deciles of
CQF scores. Left. For each model trained with CQF at a given fraction k, we report the loss of the
model on each of these 10 deciles. The reddest curve corresponds to the loss on the HQ elements
with the bottom 10% scores, while the greenest curve corresponds to the top 10%. Our findings
indicate that only the high-quality deciles of the HQ set exhibit a decreasing loss. This suggests that
the classifier effectively identifies and learns the features within these deciles, enabling the models to
make better predictions. However, on average over all the deciles (dotted line), the loss is a U-curve,
recovering the loss in Figure 2 (second row and column). Right. In sBert latent space, we compute
the distance between the barycenter of ARC-Easy to the barycenter of each HQ decile. This distance
correlates well with performance on the ARC-Easy benchmark itself.

As a result, there is a clear discrepancy between the loss on the HQ set—which reflects how closely
the pretraining data resemble the HQ distribution—from the achieved downstream performance
(ARC-Easy). This challenges the standard belief that CQF filters data to get closer to the HQ set.

Loss on the HQ set as a proxy for the distance between CQF and HQ set. The loss measured
on the HQ set can be interpreted as a measure of how different the filtered data are from the HQ
set in terms of Kullback-Leibler (KL) divergence, under the assumption that the model has infinite
capacity (Cover, 1999). Indeed, in this case, the model’s parameters θ are such that the model trained
on the filtered set by CQF would perfectly represent its data distribution, i.e., pθ(x) ≈ pCQF(x).

Evaluating this model on the HQ set yields a next-token prediction loss equal to
Ex∼DHQ

[− log pCQF(x)]. This quantity can be decomposed as,

H(DHQ) + KL(DHQ∥DCQF),

where H(DHQ) is the entropy of the HQ distribution (a constant when changing k), and
KL(DHQ∥DCQF) is the KL divergence from the HQ distribution and the distribution of data filtered
by CQF. Hence, under the hypothesis that the models trained in these experiments accurately represent
pCQF, the observed increase in HQ loss for small k means that the corresponding pretraining sets
diverge further away from the HQ distribution. To our knowledge, this phenomenon has not been
previously identified. In the next section, we investigate the reasons behind it.

4.2 CQF IMPLICITLY FILTERS THE HIGH-QUALITY DATASET AS WELL

One way to interpret the CQF selection rule is that it is a reweighting of the distribution of the HQ
set, with non-uniform weights: it puts a larger weight on documents that are far from the LQ set.

As a result, CQF can be understood as 1) selecting data in the HQ set that are far from the LQ set
and then 2) selecting data in the LQ set that are close to that portion of the HQ set. To validate this
interpretation, we further partition the HQ set itself into 10 "quality" buckets according to their CQF
scores. We then measure the next-token prediction loss on these 10 domains achieved by models
trained with CQF by varying k in Figure 5. Interestingly, the loss on the top-scoring documents
from the HQ set behaves very differently than the loss on the bottom-scoring data from the same
set. More precisely, the loss on the top-scoring HQ data is monotonic with k, while the loss on the
bottom-scoring HQ data rises sharply as k decreases. This analysis decomposes the overall U-shaped
loss reported in the previous section into the average loss across different quality levels within the HQ
set. Notably, this implicit filtering of the HQ set itself is beneficial. In fact, data in the HQ set that
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Figure 6: Finetuning a 1.3B model on HQ sets and on their top decile. We report the best
performances during fine-tuning; no bar means that fine-tuning on that set does not improve the
performance on that benchmark. Darker colors indicate finetuning on the top 10% of the HQ set
according to the CQF classifier, while light colors indicate finetuning on the whole HQ set. The same
number of tokens is used in both scenarios. OpenOrca aligns most closely with MMLU, whereas
KnowledgePile shows stronger alignment with ARC-Easy, supporting the trend observed in Figure 3.

resemble data from the LQ set are likely to be of lower quality, since the LQ set contains a significant
amount of noisy data. This resolves the earlier paradox: top-scoring data within the HQ set are more
aligned with the evaluation task than those from the HQ set with lowest scores; see Figure 5.

