Under review as a conference paper at ICLR 2026

THE DATA-QUALITY ILLUSION: RETHINKING
CLASSIFIER-BASED QUALITY FILTERING FOR LLM
PRETRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-scale models are pretrained on massive web-crawled datasets containing
documents of mixed quality, making data filtering essential. A popular method
is Classifier-based Quality Filtering (CQF), which trains a binary classifier to
distinguish between pretraining data and a small, high-quality set. It assigns each
pretraining document a quality score defined as the classifier’s score and retains
only the top-scoring ones. We provide an in-depth analysis of CQF. We show
that while CQF improves downstream task performance, it does not necessarily
enhance language modeling on the high-quality dataset. We explain this paradox
by the fact that CQF implicitly filters the high-quality dataset as well. We further
compare the behavior of models trained with CQF to those trained on synthetic
data of increasing quality, obtained via random token permutations, and find starkly
different trends. Our results challenge the view that CQF captures a meaningful
notion of data quality.

1 INTRODUCTION

Large-scale models are pretrained on large amounts of data, and the quality of these data is a
critical factor in achieving state-of-the-art performance. Among various heuristics for leveraging data
quality to improve on downstream tasks, Classifier-based Quality Filtering (CQF) is recognized as a
cornerstone of data processing. CQF has now become widely adopted and is, for instance, part of

established pretraining pipelines like those of GPT3 (,), LLama (,
), and PALM (,). It is also a key component of several widely used public

datasets, such as DCLM (R) or the SmolLLM corpus (,).

CQF, as illustrated in , trains a binary classifier to distinguish documents from a large,

low-quality pretraining set (LQ set) from those of a small, high-quality dataset (HQ set). It then
assigns a scalar quality score to each document within the LQ set, defined by the classifier’s score.
The filtered dataset is formed by selecting the top k fraction of documents in the pretraining set,
ranked by their quality score.

The goal of this paper is to understand the mechanics behind CQF, its impact on downstream
performance, and to challenge the underlying notion of quality it defines. Concretely, does CQF truly
select data that resemble the HQ set, as it is commonly believed? Does the quality score it incurs
match the general intuition about data quality?

We start by highlighting a paradox in how CQF works: although CQF consistently improves per-
formance on downstream tasks, it does not necessarily improve language modeling on the HQ set.
This finding challenges the widely held belief that CQF improves models by selecting training data
that are similar to the HQ data. We explain this paradox by the fact that CQF is akin to an implicit
quality filtering of the HQ set itself, which upweights data in the HQ set that are far from the LQ
set. This means that models trained with CQF are not necessarily good at language modeling on the
whole HQ set, but rather on a higher-quality subset of it. Moreover, we show that this filtering of the
HQ set aligns with downstream tasks for most choices of HQ sets, Wthh explains the paradox. We
then compare CQF to importance sampling methods (, ,), which
explicitly attempt to resample the LQ set to follow a distribution close to the HQ set. We highlight a

Under review as a conference paper at ICLR 2026

(. . D - . ~
Pretraining Set Embed Score Pretraining Set Classifier score

R N N v distribution
BRER B B =
% E E E Classifier

Select CQF Set
k=25% |topk
S X

k=10% Ba g

k= 5%

[High-Quality Set |

L J 0 1)

Figure 1: Classifier-based Quality Filtering (CQF) pipeline. A document embedding model (e.g.
sBert, Artic-Embed or FastText) embeds documents from a high-quality dataset and the pretraining
set. A binary classifier is trained on those embeddings to distinguish the HQ set from the pretraining
set. Scores assigned by the classifier are used to rank documents from the pretraining set. The top &
fraction of those documents constitutes the new filtered CQF dataset.

stark difference between the two methods: importance sampling yields better language modeling on
the HQ set, but it does not benefit from the aforementioned implicit filtering of the HQ set.

Beyond these paradoxes, we introduce a new lens to probe whether CQF induces a meaningful notion
of quality. Specifically, we formalize the notion of data conditioning: along a true quality axis,
training on “clean” data should give better performance on “dirty” test distributions than training
directly on the dirty distribution. This behavior fundamentally depends on the optimization algorithm
used to approximately minimize the training loss. Indeed, if the training algorithm were perfect,
training on the dirty data itself would always yield the best possible loss on that very data. Therefore,
this phenomenon can only arise because optimization on the clean dataset is easier, hence the term
data conditioning. We demonstrate that this desirable property is clearly observed when constructing
datasets with ground-truth mixtures of clean and dirty documents, as inspired by ().
In contrast, subsets selected by CQF fail to exhibit any such data-conditioning ordering, suggesting
that the notion of quality CQF captures is more limited and closely related to stylistic or domain
similarity—contexts in which “training cleaner” does not universally help.

1.1 RELATED WORK

Recent surveys (; ,) provide comprehensive overviews of data
selection pipelines and 1dent1fy class1ﬁer— and perplexity-based filtering as the most widely used
techniques, with classifier-based methods being the most effective in practice (,). A
common underlying assumption across these approaches is that pretraining on data resembling a small,
trusted high-quality (HQ) set (e.g., Wikipedia, books, curated instructions) improves downstream
performance. This belief has motivated two main strategies that operate at the document level:
directly mimicking the HQ distribution via importance sampling or indirectly approximating it
through classifier-based filtering. In the importance sampling paradigm, () approximate
the likelihood ratio between HQ and LQ data to guide resampling of the LQ set, while CRISP
(,) uses clustering of the pretraining data to best match the HQ set.

CQF, on the other hand, uses a classifier to score LQ documents by learning boundaries between HQ
and LQ samples. CQF is widely adopted in state-of-the-art pipelines: GPT-3 (,)
employs a classifier with Pareto-biased sampling; LLaMA (,) filters Common
Crawl using Wikipedia as HQ; GLaM (s), PaLLM (s), and
RedPajama (,) similarly rely on Wikipedia and books. More recently, ()
introduced DCLM, a large-scale filtered dataset centered on CQF, using ELIS (,) and
OpenHermes (,) as HQ sources. () study methods to build HQ sets,
and () propose the Dolma Toolkit, featuring CQF that is applied to the Dolma
dataset iteself. RefinedWeb (s) and FineWeb (s) use classifiers to
extract English documents. Artic-Embed (,) is a popular document embedder for
training quality classifiers, underlying Python-edu and FineWebEdu (,) datasets.
Recently, () analyzed how aggressive filtering should be as function of model and
data scales. Finally, classifiers can also be used to filter toxic content (s).

Under review as a conference paper at ICLR 2026

Dataset Number of Documents Source
OpenOrca (s) 3M GPT-4/GPT-3.5
ELIS5 (,) 325k Reddit
OpenHermes (s) 240k GPT-4
KnowledgePile (,) IM Scientific blog & papers
openwebmath (s) 6.3M Mathematical webtext
ARC Easy (,) 2.25k grade-school level MCQA

Table 1: Overview of the “high-quality’’ datasets used for CQF in our study.

