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Abstract
The rapid progress of navigation, manipulation, and vision models has made mobile
manipulators capable in many specialized tasks. However, the open-world mobile
manipulation (OWMM) task remains a challenge due to the need for generalization
to open-ended instructions and environments, as well as the systematic complexity
to integrate high-level decision making with low-level robot control based on both
global scene understanding and current agent state. To address this complexity, we
propose a novel multi-modal agent architecture that maintains multi-view scene
frames and agent states for decision-making and controls the robot by function
calling. A second challenge is the hallucination from domain shift. To enhance the
agent performance, we further introduce an agentic data synthesis pipeline for the
OWMM task to adapt the VLM model to our task domain with instruction fine-
tuning. We highlight our fine-tuned OWMM-VLM as the first dedicated foundation
model for mobile manipulators with global scene understanding, robot state track-
ing, and multi-modal action generation in a unified model. Through experiments,
we demonstrate that our model achieves SOTA performance compared to other foun-
dation models including GPT-4o and strong zero-shot generalization in real world.
The project page is at https://hhyhrhy.github.io/owmm-agent-project.
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Figure 1: OWMM-Agent Operates Fetch Robot for Tidying Task. OWMM-Agent receives natural
language instructions and leverages both long-term environment memory (scene images) and transient
robot state memory (textual summary) to generate sequential multi-modal actions to finish the task.
By multi-turn, multi-image, and multi-modal VLM reasoning, the agent conducts global scene
aware reasoning, updates robot state memory, and actuates itself to desired coordinates without any
other learning-based models in unstructured environments.
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1 Introduction

The vision of generalist home assistant robots has brought open-world mobile manipulation (OWMM)
to the forefront of embodied AI research [41, 37, 40, 43, 28]. OWMM tasks require mobile manipu-
lators to interpret open-ended natural language instructions and operate in unstructured, previously
unseen environments. Although advancements in navigation, manipulation, and vision models
have effectively enabled mobile manipulators to perform many specialized tasks under constraints,
achieving robust autonomy in these settings remains challenging.

A central difficulty in OWMM is the need for comprehensive global scene understanding and
reasoning conditioned on natural language instructions and agent state. On one hand, prior approaches
often construct 2D semantic maps [30] or 3D semantic fields with CLIP-based features [19, 28],
retrieving targets by computing embedding distances between the semantic map and language
instructions. While these methods have enabled progress, they are limited by the capacity of
embedding models, which can struggle with complex, compositional instructions, compared to
foundational generative models like large language models (LLM) or vision-language models (VLM).
Additionally, they often require time-consuming dense 3D reconstruction, making them less suitable
for complex, open-ended and dynamic environments. On the other hand, the recent advances in LLMs
and VLMs, with strong generalization capability, versatility, and reasoning capability, offer promising
opportunities and potentially a fundamental pathway to solve all sorts of scene understanding, task
planning, and robot control issues in open-world intelligent robot systems [20, 15].

Based on the aforementioned observations, we propose a novel VLM agent framework, OWMM-Agent,
to address these challenges and leverage the power of VLMs for OWMM task. More specifically,
we formulate the high-level OWMM task for the internal VLM model as a multi-turn, multi-image,
and multi-modal reasoning problem. The VLM model generates end-to-end chain-of-thought (CoT)
thinking process, tracked agent states, and multi-modal actions with coordinates based on all raw
multi-modal input. Then the agent calls the coordinate-based planners to actuate the robot. Our
approach is built on two insights: 1) We do not need the detailed geometric representation of the
environment for instruction-conditioned global scene understanding, and we could easily access
precise and even dynamic geometric information when the robot moves to the task-relevant local
region. 2) By leveraging the strong vision-language grounding capabilities, we can effectively bridge
the high-level reasoning process in language and low-level robot control targets in coordinates, with
the help of 2D-to-3D reverse projection.

However, directly applying pre-trained VLMs to our embodied agent presents challenges of domain
shift: 1) Rare grounding tasks: Robotic planners and controllers require multi-modal inputs,
including both tools and coordinates in the visual space for robot control. The base models could
be powerful for object-centric grounding such as detecting novel objects, but they suffer in other
grounding tasks including detecting non-blocked navigable areas in the ego-centric image. 2) State
tracking: The agent must infer and track its own state from observations and history records to make
contextually appropriate decisions. 3) Embodiment priors: Effective decision-making in egocentric
settings demands strong embodiment-dependent priors, such as knowledge of the robot’s kinematic
constraints, such as maximum reach for picking actions.

To address the problem of domain adaptation, we further introduce an agentic data synthesis pipeline
tailored for OWMM, to generate large-scale and instruction-driven episodes that teach the VLM agent
to track its state, reason over multi-view observations, and generate multi-modal action affordances
grounded in both the global scene and the agent’s embodiment. This pipeline minimizes human
annotation effort by utilizing predefined task sequence templates and ground-truth symbolic world
representations from simulation. With extensive experiments in simulation, we demonstrate that
OWMM-VLM consistently outperforms baseline models. In the real-world experiment, we find
that our model has strong zero-shot generalization to real-world observations, with 27/30 = 90%
action generation success rate on our fetch robot in the lab environment, even being fine-tuned on the
simulated data. We also provide ablation studies on models and dataset analysis to provide insights
into the model design and training data construction. In summary, our contributions are as follows:

• We propose OWMM-Agent, a unified VLM-based agent architecture for open-world mobile manip-
ulation, capable of global scene understanding, state tracking, and end-to-end action generation.
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• We introduce a simulation-based agentic data synthesis pipeline that enables scalable data collection
for instruction fine-tuning for domain adaptation with minimized human effort, with detailed
analysis on the quality of the generated dataset.

• We introduce a foundation model for OWMM, capable of multi-image reasoning and executable
multi-modal action generation, with extensive experiments analyzing the model’s performance.

2 Related Works

Open World Mobile Manipulation

Open-vocabulary Mobile Manipulation (OVMM) focuses on navigating and manipulating novel
objects in unseen environments with language instructions. Referred to as Open Vocabulary Mobile
Manipulation (OVMM) by [40, 43, 19] or Open World Mobile Manipulation (OWMM) by [29, 41, 37],
we use the term OWMM for this paper. In our formulation, “open-world” refers to semantic diversity—
the ability to generalize to unseen scenes, novel object categories, and diverse instances—rather than
unconstrained physical exploration without any prior environmental information. This terminology
aligns with the HOMERobot challenge [40].

The original OWMM baseline and Melnik et al. [23] assume the agent starts without scene observation
and must explore to build a representation for decision-making. Recent works [19, 28, 43] suggest
a two-stage approach: first using SLAM [7] to create 3D semantic maps, then performing OVMM
using open-vocabulary models like GPT-4V and GPT-4o [11].

Zhi et al. [43] introduces COME-robot, a closed-loop OVMM framework using GPT-4V for reasoning
and replanning, producing code for preset functions and object captions as in Code-as-Policy [17].
Unlike relying on pre-trained skill models requiring inputs like skill names and object captions, our
model directly produces target positions for position-based motion planners and controllers.

