
BeDKD: Backdoor Defense based on Directional Mapping Module and
Adversarial Knowledge Distillation

Anonymous ACL submission

Abstract001

Although existing backdoor defenses have002
gained success in mitigating backdoor attacks,003
they still face substantial challenges. In par-004
ticular, most of them rely on large amounts of005
clean data to weaken the backdoor mapping but006
generally struggle with residual trigger effects,007
resulting in persistently high attack success008
rates (ASR). Therefore, in this paper, we pro-009
pose a novel Backdoor defense method based010
on Directional mapping module and adversar-011
ial Knowledge Distillation (BeDKD), which012
balances the trade-off between defense effec-013
tiveness and model performance using a small014
amount of clean and poisoned data. We first015
introduce a directional mapping module to iden-016
tify poisoned data, which destroys clean map-017
ping while keeping backdoor mapping on a018
small set of flipped clean data. Then, the ad-019
versarial knowledge distillation is designed to020
reinforce clean mapping and suppress backdoor021
mapping through a cycle iteration mechanism022
between trust and punish distillations using023
clean and identified poisoned data. We conduct024
experiments to mitigate mainstream attacks on025
three datasets, and experimental results demon-026
strate that BeDKD surpasses the state-of-the-art027
defenses and reduces the ASR by 99% without028
significantly reducing the CACC.029

1 Introduction030

In recent years, deep neural networks (DNNs) have031

achieved great success in the field of natural lan-032

guage processing (NLP), such as sentiment analysis033

(Wang et al., 2020; Huang et al., 2023), machine034

translation (Wang et al., 2021, 2024) and natural035

language generation (Sun et al., 2023; Vice et al.,036

2024). However, recent studies show that DNNs037

are highly vulnerable to backdoor attacks (Li et al.,038

2022a,b; Wan et al., 2024; Nguyen et al., 2024).039

Backdoor attacks generally introduce an invis-040

ible vulnerability in DNNs, allowing attackers to041

control or manipulate the model’s output when the042

(a) Existing Data-level Methods: Preventing Backdoor Activation

(b) Existing Model-level Methods: Erasing Backdoors

unkonw data clean dataidentify methods clean outputs

external models:
gpt2-large

fine-tuned models

poisoned model

training set clean modelclean datadata cleaning methods

split training set

fine-tuned models

training
knowledge distillation

neuronal pruning

erase backdoor methods

Adversarial
Knowledge Distillation

poisoned data

compute Z-score

training set

Directional

Mapping Module

clean model

(c) Ours Model-level Method: Destroying Backdoor Mapping

clean data

Figure 1: (a) Existing data-level defenses. (b) Exist-
ing model-level defenses require sufficient clean data.
(c) Our proposed method requires minimal clean and
poisoned data.

