BeDKD: Backdoor Defense based on Directional Mapping Module and
Adversarial Knowledge Distillation

Anonymous ACL submission

Abstract

Although existing backdoor defenses have
gained success in mitigating backdoor attacks,
they still face substantial challenges. In par-
ticular, most of them rely on large amounts of
clean data to weaken the backdoor mapping but
generally struggle with residual trigger effects,
resulting in persistently high attack success
rates (ASR). Therefore, in this paper, we pro-
pose a novel Backdoor defense method based
on Directional mapping module and adversar-
ial Knowledge Distillation (BeDKD), which
balances the trade-off between defense effec-
tiveness and model performance using a small
amount of clean and poisoned data. We first
introduce a directional mapping module to iden-
tify poisoned data, which destroys clean map-
ping while keeping backdoor mapping on a
small set of flipped clean data. Then, the ad-
versarial knowledge distillation is designed to
reinforce clean mapping and suppress backdoor
mapping through a cycle iteration mechanism
between trust and punish distillations using
clean and identified poisoned data. We conduct
experiments to mitigate mainstream attacks on
three datasets, and experimental results demon-
strate that BeDKD surpasses the state-of-the-art
defenses and reduces the ASR by 99% without
significantly reducing the CACC.

1 Introduction

In recent years, deep neural networks (DNNs) have
achieved great success in the field of natural lan-
guage processing (NLP), such as sentiment analysis
(Wang et al., 2020; Huang et al., 2023), machine
translation (Wang et al., 2021, 2024) and natural
language generation (Sun et al., 2023; Vice et al.,
2024). However, recent studies show that DNNs
are highly vulnerable to backdoor attacks (Li et al.,
2022a,b; Wan et al., 2024; Nguyen et al., 2024).
Backdoor attacks generally introduce an invis-
ible vulnerability in DNNs, allowing attackers to
control or manipulate the model’s output when the
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Figure 1: (a) Existing data-level defenses. (b) Exist-
ing model-level defenses require sufficient clean data.
(c) Our proposed method requires minimal clean and
poisoned data.

input contains the specific trigger patterns (He et al.,
2022; Wu et al., 2022). To carry out a backdoor
attack, the attacker first injects triggers into a small
amount of clean data to poison the training set, and
then trains the victim model. In inference, the poi-
soned model responds normally to clean data, while
it responds incorrectly to poisoned data based on
the attacker’s target label. The prevalence of back-
door attacks poses significant security risks to deep
neural networks (Rahman et al., 2020; Ma et al.,
2021; Tiwari et al., 2022; Zhu et al., 2022).

To defend against backdoor attacks, researchers
have explored many backdoor defense methods,
broadly categorized into data-level (Chen and Dai,
2021; Gao et al., 2022; Xi et al., 2023; Li et al.,
2023) and model-level (Jin et al., 2022; Zhao et al.,
2024c; Pei et al., 2024) approaches. As shown in
Figure 1(a) and (b), the goal of data-level meth-
ods is to identify poisoned data, while the goal
of model-level methods is to erase the backdoor
of the poisoned model. The former identifies poi-
soned data from the input data via external models
or fine-tuned models. Even though these meth-
ods have achieved success in mitigating backdoor
attacks, their primary strategy is to avoid activat-



ing backdoors rather than essentially eliminate
backdoors. In contrast, the later mainly erases
backdoors through data cleaning, training, knowl-
edge distillation (KD), or neuronal pruning. Al-
though the existing model-level methods remove
backdoors effectively, they reduce the accuracy of
the poisoned model on the clean data. Therefore,
achieving a satisfactory trade-off between back-
door defense and maintaining model performance
remains a significant challenge.

More recently, some defense methods have been
introduced to alleviate the above trade-off prob-
lem. Zhao et al. (Zhao et al., 2024a) randomly
flipped the label of a clean proxy dataset to fine-
tune the poisoned model, enabling it to identify
poisoned data. Zhao et al. (Zhao et al., 2024b)
proposed W2SDefense that leverages a clean proxy
dataset to fine-tune the BERT and uses the fine-
tuned BERT as the teacher model, which guides
the poisoned student model to unlearn the back-
doors via knowledge distillation. Although they
excel at both mitigating backdoor attacks and pre-
serving model performance, they require quantities
of clean data to fine-tune models, limiting their
application in the real world.

From the above analysis, in this paper, we
explore a novel model-level Backdoor defense
method based on a Directional mapping module
and adversarial Knowledge Distillation, called
BeDKD. Typically, the poisoned model has two
mappings: clean mapping and backdoor mapping.
Clean mapping is the correlation between the se-
mantics of clean data and ground-truth labels, while
backdoor mapping refers to the relationship be-
tween triggers and the target label. Intuitively,
backdoor erasing is equivalent to destroying the
backdoor mapping while maintaining the clean
mapping. Different from existing backdoor de-
fense methods that utilize clean data to weaken the
backdoor mapping, we employ poisoned data to
break the backdoor mapping. Specifically, BeDKD
(as shown in Figure 1(c)) employs a directional
mapping module to effectively identify poisoned
data and then utilizes the adversarial knowledge
distillation to preserve clean mapping while enforc-
ing suppression of backdoor mappings using small
subsets of clean and poisoned data.