Beyond CQF and importance sampling, recent works learn proxy scores directly linked to downstream
performance rather than assuming and imposing any fixed notion of quality. For example,

() train regressors to predict closeness to evaluation tasks, () combine
multiple quality dimensions into learned mixtures, and older methods rely on LLM perplexity
(,). These methods suggest that the best data may not necessarily resemble a

specific HQ corpus, but rather satisfy task-relevant criteria that can be discovered during training.

2 CLASSIFIER-BASED QUALITY-FILTERING

We describe the Classifier-based Quality-Filtering (CQF) method as it is used in the literature and
in this paper. CQF takes as inputs a high-quality (HQ) dataset, Dyq, a pretraining dataset that is
generally of low quality, Dy,q, and a selection fraction k between 0 and 100%.

Low-quality (LLQ) dataset. This is a standard pretraining set, which, in the context of LLM pre-
training, contains curated documents gathered from a large web crawl spanning diverse data sources.
While the dataset is huge—containing enough tokens to train large models without repetitions—it
also includes many low-quality, badly formatted, or uninformative documents. The overall goal of
data selection is to select a subset of this LQ set that leads to better model performance. In this paper,
we take RedPajama-V?2 as our LQ set, which contains 32T tokens.

High-quality (HQ) dataset. This is a high-quality dataset made of documents from a highly curated
source. These documents are well formatted, have relevant content and are sometimes manually
annotated. They can be data coming from proofread websites such as Wikipedia, or sentences
generated by a sufficiently good language model. However, the HQ dataset is typically quite small
and insufficient on its own to train a model. Instead, it serves two key purposes to guide the data
selection process: 1) as a target for selection, where data in the LQ set that resemble the HQ set
are considered high quality, and 2) as a benchmark to evaluate the effectiveness of data selection,
with models achieving low loss on this dataset considered to be performing well. Table | gives an
overview of HQ sets used in this work.

CQF is a widely used method for data selection that filters data from the LQ set, guided by the HQ
set. We now describe its practical implementation, which is illustrated in Figure 1.

Embedding. Each document in the HQ and LQ datasets is embedded in a vector space RP. Since the
whole LQ set has to be embedded, the embedding method needs to be scalable. In practice, we use
sBert, with p = 384. Another popular choice is FastText (,).

Classifier training. A training set made of n embeddings from the HQ set and n others from the LQ
set is used to train an L2-regularized logistic regression. The regularization coefficient is taken as
the one maximizing accuracy on a held-out set. Once this classifier is trained, it defines the CQF
score function s(z) € [0, 1], that, for any document x, defines a scalar that measures how likely the
classifier is to identify this document as a member of the HQ set. This score s(z) is often called
quality signal (,), which is why, in the context of CQF, we will refer to it as quality
of document . A goal of this paper is to understand whether this definition of quality is appropriate.

“Quality” filtering. In order to estimate the distribution of the scores on the LQ dataset, a subset of
the LQ dataset is scored, which allows us to estimate the cumulative density C'(§) = P(s(z) < §|x €
Dy,q) for all § € [0, 1]. Then, for a given selection fraction %, only the top % fraction of documents
in the LQ set is kept, resulting in a filtered dataset Dcqr = {x € Drq| C(s(z)) > 1 —k}.

Under review as a conference paper at ICLR 2026

HQ set: OpenOrca HQ set: KnowledgePile HQ set: OH+ELIS5 HQ set: openwebmath HQ set: ARC Easy

§60.0 60.0 60.0 60.0 60.0
£
B
250.0 50.0 50.0 50.0 /\ 50.0
Z
Q =
2.85 7] 2.95 71 2718 hY N
Z / \ / \ \ A
= 2.80 / \ 7| el N 281N 3.5 N
2 / 2001 \ Y2 SN N N
£y 4 N/ S S o
0 \-// - 2.5 S| 26 \\— 3.0 \

100% 20% 5% 1% 100% 20% 5% 1% 100% 20% 5% 1% 100% 20% 5% 1% -100% 20% 5% 1%
CQF Selection Fraction &

Figure 2: Top row: Models trained on increasingly selective data show improved performance on
downstream tasks. Bottom row: When evaluated on the HQ dataset itself, these models do not
necessarily improve as there is a non-increasing relationship between downstream performance and
loss on the HQ set.

top 1%
top 20% HQ set
- ot g ARC-Chall K ledgePil
CQF top 40% S | -Challenge nowledgePile
% Target Benchmark b B ARC-Easy OH+ELI5
; i top 60% & mmlu I OpenOrca
gl RedPajamaV2 ©
top 80% reward-bench I openwebmath
top 100%

Figure 3: Two-dimensional PCA projections of sBert embeddings from quality buckets defined
by classifiers, each using a different HQ set.. Quality buckets across classifiers (CQF) used in the
literature exhibit alignment towards benchmark datasets. When considering the top 100%, we fall
back to the original pretraining dataset (RedPajama-V2) regardless of the HQ set used.

This selects the documents in the LQ set that are most likely to belong to the HQ set, based on the
score defined by the classifier, and are therefore “higher-quality” documents. This dataset is then used
to train models in place of the low-quality dataset. One clear limitation of CQF is that the number of
training tokens available in the dataset is k x D where D is the total number of tokens in the LQ set.
Too small values of k lead to scarce datasets on which models cannot be trained without repeating
data or even overfitting. In this paper, we step away from this limitation and always use values of k
such that there are enough data in Dcqr to train a model without repeating data. This allows us to
focus solely on the impact of data quality rather than on the effects of repeated training examples.

Evaluations. After pretraining, models are evaluated by scoring them on evaluation benchmarks,
such as general knowledge question answering. Performance on these datasets is indicative of the
usefulness of models after post-training. In this work, we consider evaluations on ARC-Easy, ARC-
Challenge, MMLU, and reward-bench. The bulk of our experiments is done on ARC-Easy, which has
better-than-random performance at small scales. Implementation details can be found in Appendix F.

3 CQF IMPROVES MODEL EVALUATIONS

We begin with the observation that motivates the wide adoption of CQF. We train 350M models
on CQF datasets with different HQ datasets and values of k. We then evaluate those models by
computing their accuracy on ARC-Easy. We also use ARC-Easy itself as the HQ set. We display
the results in Figure 2, top row. Among all HQ sets, using ARC-Easy leads to the best downstream
performance. We observe that the performance on the downstream task generally improves as we
select datasets of higher quality, with smaller values of k. This occurs for OpenOrca, KnowledgePile,
OH+ELIS, and ARC-Easy, but for openwebmath, we observe a performance dip if we select a value
of k that is too small. A simple explanation is that CQF with openwebmath selects too specialized
documents. We confirm this alignment between data selected by CQF and common benchmarks in
Figure 3 by examining a 2D PCA of their latent space.