input contains the specific trigger patterns (He et al., 043

2022; Wu et al., 2022). To carry out a backdoor 044

attack, the attacker first injects triggers into a small 045

amount of clean data to poison the training set, and 046

then trains the victim model. In inference, the poi- 047

soned model responds normally to clean data, while 048

it responds incorrectly to poisoned data based on 049

the attacker’s target label. The prevalence of back- 050

door attacks poses significant security risks to deep 051

neural networks (Rahman et al., 2020; Ma et al., 052

2021; Tiwari et al., 2022; Zhu et al., 2022). 053

To defend against backdoor attacks, researchers 054

have explored many backdoor defense methods, 055

broadly categorized into data-level (Chen and Dai, 056

2021; Gao et al., 2022; Xi et al., 2023; Li et al., 057

2023) and model-level (Jin et al., 2022; Zhao et al., 058

2024c; Pei et al., 2024) approaches. As shown in 059

Figure 1(a) and (b), the goal of data-level meth- 060

ods is to identify poisoned data, while the goal 061

of model-level methods is to erase the backdoor 062

of the poisoned model. The former identifies poi- 063

soned data from the input data via external models 064

or fine-tuned models. Even though these meth- 065

ods have achieved success in mitigating backdoor 066

attacks, their primary strategy is to avoid activat- 067

1

ing backdoors rather than essentially eliminate068

backdoors. In contrast, the later mainly erases069

backdoors through data cleaning, training, knowl-070

edge distillation (KD), or neuronal pruning. Al-071

though the existing model-level methods remove072

backdoors effectively, they reduce the accuracy of073

the poisoned model on the clean data. Therefore,074

achieving a satisfactory trade-off between back-075

door defense and maintaining model performance076

remains a significant challenge.077

More recently, some defense methods have been078

introduced to alleviate the above trade-off prob-079

lem. Zhao et al. (Zhao et al., 2024a) randomly080

flipped the label of a clean proxy dataset to fine-081

tune the poisoned model, enabling it to identify082

poisoned data. Zhao et al. (Zhao et al., 2024b)083

proposed W2SDefense that leverages a clean proxy084

dataset to fine-tune the BERT and uses the fine-085

tuned BERT as the teacher model, which guides086

the poisoned student model to unlearn the back-087

doors via knowledge distillation. Although they088

excel at both mitigating backdoor attacks and pre-089

serving model performance, they require quantities090

of clean data to fine-tune models, limiting their091

application in the real world.092

From the above analysis, in this paper, we093

explore a novel model-level Backdoor defense094

method based on a Directional mapping module095

and adversarial Knowledge Distillation, called096

BeDKD. Typically, the poisoned model has two097

mappings: clean mapping and backdoor mapping.098

Clean mapping is the correlation between the se-099

mantics of clean data and ground-truth labels, while100

backdoor mapping refers to the relationship be-101

tween triggers and the target label. Intuitively,102

backdoor erasing is equivalent to destroying the103

backdoor mapping while maintaining the clean104

mapping. Different from existing backdoor de-105

fense methods that utilize clean data to weaken the106

backdoor mapping, we employ poisoned data to107

break the backdoor mapping. Specifically, BeDKD108

(as shown in Figure 1(c)) employs a directional109

mapping module to effectively identify poisoned110

data and then utilizes the adversarial knowledge111

distillation to preserve clean mapping while enforc-112

ing suppression of backdoor mappings using small113

subsets of clean and poisoned data.114

Most of existing defenses rely on large amounts115

of clean data, making it difficult to adapt to real-116

world scenarios with limited clean data. Under the117

limitation, to accurately and efficiently find a subset118

of the poisoned data within the poisoned training119

set, we introduce a directional mapping module 120

(DMM). The DMM, which copies the architecture 121

and parameters of the poisoned model, is fine-tuned 122

on a small number of clean data with intentionally 123

flipped labels to disrupt the clean mapping. By 124

analyzing the distribution’s difference between the 125