Vision-Language Navigation and Interactive Embodied Tasks

Our work is related to the broader vision-language navigation (VLN) literature, which has explored
goal-oriented navigation and manipulation in indoor environments. REVERIE [27] introduced remote
embodied visual referring expressions, requiring agents to navigate and ground target objects based
on natural language descriptions. SOON [44] proposed scenario-oriented object navigation with
graph-based exploration strategies. These works primarily focus on navigation with discrete action
spaces and viewpoint selection. ALFRED [31] presented a benchmark for interpreting grounded
instructions for everyday tasks, while FILM [24] proposed modular methods for following instructions
in language. Recent work has also explored topological planning with transformers for VLN [4]. Our
OWMM setting differs from these VLN works in key aspects: (1) Continuous action space: We use
continuous positional control requiring precise affordance grounding rather than discrete viewpoint
selection. (2) Direct object interaction: Our agent physically manipulates objects with low-level
joint control, whereas VLN tasks use simplified interactions or only predict bounding boxes. (3) Sim-
to-real transfer: Our framework is validated on real robotic hardware. (4) Unified reasoning: We
formulate the task as multi-modal, multi-turn reasoning within a single VLM, integrating perception,
planning, and action generation.

Large Foundational Models for Robotics

Recent advances in large fundamental models show significant potential in robotic control and
generalization. One major research focus is to adapt pre-trained Visual Language Model (VLM) to
robot scenario. RoboPoint [42] introduces a synthetic data pipeline for instruction-tuning VLMs in
robotics, supporting accurate spatial affordance prediction in object manipulation and navigation.
MOKA [18] uses a novel VLM approach in robotic manipulation with point-based affordance and
motion representation, using visual prompts to turn key points and waypoint predictions into visual
question-answering tasks for VLMs. Our proposed model OWMM-VLM also falls into this category.

The other popular research topic is Vision-Language-Action (VLA) models, focusing on using
relatively smaller transformer backbones to directly generate robotic actions with high frequency.
OpenVLA [14] is a 7B-parameter open-source model trained on 970,000 real-world demonstrations
using Llama 2 [34] architecture, excelling in general manipulation tasks. Octo [33] advances
generalist robot policies, handling language commands and goal images while adapting quickly to
new inputs and actions with standard GPUs. π0 [1] presents a flow-matching architecture based on a
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pre-trained VLM, excelling in dexterous tasks. These models mark significant progress in making
robotic systems more versatile, scalable, and adaptable to different trajectories.

3 Methodology

In this section, we introduce the definition of OWMM in section 3.1. After that, we elaborate on
the agent framework in section 3.2. Finally, the training method of OWMM-VLM is presented in
section 3.3. The overview of our method is shown in Figure 2.

Figure 2: The Overview of OWMM Agent Framework. The left panel represents the world space,
including a graph of posed frames generated during the pre-mapping phase and a real-time egocentric
frame captured by the robot. The right panel showcases the Agent Space, where OWMM-VLM
processes task instructions, robot history, and visual inputs to perform chain-of-thought reasoning
and generate high-level actions with region coordinates, which are then sent to robot planners for
navigation and manipulation.

3.1 OWMM Task Definition

Following the common OVMM/OWMM problem setting [40, 19, 37], the robot needs to follow the
instruction in the pattern of M̈ove 〈A〉(in 〈B〉) and place it on/in 〈C〉¨, where 〈A〉〈B〉〈C〉
are novel objects/initial receptacles/goal receptacles in the unseen environment from the training data.

Following the problem setting in [19, 28], we assume a pre-mapping phase separating active explo-
ration and the SLAM module from the OWMM task focus. This is practical, as most robotic vacuums
automate room mapping before cleaning. The pre-mapping implementation details are provided in
Appendix C.1.

Thus, we introduce a pose graph G and associated RGB images I as the output of the pre-mapping
stage on the basis of [40], and define our OWMM problem as follows: In an OWMM task episode
of max timestep T , at each timestep t, 0 ≤ t ≤ T , an agent takes inputs composed of 1) a natural
language instruction L; 2) a pre-mapping camera pose graph G = {V,E} of n poses, where
V = v0, . . . , vn edges are not used;

3) and associated RGB images I = {I0, . . . , In}, each image Ii ∈ R3×w×h are taken at head camera
view pose vi in G;

4) the agent’s current head camera RGB image Ict and depth image Dc
t .
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With these inputs, an agent needs to generate a low-level continuous action at that directly actuates
the robot kinematically, including joint velocities of the robot arm and the base velocity of the robot.
Let’s Fagent note the logical function of the agent policy model, and we have

at = Fagent(L, G, I, Ict , Dc
t ,xt), (1)

where xt stands for the robot state at time t.

3.2 OWMM Agent

Running large VLM models at 25Hz and gathering sufficient data for training a generalist VLA
model from open-set language and visual observations remain challenging. To address this latency
issue in the OWMM agent, we have the large VLM to produce high-level actions. The agent employs
a unified VLM model Fvlm to convert visual and lingual inputs into action types and positional
commands, using a classical planner for navigation and a motion planner for manipulation, similar to
Rekep[10]. The model’s output represents a high-level action At spanning several simulation steps,
while planners resolve trajectories and low-level actions at for each step.

At,Ht = Fvlm(L, G, I, Ict ,Ht−1), (2)
at = At(xt, D

c
t ), (3)

where Ht,Ht−1 are the high-level robot history, updated by the VLM model itself. at = At(xt, D
c
t )

indicates that the high-level action itself can be converted to executable code with the action handle
linked to different planners and positional targets. In this regard, part of the high-level action At can
be seen as a special type of language model program, as proposed in [17]. Then the linked planner
takes the state of the robot xt, and point clouds converted from depth map Dc

t as an additional input
to calculate the low-level action at.

To translate high-level action At into low-level action at, the agent has a path planner [8] for
navigation and a motion planner [32] for arm manipulation. These planners generate waypoints
that satisfy mechanical constraints for base chassis and arm joints through sampling-based methods.
There is also a gripper controller to grasp/ungrasp the object. The high-level actions that aim to
actuate the robot will be associated with planners and controllers through predefined functions.

3.3 OWMM-VLM model

Figure 3: Overview of OWMM-VLM. Our model is fine-tuned on InternVL-2.5[5], comprising a
ViT, a 2-layer projection MLP, and a LLM. During training, ViT parameters are frozen while the
projection MLP and the LLM parameters are trainable. The model is required to generate multi-modal
actions in JSON format conditioned on scene images, task instructions, and robot history.

Intuitively, a VLM model requires three core multi-modal capabilities to accomplish the OWMM
task:

(1) Image Retrieval. Given the graph of posed frames and an egocentric frame, the VLM model
needs to retrieve a posed frame that contains the relative objects or receptacles that the robot needs to
navigate to.
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(2) Ego-centric Decision-making. Given multiple posed frames and an egocentric frame, the VLM
model needs to decide which action to conduct based on the task context, robot history, and current
egocentric observation. This capability is closely associated with the idea of spatial intelligence[39],
that VLM models should understand the spatial relationship between themselves and the scene objects
in order to make decisions on actions.

(3) Affordance Grounding. If the agent decides to interact with the near surroundings perceived in
the egocentric frame, it should also generate the target positions that correspond to the intention of
the task.

Following this insight, we train a versatile VLM model that takes the task instruction L, multimodal
observations I, Ict , and history Ht−1, and generates all high-level actions. We design four types of
high-level actions: 1) Posed image retrieval, 2) Navigate to point, 3) Pick, and 4) Place, which are
associated with planners and the grip controller. However, due to the extended time horizon of the
OWMM task, simply generating the executable action is insufficient. We instruct the VLM model to
monitor the state through robot history and to infer the subsequent action by considering both the
history and the present observations. Figure 3 demonstrates our model architecture as well as its
input and output.