Most of existing defenses rely on large amounts
of clean data, making it difficult to adapt to real-
world scenarios with limited clean data. Under the
limitation, to accurately and efficiently find a subset
of the poisoned data within the poisoned training

set, we introduce a directional mapping module
(DMM). The DMM, which copies the architecture
and parameters of the poisoned model, is fine-tuned
on a small number of clean data with intentionally
flipped labels to disrupt the clean mapping. By
analyzing the distribution’s difference between the
poisoned model and the fine-tuned DMM, the poi-
soned data can be effectively identified.

Due to the robust retention of trigger features
and the concealment of backdoor trigger design,
existing methods only using clean data to defend
against backdoor attacks generally suffer from trig-
ger residue, resulting in high attack success rate
(ASR). Therefore, we propose a adversarial knowl-
edge distillation (AKD), which employs a cycle
iteration mechanism to maintain the clean map-
ping and erase the backdoor mapping using a small
amount of clean and poisoned data. Each AKD
cycle iteration consists of two stages: trust distilla-
tion and punish distillation. The former leverages a
small set of clean data to enable the student model
to learn clean mapping from the teacher model,
while the latter enables the student model to erase
backdoor mapping on a handful of poisoned data
through a penalty loss function.

We conduct extensive experiments on SST2,
OLID, and AGnews to evaluate the performance
of our proposed BeDKD. Extensive experimental
results demonstrate that our proposed method can
reduce ASR by 99 % and without significantly com-
promising CACC in most cases, which outperforms
the state-of-the-art backdoor defense methods.

Our contributions are summarized as follows:

* We explore a novel model-level backdoor de-
fense method based on directional mapping
module and adversarial knowledge distillation
(BeDKD), which makes a satisfied trade-off
between defense effectiveness and model per-
formance via a small amount of clean and
poisoned data.

* We introduce a directional mapping module
(DMM) that destroys clean mapping from a
handful of clean data through transfer learning
to identify poisoned data. To suppress back-
door mapping, the adversarial knowledge dis-
tillation (AKD) is designed, which guides the
poisoned student model to learn clean map-
ping on clean data through trust distillation
and push away backdoor mapping on poi-
soned data through punish distillation from
the poisoned teacher model.



* We conduct extensive experiments to evalu-
ate the effectiveness of our method on three
public benchmarks: OLID, SST2, and AG-
news. The experimental results illustrate that
our method reduces the ASR by 99% without
significantly reducing CACC, which outper-
forms the SOTA defenses.

2 Related Work

2.1 Backdoor Attack

Dai et al. (Dai et al., 2019) and Chen et al. (Chen
et al., 2021) inserted meaningful fixed short sen-
tences and the rare words as triggers into clean data.
Qietal. (Qietal., 2021b) and Pan et al. (Pan et al.,
2022) rewritten sentences with a specific syntac-
tic structure and style as triggers. Yan et al. (Yan
et al., 2022) capitalized on spurious correlations
between the target label and specific words in train-
ing data. Du et al. (Du et al., 2024) fine-tunes
large language models based on attribute control to
generate poisoned data. Li et al. (Li et al., 2024)
designed hand-crafted prompt and utilized GPT-3.5
to generate rephrased poisoned sentences. With the
advancement of backdoor attacks, designing an ac-
curate and effective backdoor defense method is
still a critical and pressing challenge.

2.2 Backdoor Defense

(1) Data-Level Defenses. Qi et al. (Qi et al.,
2021a) utilized an external language model as a
grammar outlier detector to remove trigger words
from the input. Yang et al. (Yang et al., 2021)
used an additional prompt-based optimizer to ver-
ify the output logit permutation. Chen et al. (Chen
and Dai, 2021) identified trigger words using word
importance scores. Gao et al. (Gao et al., 2022)
detected poisoned data by randomly perturbing fea-
tures and analyzing output changes of each data.
He et al. (He et al., 2023a) used gradients or self-
attention scores to self-defend against backdoor
attacks. Although existing data-level defenses suc-
cessfully defend against backdoor attacks, they still
have alive backdoors. (2) Model-Level Defenses.
He et al. (He et al., 2023b) computed the spurious
correlation between text features and labels to clean
the poisoned training set and retained the victim
model. Zhao et al. (Zhao et al., 2024d) erased back-
doors through attention head pruning and weights
normalization. Pei et al. (Pei et al., 2024) trained
multiple classifiers on divided m sub-training sets
and ensembled their predictions. These defenses

mitigate backdoor attacks effectively, while they
struggle to balance the trade-off between backdoor
erasing and model performance and require sub-
stantial clean data for fine-tuning.