poisoned model and the fine-tuned DMM, the poi- 126

soned data can be effectively identified. 127

Due to the robust retention of trigger features 128

and the concealment of backdoor trigger design, 129

existing methods only using clean data to defend 130

against backdoor attacks generally suffer from trig- 131

ger residue, resulting in high attack success rate 132

(ASR). Therefore, we propose a adversarial knowl- 133

edge distillation (AKD), which employs a cycle 134

iteration mechanism to maintain the clean map- 135

ping and erase the backdoor mapping using a small 136

amount of clean and poisoned data. Each AKD 137

cycle iteration consists of two stages: trust distilla- 138

tion and punish distillation. The former leverages a 139

small set of clean data to enable the student model 140

to learn clean mapping from the teacher model, 141

while the latter enables the student model to erase 142

backdoor mapping on a handful of poisoned data 143

through a penalty loss function. 144

We conduct extensive experiments on SST2, 145

OLID, and AGnews to evaluate the performance 146

of our proposed BeDKD. Extensive experimental 147

results demonstrate that our proposed method can 148

reduce ASR by 99 % and without significantly com- 149

promising CACC in most cases, which outperforms 150

the state-of-the-art backdoor defense methods. 151

Our contributions are summarized as follows: 152

• We explore a novel model-level backdoor de- 153

fense method based on directional mapping 154

module and adversarial knowledge distillation 155

(BeDKD), which makes a satisfied trade-off 156

between defense effectiveness and model per- 157

formance via a small amount of clean and 158

poisoned data. 159

• We introduce a directional mapping module 160

(DMM) that destroys clean mapping from a 161

handful of clean data through transfer learning 162

to identify poisoned data. To suppress back- 163

door mapping, the adversarial knowledge dis- 164

tillation (AKD) is designed, which guides the 165

poisoned student model to learn clean map- 166

ping on clean data through trust distillation 167

and push away backdoor mapping on poi- 168

soned data through punish distillation from 169

the poisoned teacher model. 170

2

• We conduct extensive experiments to evalu-171

ate the effectiveness of our method on three172

public benchmarks: OLID, SST2, and AG-173

news. The experimental results illustrate that174

our method reduces the ASR by 99% without175

significantly reducing CACC, which outper-176

forms the SOTA defenses.177

2 Related Work178

2.1 Backdoor Attack179

Dai et al. (Dai et al., 2019) and Chen et al. (Chen180

et al., 2021) inserted meaningful fixed short sen-181

tences and the rare words as triggers into clean data.182

Qi et al. (Qi et al., 2021b) and Pan et al. (Pan et al.,183

2022) rewritten sentences with a specific syntac-184

tic structure and style as triggers. Yan et al. (Yan185

et al., 2022) capitalized on spurious correlations186

between the target label and specific words in train-187

ing data. Du et al. (Du et al., 2024) fine-tunes188

large language models based on attribute control to189

generate poisoned data. Li et al. (Li et al., 2024)190

designed hand-crafted prompt and utilized GPT-3.5191

to generate rephrased poisoned sentences. With the192

advancement of backdoor attacks, designing an ac-193

curate and effective backdoor defense method is194

still a critical and pressing challenge.195

2.2 Backdoor Defense196

(1) Data-Level Defenses. Qi et al. (Qi et al.,197

2021a) utilized an external language model as a198

grammar outlier detector to remove trigger words199

from the input. Yang et al. (Yang et al., 2021)200

used an additional prompt-based optimizer to ver-201

ify the output logit permutation. Chen et al. (Chen202

and Dai, 2021) identified trigger words using word203

importance scores. Gao et al. (Gao et al., 2022)204

detected poisoned data by randomly perturbing fea-205

tures and analyzing output changes of each data.206

He et al. (He et al., 2023a) used gradients or self-207

attention scores to self-defend against backdoor208

attacks. Although existing data-level defenses suc-209

cessfully defend against backdoor attacks, they still210

have alive backdoors. (2) Model-Level Defenses.211

He et al. (He et al., 2023b) computed the spurious212