3.3.1 Chain-of-Thought Reasoning Design

To address the visual hallucination challenges faced by pre-trained VLMs in OWMM tasks, we
design a structured Chain-of-Thought (CoT) reasoning framework. During our baseline evaluation,
we observed three key hallucination-related failure modes: (i) Error location outputs: Base models
achieve very low affordance success rates (0.05-0.18) due to incorrect object detection or mismatched
bounding-box outputs; (ii) Multi-image hallucination: Models frequently hallucinate on images
where target objects are absent, achieving only 1.27% accuracy on 8-image retrieval; (iii) Insufficient
long-horizon reasoning: Models fall into dead loops due to limited ability to track historical context
and robot state.

Our CoT reasoning approach generates structured reasoning chains that include: 1) Task instruction
reasoning and summarization for decision-making; 2) Perception and grounding of current egocentric-
view and scene images, integrating visual information to support task decisions (e.g., determining
whether the agent is close enough to an object for interaction); 3) Task decision output with execution
targets/coordinates as bounding boxes; 4) Summarization of decisions and actions for next-step input.

This design allows OWMM-VLM to acquire patterns for task comprehension, scene perception, and
decision-making from structured training data. Crucially, the model summarizes historical context
after each decision, enabling each subsequent step to jointly reason over prior history and current
observations. This structured reasoning, learned through supervised fine-tuning on CoT-annotated
data, enables the model to track task progress and avoid repetitive actions or dead loops. As shown in
Appendix G, removing reasoning and summarization capabilities leads to substantial performance
degradation across all metrics.

For more details on model implementation, see Appendix C.

4 Dataset

In this section, we elaborate on our data construction pipeline and quality verification method in
section 4.1. A detailed analysis of the data is provided in section 4.2.

4.1 Agentic Data Synthesis Pipeline

Effective OWMM-VLM model training requires comprehensive ground-truth annotations cover-
ing navigation, object grasping, and manipulation affordances with full contextual understanding.
Previous research [42, 21] often generates question-answer pairs from images or videos, but lacks
comprehensive action sequence representations and necessary affordance information for multi-step
reasoning.

To address this challenge, we developed an automated agentic data synthesis pipeline that generates
both action sequences and structured chain-of-thought annotations. Our pipeline consists of four key
stages:
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Table 1: Dataset Overview for Instruction Fine-tuning. Our dataset consists of four subsets, each correspond-
ing to one of the four primary task actions: Pick, Place, Navigate to Point, and Search Scene Frame. The dataset
is designed to encompass diverse scenarios and objects, ensuring comprehensive coverage of open-world mobile
manipulation tasks.

Task Action Pick Place Nav to point Search scene frame

Data Size 64.7K 68.9K 59.6K 378.8K

Task Description Move Arm Hammer Di-
aper Pail Refills 12 Pack
from the Brunel-style bar
stool to the white 2-seater
sofa.

Move Shark from the
Conlay kitchen to the
comfortable sofa.

Move wood block from
the 7-piece dining set
with grey chairs to the
Low kitchen element,
Natural element.

Move flat screwdriver
from the Modern Indus-
trial Dresser, Natural Ma-
terial to the Stacked shelf
system.

Context Description I have embarked on my
task and am steadily
advancing toward the
Brunel-style bar stool,
where the Arm Hammer
Diaper Pail Refills 12
Pack MFWkmoweejt is
situated.

I have embarked on my
task and successfully nav-
igated to the Conlay
kitchen, retrieving the
Shark with ease. Now, I
am inching closer to the
cozy haven of the com-
fortable sofa, where I will
soon place the Shark.

The task has started and
I have navigated to 7-
piece dining set with
grey chairs and picked
up the wood block , I
am getting closer to Low
kitchen element, Natural
element where I should
place wood block.

The journey has com-
menced, and I have suc-
cessfully navigated to
the Modern Industrial
Dresser, Natural Material,
where I have now picked
up the flat screwdriver.

Action Information [[68, 755, 239, 967]] [[447, 539, 999, 999]] [[246, 666, 285, 705]] 4

Stage 1: Task Planning with PDDL Using Habitat simulation [26], we first construct symbolic
task plans to complete OWMM tasks based on Planning Domain Definition Language (PDDL) [22].
PDDL provides a structured representation of preconditions, actions, and effects, enabling systematic
generation of valid task sequences. This ensures that all generated episodes are logically consistent
and executable.

Stage 2: Trajectory Execution and Data Collection We direct the robot to execute task sequences
within the simulator, recording key information at each step: robot coordinates, current action, object
and receptacle positions, and camera extrinsic parameters. To enhance data collection efficiency, we
do not initially collect RGB images at every timestep, but rather mark keyframe candidates during
execution.

Stage 3: Keyframe Selection and Filtering We apply strategic keyframe selection to ensure data
quality. For navigation, we select steps where the target receptacle is visible as start points and robot
stopping points as endpoints, sampling waypoints at intervals. For pick and place actions, we select
frames where the target object/receptacle is both visible and reachable by the robotic arm.

Stage 4: Chain-of-Thought Annotation Generation We construct structured chain-of-thought
annotations based on predefined templates that incorporate: (i) task instruction reasoning for decision
context; (ii) perception reasoning about current observations; (iii) action decisions with affordance
grounding (bounding boxes for navigation/pick/place, image IDs for scene retrieval); (iv) summariza-
tion of the current step for historical context. The summarization from each step is systematically
incorporated into the “Robot’s History” for the next step’s question, enabling temporal reasoning.

To enhance linguistic diversity, we use GPT-4o mini to paraphrase the reasoning and summarization
components while preserving the structured format and action annotations. This increases robustness
to natural language variation without compromising annotation precision.

Finally, we collect scene graph frames for each episode by sampling robot head-view images at task-
relevant locations (initial and goal receptacles) and additional random positions for scene coverage,
as detailed in Appendix C.1. Additional implementation details of the data synthesis pipeline are
provided in Appendix D.
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4.2 Dataset Analysis

We used 143 scenes from The Habitat Synthetic Scenes Dataset (HSSD) [13] and combined objects
from YCB Objects [3] and Google Scanned Objects [6] to create a dataset with 157 unique manipula-
tion objects and 1,471 receptacles from selected scenes. In each scene, objects were randomly placed
for the robot to pick and relocate to another receptacle, with 400 episodes sampled per scene.

Following the data synthesis pipeline described in section 4.1, we collected and filtered episodes from
each scene, ultimately gathering 21,046 valid episodes with approximately 572K total annotations.
As shown in Table 5, the final dataset comprises: i) pick action dataset of 64.7K image-text pairs, ii)
place action dataset of 68.9K image-text pairs, iii) navigation dataset of 59.6K image-text pairs, and
iv) search scene frame dataset with 378.8K multi-image-text pairs.

In our datasets, we also apply a re-labeling process for objects and receptacles, unlike HomeRobot’s
fixed criteria[40]. We kept the original object labels and used GPT-4o to rewrite receptacle labels.
These labels were diverse and descriptive, suited for open-world scenarios.