We further validate that these top deciles of HQ sets are aligned with downstream evaluations by
finetuning a 1.3B model on them, as well as on the full HQ set. We report the corresponding gains
in accuracy in Figure 6. This again shows that the top decile of KnowledgePile is aligned with
ARC-Easy, while the full set is not. We now formalize this implicit filtering intuition.

CQF as a reweighting of the HQ set. Letting r(x) =
pHQ(x)
pLQ(x) be the likelihood ratio, CQF selects

data in the LQ set such that r(x) ≥ τ , where τ is calibrated so that only a fraction k of the LQ set is
selected. The CQF dataset’s density can be rewritten as

pCQF(x) =
1

Z
1r(x)≥τpLQ(x) = w(x)pHQ(x), where w(x) ∝ 1r(x)≥τ

r(x)
, (1)

which means that it is a reweighted version of the HQ set density, with weights w(x), and where Z is
a normalization constant. The most upsampled points in the HQ set, which have a high value w(x),
are therefore those such that r(x) is above τ while being small. This is akin to a filtering of the HQ
set based on the likelihood ratio value r(x). This explains the results in Figure 5: as the fraction k
reduces, pCQF gets close to a filtered version of pHQ where only top-scoring samples are kept.

5 CQF IS NOT IMPORTANCE SAMPLING

A common belief behind the use of CQF is: “Ideally, we would train on the HQ set,
but we don’t have enough data. So we use CQF to mimic data from the HQ set.”
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Figure 7: Performance comparison between
CQF and importance sampling-based approach
(CRISP). CQF induces a data selection that is sub-
stantially different from the HQ set. Colors indi-
cate more (green) or less (red) filtering.

As we have seen in the previous section, assum-
ing that the classifier is Bayes-optimal, CQF
draws samples from the LQ set following the
density w(x)pHQ(x), where w(x) is not uni-
formly equal to 1. On the other hand, impor-
tance sampling methods try to sample elements
from the LQ set that directly follow the density
pHQ. We use the CRISP method (Grangier et al.,
2024) in order to implement importance sam-
pling, with the same models as in section 3, with
OpenOrca and ARC-Easy as HQ sets. We re-
port the loss on the HQ set and the downstream
accuracy in Figure 7, as well as those of the
models trained with CQF. OpenOrca being di-
verse and multi-topic, we found that C = 4096
clusters are sufficient to capture that distribution
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well, whereas ARC-Easy requires C = 260k
clusters. We observe that importance sampling
indeed leads to good language modeling on the
HQ set, which translates to better downstream performance when the HQ set is the downstream task
itself (right), but not when the HQ set is a curated dataset (left). In that case, CQF leads to better
downstream performance than importance sampling.

Training with CQF can be better than training on an infinite HQ set A widely spread idea
about the use of CQF is that if we had enough data from the HQ set, we would train models on
the HQ set itself. We now argue that this is not necessarily the case and that training on the CQF
set can be better than on the HQ set, even with limited data from the HQ set. To do so, we use a
base HQ set with limited tokens, Dbase

HQ ; in practice, we use OpenOrca. We define a new HQ set
as DHQ = CQF(Dbase

HQ , 20%), i.e. the CQF with k = 20% of the base HQ set. Now, this new
high-quality set contains enough tokens to train large-scale models, since it contains 20% of the LQ
set. We then construct a new CQF set using that new HQ set, and train a model on the top 1% of data.
We observe that the accuracy of a model trained on the HQ set is 50.1%, while the accuracy of the
new model trained on the CQF set is 53.8%. In summary, we obtain better models by using CQF
than by training directly on the HQ set, illustrating once again the benefits of the implicit filtering
provided by CQF. This opens a promising avenue for data selection, where CQF is used as a way to
improve on the HQ set.

6 DISCUSSION: DOES CQF DEFINE A SOUND NOTION OF QUALITY?

The goal of this section is to offer a different perspective on the concept of quality by introducing a
formal definition based upon optimization considerations. Within this framework, we (i) explore a
semi-synthetic setting where quality can be clearly defined and controlled, and (ii) move beyond the
limitations of earlier experiments, such as fixed model size and finite training horizon, which only
offer snapshots of the following analysis.