Under review as a conference paper at ICLR 2026

[0 RedPajamaV2 [OpenOrca Joint PCA of CQF and HQ set

Domain
HQ set: OpenOrca
CQF in top 100%
CQF in top 25%
CQF in top 2%
CQF in top 1%

assign to buckets

Lowest <« quality — Highest

CQF log-score

Figure 4: CQF works by filtering out the low-quality data (red), not because the retained data
(green) resemble the HQ set (orange). This is clear both from the raw log-scores of the classifier
(left), and in 2D PCA of the sBert latent space (right). TSNE show similar patterns in Appendix C.

4 CQF DOES NOT SELECT DATA THAT RESEMBLE THE HIGH-QUALITY SET

CQF ranks data based on likelihood ratios. Assuming that the binary classifier trained in CQF is

Bayes-optimal, the CQF quality score of a document z is s(z) = #ﬁ?m (,).
As such, scores are an increasing function of the density ratio: s(z) = ¢ (i‘gg;) with ¢(t) = 5.

The ordering of documents implicitly defined by CQF is therefore that of the likelihood ratio: a

document z is of “higher quality” than a document y if pug() > W) Thig contrasts with the
pLQ(z) pLQ(Y)

"importance sampling" ranking, which would rank x higher than y solely based on their likelihood
under the HQ distribution, i. e., if puq(x) > puq(y). A simple conclusion is that, since in general
the LQ set is not uniformly distributed, CQF does not select samples that are most likely to come
from the HQ set only. Instead, it prefers documents that are both likely under the HQ distribution
(high paq(z)) and unlikely under the LQ distribution (low pr.q(z)). In other words, with CQF, data
are filtered based on a trade-off between being close to the HQ set and far from the LQ set. This
phenomenon is clear when plotting the score densities of data filtered by CQF in Figure 4.

4.1 KULLBACK-LEIBLER DIVERGENCE BETWEEN DATASETS

For each model trained in section 3, we also compute its next-token prediction loss on the HQ set
(Figure 2, bottom row). We observe U-shaped curves for all HQ datasets except ARC-Easy. For these
HQ sets, the optimal £ that yields the smallest loss is often large. Remarkably, small values of k can
result in models that perform even worse on the HQ set than a model trained on the full LQ set, as
seen with OpenOrca or KnowledgePile. This behavior contrasts with using ARC-Easy as HQ set,
where reducing k consistently improves both model performance and language modeling.

As aresult, there is a clear discrepancy between the loss on the HQ set—which reflects how closely
the pretraining data resemble the HQ distribution—from the achieved downstream performance
(ARC-Easy). This challenges the standard belief that CQF filters data to get closer to the HQ set.

Loss on the HQ set as a proxy for the distance between CQF and HQ set. The loss measured
on the HQ set can be interpreted as a measure of how different the filtered data are from the HQ
set in terms of Kullback-Leibler (KL) divergence, under the assumption that the model has infinite
capacity (,). Indeed, in this case, the model’s parameters 6 are such that the model trained
on the filtered set by CQF would perfectly represent its data distribution, i.e., pg(x) = pcqr(x).

Evaluating this model on the HQ set yields a next-token prediction loss equal to
Ey~Dyq [—10g poqr (2)]. This quantity can be decomposed as,

H(Duq) + KL(Duql|Dcqr),

where H(Duq) is the entropy of the HQ distribution (a constant when changing k), and
KL(Dwuq||Dcqr) is the KL divergence from the HQ distribution and the distribution of data filtered
by CQF. Hence, under the hypothesis that the models trained in these experiments accurately represent
pcqr, the observed increase in HQ loss for small £ means that the corresponding pretraining sets

Under review as a conference paper at ICLR 2026

3.2 1 Full HQ set g > £
—— HQ score deciles = g =
3.1 A % 8 the top bucket is closest %
o & 2.0 to ARC Easy >
2 = < =
S 3.0 1 = ° =
3 =S 3 &
2.9 L 5 151 L
& .2 8
z A E
2.8 S 3

T T T T T T T T T T T T T T T

100% 20% 5% 2% 1% 100% 80% 60% 40% 20% 1%
CQF selection fraction k& HQ score deciles

Figure 5: CQF implicitly filters the HQ set. We split the HQ set (KnowledgePile) into 10 deciles of
CQF scores. Left. For each model trained with CQF at a given fraction k, we report the loss of the
model on each of these 10 deciles. The reddest curve corresponds to the loss on the HQ elements
with the bottom 10% scores, while the greenest curve corresponds to the top 10%. Our findings
indicate that only the high-quality deciles of the HQ set exhibit a decreasing loss. This suggests that
the classifier effectively identifies and learns the features within these deciles, enabling the models to
make better predictions. However, on average over all the deciles (dotted line), the loss is a U-curve,
recovering the loss in Figure 2 (second row and column). Right. In sBert latent space, we compute
the distance between the barycenter of ARC-Easy to the barycenter of each HQ decile. This distance
correlates well with performance on the ARC-Easy benchmark itself.

% 4 KnowledgePile OpenOrca
'; Top 10% of KnowledgePile B Top 10% of OpenOrca
w37
z
g2
=
3
< 17
<
0 T T T

ase: 257 se: 51%

MMLU ,b ARC Easy ,baset 6OZORC Cha“e“ge’base'- 2;:1”]&_ 4B ench, bas
Figure 6: Finetuning a 1.3B model on HQ sets and on their top decile. We report the best
performances during fine-tuning; no bar means that fine-tuning on that set does not improve the
performance on that benchmark. Darker colors indicate finetuning on the top 10% of the HQ set
according to the CQF classifier, while light colors indicate finetuning on the whole HQ set. The same
number of tokens is used in both scenarios. OpenOrca aligns most closely with MMLU, whereas
KnowledgePile shows stronger alignment with ARC-Easy, supporting the trend observed in Figure 3.

diverge further away from the HQ distribution. To our knowledge, this phenomenon has not been
previously identified. In the next section, we investigate the reasons behind it.

4.2 CQF IMPLICITLY FILTERS THE HIGH-QUALITY DATASET AS WELL

One way to interpret the CQF selection rule is that it is a reweighting of the distribution of the HQ
set, with non-uniform weights: it puts a larger weight on documents that are far from the LQ set.