5 Experiments

In this section, we present the evaluation results in both simulation and real-world data. We present
the experimental results of single-step evaluation for OWMM-VLM in our simulated benchmark in
section 5.1 and episodic evaluation for the OWMM-Agent in our simulated benchmark in section 5.2.
We then present the real-world evaluation in section 5.3. Due to the page limit, we discuss the data
scaling law and how data diversity impacts the model performance in Appendix D.2. For the ablation
study on model design, such as the choice of generating bounding boxes rather than points, please
see Appendix G. We further provide the qualitative comparisons of different models in Appendix J.
Additional analysis including failure mode categorization (Appendix H) and computational efficiency
with varying frame counts (Appendix I) are also available in the appendix.

Table 2: Single-step evaluation of VLM models on OWMM core multi-modal capabilities.
The OWMM-VLM-38B model achieves the best performance across all metrics, demonstrating its
superior ability to integrate scene understanding, decision-making, and action generation. *: Since
PIVOT and RoboPoint are designed for a single image, we also report the single image grounding
results for fairness.

Model/ Task Score Ego-centric
Decision-
making↑

Image
Retrieval↑

Affordance
Grounding
(object)↑

Affordance
Grounding

(receptacle)↑

Affordance
Grounding

(navigation)↑

Time
Consumption(s)↓

OWMM-VLM-38B(ours) 97.85% 87.54% 0.97(±0.14) 0.94(±0.19) 0.88(±0.17) 36.58
OWMM-VLM-8B(ours) 96.72% 79.04% 0.93(±0.14) 0.91(±0.20) 0.83(±0.21) 16.58
GPT-4o[11] 48.53% 46.46% 0.56(±0.38) 0.35(±0.40) 0.07(±0.21) 160.74
Internvl2.5-8B[5] 17.52% 1.27% 0.05(±0.19) 0.18(±0.31) 0.14(±0.26) 16.06
GPT-4o+PIVOT[25] 52.72% 55.38% 0.67(±0.38) 0.45(±0.44) 0.05(±0.18) 22.91
GPT-4o+Robopoint[42] 49.56% 49.72% 0.64(±0.41) 0.38(±0.42) 0.06(±0.20) 14.19

Test of Single Image Grounding(*)

Robopoint[42]* — — 0.91(±0.33) 0.83(±0.11) 0.72(±0.11) —
PIVOT(GPT-4o)[25]* — — 0.86(±0.13) 0.84(±0.12) 0.74(±0.13) —

Table 3: Agent success rate in OWMM Task. OWMM-VLM-38B model consistently outperforms
others across all metrics.

Method Full Task Image Re-
trieval(Object)

Robot close
to Object

Object
Picked

Image Re-
trieval(Goal)

Robot close
to Goal

Dead Loop

OWMM-VLM-38B(ours) 21.90% 88.56% 84.64% 38.56% 30.39% 23.53% 0/308
OWMM-VLM-8B (ours) 9.45% 81.43% 74.59% 17.92% 15.96% 10.42% 0/308
GPT-4o+PIVOT 0.33% 59.15% 10.13% 0.65% 0.33% 0.00% 195/308
GPT-4o+Robopoint 0.33% 56.86% 11.11% 1.31% 0.00% 0.00% 184/308

Experiment with more lenient distance tolerance

OWMM-VLM-38B(ours) 51.52% 89.23% 88.22% 62.96% 51.52% 44.78% 0/308
OWMM-VLM-8B (ours) 38.59% 83.22% 81.21% 52.35% 39.93% 33.56% 0/308
GPT-4o+PIVOT 1.68% 60.27% 12.12% 5.39% 1.68% 1.35% 204/308
GPT-4o+Robopoint 3.03% 52.86% 10.10% 4.04% 2.69% 1.35% 209/308
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5.1 Single-step Evaluation

In the single-step evaluation, we assess three core VLM capabilities for the OWMM task: 1)
Egocentric Decision-making: We evaluate the success rate of choosing correct action categories. 2)
Image Retrieval: We measure the image retrieval success rate. 3) Affordance Grounding: Instead
of predicting points directly like in [42, 25], OWMM-VLM outputs a bounding box, from which we
compute the center as the target point. With the target point, we compute the score for affordance
grounding by s = Σi1valid(i) × (1 − norm_disti), where 1valid(i) is the indicator function of
whether the model generates: an action matched with ground truth and a valid bounding box or
point on the i − th test case. 1 if both conditions are satisfied simultaneously, and 0 otherwise.
norm_disti ∈ [0, 1] is the distance between the predicted target point and the ground truth point,
normalized by the diagonal of the image. In short, s ∈ [0, 1] measures VLM’s ability to generate
accurate grounding with the correct format. Higher scores indicate better performance.

Regarding the baseline methods, we have evaluated both 1) multitasking foundation VLM models,
including GPT-4o[11] and InternVL-2.5-8B that share the same unified input and output configuration
as ours and 2) modularized agent with multiple models, including GPT-4o+PIVOT[25] and GPT-
4o+Robopoint[42]. For Robopoint and PIVOT, which specialize in grounding, GPT-4o serves as the
higher-level module for decision-making and image retrieval. If GPT-4o’s actions need grounding, its
outputs are combined with task details as input to Robopoint and PIVOT for grounding.

The results are reported in Table 2. Our model excels in decision-making, achieving state-of-the-art
results in image retrieval and affordance grounding. GPT-4o and InternVL2.5, as generalist models,
perform poorly at affordance grounding. In contrast, RoboPoint and Pivot that concentrated on
affordance grounding, exhibit capabilities on par with our model in this task, indicating that existing
specialized approaches already provide good effect on robot’s action affordance.

Moreover, our model demonstrates a marked improvement over GPT-4o in decision-making tasks.
This advantage directly translates into higher overall accuracy compared to methods that employ
GPT-4o as the agent. In other words, using the data from our data synthesis pipeline to conduct a
supervised fine-tuning yields a significant enhancement in robotic decision-making performance.

5.2 Episodic Evaluation

In episodic evaluation, we assess how well each model completes an OWMM task episode in the
simulator. Task success is measured by placing objects in goal receptacles using distance thresholds
of 0.85m or 1.7m. The 0.85m threshold relates to half the average diagonal length of goal receptacles’
3D bounding boxes in our test set.

Additionally, we introduce three metrics to assess subgoals: 1) Image retrieval: Success rate in
locating object and goal receptacles from multiple posed images. 2) Object Picked: The success rate
of the robot grasping an item when its end effector is either within 0.15m or 0.8m of the target, with
the latter matching standard HomeRobot setups [40]. 3) Robot close to: The success rate of robot
staying within 1.5m or 2.0m of the object or goal receptacle before picking or placing. Additionally,
we propose the “dead loop" metric to quantify the number of cyclic stagnations occurring during
test episodes. As mentioned in 5.1, GPT-4o may erroneously output image retrieval decisions when
the expected action is navigation, thereby inducing cyclic stagnation. Detailed experimental results
are presented in Table 3. See Appendix F for extra details about evaluation settings. We provide a
comprehensive failure mode analysis categorizing 100 failed episodes in Appendix H.

5.3 Real world Evaluation

In our real-robot experiments, we adopted the mobile manipulation system described in Robi
Butler[35] within a real-world home environment. For safety reasons, we cannot allow the agent to
fully operate the fetch robot in the real world. When OWMM-VLM generates a multi-modal action
to execute, the agent prompts the visualization of the action and waits for human confirmation, and
the fetch robot only executes the action with human consent.