2.3 Knowledge Distillation

Knowledge distillation (KD) compressed larger or
ensemble networks (teacher models) into smaller
networks (student models) (Hinton et al., 2015).
Feature maps and attention mechanisms had proven
effective in KD, enabling student models to learn
high-quality intermediate representations from
teacher models, thereby enhancing distillation and
improving performance (Byeongho Heo, 2019;
Tian et al., 2020). KD had been applied to speech
recognition (Zhao et al., 2020; Zhang et al., 2023),
visual recognition (Zagoruyko and Komodakis,
2017; Zhao and Han, 2021), backdoor defense (Li
et al., 2021; Zhao et al., 2024b). Zhao et al. (Zhao
et al., 2024b) fine-tuned BERT on a large task-
related clean dataset as the teacher model to guide
the poisoned model to erase backdoors via knowl-
edge distillation. However, they rely heavily on
large volumes of clean data, posing challenges in
low-resource scenarios.

3 Methodology

3.1 Preliminaries

Attacker’s Goal. Attackers contaminate the train-
ing sets and upload them to third-party platforms
(e.g., HuggingFace, GitHub, etc.). When users
train or fine-tune models on these sets, the back-
door mapping is automatically introduced into the
victim models. Specifically, attackers divide the
training set D into two subsets: D., which is
reserved as clean data, and D, which is used
for poisoning. Then, a transform operation F' :
{(z,y) — (z*,y)} is designed, where z is the
clean sample, y is the corresponding label, z*
represents the poisoned sample obtained by in-
serting trigger ¢ into the clean sample z, and
represents the target label. The operation F' is
applied to D), to obtain the poisoned subset Dj.
The optimization objectives of the victim model

are 0% = Wgemm{E(xi,yi)NDc[E(fe(l‘z‘),yz‘)] +

E(I;«,yt)ND;[ L(fo(z}), y¢)]}, where 0 is the pa-
rameter of the victim model f. L is the cross-
entropy loss function. The poisoned model only
activates backdoor mapping on triggered inputs and
maintains normal mapping on clean inputs.
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Figure 2: Our BeDKD framework. (a) Directional mapping module distillation. We distill the DMM from the
poisoned model (fy~) on the flipped data, a small number of clean data with flipped labels, to destroy the clean
mapping. (b) Poisoned data identification. We compute the mean error of probability distributions (MEPD) between
the fy- and the distilled DMM to identify a handful of poisoned data from the poisoned training set. (c) Adversarial
knowledge distillation. The fy- guides the poisoned student model (CM) to pull the clean mapping on the clean
data and push away the backdoor mapping on the poisoned data via a cycle iteration mechanism, which alternates
trust and punish distillations. Notably, the initial DMM and CM have the same architecture and parameters as fg-.

Defender’s Goal. Following the previous backdoor
defenses (Chen and Dai, 2021; Pei et al., 2024,
Zhao et al., 2024b), we assume that the defender
has access to the training set but is unaware of the
presence of poisoned data within it. The goal of
our defender is to distill a clean model from the
poisoned model using the poisoned training set,
while preserving the clean mapping and eliminat-
ing the backdoor mapping. This means that the
defended model should have a low attack success
rate on the poisoned test set, while maintaining a
high classification accuracy on the clean test set.

3.2 Overview of BeDKD

Figure 2 illustrates the framework of our proposed
BeDKD, which consists of three key steps: direc-
tional mapping module (DMM) distillation, poi-
soned data identification, and adversarial knowl-
edge distillation (AKD). First, the DMM is dis-
tilled on a small flipped clean samples to enhance
the backdoor mapping, after which it identifies a
small amount of poisoned data from the training set.
Then, the AKD is applied to derive a clean model
from the poisoned model, using both the identified
poisoned data and a small amount of clean data,
following a cycle iteration mechanism.

3.3 Distilled DMM for Locating Poisoned
Data

Traditional backdoor defenses use clean data for
fine-tuning or distillation to erase the backdoors
(Zhao et al., 2024d,b). However, they require a

large number of clean data and fall short of com-
pletely eliminating the backdoor mapping (higher
ASR). This paper leverages a small number of clean
samples to identify a small number of poisoned
samples and incorporates them into the distillation
process, enabling the model to more effectively re-
move backdoors. To find poisoned samples, we
propose the Directional Mapping Module (DMM),
which has the same structure as the poisoned model
and is distilled by a small amount of flipped clean
data to disrupt the clean mapping of the DMM
while reinforcing the backdoor mapping, thereby
facilitating the identification of trustworthy poi-
soned samples. The goal of DMM is to make the
probability distribution difference of clean map-
ping as large as possible, while making the proba-
bility distribution difference of backdoor mapping
as small as possible.

Assume that we have access to a small number
of clean data DJ°“ (Yosinski et al., 2014; Zhao
et al., 2024d,b). We modify the ground-truth label
y of clean data x and flip it to an incorrect label
y' €Y to create a flipped clean data DL, where
Y is label space. We initialized the DMM with
shared parameters from the fy-.