As aresult, CQF can be understood as 1) selecting data in the HQ set that are far from the LQ set
and then 2) selecting data in the LQ set that are close to that portion of the HQ set. To validate this
interpretation, we further partition the HQ set itself into 10 "quality" buckets according to their CQF
scores. We then measure the next-token prediction loss on these 10 domains achieved by models
trained with CQF by varying k in Figure 5. Interestingly, the loss on the top-scoring documents
from the HQ set behaves very differently than the loss on the bottom-scoring data from the same
set. More precisely, the loss on the top-scoring HQ data is monotonic with k, while the loss on the
bottom-scoring HQ data rises sharply as &k decreases. This analysis decomposes the overall U-shaped
loss reported in the previous section into the average loss across different quality levels within the HQ
set. Notably, this implicit filtering of the HQ set itself is beneficial. In fact, data in the HQ set that
resemble data from the LQ set are likely to be of lower quality, since the LQ set contains a significant

Under review as a conference paper at ICLR 2026

amount of noisy data. This resolves the earlier paradox: top-scoring data within the HQ set are more
aligned with the evaluation task than those from the HQ set with lowest scores; see Figure 5.

We further validate that these top deciles of HQ sets are aligned with downstream evaluations by
finetuning a 1.3B model on them, as well as on the full HQ set. We report the corresponding gains
in accuracy in Figure 6. This again shows that the top decile of KnowledgePile is aligned with
ARC-Easy, while the full set is not. We now formalize this implicit filtering intuition.

CQF as a reweighting of the HQ set. Letting r(z) = ’;‘37((;”; be the likelihood ratio, CQF selects

data in the LQ set such that r(x) > 7, where 7 is calibrated so that only a fraction k of the LQ set is
selected. The CQF dataset’s density can be rewritten as

1 17‘ x)>T
poqr(z) = er(z)ZTpLQ(-T) = w(x)puq(x), where w(zx) x 7"((:)05

ey

which means that it is a reweighted version of the HQ set density, with weights w(x), and where Z is
a normalization constant. The most upsampled points in the HQ set, which have a high value w(x),
are therefore those such that () is above 7 while being small. This is akin to a filtering of the HQ
set based on the likelihood ratio value r(z). This explains the results in Figure 5: as the fraction k
reduces, pcqr gets close to a filtered version of prg where only top-scoring samples are kept.

5 CQF 1s NOT IMPORTANCE SAMPLING

A common belief behind the use of CQF is:
but we don’t have enough data. So we use CQF to mimic data from the HQ set.
As we have seen in the previous section, assum-

“Ideally, we would train on the HQ set,

2

ing that the classifier is Bayes-optimal, CQF

draws samples from the LQ set following the _ ® COF % CRISPonHQse
density w(z)puq(z), where w(x) is not uni- HQ set: OpenOrea ; Quet: ARCEay
formly equal to 1. On the other hand, impor- g 5
tance sampli hod le el < 60% ** T
pling methods try to sample elements g o ° T
from the LQ set that directly follow the density § o 3
prQ. We use the CRISP method (S D] v
) in order to implement importance sam- § ’ L e ® H
pling, with the same models as in section 3, with —e : :]

2.7 2.8 3.0 3.5

OpenOrca and ARC-Easy as HQ sets. We re-
port the loss on the HQ set and the downstream
accuracy in Figure 7, as well as those of the
models trained with CQF. OpenOrca being di-
verse and multi-topic, we found that C' = 4096
clusters are sufficient to capture that distribution
well, whereas ARC-Easy requires C' = 260k
clusters. We observe that importance sampling
indeed leads to good language modeling on the
HQ set, which translates to better downstream performance when the HQ set is the downstream task
itself (right), but not when the HQ set is a curated dataset (left). In that case, CQF leads to better
downstream performance than importance sampling.

Loss on HQ set

Figure 7: Performance comparison between
CQF and importance sampling-based approach
(CRISP). CQF induces a data selection that is sub-
stantially different from the HQ set. Colors indi-
cate more (green) or less (red) filtering.

6 DiscussioN: DOES CQF DEFINE A SOUND NOTION OF QUALITY?

The goal of this section is to offer a different perspective on the concept of quality by introducing a
formal definition based upon optimization considerations. Within this framework, we (i) explore a
semi-synthetic setting where quality can be clearly defined and controlled, and (ii) move beyond the
limitations of earlier experiments, such as fixed model size and finite training horizon, which only
offer snapshots of the following analysis.

Under review as a conference paper at ICLR 2026

6.1 DATA CONDITIONING: DATA-QUALITY AS AN OPTIMIZATION CATALYST

Central to our analysis is the concept of data conditioning, which we define as a desirable property of
data quality. Informally, a dataset Dccan is better data conditioned than another dataset Dgi,y if a
model trained on Djean outperforms a model trained on Dgj.ty When evaluated on Dgjyy

We describe it formally as follows. Given an objective function ¢ and a dataset D, we define the loss
function as £(6, D) := E,p[l(x;0)]. This loss is typically approximately minimized by running a
stochastic optimization algorithm A on the samples x;:

07 — .A(:Bi), with (mi);;l ~ Ddirty7 2)

Dairty

where x;’s are n i.i.d. samples from Dgj.ty. Instead of training on Dgj.ty, One can also train on
Dejean and obtain parameters 67, . We propose an axiomatic definition of quality:

Data-conditioning. We write Dcican > Dairty and say that a dataset Dgjean is better data-
conditioned than Dygj;+y, relative to the learning rule .A and the horizon n € N if
£(0% 7Ddirty) S £(%dirty’ Ddirty)- (3)

clean

We coin this phenomenon “data conditioning”, drawing from the optimization literature, where
conditioning typically describes how easily a loss function can be minimized. In our context, data
conditioning captures how the structure of a dataset accelerates optimization. Indeed, in standard
large-scale settings, data are seldom repeated, and models generalize well, which means that the
training loss closely approximates the validation loss. Therefore, if we had a perfect minimiza-
tion oracle, A(x;) = argmingee + Y1, {(w;,0), we would have by definition of the minimizer
‘C(e%dirty’ Ddifty) = 7% Z?:l E(m‘h e%d;rty) S i Z?:1 é(.’]}z, G%CISa],) = [:(9%) Ddirty)- This
would forbid the existence of better data-conditioned datasets. However, the existence of better-
conditioned datasets has been reported many times in the literature, and is at the root of curriculum
learning ()), dataset distillation (,), or mixture optimization (

, ; ,). Thus, our definition of quality arises from imperfect optimization.

clean

6.2 CQF THROUGH THE LENS OF DATA-CONDITIONING

To illustrate this notion of data conditioning, we explore different ways of creating a spectrum of
“quality”, using families of datasets indexed by one variable k € [0, 1], where, intuitively, lower
values of k correspond to higher-quality datasets, and higher values indicate lower-quality ones.