We first had the robot navigate through the scene with human control to perform SLAM process. We
then select 10 test samples from the sequence of the robot’s head view during its run. We used human
operators to judge the model’s output according to several criteria: whether the chosen action was
correct, whether the predicted affordance was accurate, and whether the target was reachable, among
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other factors. The results of these experiments are presented in Table 4. The results show that the
model trained on synthetically generated data in the simulator also demonstrates strong zero-shot
generalization capability in real-world scenarios. Table 5 presents the agent action prediction result
on real-world data.

Table 4: Real world single evaluation. OWMM-VLM-38B model achieved the best performance,
and OWMM-VLM-8B model also outperformed the baseline. While the baseline model demonstrated
relatively strong affordance grounding capabilities for objects, its poor performance in action decision-
making led to incorrect navigation.

Method Image
Retrieval

Affordance
Grounding(object&receptacle)

Affordance Grounding(navigation) Total Acc

OWMM-VLM-38B(ours) 7/10 10/10 10/10 90.00%
OWMM-VLM-8B (ours) 5/10 10/10 9/10 80.00%
GPT-4o+PIVOT 8/10 6/10 0/10 46.67%
GPT-4o+Robopoint 8/10 6/10 0/10 46.67%

Table 5: Demonstration of single step evaluation in real world. These demos showcase OWMM-VLM-38B’s
outputs, illustrating that even though its training data are drawn entirely from our data-synthesis approach in the
simulator, the model delivers outstanding decision-making and affordance-grounding performance in real-world
settings.

Model’s Output Action Pick Place Nav to point

Task Description Move the NutriSoy Bean Milk
Box from the Minimalist Black
Workstation Desk to the White

Rectangular Office Meeting
Table.

Move the banana from the black
desk to the White Rectangular

Office Meeting Table.

Move the chip box from
Genuine Leather Sofa to the

white table.

Context Description The task has started and I am
getting closer to the Minimalist
Black Workstation Desk where
the NutriSoy Bean Milk Box is

located.

The task has started and I have
navigated to the black desk and

picked up the banana, I am
getting closer to the White

Rectangular Office Meeting
Table where I should place the

banana.

The task has started and I am
getting closer to Genuine

Leather Sofa where the chip box
is located.

Action Information [576, 263, 769, 548]] [[0, 445, 1000, 999]] [[539, 978, 578, 999]]

6 Conclusion

In this paper, we introduced OWMM-Agent, a novel agent architecture featuring the OWMM-VLM,
a vision-language model fine-tuned via a simulation-based agentic data synthesis pipeline for Open-
World Mobile Manipulation (OWMM) tasks. This approach enables the VLM to learn state tracking,
multi-view reasoning, and multi-modal action generation grounded in global scene understanding and
agent embodiment. Extensive experiments demonstrated that our OWMM-VLM, particularly the 38B
variant, achieves state-of-the-art performance in single-step multi-modal capabilities like egocentric
decision-making and affordance grounding, outperforming generalist VLMs and specialized robotics
models. Episodic evaluations in simulated environments further confirmed the OWMM-Agent’s
superior success rates and robustness against common failure modes like dead loops, while real-world
tests on a Fetch robot indicated strong zero-shot generalization. Ablation studies underscored the
importance of our design choices, such as bounding box prediction and integrated reasoning, and
revealed that while data scaling is crucial, egocentric spatial intelligence can be learned effectively
even with limited object and scene diversity if data volume is sufficient. Future work will focus on
addressing limitations like pre-mapping reliance and enhancing cross-embodiment adaptability for
more complex manipulation tasks. Please also refer to the appendix for discussions about the potential
impact of this research in Appendix A and extended discussions on limitations in Appendix B.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main claims, including the
proposal of a novel multi-modal agent architecture for open-world mobile manipulation
(OWMM), the introduction of an agentic data synthesis pipeline for instruction fine-tuning
of a vision-language model (VLM), and achieving state-of-the-art performance validated
by extensive experiments. These claims align well with the detailed methodology and
experimental results presented in the paper (Sections 1, 3, 5).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper has a whole section B to discuss the limitations of our pipeline of
OWMM-Agent as well as the fine-tuned OWMM-VLM model.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present theoretical results requiring formal assumptions or
proofs. It focuses on trying to a solve a significant real-world problem by system design,
data synthesis, model fine-tuning, and analysis on evaluation.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the dataset construction 4.1, model
architecture 3.3, fine-tuning procedure C, experimental setups 5.1 both in simulation and
real-world environments. Besides, the project repository in the simulation is open-sourced
and anonymous in the given link. These information is enough to reproduce the results.
However, we also admit that for the real-world experiment, depending on the hardware
setup, the embodiments, the real environment, the reproduction is challenging.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and code are open-sourced and anonymous in the given link in
abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies the experimental settings/details in section 5, with addi-
tional settings in Appendices E and F, and additional ablation experiments in G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: For continuous-valued metrics, we report the standard deviation as error bars
in Table 2, Table 6 and Table 9. For binary success-rate metrics, error bars are not suitable
and are therefore not reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides the compute resources used for training, the GPUs and
training hours in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper follows standard research ethics in robotics and machine learning.
Specifically, this research does not involve human interaction nor collect human data.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper presents the broader impact of this project in Appendix A, with
ethical concerns, societal impact discussed in detail.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release models or data with known high misuse risks
and does not discuss safeguards. The incremental data used in instruction fine-tuning are
synthesized from open-sourced simulator. The used base model InternVL-2.5 [5] is also
open-sourced.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper cites all datasets and models used, such as Habitat simulation, YCB
and Google Scanned Objects datasets, InternVL-2.5 model, and others, with appropriate
references. Licenses are not explicitly stated but standard academic citations are provided.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces a large-scale synthesized dataset for instruction fine-
tuning OWMM-VLM, with detailed descriptions of dataset construction, size, content, and
annotation process in section 4.1 and D. Besides, the dataset is also released in the link
provided in abstract.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or human subjects research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve human subjects research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper explicitly describes the use of large vision-language models (VLMs)
as core components of the OWMM agent architecture and fine-tuning process. We also fol-
low the neurips LLM policy to describe the usage of VLMs both in methodology section 3.3
and in experimental implementations section 5.1.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Impact Statement

This work contributes to the long-term vision of creating generalist household robots capable of
assisting with daily activities in homes and other human-centric spaces. Ethically, deploying such
systems raises considerations regarding safety, privacy, and workforce displacement. Ensuring safe
interactions with humans and securing data used for training are critical priorities. In addition, while
automation may replace certain household jobs, it also creates opportunities for new roles in robot
design, deployment, and maintenance. Future societal implications include increased accessibility
to robotic assistance for individuals with disabilities or aging populations. By addressing current
limitations through continued research into adaptability and real-world robustness, OWMM-VLM
can pave the way toward more inclusive and effective robotic solutions for societal benefit.

B Limitations

In this work, we have proposed a novel embodied agent architecture with a foundational VLM model
to address the open-world mobile manipulation problem. However, we also identify some limitations
of our approach.

Pre-mapping: Although our method does not require 3D reconstruction of the environment, we still
assume a pre-mapping phase with a camera pose graph and 2D occupancy map for path planning in
navigation.

Complex manipulation: Following the grasping setup in [40], our agent and model can be directly
applied robot with suction as end effector. However, our model fells short in the circumstances when
the robot needs to control complex end effectors like dexhands.