To destroy the clean mapping of DMM, we apply
the cross-entropy loss as the hard loss, which cal-
culates the loss value between the predicted label
and the flipped label /. The formula is as follows:

Lha'rd = _Z(z,y/)EDgew/ y/ IOg(DMM(x))v (1)

where, DM M (-) is the prediction of the DMM.



Fine-tuning the DMM on the flipped data D"’
is equivalent to introducing a new mapping relation-
ship, which leads the DMM to readjust the feature
distribution and reduces the stability of backdoor
mapping. To reinforce the backdoor mapping of
DMM, we introduce knowledge distillation for fea-
ture alignment by incorporating Kullback-Leibler
(KL) divergence and mean square error (MSE) loss
as the soft loss:

LSOft = _erDgew/ SFt('f? T) 1Og(SFS ($7 T))

+Mean(yo _prew (Hi(x) = Ho(2)?), (2)
where T is the temperature. SFi(x,T) and
SFy(z,T) are the softmax layer output of the poi-
soned teacher fy+ and student model DMM with T,
respectively. H(-) and Hg(-) are the last hidden
sates of fg« and DMM, respectively.

In the fine-tune stage of DMM, the total loss is
formulated by combining the hard loss (Eq.1) and
soft loss (Eq.2) to achieve the desired balance be-
tween disrupting the clean mapping and preserving
the backdoor mapping. The total loss is as follows:

Lpyy = alpgra + (1 — o) x (Lsoge),  (3)

where « € [0, 1] is the hyper-parameter.

After distilling the DMM, there will be a devi-
ation in the probability distribution for clean in-
puts between the DMM and fy«, while the output
probabilities for poisoned inputs show almost no
deviation. Therefore, poisoned data can be identi-
fied by calculating the mean error of the probability
distributions between the DMM and fy-.

ZZabs(fg* (m,y) - DMM($7y))

MEPD = ,
Y|

@

where abs(-) is the absolute value function.
fo+(x,y) represents the probability that the data
x is predicted to be y. When the MEPD of the data
is less than the threshold ~, it is considered to be
poisoned. Otherwise, it is clean data.

3.4 Adversarial Knowledge Distillation

Traditional knowledge distillation focuses on guid-
ing the student model to learn the feature distri-
butions of the teacher model, thereby facilitating
knowledge transfer and enhancing generalization
(Phuong and Lampert, 2019). However, in the task
of backdoor defense, directly applying traditional
knowledge distillation methods can lead the stu-
dent model to simultaneously learn both the clean

mapping and backdoor mapping from the poisoned
teacher model, making it difficult to eliminate back-
doors (detailed discussion in Section 4.3). In ad-
dition, although some studies utilize task-related
clean datasets to distill a clean model from the poi-
soned model, such as W2SDefense (Zhao et al.,
2024b), they require a large amount of clean data,
which limits their practical application. To ad-
dress this issue, we propose an Adversarial Knowl-
edge Distillation (AKD) method, which employs
an adversarial distillation strategy to promote the
learning of clean mapping while suppressing the
learning of backdoor mapping on limited clean and
poisoned data (as shown in Figure 2(c)). Specifi-
cally, the teacher model is the poisoned model fy«
with frozen parameters, while the student model
(C' M) shares the same architecture and parameters
as fg~. The AKD framework adopts a cycle iter-
ation mechanism, performing trust distillation on
a small amount of clean data and punish distilla-
tion on a small amount of poisoned data identified
in the previous step. By alternating between the
two types of distillation, the backdoor mapping is
eliminated without reducing the clean mapping.

To be specific, trust distillation utilizes the clean
data D" to instruct the C'M reinforce the learn-
ing of clean mapping from the fy-. The loss func-
tion is shown below:

Ltrsut = )\Lhard + (1 - )‘) * (Lsoft)a (5)

where A is the hyper-parameter. Lyqrq and L, st
denotes the Eq. 1 and 2.

Punish distillation applies a small number of
poisoned data D} °“* identified by DMM to prevent
the C'M from learning the backdoor mapping of
the fy~ to erase the backdoor via the penalty loss
function. The loss function as follows:

Lpenalty = 7()‘Lha7‘d + (1 - )\) * (Lsoft))~ (6)
The optimize objectives of AKD as follows:

0+ = a?“g(,?%”{E(xi,yi)NDZ ew [Lerust (for (i), yi)]

(Iz’,y*)NDgew* [»Cpenalty(fﬁ* (-Tz)v y*)]} (7)

The algorithm of the BeDKD is listed in Appendix
A. During the training stage, the AKD performs
a cycle iteration mechanism, alternating between
trust and punish distillation. By alternating these
two distillations, AKD ensures that the clean map-
ping is strengthened through the trust distillation,
while the backdoor mapping is gradually erased
during the punish distillation.