6.1 DATA CONDITIONING: DATA-QUALITY AS AN OPTIMIZATION CATALYST

Central to our analysis is the concept of data conditioning, which we define as a desirable property of
data quality. Informally, a dataset Dclean is better data conditioned than another dataset Ddirty if a
model trained on Dclean outperforms a model trained on Ddirty when evaluated on Ddirty.

We describe it formally as follows. Given an objective function ℓ and a dataset D, we define the loss
function as L(θ,D) := Ex∼D[ℓ(x; θ)]. This loss is typically approximately minimized by running a
stochastic optimization algorithm A on the samples xi:

θnDdirty
← A(xi), with (xi)

n
i=1 ∼ Ddirty, (2)

where xi’s are n i.i.d. samples from Ddirty. Instead of training on Ddirty, one can also train on
Dclean and obtain parameters θnDclean

. We propose an axiomatic definition of quality:

Data-conditioning. We write Dclean ≻ Ddirty and say that a dataset Dclean is better data-
conditioned than Ddirty, relative to the learning rule A and the horizon n ∈ N if

L(θnDclean
, Ddirty) ≤ L(θnDdirty

, Ddirty). (3)

We coin this phenomenon “data conditioning”, drawing from the optimization literature, where
conditioning typically describes how easily a loss function can be minimized. In our context, data
conditioning captures how the structure of a dataset accelerates optimization. Indeed, in standard
large-scale settings, data are seldom repeated, and models generalize well, which means that the
training loss closely approximates the validation loss. Therefore, if we had a perfect minimiza-
tion oracle, A(xi) = argminθ∈Θ

1
n

∑n
i=1 ℓ(xi, θ), we would have by definition of the minimizer

L(θnDdirty
, Ddirty) ≃ 1

n

∑n
i=1 ℓ(xi, θ

n
Ddirty

) ≤ 1
n

∑n
i=1 ℓ(xi, θ

n
Dclean

) ≃ L(θnDclean
, Ddirty). This

would forbid the existence of better data-conditioned datasets. However, the existence of better-
conditioned datasets has been reported many times in the literature, and is at the root of curriculum
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Figure 8: Data conditioning experiment. We use three different ways to define an axis of “quality”,
which are datasets indexed by a scalar k ∈ [0, 1], where k = 0 means higher quality. Perm defines
it as (1 − k) where k is the probability of randomly permuting a document. CQF defines it as
the fraction of documents kept in the pretraining set, where the HQ set is OpenOrca. Exclusive
CQF defines it as documents that have scores between two thresholds. Each of these datasets is
parameterized by a quality knob, k. We train models for a grid of values k, and compute their test
loss on the dataset k′, L(k, k′). The figure displays the matrices with entries L(k, k′)− L(k′, k′). A
negative value for the coefficient k, k′ means k ≻ k′, as defined in Equation 3.

learning (Bengio et al., 2009), dataset distillation (Wang et al., 2018), or mixture optimization (Zhang
et al., 2025; Shukor et al., 2025). Thus, our definition of quality arises from imperfect optimization.

We believe that data-conditioning can act as a guiding principle for data filtering. Indeed, if one
has two datasets such that Dclean ≻ Ddirty, there is no use in training on Ddirty, if we have enough
tokens in Dclean, because it would yield an inferior model even on the distribution it is trained on.
This can therefore be seen as a data-selection principle: how can we select a subset in Ddirty that is
better data-conditioned than Ddirty itself?

6.2 CQF THROUGH THE LENS OF DATA-CONDITIONING

To illustrate this notion of data conditioning, we explore different ways of creating a spectrum of
“quality”, using families of datasets indexed by one variable k ∈ [0, 1], where, intuitively, lower
values of k correspond to higher-quality datasets, and higher values indicate lower-quality ones.