Cross-embodiment: As demonstrated in the experiments, our model learns the object-scale prior for
spatial understanding and reasoning. However, when deploying the model onto other robots with
different mechanical compositions such as maximum arm stretch distance, our model could fail, i.e.
the cross-embodiment issue.

C Implementation Details

Regarding the model’s architecture, we have trained two variants consisting of 8 billion and 38 billion
parameters, based on the pre-trained model from InternVL-2.5[5]. The 8B model is composed of
InternViT-300M and InternLM-2.5-7B[2], and the 38B model is composed of InternViT-6B and
Qwen2.5[38]. We directly finetune the base model on our OWMM dataset. The OWMM-VLM
model is trained to autoregressively generate the response tokens consisting of the output action and
its corresponding task context in JSON format. Specifically, we freeze the parameters in ViT and
only adjust the parameters in MLP and LLM. As for the training time, OWMM-VLM-8B is trained
on 8X NVIDIA A100 GPUs for about 7 hours, and OWMM-VLM-38B is trained on 24X NVIDIA
A100 GPUs for about 18 hours. Both our models were trained for 1 epoch. For the testing, we deploy
OWMM-VLM and RoboPoint[42] locally and use the openAI API to access GPT-4o and PIVOT[25].

C.1 Pre-mapping

This section provides comprehensive implementation details for the pre-mapping stage and camera
pose selection, which are essential for reproducing our approach.

Simulation Environment In simulated experiments, we utilize the navigation mesh provided by
Habitat environment, where navigable locations are represented as mesh triangles. This pre-computed
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navmesh serves as a map for localization and navigation, similar to game engines. The navmesh
provides collision-free navigation space and enables efficient path planning for the mobile base.

Real-World Deployment In the lab environment, we run RobiButler [35] over Fetch Lidar input
for the pre-mapping stage and localize the robot geometrically. More specifically, RobiButler uses
Gmapping [9] algorithm to compute the 2D occupancy map from lidar data. The map is further used
to localize the robot and camera poses during task execution. This approach is practical and widely
adopted in commercial robotic systems such as robotic vacuum cleaners.

C.2 Camera Pose Selection

Considering the context length of current VLMs, we select 8 views from the pre-mapping stage plus 1
current egocentric view in our experiments, as demonstrated in Figure 2. This design balances scene
coverage with computational efficiency.

Simulation As detailed in Section 4.1, we employ a strategic sampling approach:

1. First, we position the robot at the location of the receptacle where objects were initially located
and at the goal receptacle, sampling the robot’s head-view images. This ensures coverage of
task-critical locations.

2. Subsequently, we randomly position the robot and capture its head-view images to ensure sufficient
scene coverage while maintaining computational efficiency.

3. This sampling strategy guarantees that both the initial and goal regions are represented in the pose
graph while providing diverse viewpoints of the environment.

Real Robot Deployment In real robot experiments, we extract keyframes from the ROS bag RGB
data and manually select the frames related to the task to guarantee enough scene coverage. This
manual selection serves as a proxy for a ground-truth frame selection mechanism.

We acknowledge that autonomous and online frame selection from videos are critical for full autonomy
but is beyond the scope of the current paper. This could represent a promising direction for future
work to enable fully autonomous mobile manipulation in dynamic environments.

D Details of Datasets

sectionDetails of Datasets

D.1 Extra Dataset Construction Details

Our evaluation pipeline is constructed using the HomeRobot [40] framework, which serves as a
software structure designed to enable comprehensive benchmarking in both simulated and real-world
settings. Specifically, we use the simulation part of HomeRobot project, built on Habitat platform [26],
with 200 scenes, 150 categories, and 7,892 object instances.

The original episodic data in HomeRobot are generated with Stretch Robot [12], which has a special
telescopic arm instead of a normal articulated arm with rotary joints. This adds additional difficulty
in base control as it requires the mobile chassis to rotate accurately to align the arm with the target
object for manipulation. However, the baseline VLMs and methods we are going to compare with are
designed for robots with conventional articulated arms [42, 25], providing a broad range of chassis
poses that allow for successful arm manipulation.

Therefore, we recreate the OWMM episodic training and testing datasets in the simulation using the
Fetch Robot, which is a mobile robot equipped with a standard articulated arm and has also been
integrated into the Habitat platform.

We partitioned the scenes into training and testing sets using a ratio of 113:30. Besides, we allocated
157 objects between the training and validation sets with a ratio of 137:20, ensuring that the testing
set contained entirely unseen objects. This division resulted in a total of 152k training data entries
and 4k testing data entries, establishing a robust dataset for training and testing in our OWMM task.
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Keyframe Sampling Strategy In the dataset construction pipeline, we first sample key information
at each step. This information included the robot’s coordinates, current action, the positions of objects
and receptacles, and the extrinsic parameters of the robot’s head-view camera. In particular, at this
stage, we did not collect the robot’s head-view images to enhance the data collection efficiency.
We recollected the robot’s head-view images of these steps within the simulator after applying the
selection strategy.

For navigation actions, among all steps that the robot is moving, we select the step that the receptacle
is visible from the robot’s head-view image as the start point of the navigation action. The point at
which the robot stops moving is considered the end point of the navigation action. Within these steps,
we sample the waypoint step data at specified intervals.

For grasp and manipulation actions, we select the first three frames during which the robot executes
the action as the pre-defined action data.

Data Filtering Pipeline The data filtering pipeline ensures the following criteria:

• For navigation actions, both the receptacle and the next waypoint are within the robot’s
head-view image.

• For grasp actions, the object to be grasped is reachable by the robotic arm, and the object is
within the robot’s head-view image.

• For manipulation actions, the receptacle intended for object placement is reachable by the
robotic arm, and the receptacle is within the robot’s head-view image.

After filtering, approximately 10% of initially collected frames are rejected, ensuring high annotation
quality.

Linguistic Diversity Enhancement To enhance the diversity of the dataset, we paraphrased
reasoning and summarization parts of the answers using GPT-4o mini, while keeping the action
annotations and affordance bounding boxes unchanged. This process increases linguistic diversity by
generating 3-5 paraphrases per template, resulting in more robust language understanding without
additional manual annotation effort.

(a) Object Categories (b) Receptacle Categories

Figure 4: Word Cloud Distribution of Objects and Receptacles in our dataset. Object categories
show diverse household items (tools, food containers, toys), while receptacles include varied furniture
types (tables, shelves, cabinets) with rich descriptive labels.

D.2 Analysis on the training data

This analysis tries to answer two questions: 1) How does the diversity of objects and environments
affect the model’s performance on unseen objects and environments in the test set? We examine
dataset diversity using three 45k-sample sets: 100% scenes and objects, 100% scenes with 30%
objects, and 30% scenes with 100% objects. We control the total number of training samples while
changing the number of object instances or scenes appearing in the training data. 2) How does the
model’s performance change as the training data scales up? For data scaling, we use five data
sizes: 0k (no fine-tuning), 15k (10%), 45k (30%), 76k (50%), and 152k (100%). At 0k, we give
the Internvl-2.5-8B model limited input-output pairs, allowing it to generate structured outputs via
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Figure 5: OVMM-VLM-8B Sub-task Performance with the Increase of Training Data Size. The
task scores consistently improve as the training data size increases.

in-context learning. We evaluate the performance in image retrieval, egocentric decision-making, and
three affordance grounding subtasks. Results are shown in Table 6 and Figure 5.