First, we create semi-synthetic text datasets with varying levels of quality, inspired by

(). Using RedPajama-V2 as our base dataset representing the highest quality, we simulate
different quality levels by constructing a family of datasets Perm(k) for k& € [0, 1]. Each Perm(k)
is created by sampling documents whose tokens are randomly permuted with probability k, or kept
unchanged with probability 1 — k. Similarly, we define another family of datasets CQF(k), where k
denotes the selection fraction, using CQF with OpenOrca as the HQ set. We define Exclusive CQF by
taking documents whose score lies in a given interval. We compare the scaling behaviors of models
trained on each of these datasets, by varying the number of parameters IV, training tokens D, and the
“quality” level k. We report the next-token prediction loss of these models on each “quality” level &’.

Static analysis. We begin by training models of a fixed size for a fixed number of iterations on each
quality bucket & in . Bach index (k, k') shows the value £(k, k") — L(K', k"), where L(k, k')
is the loss on quality bucket &’ for a model trained on quality bucket k. For the synthetic case, we
observe a mostly upper-triangular structure, which means that training on better quality domains also
improves models on lower quality domains, apart from the edge case of training on non-permuted
tokens. In other words, organizing data by quality deciles leads to structured performance gains in
this controlled setting, where higher-quality data results in greater improvements, aligning with our
intuition of quality as a concept. In we extend our investigation of this binary relation.

How does data conditioning depend on scale? For the Perm quality axis, we repeat the previous
experiment at different model scales and training horizons, with model scales ranging from 125M to
1.3B parameters. Then, for each train/validation pair k, k', we fit a scaling law that predicts the loss
L(k, k') as a function of N, the model size, and D, the number of seen tokens. We fit the Chinchilla

Under review as a conference paper at ICLR 2026

Perm

CQF

Exclusive CQF

[0.10

1% 1% 1% _
Y]
- =
"é 4% 5% 6% 0.05 g
8 ‘s
-
§ 12% 15% 17% 000 £
.g >
g 2
& 22% 30% , 37% L 005 8
50% 100% -+ 70%
50% 22% 12% 4% 1% 100% 30% 15% 5% 1% 0% 37% 17% 6% 1% - -0.10
Test on top k' Test on top k' Test on top k'

Figure 8: Data conditioning experiment. We use three different ways to define an axis of “quality”,
which are datasets indexed by a scalar k € [0, 1], where k£ = 0 means higher quality. Perm defines
it as (1 — k) where k is the probability of randomly permuting a document. CQF defines it as
the fraction of documents kept in the pretraining set, where the HQ set is OpenOrca. Exclusive
CQF defines it as documents that have scores between two thresholds. Each of these datasets is
parameterized by a quality knob, k. We train models for a grid of values k, and compute their test
loss on the dataset k', L(k, k’). The figure displays the matrices with entries £(k, k') — L(K',k’). A
negative value for the coefficient k, k¥’ means k = k', as defined in Equation 3.

N=1B, D=20N N=1B, D=1000N N=D=+x
1% 7 1% 77 1% l _
’ ’ 0.02 i
é 4% 4% 4% g
e =
$—
§ 12% 12% 12% -000 =
g >
< 7]
& 22% 22% 22% é
? F-0.02 <

50% 50% 50%
50% 22% 12% 4% 1% 50% 22% 12% 4% 1% 50% 22% 12% 4% 1% Y
Test on top k' Test on top k' Test on top k'

Figure 9: Data conditioning scaling. We fit scaling laws in order to have a dynamic view of Figure &.
We then report the predicted loss of models of size IV trained with D tokens. When N = D = +o0,
we use the irreducible error term F predicted by the scaling law as a proxy for the loss. We observe
that the regions of better data-conditioning (orange) are mostly kept the same as we scale models.
When scaling in the large D direction, we observe that the effect gets narrower.

scaling law (,):

A B
Ne T DF
where the parameters E, A, B, «, 3 depend on the train/validation pairs k, k’. This enables us to
obtain a dynamic version of Figure § in 9, where the model sizes and number of tokens are variable.
These findings validate that data-conditioning is only mildly dependent on the model and data scale.

L(k,kl)N’D =F+

CONCLUSION

Classifier-based Quality Filtering is a tool used to train most state-of-the-art models, yet our analysis
shows that its inner workings are more subtle than previously believed. While CQF reliably improves
downstream evaluations, these gains are not attributable to the fact that filtered data are closer to the
high-quality set. Instead, we uncover an implicit filtering phenomenon, where CQF emphasizes HQ
examples that are far from the bulk of the LQ set, and are therefore most likely to be of higher quality.
Quality filtering is about removing the “bad”, not imitating the “good”.

Finally, we challenge the notion of quality defined by CQF, demonstrating that it does not satisfy the
desirable property of data conditioning: training on “better quality” data, according to CQF, does not
accelerate learning on lower quality subsets. CQF should not be taken as a universal quality measure,
but instead as a way to better align with downstream evaluations.

Under review as a conference paper at ICLR 2026

REFERENCES

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection
for language models. arXiv preprint arXiv:2402.16827, 2024.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Smollm-corpus, 2024. URL

Yoshua Bengio, Jérdme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41-48, 2009.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1-113,
2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language models
with mixture-of-experts. In International conference on machine learning, pp. 5547-5569. PMLR,
2022.

Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. ELI5:
long form question answering. In Anna Korhonen, David R. Traum, and Lluis Marquez (eds.),
Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 3558-3567. Association for
Computational Linguistics, 2019. doi: 10.18653/v1/p19-1346. URL

Zhaoye Fei, Yunfan Shao, Linyang Li, Zhiyuan Zeng, Hang Yan, Xipeng Qiu, and Dahua Lin. Query
of cc: Unearthing large scale domain-specific knowledge from public corpora. arXiv preprint
arXiv:2401.14624, 2024.

David Grangier, Simin Fan, Skyler Seto, and Pierre Ablin. Task-adaptive pretrained language models
via clustered-importance sampling. arXiv preprint arXiv:2410.03735, 2024.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, et al. The elements of statistical learning, 2009.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
Fasttext. zip: Compressing text classification models. arXiv preprint arXiv:1612.03651, 2016.

Julie Kallini, Isabel Papadimitriou, Richard Futrell, Kyle Mahowald, and Christopher Potts. Mission:
Impossible language models. arXiv preprint arXiv:2401.06416, 2024.

10

https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://doi.org/10.18653/v1/p19-1346
https://doi.org/10.18653/v1/p19-1346

Under review as a conference paper at ICLR 2026

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi.
RewardBench: Evaluating reward models for language modeling. In Findings of the Association
for Computational Linguistics: NAACL 2025, pp. 1755-1797. Association for Computational
Linguistics, April 2025. doi: 10.18653/v1/2025.findings-naacl.96.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-Im: In search of the
next generation of training sets for language models. Advances in Neural Information Processing
Systems, 37:14200-14282, 2024.

Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, and Chanvichet Vong. Teknium.
Openorca: An open dataset of gpt augmented flan reasoning traces. https://https://huggingface.
co/Open-Orca/OpenOrca, 2023.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
Zhou, Jason Wei, Kevin Robinson, David Mimno, et al. A pretrainer’s guide to training data:
Measuring the effects of data age, domain coverage, quality, & toxicity. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 3245-3276, 2024.

Luke Merrick, Danmei Xu, Gaurav Nuti, and Daniel Campos. Arctic-embed: Scalable, efficient, and
accurate text embedding models. arXiv preprint arXiv:2405.05374, 2024.

David Mizrahi, Anders Boesen Lindbo Larsen, Jesse Allardice, Suzie Petryk, Yuri Gorokhov, Jeffrey
Li, Alex Fang, Josh Gardner, Tom Gunter, and Afshin Dehghan. Language models improve when
pretraining data matches target tasks. arXiv preprint arXiv:2507.12466, 2025.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text, 2023.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobeidli,
Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon 1lm: Outperforming curated corpora with web data only. Advances in Neural
Information Processing Systems, 36:79155-79172, 2023.

Guilherme Penedo, Hynek Kydli¢ek, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
scale. Advances in Neural Information Processing Systems, 37:30811-30849, 2024.

Mustafa Shukor, Louis Bethune, Dan Busbridge, David Grangier, Enrico Fini, Alaaeldin El-Nouby,
and Pierre Ablin. Scaling laws for optimal data mixtures. arXiv preprint arXiv:2507.09404, 2025.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Raghavi Chandu, Jennifer Dumas, Yanai Elazar, et al. Dolma: an open corpus
of three trillion tokens for language model pretraining research. In ACL (1), 2024.

Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist 1lm assistants, 2023.
URL

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018.

Yudong Wang, Zixuan Fu, Jie Cai, Peijun Tang, Hongya Lyu, Yewei Fang, Zhi Zheng, Jie Zhou,

Guoyang Zeng, Chaojun Xiao, et al. Ultra-fineweb: Efficient data filtering and verification for
high-quality llm training data. arXiv preprint arXiv:2505.05427, 2025.

11

https://huggingface.co/datasets/teknium/OpenHermes-2.5

Under review as a conference paper at ICLR 2026

Maurice Weber, Daniel Y. Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Chalamala,
Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and Ce Zhang.
Redpajama: an open dataset for training large language models. NeurIPS Datasets and Benchmarks
Track, 2024.

Johannes Welbl, Amelia Glaese, Jonathan Uesato, Sumanth Dathathri, John Mellor, Lisa Anne
Hendricks, Kirsty Anderson, Pushmeet Kohli, Ben Coppin, and Po-Sen Huang. Challenges in
detoxifying language models. In Findings of the Association for Computational Linguistics:
EMNLP 2021, pp. 2447-2469, 2021.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmdn,
Armand Joulin, and Edouard Grave. Ccnet: Extracting high quality monolingual datasets from

web crawl data. In Proceedings of the Twelfth Language Resources and Evaluation Conference,
pp- 4003-4012, 2020.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language
models via importance resampling. Advances in Neural Information Processing Systems, 36:
34201-34227, 2023.

Mozhi Zhang, Howe Tissue, Lu Wang, and Xipeng Qiu. Domain2vec: Vectorizing datasets to find
the optimal data mixture without training. In Forty-second International Conference on Machine
Learning, 2025. URL

Xinlin Zhuang, Jiahui Peng, Ren Ma, Yinfan Wang, Tianyi Bai, Xingjian Wei, Jiantao Qiu, Chi

Zhang, Ying Qian, and Conghui He. Meta-rater: A multi-dimensional data selection method for
pre-training language models. arXiv preprint arXiv:2504.14194, 2025.

12

https://openreview.net/forum?id=kJ5i29FejW

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction

1.1 Related Work e
2 Classifier-Based Quality-filtering
3 CQF improves model evaluations

4 CQF does not select data that resemble the high-quality set
4.1 Kullback-Leibler divergence between datasets

4.2 CQF implicitly filters the high-quality datasetas well
5 CQF is not importance sampling

6 Discussion: Does CQF define a sound notion of quality?
6.1 Data conditioning: Data-quality as an optimization catalyst

6.2 CQF through the lens of data-conditioning
A Appendix organization
B Optimal thresholds vary with compute
C Do classifiers used in CQF exhibit undesired biases?
D No HQ set is superior to all others across all tasks
E Data conditioning

F Implementation details

13

Under review as a conference paper at ICLR 2026

A APPENDIX ORGANIZATION

The appendix is organized as follows:

* In Appendix B, we study how the optimal fraction k of selected data in CQF varies with
model size and training compute, the HQ set and the downstream task.

* In Appendix C, we highlight that CQF classifiers are prone to learning spurious features,
such as context length, and we evaluate the effectiveness of a simple mitigation strategy.
This illustrates a broader phenomenon: CQF can induce undesired biases that cause the
selected pretraining data to diverge significantly from the HQ set.

* In Appendix D, we reveal that no single HQ set leads to universally better downstream per-
formance, and that different classifiers implicitly align with different benchmarks, revealing
task-specific inductive biases.

* In Appendix E, we visualize the binary relation induced quality filtering as a graph, high-
lighting how its structure evolves from the semi-synthetic setting to CQF used in practice.

 In Appendix F, we provide the reader with further implementation details.

B OPTIMAL THRESHOLDS VARY WITH COMPUTE

How to chose the optimal k& when picking the top % documents from CQF? To answer this, we
conducted a series of ablations over k, training models on the top k% of the pretraining data, as
ranked by CQF, using various HQ sets. These experiments span multiple model sizes N and training
horizons D (i.e., number of seen tokens), such that the total training compute in FLOPs is measured
as 6N D. The results are summarized in Figure 10, where we report downstream accuracy as a
function of training FLOPs and highlight the optimal % in each setting.

Although our setup directly illustrates CQF, making it more representative of real-world data filtering
pipelines, () concurrently explore a related direction. Their approach differs in that
they select LQ data based on direct proximity to target benchmarks, bypassing the need for a proxy
HQ dataset. Despite this, our findings do not align: we observe no clear trend once the noise level is
accounted for, leading to relatively inconclusive results. We also note that ()’s
conclusions rely on extrapolation, which probably explains the divergence.