correlation between text features and labels to clean213

the poisoned training set and retained the victim214

model. Zhao et al. (Zhao et al., 2024d) erased back-215

doors through attention head pruning and weights216

normalization. Pei et al. (Pei et al., 2024) trained217

multiple classifiers on divided m sub-training sets218

and ensembled their predictions. These defenses219

mitigate backdoor attacks effectively, while they 220

struggle to balance the trade-off between backdoor 221

erasing and model performance and require sub- 222

stantial clean data for fine-tuning. 223

2.3 Knowledge Distillation 224

Knowledge distillation (KD) compressed larger or 225

ensemble networks (teacher models) into smaller 226

networks (student models) (Hinton et al., 2015). 227

Feature maps and attention mechanisms had proven 228

effective in KD, enabling student models to learn 229

high-quality intermediate representations from 230

teacher models, thereby enhancing distillation and 231

improving performance (Byeongho Heo, 2019; 232

Tian et al., 2020). KD had been applied to speech 233

recognition (Zhao et al., 2020; Zhang et al., 2023), 234

visual recognition (Zagoruyko and Komodakis, 235

2017; Zhao and Han, 2021), backdoor defense (Li 236

et al., 2021; Zhao et al., 2024b). Zhao et al. (Zhao 237

et al., 2024b) fine-tuned BERT on a large task- 238

related clean dataset as the teacher model to guide 239

the poisoned model to erase backdoors via knowl- 240

edge distillation. However, they rely heavily on 241

large volumes of clean data, posing challenges in 242

low-resource scenarios. 243

3 Methodology 244

3.1 Preliminaries 245

Attacker’s Goal. Attackers contaminate the train- 246

ing sets and upload them to third-party platforms 247

(e.g., HuggingFace, GitHub, etc.). When users 248

train or fine-tune models on these sets, the back- 249

door mapping is automatically introduced into the 250

victim models. Specifically, attackers divide the 251

training set D into two subsets: Dc, which is 252

reserved as clean data, and Dp, which is used 253

for poisoning. Then, a transform operation F : 254

{(x, y) → (x∗, yt)} is designed, where x is the 255

clean sample, y is the corresponding label, x∗ 256

represents the poisoned sample obtained by in- 257

serting trigger t into the clean sample x, and yt 258

represents the target label. The operation F is 259

applied to Dp to obtain the poisoned subset D∗
p. 260

The optimization objectives of the victim model 261

are θ∗ = arg min
θ

{E(xi,yi)∼Dc
[L(fθ(xi), yi)] + 262

E(x∗
i ,yt)∼D∗

p
[L(fθ(x∗i), yt)]}, where θ is the pa- 263

rameter of the victim model f . L is the cross- 264

entropy loss function. The poisoned model only 265

activates backdoor mapping on triggered inputs and 266

maintains normal mapping on clean inputs. 267

3

clean data

clean data

training
set

Softmax Layer Froze Parameters Train Parameters Poisoned Embeddings Trust-Distillation Punish-Distillation

Poisoned Model

DMM

poisoned data

...

a nice movie.
Negative

a nice movie.
Negative

x: a nice movie.
y’: negative
flipped subset

x: a boring
movie. cf
y: positive

...

...

...x: a boring
movie. cf
y: positive

x: a boring
movie. cf
y: positiveLDMM

0
1

MEPD<γ
Y

Ht HsSFt

Ltrust

Lpenalty

Cycle
Iteration

Mechanism

SFs Ht HsSFt SFs

......

Poisoned Model

...

Poisoned Model

...

Clean Model

...

......

share parameters

Encoder

(a) Directional Mapping Module Distillation (b) Poisoned Data Identification

......

Distilled DMM

...

(c) Adversarial Knowledge Distillation

DMM(x)fθ*(x)

Figure 2: Our BeDKD framework. (a) Directional mapping module distillation. We distill the DMM from the
poisoned model (fθ∗) on the flipped data, a small number of clean data with flipped labels, to destroy the clean
mapping. (b) Poisoned data identification. We compute the mean error of probability distributions (MEPD) between
the fθ∗ and the distilled DMM to identify a handful of poisoned data from the poisoned training set. (c) Adversarial
knowledge distillation. The fθ∗ guides the poisoned student model (CM) to pull the clean mapping on the clean
data and push away the backdoor mapping on the poisoned data via a cycle iteration mechanism, which alternates
trust and punish distillations. Notably, the initial DMM and CM have the same architecture and parameters as fθ∗ .