The results for the first question show that object and scene diversity have negligible effects on
multi-modal capabilities, as metric fluctuations remain within a 5% range. For the second quesion,
data scaling is crucial for enhancing OWMM-VLM’s performance. As seen in Figure 5, increasing
the dataset from 0k to 152k samples shows a logarithmic improvement, especially at lower sizes (0k to
15k, and 15k to 45k). However, benefits diminish near 152k. While larger datasets aid generalization,
marginal gains decrease beyond a threshold. As performance gains plateau, egocentric decision
making approaches a success rate of 1.0, whereas image retrieval lingers at approximately 0.8. This
difference is likely due to the model’s limited capacity with 8 billion parameters. We also draw two
extra observations from the experiment:

1) The embodiment prior for deciding the current action based on the ego-centric RGB image,
especially how close the robot should be to interact with the target objects, can be learned in a
data-driven approach.

2) The ability to comprehend multiple images or the multimodal context length may present one
of the bottlenecks for VLM models to function as the core cognitive model for intelligent robots,
particularly when scene-level understanding is essential.

Table 6: Results with different data diversity data scales. The best performance across training sets
with different scales is indicated with bold font. Besides, underline highlights the best performance
across three 45k-sample training sets with different diversity.

Data Composition/ Task Score Ego-centric
Decision-
making↑

Image Retrieval↑ Affordance
Grounding
(object)↑

Affordance
Grounding

(receptacle)↑

Affordance
Grounding

(navigation)↑

0k(0%) 17.52% 1.27% 0.05(±0.19) 0.18(±0.31) 0.14(±0.26)
15k(10%) 73.27% 41.36% 0.69(±0.43) 0.84(±0.29) 0.45(±0.41)

45k(30%) 91.01% 70.68% 0.88(±0.24) 0.84(±0.31) 0.74(±0.31)

45k(100% scene + 30% object) 91.56% 71.95% 0.87(±0.26) 0.89(±0.23) 0.72(±0.33)

45k(30% scene + 100% object) 88.96% 69.12% 0.87(±0.26) 0.84(±0.31) 0.69(±0.36)

76k(50%) 95.79% 76.20% 0.91(±0.19) 0.88(±0.24) 0.84(±0.20)
152k(100%) 96.72% 79.04% 0.93(±0.14) 0.91(±0.20) 0.83(±0.21)

E Details of Baseline Setting

As Robopoint and PIVOT are designed for single-image QA task, we adjusted some settings to enable
them fully utilizing their capabilities under the OWMM task.
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E.1 Single Image Grounding

For the single-step evaluation, we first extracted robot’s task instruction from the original prompt of
the current step. Based on the ground truth action of the current step and whether the robot picks up
an object, we designed new task instructions, as shown in Table 7. For Robopoint, we appended the

Table 7: Redefined Task Instructions. {object item}, {target rec} and {goal rec} are from robot’s
task instruction.

Ground Truth Action New Task Instruction
Pick The robot needs to pick {object item} on {target rec}

Place The robot needs to place {object item} on {goal rec}

Nav to point(object picked) The robot needs to navigate closer to the {goal rec} for placing
{object item}

Nav to point(object not
picked)

The robot needs to navigate closer to the {target rec} for picking
{object item}

following context: “Find a few spots for robot to execute the action. Your answer should be formatted
as a list of tuples, i.e. [(x1, y1), (x2, y2), ...], where each tuple contains the x and y coordinates of
a point satisfying the conditions above. The coordinates should be between 0 and 1, indicating the
normalized pixel locations of the points in the image." This configuration aligns with Robopoint’s
original settings.

For PIVOT, we configured the following parameters: n_samples_init=10, n_samples_opt=6, n_iters=2.
In our evaluation settings, as the input consists of a single RGB image and task instructions, we
randomly sample initial points in the image from a 2D Gaussian distribution. The distribution is
parameterized with a mean of (256, 256) and standard deviation of (100, 100).

E.2 Agent Setting

We employed GPT-4o for agent construction.GPT-4o first receives our instruction inputs and returns
JSON-formatted responses. When gpt’s output action is “search scene frame", we directly adopt
GPT-4o’s response as the agent’s current-step output. For actions “nav to point", “pick", or “place",
the system sends both the action name and robot’s current-view RGB image (single frame) to
Robopoint/PIVOT for action affordance. The reformulated task instruction sent to Robopoint/PIVOT
follows this template:

“The robot needs to {task_instruction}. Now the robot needs to {gpt_output_action}. {robot_history}"

where {task_instruction} is the original task instruction,{gpt_output_action} is gpt’s output ac-
tion,{robot_history} is the summarization of previous step. In single-step evaluation, Robopoint and
PIVOT process these new task instructions using the same methodology described in Appendix E.1.In
episodic evaluation, we transmit depth information to PIVOT while maintaining consistency with its
original configuration.

F Extra Details of Episodic Evaluation

As mentioned in section 5.2, we designed the following metrics for episodic evaluation. More detailed
specifications of these metrics are outlined below:

Object to Goal Distance: We used the object to goal distance as the metric to determine whether
objects are successfully placed in goal receptacles. To establish appropriate thresholds, we first
calculated the 3D bounding box diagonal distances of all goal receptacles in the test set, filtering
out those with distances less than 0.75m or greater than 3m.Table 8 show some examples of goal
receptacles in our test set.Subsequently, we computed the average diagonal distance (1.7m) from
the remaining valid receptacles. Based on this value, we selected half of the average (0.85m) as
the strict threshold criterion and the full average (1.7m) as the relaxed threshold criterion. This
threshold approach ensures successful placement recognition when robots position objects near goal
receptacles,and reasonable constraint boundaries to prevent excessive leniency in evaluation.
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Table 8: Example Goal Receptacles in our Test Set. The numbers in the figure represent the
diagonal distances of the 3D bounding boxes of the receptacles. This indicates that there is significant
variation in the sizes of the goal receptacles in the test set.

Circular table, Small oak Hisa Wooden Console Silver Picardy Bed tall sideboard
0.789m 1.655m 2.504m 2.931m

F.1 Simulation

For one simulation step, the robot state delta is calculated by forward kinematics, as implemented
by the Habitat 3.0 environment[26]. The robot state and observations updates can be expressed
mathematically as:

xt+1 = fk(xt,at,∆t)

Ict+1, D
c
t+1 = fobs(xt+1)

where xt stands for robot current state (e.g., joint angles, positions), at stands for velocities, and fk
represents the kinematic model function that computes the next robot state within the discretized
time step of duration ∆t. fobs is the observation model function, decided by the sensor link forward
kinematics function and camera model.

G Ablation Study on OWMM-VLM

The ablation study evaluates the contributions of the components of the OWMM-VLM model. We
focus on grounding output formats, comparing the bounding box and point coordinate, and we assess
the inclusion of reasoning and summarization in the outputs. Furthermore, we examine the beam
search option provided by the base model Internvl-2.5-8B[5]. The results are in Table 9.

From the table, we have these observations and indications:

1) Beam Search. Beam search is a decoding algorithm widely used in language generation, main-
taining a beam number of top candidate sequences at each step. Beam search enhances Ego-centric
Decision-making and Affordance Grounding tasks, with minimal impact on Image Retrieval, but
increases temporal and spatial overhead in inference, especially on the 38B variant. Hence, its effect
is briefly shown only in the ablation study.