First, we create semi-synthetic text datasets with varying levels of quality, inspired by Kallini et al.
(2024). Using RedPajama-V2 as our base dataset representing the highest quality, we simulate
different quality levels by constructing a family of datasets Perm(k) for k ∈ [0, 1]. Each Perm(k)
is created by sampling documents whose tokens are randomly permuted with probability k, or kept
unchanged with probability 1− k. Similarly, we define another family of datasets CQF(k), where k
denotes the selection fraction, using CQF with OpenOrca as the HQ set. We define Exclusive CQF by
taking documents whose score lies in a given interval. We compare the scaling behaviors of models
trained on each of these datasets, by varying the number of parameters N , training tokens D, and the
“quality” level k. We report the next-token prediction loss of these models on each “quality” level k′.

Static analysis. We begin by training models of a fixed size for a fixed number of iterations on each
quality bucket k in Figure 8. Each index (k, k′) shows the value L(k, k′)−L(k′, k′), where L(k, k′)
is the loss on quality bucket k′ for a model trained on quality bucket k. For the synthetic case, we
observe a mostly upper-triangular structure, which means that training on better quality domains also
improves models on lower quality domains, apart from the edge case of training on non-permuted
tokens. In other words, organizing data by quality deciles leads to structured performance gains in
this controlled setting, where higher-quality data results in greater improvements, aligning with our
intuition of quality as a concept. In Appendix E we extend our investigation of this binary relation.

How does data conditioning depend on scale? For the Perm quality axis, we repeat the previous
experiment at different model scales and training horizons, with model scales ranging from 125M to
1.3B parameters. Then, for each train/validation pair k, k′, we fit a scaling law that predicts the loss
L(k, k′) as a function of N , the model size, and D, the number of seen tokens. We fit the Chinchilla

9
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Figure 9: Data conditioning scaling. We fit scaling laws in order to have a dynamic view of
Figure 8 (left). We then report the predicted loss of models of size N trained with D tokens. When
N = D = +∞, we use the irreducible error term E predicted by the scaling law as a proxy for the
loss. We observe that the regions of better data-conditioning (orange) are mostly kept the same as we
scale models. When scaling in the large D direction, we observe that the effect gets narrower.

scaling law (Hoffmann et al., 2022):

L(k, k′)N,D = E +
A

Nα
+

B

Dβ

where the parameters E,A,B, α, β depend on the train/validation pairs k, k′. This enables us to
obtain a dynamic version of Figure 8 in 9, where the model sizes and number of tokens are variable.
These findings validate that data-conditioning is only mildly dependent on the model and data scale. It
means that data-conditioning can be validated through small-scale proxy models, and then leveraged
with large-scale models.

CONCLUSION

Classifier-based Quality Filtering is a tool used to train most state-of-the-art models, yet our analysis
shows that its inner workings are more subtle than previously believed. While CQF reliably improves
downstream evaluations, these gains are not attributable to the fact that filtered data are closer to the
high-quality set. Instead, we uncover an implicit filtering phenomenon, where CQF emphasizes HQ
examples that are far from the bulk of the LQ set, and are therefore most likely to be of higher quality.
Quality filtering is about removing the “bad”, not imitating the “good”.

Finally, we challenge the notion of quality defined by CQF, demonstrating that it does not satisfy the
desirable property of data conditioning: training on “better quality” data, according to CQF, does not
accelerate learning on lower quality subsets. CQF should not be taken as a universal quality measure,
but instead as a way to better align with downstream evaluations.
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A APPENDIX ORGANIZATION

The appendix is organized as follows:

• In Appendix B, we study how the optimal fraction k of selected data in CQF varies with
model size and training compute, the HQ set and the downstream task.

• In Appendix C, we highlight that CQF classifiers are prone to learning spurious features,
such as context length, and we evaluate the effectiveness of a simple mitigation strategy.
This illustrates a broader phenomenon: CQF can induce undesired biases that cause the
selected pretraining data to diverge significantly from the HQ set.

• In Appendix D, we reveal that no single HQ set leads to universally better downstream per-
formance, and that different classifiers implicitly align with different benchmarks, revealing
task-specific inductive biases.

• In Appendix E, we visualize the binary relation induced quality filtering as a graph, high-
lighting how its structure evolves from the semi-synthetic setting to CQF used in practice.

• In ??, we provide the reader with further implementation details.