MMLU MMLC reward-bench ARC-Challenge ARC-Easy
32 5 |06
o6] 2 .8 8 2
5 020 0 s /5/; 0.58 N 0.23 T P
3] . s o o g s g
S N\ e % Py B o n : . |0 H
8 8 02645 ° e H .
o L] -
& 0.2 : e 8 . 0563 8 s 0.20 . 04
. -
. . 0.24
0.3
0.30 5 5 =
o 0.30 s §
° P
- 026 \ . g s 3 8 ooy | g oo
= . “ o= * e [0.584 P | 28 ° . Te et
) 8 . s 8 B s 0.251 & ° g 05 pd
T H 08 | 18 = . H ° s 3 s .
) 091 . ° 0.26 H H . . ® - e
o M. I 0.56 o 020y = 3. 0.4
. . 0.24 .
0.26 . . g
© \ /g/; 0.58 0.30 5 o cg ° g
& " 0.28 b ° R J ee s FEL
25 @ L4 o g
Eﬂ()"" . 3; i_s__/ ;.,/3 48 - 2 0.25+ @ gg e [)Jul ® e
o o .
2, o o 02 . [— L - ., ®°
. 564, @
2 0.24 AV " 0.361s & . 020 2 . 04
1]
- i 3 0.24
2378 - 0.3
: 0.15 :
101 10% 10" 102 101 102 101 10% 101 10%
FLOPs FLOPs FLOPs FLOPs FLOPs
Model size

e e —
I 0% 5% 2% T @ 125M m 350M * 700M A 13B

Train on top

Figure 10: The optimal top k% of pretraining data depends on available compute. For each
setting, we highlight the value of £ that yields the best performance under a fixed compute budget.
Rows: different HQ sets used for CQF. Columns: various downstream performance metrics.

14

Under review as a conference paper at ICLR 2026

C Do CLASSIFIERS USED IN CQF EXHIBIT UNDESIRED BIASES?

Even when downstream performance improves, the selected data can drift from the intended target
distribution—revealing not only a failure to capture genuine quality, but also an undesirable inductive
bias, where the classifier overemphasizes unrelated features.

Whilst it is not trivial to exhibit such unwanted features among the learned ones by the classifier, we
managed to identify one of these for OpenOrca as HQ set: the classifier seems to associate quality
with the sequence length, and shorter sentences have higher chances to be classified as high quality
ones, see Figure 11.

KnowledgePile OpenOrca OpenOrca debiased — Long positives OpenOrca debiased — Short negatives

900
800 800
800 “‘”“"’“‘“"v—»\ 600
600

=

)

8

8 "

5 vt 600

S 700

53

2 600 400 400 400
!

5 500 200 200

200
00%50% 25% 10% 5% 2% 1% 100%50% 25% 10% 5% 2% 1% 100%50% 25% 10% 5% 2% 1% 100%50% 25% 10% 5% 2% 1%

2 iy i 5 . T
Classifier quality estimates for the Positives

Figure 11: CQF classifiers suffer from inductive biases. Because the OpenOrca dataset (HQ set)
contains shorter sequences than RedPajama (LQ set), the classifier in CQF learns to use sequence
length as proxy for quality scores (second column). This bias persists even after filtering out long
documents from OpenOrca (third column), and only disappears when we subsample the negative
class to match shorter sequence lengths (fourth column). In contrast, the classifier from CQF using
KnowledgePile as a HQ set (first column) does not exhibit this behavior. The red dotted line indicate
sthe effective sequence length in the HQ set, while the blue line shows the sequence length of data
filtered by CQF at different selection ratios along the x-axis. The HQ set is divided into 10 quality
deciles, and the sequence lengths for each decile are shown as solid horizontal lines, with color
indicating quality level.

When sampling from the positive class (OpenOrca dataset) prior to training the corresponding
classifier, we subsample documents with an imposed sequence length of at least 500 or 700. We then
use this classifier to produce a partition of RedPajama with an updated notion of quality, that we hope
to be seemingly better or at least not mistakenly taking sequence as a proxy for quality; see columns
3 and 4 of Figure 1 1. We train 350M models on the resulting partitions of RedPajama and evaluate

them on ARC (,), MMLU (,), and Reward Bench (
)). We show in Figure 12 the result of such experiments, averaged across 3 runs.
MMLU MMLC reward-bench ARC-Easy ARC-Challenge
0.24
. 0.52
025 : 0.260 —m 0 0.50 = = 0.22 = |
0.24 0955 /‘\/ 0.56 0.48 =Y
— 0.20
023 - 0.46 /
100% 25% 5% 1% 100% 25% 5% 1% 100% 25% 5% 1% 100% 25% 5% 1% 100% 25% 5% 1%
Train on top Train on top Train on top Train on top Train on top
—— OpenOrca OpenOrca debiased — Long positives —— OpenOrca debiased — Short negatives

Figure 12: Performance after debiasing the classifier from CQF with OpenOrca as a HQ set.
The classifier was retrained with a subsampled HQ set (OpenOrca) using minimum sequence lengths,
in an effort to remove length-based bias in quality scores.

Beyond this specific case of sequence length bias, we investigate whether CQF classifiers exhibit
similar issues, when trained on HQ sets drawn directly from target benchmarks. To assess this, we
compute sBert embeddings for RedPajama documents grouped by CQF quality scores and compare
them to embeddings of the benchmark data. As shown in Figure 13, we visualize the centroids
of each quality bucket using a two-dimensional UMAP projection. Ideally, higher-quality buckets
as ranked by CQF (darker colors) would be closer to the benchmark embeddings. We provide the
same visualization in Figure 14 using a PCA. Surprisingly, this is often not the case, suggesting that
classifiers may still rely on spurious correlations or unrepresentative features of the entire HQ set.

15

Under review as a conference paper at ICLR 2026

10 4 Benchmarks
¥ mmlu
E, R" w o == reward-bench
57 ° 2% ‘ ARC-Easy
% ARC-Challenge
0 -
Classifiers
—5 4 = mmlu
R mmmmm reward-bench
10 - Y] ve s s ARC-Easy
LAV mmmm ARC-Challenge
3 féA“
—|10 —I5 (I) ; IIO 1|5 2|0

Figure 13: UMAP of sBert centroids for each (exclusive) quality bucket. Even when quality
classifiers are trained directly on the target data, they may still capture undesirable features. Conse-
quently, the top-rated RedPajama quality buckets (darker colors) are not always the closest to the
target benchmark embeddings.

0.6
: 9 Benchmark
Top 1% /”:J . — Top 2% enchmarks
Leg e ¥ MMLU
x "o, == reward-bench
0.4 - + .
. e, ‘-.. ‘ ARC-Easy
" % % ARC-Challenge

0.2 - ""-q.;:\‘

Classifiers
00 — MMLU
' - s reward-bench
TS mm= ARC-Easy
aabhaioe
_02{ & TS S XTI s ARC-Challenge
. a PO S A 2 4
L2 Y L
—1.0 —0.8 —0.6 —0.4 —-0.2 0.0 0.2

Figure 14: PCA of sBert embeddings of (exclusive) quality buckets induced by different classi-
fiers. Even when quality classifiers are trained directly on the target downstream tasks, they may still
capture undesirable features. Consequently, the top-rated RedPajama quality buckets (darker colors)
are not always the closest to the target benchmark embeddings.