2) Grounding Format. Replacing bounding box predictions with direct output coordinates reduces
performance in Affordance Grounding, especially for objects (0.9251 → 0.6542) and receptacles
(0.9060 → 0.6479). It is postulated that the large-scale visual grounding data in the pre-trained
model allow our model to utilize this prior knowledge. The consistency in output format between the
base model and the instruction fine-tuning dataset aids the training process.

3) Reasoning and Summarization. Removing reasoning and summarization capabilities leads to the
worst performance across most metrics, with a decrease in Image Retrieval (0.7904 → 0.6586) and
Ego-centric Decision-making (0.9672 → 0.9049). This highlights the critical role of reasoning and
summarization in maintaining contextual coherence and task understanding.

Table 9: Ablation Study on OWMM-VLM. The best performance is indicated with bold font.
Model Ablation Ego-centric

Decision-
making↑

Image Retrieval↑ Affordance
Grounding
(object)↑

Affordance
Grounding

(receptacle)↑

Affordance
Grounding

(navigation)↑

OWMM-VLM-8B 96.72% 79.04% 0.93(±0.14) 0.91(±0.20) 0.83(±0.21)
+ beam search 97.30% 78.47% 0.97(±0.14) 0.93(±0.21) 0.85(±0.18)
+ output-coord 96.70% 78.19% 0.65(±0.15) 0.65(±0.17) 0.63(±0.14)
- reasoning and summarization 90.49% 65.86% 0.88(±0.24) 0.83(±0.33) 0.82(±0.24)
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H Failure Mode Analysis

To better understand the limitations and bottlenecks of our system, we conducted a comprehensive
failure analysis on 100 randomly selected failed episodes from the evaluation logs. Since the current
evaluation pipeline does not support automatic failure case analysis, we manually reviewed the action
sequences and categorized failures into four distinct types:

H.1 Failure Categories

Ego-centric Decision Making Error (36%) These failures occur when the model makes incorrect
pick/place or navigation action decisions. Typical scenarios include:

• The robot is close enough to the target but outputs a navigation action, leading it to move
away and lose the target from view.

• The robot is not close enough to interact but outputs a pick or place action, resulting in failed
execution.

• The model selects an inappropriate action type given the current spatial relationship between
the robot and target objects.

Image Retrieval Error (28%) The retrieved image ID is incorrect, meaning the model selects a
posed frame that does not contain the target object or receptacle. This can result from:

• Confusion between visually similar objects or receptacles.
• Incorrect interpretation of the language instruction.
• Hallucination when reasoning over multiple candidate images.

Affordance Grounding (Object/Receptacle) Error (15%) The robot is positioned close enough
to the target, but the center point of the output bounding box does not intersect with the target
object/receptacle, causing a failed pick or place action. Alternatively, the grounded object/receptacle
is incorrect despite correct spatial positioning.

Affordance Grounding (Navigation) Error (21%) The output bounding box for navigation
corresponds to an unreachable region (e.g., blocked by obstacles or outside the navigable space), or
causes the target object/receptacle to disappear from the robot’s egocentric view after navigation
completes.

From this analysis, we draw two key conclusions:

1. Bottleneck in object picking/placing actions: While our model achieves strong performance in
early stages (88.56% on object image retrieval, 84.64% on robot navigation to object), performance
degrades significantly in later stages (38.56% object picking, 30.39% goal image retrieval). This
suggests that manipulation affordance grounding remains a critical challenge.

2. Error accumulation across subtasks: Failed early actions compound, making later subtasks
increasingly difficult. This cascading effect accounts for the performance gap between single-step
and episodic evaluations, as errors in object retrieval or navigation prevent the robot from ever
reaching the manipulation stage.

I Computational Efficiency Analysis

To address concerns about real-world deployment efficiency and scalability to large scenes, we
conducted experiments evaluating GPU memory consumption and inference time with varying
numbers of input frames.

We evaluated two model configurations:

• OWMM-VLM-8B: Single-step inference on a single A100-40G GPU with 2+1, 4+1, 8+1, and
16+1 frames (posed frames + egocentric frame). The result is shown in Table 10.

• OWMM-VLM-38B: Single-step inference on 4×A100-40G GPUs with 8+1, 16+1, 32+1, and
64+1 frames using parallel inference. The result is shown in Table 11.
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Table 10: OWMM-VLM-8B inference performance with varying frame counts on single A100-40G
GPU.

Input Frames Prompt Tokens Time (s) Memory (GB)
2+1 3409.19 3.66 17.44
4+1 6057.19 3.67 17.77

8+1 (default) 11353.19 4.84 18.43
16+1 21945.19 7.09 19.75

Table 11: OWMM-VLM-38B inference performance with varying frame counts on 4×A100-40G
GPUs with parallel inference.

Input Frames Prompt Tokens Time (s) Memory (GB)
8+1 (default) 2810.37 4.39 98.22

16+1 4922.37 5.04 99.13
32+1 9146.37 7.34 100.65
64+1 17594.37 15.33 104.30

Scalability Both models demonstrate reasonable scalability: inference time grows sub-linearly
with the number of frames due to efficient multi-image processing in modern VLMs. For the 8B
model, doubling frames from 8+1 to 16+1 increases inference time by only 46% (4.84s to 7.09s).

Memory Efficiency Memory consumption grows modestly with additional frames, as the visual
tokens are processed through the same encoder. The 8B model remains under 20GB even with 16+1
frames, while the 38B model stays around 100GB across all tested configurations.

Potential Optimization for Real-time Deployment While these timings reflect comprehensive
processing (multi-image processing, chain-of-thought reasoning, and action generation), real-time
deployment could benefit from optimization techniques:

• Image token compression [16]: Methods that select text-relevant image patch tokens can signifi-
cantly reduce input token counts.

• Model quantization [36]: Quantization-aware approaches can accelerate inference while main-
taining performance.

• Dynamic frame selection: As discussed in Appendix C.1, adaptive frame selection can maintain
scene coverage while controlling computational costs.

J Qualitative Evaluation

We provide the qualitative evaluation of our OWMM-VLM model compared to other baseline models.
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Pick Place Nav to point

Table 12: Single step Qualitative Evaluation. The table demonstrates the single step qualitative evaluation
results: represent the ground truth; represent GPT-4o; • represents RoboPoint; • represents PIVOT;
represents InternVL base model; represent ours
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Task Description Context Description Response

Move Schleich Allosaurus from the Uphol-
stered Sofa to the Brown and Gold Accent
Cabinet.

Task just started.

Move Tena Pads Heavy Long 42 pads from
the Dark Wooden Tall Open Bathroom
Cabinet to the multifunctional games ta-
ble.

The task has started and I have navigated
to Dark Wooden Tall Open Bathroom Cab-
inet and picked up the Tena Pads Heavy
Long 42 pads.

Move hammer from the Multiple Drawer
Short Boy to the Dark Wooden Tall Open
Bathroom Cabinet.

The task has started and I have navigated
to Multiple Drawer Short Boy and picked
up the hammer.

Move 065-b cups from the Unch metal
and wood bar stool to the Magnolia Home
Foundry Console Table.

The task has started and I have navigated to
Unch metal and wood bar stool and picked
up the 065-b cups.

Table 13: Single step Qualitative Evaluation Search Scene Frame. The table demonstrates the single step
qualitative evaluation search scene frame results: represent the ground truth; represent GPT-4o;
represents InternVL base model; represent ours
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