+FE



4 Evaluation

4.1 Evaluation Settings

Datasets. We conduct experiments on three pub-
lic benchmark datasets: Stanford Sentiment Tree-
bank (SST2) (Socher et al., 2013), AGnews (Zhang
et al., 2015), and Offensive Language Identifica-
tion Dataset (OLID) (Dai et al., 2020). Following
previous studies (Qi et al., 2021a; He et al., 2023a;
Pei et al., 2024), the poisoned rates of datasets are
set to 20%. More details are listed in Appendix B.

Attacks. We simulate three prominent backdoor
attacks to poison the widely adopted victim model
BERT. We use three backdoor attacks: AddSent
(Dai et al., 2019), BadWords (Chen et al., 2021),
and SynBkd (Qi et al., 2021b). More details are
listed in Appendix C.

Baselines. To verify the performance of BeDKD,
we compare it with five mainstream defenses: Fine-
Tuning (FT) (Yosinski et al., 2014), ONION (Qi
et al., 2021a), IMBERT (He et al., 2023a), Text-
Guard (Pei et al., 2024), and W2SDefense (Zhao
et al., 2024b). Details are listed in Appendix D.

Metrics. To be fair, we follow previous studies
(Qietal.,, 2021a; He et al., 2023a; Pei et al., 2024)
and utilize four commonly adopted metrics: At-
tack Success Rate (ASR), Clean Accuracy (CACC),
False Acceptance Rate (FAR), and False Rejection
Rate (FRR). ASR measures the accuracy of poi-
soned models on poisoned data. CACC assesses
the accuracy of both poisoned and clean models
on clean data. FAR represents the percentage of
poisoned data classified as clean out of all poisoned
data. FRR indicates the percentage of clean data
classified as poisoned out of all clean data.

Implementation Details. We conduct experiments
in the same setting on 3090 GPUs and Python 3.8.
We leverage the AdamW optimizer with the learn-
ing rate of 3 x 107 to train the poisoned model
for 10 epochs. According to previous experience,
the temperatures I’ of the DMM and AKD are set
to 1.5 and 2.5, respectively. The o and )\ are both
set to 0.3. We train the DMM and AKD for 20
epochs and 50 epochs, respectively. To be fair, the
threshold v of MEDP is set to 0.1, the number of
each class n. is set to 320, and the number of poi-
soned data ny, is 32 in our main experiments. The
sensitivity analysis of 7y, n., and n,, are explored in
Section 4.4.

4.2 Comparison Results

Table 1 summarizes the performance comparison of
our proposed method with the other four backdoor
defense baselines. The column of "No defense"
is listed to show the ASR and CACC of poisoned
models without any defenses. The experimental re-
sults demonstrate that all backdoor attacks always
achieve more than 99% ASR.

The proposed BeDKD significantly outperforms
all baselines on most attack settings and lowers
around 99% of all backdoor attacks without com-
promising CACC in most cases. For BadWords
and AddSent backdoor attacks, their triggers are
visible rare words and fixed sentences, respectively.
Although most baselines can mitigate these attacks,
BeDKD achieves lower ASR and higher CACC,
especially the average ASR and CACC on the three
datasets achieve 0.01% and 88.41%, which is better
than the best baseline, W2SDefense (average ASR
15.92% and CACC 87.83%). For SynBkd, BeDKD
surpasses the best baselines and reduces the aver-
age ASR to 1.5% (].15% than W2SDefense). These
results demonstrate that BeDKD can effectively
defend against both visible and invisible trigger
patterns. On the OLID dataset, all defense base-
lines cannot work well because the scale of the
dataset is small. While our proposed BeDKD still
effectively defends against all backdoor attacks on
the OLID dataset and reduces the average ASR to
0.56% (|8.47% than W2SDefense). Overall, our
BeDKD makes a satisfactory trade-off between
backdoor defense and model performance on a
small amount of clean data. More experiments
on different victims are listed in Appendix E.

4.3 Ablation Study

The Impact of DMM and AKD. We further con-
duct ablation experiments on the BERT model to
examine the contributions of DMM and AKD in
our method to the results, and the experimental
results are presented in Table 2. As illustrated in
Table 2, both the DMM and AKD significantly en-
hance the effectiveness of defense. The FT and KD
methods both suffer from trigger residue, where
they only reduce the ASR by almost 30% and 1%,
respectively. When the DMM is incorporated into
FT and KD, the ASR decreases by nearly 60% on
SST2, while the CACC remains unchanged. Sim-
ilarly, employing the AKD and DMM to defend
against three backdoor attacks results in a further
reduction of ASR by nearly 30%, with CACC only