B OPTIMAL THRESHOLDS VARY WITH COMPUTE

How to chose the optimal k when picking the top k% documents from CQF? To answer this, we
conducted a series of ablations over k, training models on the top k% of the pretraining data, as
ranked by CQF, using various HQ sets. These experiments span multiple model sizes N and training
horizons D (i.e., number of seen tokens), such that the total training compute in FLOPs is measured
as 6ND. The results are summarized in Figure 10, where we report downstream accuracy as a
function of training FLOPs and highlight the optimal k in each setting.

Although our setup directly illustrates CQF, making it more representative of real-world data filtering
pipelines, Mizrahi et al. (2025) concurrently explore a related direction. Their approach differs in that
they select LQ data based on direct proximity to target benchmarks, bypassing the need for a proxy
HQ dataset. Despite this, our findings do not align: we observe no clear trend once the noise level is
accounted for, leading to relatively inconclusive results. We also note that Mizrahi et al. (2025)’s
conclusions rely on extrapolation, which probably explains the divergence.
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Figure 10: The optimal top k% of pretraining data depends on available compute. For each
setting, we highlight the value of k that yields the best performance under a fixed compute budget.
Rows: different HQ sets used for CQF. Columns: various downstream performance metrics.
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C DO CLASSIFIERS USED IN CQF EXHIBIT UNDESIRED BIASES?

Even when downstream performance improves, the selected data can drift from the intended target
distribution—revealing not only a failure to capture genuine quality, but also an undesirable inductive
bias, where the classifier overemphasizes unrelated features.

Whilst it is not trivial to exhibit such unwanted features among the learned ones by the classifier, we
managed to identify one of these for OpenOrca as HQ set: the classifier seems to associate quality
with the sequence length, and shorter sentences have higher chances to be classified as high quality
ones, see Figure 11.
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Figure 11: CQF classifiers suffer from inductive biases. Because the OpenOrca dataset (HQ set)
contains shorter sequences than RedPajama (LQ set), the classifier in CQF learns to use sequence
length as proxy for quality scores (second column). This bias persists even after filtering out long
documents from OpenOrca (third column), and only disappears when we subsample the negative
class to match shorter sequence lengths (fourth column). In contrast, the classifier from CQF using
KnowledgePile as a HQ set (first column) does not exhibit this behavior. The red dotted line indicate
the effective sequence length in the HQ set, while the blue line shows the sequence length of data
filtered by CQF at different selection ratios along the x-axis. The HQ set is divided into 10 quality
deciles, and the sequence lengths for each decile are shown as solid horizontal lines, with color
indicating quality level.

When sampling from the positive class (OpenOrca dataset) prior to training the corresponding
classifier, we subsample documents with an imposed sequence length of at least 500 or 700. We then
use this classifier to produce a partition of RedPajama with an updated notion of quality, that we hope
to be seemingly better or at least not mistakenly taking sequence as a proxy for quality; see columns
3 and 4 of Figure 11. We train 350M models on the resulting partitions of RedPajama and evaluate
them on ARC (Clark et al., 2018), MMLU (Hendrycks et al., 2021), and Reward Bench (Lambert
et al., 2025). We show in Figure 12 the result of such experiments, averaged across 3 runs.
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Figure 12: Performance after debiasing the classifier from CQF with OpenOrca as a HQ set.
The classifier was retrained with a subsampled HQ set (OpenOrca) using minimum sequence lengths,
in an effort to remove length-based bias in quality scores.

Beyond this specific case of sequence length bias, we investigate whether CQF classifiers exhibit
similar issues, when trained on HQ sets drawn directly from target benchmarks. To assess this, we
compute sBert embeddings for RedPajama documents grouped by CQF quality scores and compare
them to embeddings of the benchmark data. As shown in Figure 13, we visualize the centroids
of each quality bucket using a two-dimensional UMAP projection. Ideally, higher-quality buckets
as ranked by CQF (darker colors) would be closer to the benchmark embeddings. We provide the
same visualization in Figure 14 using a PCA. Surprisingly, this is often not the case, suggesting that
classifiers may still rely on spurious correlations or unrepresentative features of the entire HQ set.
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Figure 13: UMAP of sBert centroids for each (exclusive) quality bucket. Even when quality
classifiers are trained directly on the target data, they may still capture undesirable features. Conse-
quently, the top-rated RedPajama quality buckets (darker colors) are not always the closest to the
target benchmark embeddings.