16

Under review as a conference paper at ICLR 2026

Finally, we provide a 2D visualization of the sBert latent space using a tSNE from which similar
conclusions can be drawn in that only a subset of the HQ set is matched by the data retained from
CQFE.

Joint TSNE of CQF and HQ set

Domain
HQ set: OpenOrca
CQF in top 100%
CQF in top 25%
CQF in top 2%
CQF in top 1%

Figure 15: 2D TSNE of sBert embeddings of OpenOrca and CQF samples. The TSNE reveals the
same insights as the 2D PCA in Figure 4. This method also shades lights on the difficulty of properly
projecting and representing in 2D a 384-dim geometry.

D NoO HQ SET IS SUPERIOR TO ALL OTHERS ACROSS ALL TASKS

While various HQ sets are used in the literature for CQF, no single HQ consistently outperforms
others across all downstream tasks. Figure 16 shows that varying HQ sets yield various performance
across tasks, with no universal dominance. Downstream evaluations are noisy, but we observe the
consistent trend that OH+ELIS is a good baseline across tasks, confirming the findings of

(). We also notice that KnowledgePile, despite poor diversity in the style, induce a bias toward
data is are more heavily leaning toward knowledge benchmarks like ARC.

This suggests that each HQ set imparts its own inductive biases, influencing which aspects of the
data are emphasized during filtering. To further understand these biases, we visualize the embedding
space of the data selected by each classifier in Figure 18. We observe that quality buckets across
classifiers tend to align with specific benchmark datasets, indicating that classifiers—implicitly or
explicitly—favor data that resembles their respective supervision targets. This aligns with recent
concurrent work from (), who show that direct supervision using explicitly target
benchmark data can boost performance on that benchmark, though at the cost of generality. Taken
together, these results highlight a central challenge in CQF: quality is not a universal property, and
each HQ set carries task-specific preferences that limit its transferability.

MMLU MMLC reward-bench ARC-Easy ARC-Challenge
- 0.27
0.26 o
4 0.58 0.55 0.25
0.26
0.24 0.56 0.50
25 0.20
035 051 0.45
100%50% 25% 10% 5% 2% 1% 100%50%25% 10% 5% 2% 1% 100%50%25% 10% 5% 2% 1% 100%50% 25% 10% 5% 2% 1% 100%50% 25% 10% 5% 2% 1%
Train on top Train on top Train on top Train on top Train on top
—— OpenOrca KnowledgePile OH+ELIS openwebmath Al targets

Figure 16: Benchmark performance results from 350M models trained on documents ranked by
quality according to various CQF using various HQ sets.

All the manifold visualizations in Figure 17 and Figure 18 demonstrate the same trend: CQF selects
data closer to benchmarks as quality filtering goes.

E DATA CONDITIONING

We revisit the experiments of Figure 8 by materializing the graph induced by the binary relation .
For an arbitrary algorithm A it is hard to characterize the datasets D¢jcan and Dgirty. Therefore, we
rely on empirical measurements draw edges when the loss improvement is significant (e.g. bigger
than the standard deviation). The results are given in figs. 19 and 20.

17

Under review as a conference paper at ICLR 2026

Benchmarks
—
Low quality A % MMLU
02 ; . 4 reward-bench
ey @ ARCEasy
0.0 e ° % ARC-Challenge
g S k
i, L, T
e . Classifiers
—0.2 o
\ —OpenOrca
‘1\ s KnowledgePile
—0.4 Y x High quality = OH+ELI5
. s openwebmath
—0.6

-0.2 0.0 0.2 04 0.6 0.8 1.0

Figure 17: PCA embedding of (exclusive) buckets. This figure differs from Figure 3 by considering
exclusive buckets. Here, we see that the bottom 10% are quite different from each other, and the
buckets of average quality (i.e in the 70-30 range) tend to be similar across quality classifiers.

Benchmarks
mmlu
reward-bench
ARC-Easy
ARC-Challenge

Classifiers
= OpenOrca
m— KnowledgePile

= OH-+ELI5
m—openwebmath

O+ %

Figure 18: Each HQ set used in CQF appears to favor task-specific data. Two-dimensional
UMAP of sBert centroids for each (exclusive) quality bucket as defined by each classifier. Darker
color indicates increasing selection ratio k.

100 —
O

O ® 0 3 2
60 5 1.0§
s o
‘ ‘ . 0 g -0 5'§
= D
O 20 O S

. 0 0.0

Figure 19: Data conditioning >~ on the Perm task. This graph exhibits the properties of a total
ordering, closer to an intuitive notion of quality. The only “backward” edge is linking the the two
worse splits, and the loss difference is within standard deviation.

18

Under review as a conference paper at ICLR 2026

. ® 100 =0.10
80 -0.08 =
Q
. g [l
. ® 60 & 0.06 2
O O 5 .
10 3 0.04.8
S
o e 20 0.02-
® 0 =0.00

Figure 20: Data conditioning > on OpenOrca CQF. On these exclusive buckets, there is no global
ordering. The bottom 30% (red) and the top 5% (green) are dominated by bucket of “average” quality
(possibly with more diversity). The node size is proportional to the number of examples in the bucket.
On this graph, the relation is transitive, which induces an ordering, but this ordering is not total.

F IMPLEMENTATION DETAILS

Table 2: Hyperparameters used for training models

125M 350M 1.3B
Architecture
Vocab Size 32K 32K 32k
Embedding dim. 768 1,024 2,048
Latent dim. 3072 4,096 8,192
Num. heads 16 16 16
Depth 12 24 24
Context lenght 1,024 1,024 1,024
Optimization
Batch size (tokens) 115K 32K 115K
Learning rate scheduler lin. decay lin. decay lin. decay
Learning rate peak le~* le ™ le™*
Grad clipping 5.0 5.0 5.0
Steps 64K 256K M
Num. train tokens 8B 8B 120B

19

	Introduction
	Related Work

	Classifier-Based Quality-filtering
	CQF improves model evaluations
	CQF does not select data that resemble the high-quality set
	Kullback-Leibler divergence between datasets
	CQF implicitly filters the high-quality dataset as well

	CQF is not importance sampling
	Discussion: Does CQF define a sound notion of quality?
	Data conditioning: Data-quality as an optimization catalyst
	CQF through the lens of data-conditioning

	Appendix organization
	Optimal thresholds vary with compute
	Do classifiers used in CQF exhibit undesired biases?
	No HQ set is superior to all others across all tasks
	Data conditioning
	Implementation details