Attacks No Defense Fine-Tuning ONION IMBERT TextGuard W2SDefense Ours
ASRT CACCt ASR| CACCt ASR| CACCT ASR| CACCt ASR|] CACCt ASR| CACCT ASR| CACCt
SST2
Clean - 91.97 - 89.79 - 90.02 - 83.95 - 89.45 - 89.91 - 91.06
BadWords 100.00 91.63  63.06 88.65 4932 89.40 2095 8395 3559 8956 21.17 89.79  0.00  90.14
AddSent  100.00 91.62 7207 83.07 91.67 88.07 18.02 8567 2140 90.02 55.63 91.17 0.00 9117
Syntax 9527 9151 6622  89.22 90.09 90.02 89.86 86.01 4842  89.11  40.09 90.71 248 9048
Average 9842  91.68 67.12 8893 77.03 8938 4294 8490 3514 89.54 3896 9040  0.83 90.71
OLID
Clean - 82.79 - 83.14 - 81.98 - 80.58 - 84.19 - 80.70 - 81.39
BadWords 100 8395 92,08 7930 79.17 8093 82.08 8233 59.58 84.07 10.83 79.30  0.00 80.81
AddSent 100 8198 9583 79.88 9500 82.09 8542 81.51 100.00 84.88 6.25  79.42 0.00 81.28
Syntax 99.58  82.67 9625 8128 9875 8035 9833 8233 96.67 8395 10.00 80.70 1.67 79.88
Average  99.86 8285 9472 8090 9097 8134 8861 81.69 8542 8427 9.03  80.03 0.56 80.84
AGnews

Clean - 93.96 - 92.87 - 92.33 - 93.12 - 91.93 - 93.93 - 92.86
BadWords 100.00 94.01  51.09 9247 2965 9197 1230 93.13 6332  91.65 167 9394  0.04 9353
AddSent  100.00  93.9 4346 9243 6575 91.86 11.81  93.01 2.18 91.65 0.00 93.92  0.00 93.53
Syntax 99.88 9392 3516 9283 9491 91.18 9437 9255 5.75 91.75  0.39 9391  0.02  94.00
Average  99.96 9395 4324 9265 6344 91.84 3949 9295 2375 9175 0.69  93.93 0.02 9348

Table 1: ASR and CACC of the proposed method compare with baselines. The bold and underline are the best and
second best values. "Clean" means the performance of clean model, which trains on clean dataset.

Defense BadWords AddSent SynBkd
ASR| CACCt ASR| CACCt ASR| CACCT
FT 63.06 88.65 72.07 88.07 66.22  89.22
FT+DMM 19.60 88.30 10.59 89.33 2297 87.84
KD 100.00  91.74  100.00 914 94.60  91.97
KD+DMM  20.50  91.86 14.41 91.63 40.54 91.17
DMM+AKD  0.00 90.14 0.00 91.17 2.48 90.48

Table 2: Performance of DMM and ADK on the SST2.

Attacks Loss Functions FAR| FRR]

BadWords L haf:izdso t 888 gé;
Addsent  Thord y 000 0%
synBkd Pt O T

Table 3: Performance of the loss function in DMM.

decreasing almost 1%. This indicates that the AKD
effectively erases the backdoor mapping to the max-
imum extent while preserving the clean mapping.
Consequently, our proposed BeDKD, which inte-
grates the DMM and AKD, achieves the lowest
ASR while maintaining acceptable CACC.

The Impact of Loss Function. We explore the
roles of Ljqqq (Eq. 1) and Lg,f; (Eq. 2) in the
DMM on the SST2, and the experimental results
are shown in Table 3. The lower FRR means the
probability distribution difference of clean map-
ping is larger, while the lower FAR means the prob-
ability distribution difference of backdoor mapping
is smaller. For L4, FRR is close to 4% on all
three backdoor attacks, but FAR is close to 70% on
the AddSent and SynBkd, indicating that Lj,.q is
not only effective in destroying the clean mapping
but also in destroying the backdoor mapping of the

DMM. After the addition of L, s, the FRR on all
three attacks dropped to about 1%, and the FAR all
dropped significantly, especially on the AddSent.
Notably, compared with BadWords and AddSent
attacks, the FAR achieves up to 42.2% on SynBkd
attack. The main reason is that the invisible trigger
pattern (SynBkd attack) confuses the clean map-
ping and the backdoor mapping for the same target
label classification (T-SNE of poisoned model is
provided in Appendix F). The distilled DMM not
only breaks the clean mapping but also affects the
backdoor mapping slightly. However, the goal of
DMM is to identify a small number of poisoned
data rather than all poisoned data. Therefore, the
DMM should achieve the lowest FRR and lower
FAR. These results illustrate that using only the
simple Lj,,-q loss function will destroy both the
clean mapping and the backdoor mapping, while
combining the Ljq,q and L, s loss functions can
preserve the attention distributions of the backdoor
mapping as much as possible and destroy the clean
mapping of the DMM.