Figure 14: PCA of sBert embeddings of (exclusive) quality buckets induced by different classi-
fiers. Even when quality classifiers are trained directly on the target downstream tasks, they may still
capture undesirable features. Consequently, the top-rated RedPajama quality buckets (darker colors)
are not always the closest to the target benchmark embeddings.
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Finally, we provide a 2D visualization of the sBert latent space using a tSNE from which similar
conclusions can be drawn in that only a subset of the HQ set is matched by the data retained from
CQF.

Joint TSNE of CQF and HQ set

Domain
HQ set: OpenOrca
CQF in top 100%
CQF in top 25%
CQF in top 2%
CQF in top 1%

Figure 15: 2D TSNE of sBert embeddings of OpenOrca and CQF samples. The TSNE reveals the
same insights as the 2D PCA in Figure 4. This method also shades lights on the difficulty of properly
projecting and representing in 2D a 384-dim geometry.

D NO HQ SET IS SUPERIOR TO ALL OTHERS ACROSS ALL TASKS

While various HQ sets are used in the literature for CQF, no single HQ consistently outperforms
others across all downstream tasks. Figure 16 shows that varying HQ sets yield various performance
across tasks, with no universal dominance. Downstream evaluations are noisy, but we observe the
consistent trend that OH+ELI5 is a good baseline across tasks, confirming the findings of Li et al.
(2024). We also notice that KnowledgePile, despite poor diversity in the style, induce a bias toward
data is are more heavily leaning toward knowledge benchmarks like ARC.

This suggests that each HQ set imparts its own inductive biases, influencing which aspects of the
data are emphasized during filtering. To further understand these biases, we visualize the embedding
space of the data selected by each classifier in Figure 18. We observe that quality buckets across
classifiers tend to align with specific benchmark datasets, indicating that classifiers—implicitly or
explicitly—favor data that resembles their respective supervision targets. This aligns with recent
concurrent work from Mizrahi et al. (2025), who show that direct supervision using explicitly target
benchmark data can boost performance on that benchmark, though at the cost of generality. Taken
together, these results highlight a central challenge in CQF: quality is not a universal property, and
each HQ set carries task-specific preferences that limit its transferability.
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Figure 16: Benchmark performance results from 350M models trained on documents ranked by
quality according to various CQF using various HQ sets.

All the manifold visualizations in Figure 17 and Figure 18 demonstrate the same trend: CQF selects
data closer to benchmarks as quality filtering goes.

E DATA CONDITIONING

We revisit the experiments of Figure 8 by materializing the graph induced by the binary relation ≻.
For an arbitrary algorithm A it is hard to characterize the datasets Dclean and Ddirty. Therefore, we
rely on empirical measurements draw edges when the loss improvement is significant (e.g. bigger
than the standard deviation). The results are given in figs. 19 and 20.
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Figure 17: PCA embedding of (exclusive) buckets. This figure differs from Figure 3 by considering
exclusive buckets. Here, we see that the bottom 10% are quite different from each other, and the
buckets of average quality (i.e in the 70-30 range) tend to be similar across quality classifiers.
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Figure 18: Each HQ set used in CQF appears to favor task-specific data. Two-dimensional
UMAP of sBert centroids for each (exclusive) quality bucket as defined by each classifier. Darker
color indicates increasing selection ratio k.
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Figure 19: Data conditioning ≻ on the Perm task. This graph exhibits the properties of a total
ordering, closer to an intuitive notion of quality. The only “backward” edge is linking the the two
worse splits, and the loss difference is within standard deviation.
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Figure 20: Data conditioning ≻ on OpenOrca CQF. On these exclusive buckets, there is no global
ordering. The bottom 30% (red) and the top 5% (green) are dominated by bucket of “average” quality
(possibly with more diversity). The node size is proportional to the number of examples in the bucket.
On this graph, the relation is transitive, which induces an ordering, but this ordering is not total.
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