4.4 Sensitivity Analysis

The Impact of the Clean Number n. and Poi-
soned Number 7,,. To explore the sensitivity of
AKD to n. and n,, we examine the effects of dif-
ferent scales of clean and poisoned data in terms of
CACC and ASR on the SST2. As shown in Figure
3,when the n. is fixed at 320, the convergence rate
of AKD becomes faster as the scale of the poisoned
data n,, increases, especially on the SynBkd. As
demonstrated in Table 4, when the n,, is fixed at
32, CACC shows an overall upward trend and ASR
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shows a small fluctuation with the increase of n..
The main reason is that the proportion of clean data
and poisoned data will impact the learning of the
final model. A larger proportion (n./n,) makes
the final model learn the clean mapping and re-
duces the penalty force of the backdoor mapping,
resulting in the clean model still retaining part of
the backdoor mapping. While a small proportion
(n./np) makes the final model pay more attention
to destroying the backdoor mapping and reducing
the learning of the clean mapping, resulting in a
lower CACC. In summary, when the 7. is 320 and
the n,, is 32, the proposed method achieves the best
defense effect on both ASR and CACC.

The Impact of Threshold ~. As shown in Fig-
ure 4, with the increase of the threshold ~, the
FAR gradually decreases while the FRR gradu-
ally increases. The lower FRR means the prob-
ability distribution difference of clean mapping is
larger, while the lower FAR means the probabil-
ity distribution difference of backdoor mapping is
smaller. Due to the invisible trigger pattern, the
FAR achieves up to 40% on SynBkd attack when
~v = 0.1. However, as discussed in Section 4.3, the
goal of DMM is to identify a handful of poisoned
data accurately rather than all poisoned data. There-
fore, the DMM should achieve the lowest FRR and
lower FAR. Overall, when v = 0.1, the optimal
balance between FAR and FRR can be achieved.

BadWords AddSent SynBkd
e “ASR] CACCT ASR] CACCT ASR] CACCT
80 000 9002 000 88.19 090  85.09
160 0.00 90.14 000 9025 270  89.45
320 000 9014 000 91.17 248  90.48
640  7.66 9094 000 9140 450  90.71

Table 4: CACC and ASR of differe.nt scale of clean data
n. on the SST2. For clean data Dg % n. is the number
of clean samples in each class.

5 Conclusion

In this paper, we propose a novel backdoor de-
fense method, called BeDKD, which balances back-
door defense and model performance using a small
amount of clean and poisoned data. The DMM
identifies a handful of poisoned data through a
small number of clean data and knowledge dis-
tillation, which disrupts the clean mapping and
keeps the backdoor mapping. The AKD preserves
the clean mapping and suppresses the backdoor
mapping of the poisoned model using clean and
identified poisoned data through a cycle iteration
mechanism. Extensive experimental results illus-
trate that our proposed BeDKD can effectively re-
duce the ASR without significantly reducing the
CACC via a small number of clean and poisoned
data. Our work has provided a defense strategy
against backdoor attacks that makes a satisfactory
trade-off between ASR and CACC as much as pos-
sible, enhancing the security of DNNss.



Limitations

Our proposed method has the following limita-
tions: (1) Our method relies on the assumption
that we can access the poisoned training set and
the poisoned model. (2) Our method mainly de-
fends against the poisoned classification models,
and the effectiveness of BeDKD against the genera-
tive LLMs remains to be investigated. (3) Although
we have conduct extensive experiments on three
mainstream backdoor attacks, three datasets, and
five defenses to evaluate the effectiveness of our
BeDKD, we agree that more attack methods and
defenses should be investigated.

Ethical Statement

The BeDKD proposed in this paper is mainly for
defending against backdoor attacks to enhance the
security and credibility of the model. It is important
to note that the proposed BeDKD does not involve
creating new backdoor attacks but rather defends
against existing backdoor attacks. In this paper,
all the attacks and defenses were conducted on
publicly available clean benchmark datasets and
clean models, and no poisoned datasets or victim
models were uploaded into third-party websites.
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A Algorithm or BeDKD

The algorithm of proposed BeDKD are presented
in Algorithm 1. First, we flip the labels of a small
amount of clean data to obtain the flipped set. Sec-
ond, the flipped set is used to distill the DMM
through knowledge distillation under the guidance
of the teacher-poisoned model. Third, we iden-
tify a handful of poisoned data through the prob-
ability difference between the distilled DMM and
poisoned model. Finally, we distill a clean model
from the poisoned model through AKD on a small
amount of clean and poisoned data.

B Datasets

We conduct experiments on SST2 (Socher et al.,
2013), AGnews (Zhang et al., 2015), and OLID
(Dai et al., 2020). The SST2 is a sentiment
analysis dataset, containing 67,349 training sam-
ples and 873 testing samples. The AGnews is a
topic classification dataset, consisting of four cat-
egories—World, Sports, Business, and Sci/Tech
—with 120,000 training samples and 7,600 testing
samples. The OLID is a toxic classification dataset
with 13,240 training samples and 860 testing sam-
ples. For SST?2, the target label is "Negative". For
AGnews, the target label is "Sports". For OLID,
the target label is "No offensive".

C Attacks

(1) AddSent (Dai et al., 2019) chooses the low per-
plexity sentence as triggers. (2) BadWords (Chen
et al., 2021) considers 5 rarely used words ("cf",

" "non "non

mn", "tq", "mb", and "bb") as triggers. (3) Syn-
Bkd (Qi et al., 2021b) utilizes the syntactically
controlled paraphrase model (SCPN) (Iyyer et al.,
2018) to generate sentence triggers with the spe-
cific syntactic template "S(SBAR)(,)(NP)(VP)(.)".
Following the previous studies (Qi et al., 2021a; He
et al., 2023a; Pei et al., 2024; Zhao et al., 2024b),
the poisoned rate is set to 20%.

D Baselines

(1) FT (Yosinski et al., 2014): Assumes that there
are 20% clean data for fine-tuning poisoned models.
(2) ONION (Qi et al., 2021a) uses GPT2-Large
(Radford et al., 2019) to compute the change of
perplexity of each token. (3) IMBERT (He et al.,
2023a) set the target number of suspicious tokens
K to 3. (4) TextGuard (Pei et al., 2024) sets the
total number of groups m=9. (5) W2SDefense
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No Defense Ours

Attacks Victims

ASRT CACCT ASR| CACCt

BERT 100.00  91.63 0.00 90.14

BadWords BERT-Large 100.00  92.20 3.83 91.14
RoBERTa  100.00 91.97 0.00 92.32

BERT 100.00 91.62 0.00 91.17

AddSent BERT-Large 100.00  93.81 0.00 90.71
RoBERTa  100.00  92.32 0.00 91.86

BERT 9527 9151 2.48 90.48

Syntax ~ BERT-Large 95.65  92.32 1.80 89.00
RoBERTa  94.14  93.46 3.38 91.63

Table 5: ASR and CACC of BeDKD on different victim
models. The datasets is SST?2.

(Zhao et al., 2024b) fine-tunes a BERT through
the full-parameter fine-tune and utilizes it as the
teacher model to fine-tune the victim models
through parameter-efficient fine-tuning (PEFT) on
the proxy clean datasets. For SST2, the proxy clean
dataset is IMDB (Maas et al., 2011) (100,000 sam-
ples). For OLID, the proxy clean dataset is Hate-
speech (Davidson et al., 2017) (24,783 samples).
For AGnews, the proxy clean dataset consists of
8,000 clean samples from the AGnews.

E Effectiveness of BeDKD on Different
Victim Models

To explore the effectiveness of our proposed
BeDKD on different victim models, we conduct
experiments on three victim models: bert-base
(BERT), bert-large (BERT-Large), and roberta-base
(RoBERTa). The experimental results are presented
in Table 5, and "No Defense" denotes the perfor-
mance of victim models before defense. Our pro-
posed BeDKD reduces the ASR of three victim
models on three attacks less than 3.83% without
significantly reducing CACC.

F T-SNE Visualization

To further verify the effectiveness of our proposed
BeDKD, we leverage T-SNE to obtain the feature
visualization on 4,500 samples from the SST2. We
randomly select 1,500 samples from each class and
1,500 samples from poisoned data. As shown in
Figure 5, the poisoned samples of the "After" row
successfully cluster to the ground-truth label com-
pared with the "Before" row. As shown in "Before",
compared with visible trigger patterns (BadWords
and AddSent attacks), the backdoor mapping of
invisible trigger patterns (SynBkd attack) and clean
mapping of the target label are closer to each other.
The main reason for this phenomenon may be that
invisible triggers typically induce more nuanced
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Figure 5: T-SNE visualization of our proposed BeDKD on 1,500 samples for clean class and 1,500 poisoned
samples on the SST2. The target label of poisoned data is "Negative". "Before" column represents the visualization
of poisoned model. "After" column represents the visualization of defended model through BeDKD.

953 perturbations, making them less distinguishable
954 from the intrinsic features associated with the clean
955 mapping of target label. Even though our proposed
956 BeDKD still achieves success in defending against
957 invisible SynBkd attack, as shown in "After".
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Algorithm 1 BeDKD

Input: a small number of clean data DI the
training set D*; the poisoned model fy«; the
number of poisoned data n,; the threshold ~y; and
the epoches of DMM N,,, and AKD Ny

Output: clean model C'M

1:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

# Directional mapping module distillation
Flip the labels of D{®’ and obtain flipped
Dgew’
Copy the parameters of fy« to initial DMM
for Epoch in range(0, N,,,) do

for (z,y') € DI* do

Optimize Lpyras by Eq. 3

end for
end for
# Poisoned data identification
Initial poisoned set D} = {}

: for (z,y) € D* do

Output the probability fp+(x) of poisoned
model
Output the probability DM M (z) of direc-
tional mapping module
Compute M EDP by Eq. 4
if MEPD < ~ and len(D}**) < n,
then
DIe* append((z, y))
end if
end for
# Adversarial Knowledge Distillation
Copy fy+ to initial student model C M
for Epoch in range(0, Ny) do
# Trust Distillation
for (2,y) € DI do
Optimize L5t by Eq. 5
end for
# Punish Distillation
for (z*,y,) € D" do
Optimize Lyenqity by Eq. 6
end for
end for
return clean model C'M
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