Defender’s Goal. Following the previous backdoor268

defenses (Chen and Dai, 2021; Pei et al., 2024;269

Zhao et al., 2024b), we assume that the defender270

has access to the training set but is unaware of the271

presence of poisoned data within it. The goal of272

our defender is to distill a clean model from the273

poisoned model using the poisoned training set,274

while preserving the clean mapping and eliminat-275

ing the backdoor mapping. This means that the276

defended model should have a low attack success277

rate on the poisoned test set, while maintaining a278

high classification accuracy on the clean test set.279

3.2 Overview of BeDKD280

Figure 2 illustrates the framework of our proposed281

BeDKD, which consists of three key steps: direc-282

tional mapping module (DMM) distillation, poi-283

soned data identification, and adversarial knowl-284

edge distillation (AKD). First, the DMM is dis-285

tilled on a small flipped clean samples to enhance286

the backdoor mapping, after which it identifies a287

small amount of poisoned data from the training set.288

Then, the AKD is applied to derive a clean model289

from the poisoned model, using both the identified290

poisoned data and a small amount of clean data,291

following a cycle iteration mechanism.292

3.3 Distilled DMM for Locating Poisoned293

Data294

Traditional backdoor defenses use clean data for295

fine-tuning or distillation to erase the backdoors296

(Zhao et al., 2024d,b). However, they require a297

large number of clean data and fall short of com- 298

pletely eliminating the backdoor mapping (higher 299

ASR). This paper leverages a small number of clean 300

samples to identify a small number of poisoned 301

samples and incorporates them into the distillation 302

process, enabling the model to more effectively re- 303

move backdoors. To find poisoned samples, we 304

propose the Directional Mapping Module (DMM), 305

which has the same structure as the poisoned model 306

and is distilled by a small amount of flipped clean 307

data to disrupt the clean mapping of the DMM 308

while reinforcing the backdoor mapping, thereby 309

facilitating the identification of trustworthy poi- 310

soned samples. The goal of DMM is to make the 311

probability distribution difference of clean map- 312

ping as large as possible, while making the proba- 313

bility distribution difference of backdoor mapping 314

as small as possible. 315

Assume that we have access to a small number 316

of clean data Dfew
c (Yosinski et al., 2014; Zhao 317

et al., 2024d,b). We modify the ground-truth label 318

y of clean data x and flip it to an incorrect label 319

y′ ∈ Y to create a flipped clean data Dfew′
c , where 320

Y is label space. We initialized the DMM with 321

shared parameters from the fθ∗ . 322

To destroy the clean mapping of DMM, we apply 323

the cross-entropy loss as the hard loss, which cal- 324

culates the loss value between the predicted label 325

and the flipped label y′. The formula is as follows: 326

Lhard = −
∑

(x,y′)∈D
few′
c

y′ log(DMM(x)), (1) 327

where, DMM(·) is the prediction of the DMM. 328

4

Fine-tuning the DMM on the flipped data Dfew′
c329

is equivalent to introducing a new mapping relation-330

ship, which leads the DMM to readjust the feature331

distribution and reduces the stability of backdoor332

mapping. To reinforce the backdoor mapping of333

DMM, we introduce knowledge distillation for fea-334

ture alignment by incorporating Kullback-Leibler335

(KL) divergence and mean square error (MSE) loss336

as the soft loss:337

Lsoft = −
∑

x∈Dfew′
c

SFt(x, T) log(SFs(x, T))338

+Mean(
∑

x∈Dfew′
c

(Ht(x)−Hs(x)
2), (2)339

where T is the temperature. SFt(x, T) and340

SFs(x, T) are the softmax layer output of the poi-341

soned teacher fθ∗ and student model DMM with T ,342

respectively. Ht(·) and Hs(·) are the last hidden343

sates of fθ∗ and DMM, respectively.344

In the fine-tune stage of DMM, the total loss is345

formulated by combining the hard loss (Eq.1) and346

soft loss (Eq.2) to achieve the desired balance be-347

tween disrupting the clean mapping and preserving348

the backdoor mapping. The total loss is as follows:349

LDMM = αLhard + (1− α) ∗ (Lsoft), (3)350

where α ∈ [0, 1] is the hyper-parameter.351

After distilling the DMM, there will be a devi-352

ation in the probability distribution for clean in-353

puts between the DMM and fθ∗ , while the output354

probabilities for poisoned inputs show almost no355

deviation. Therefore, poisoned data can be identi-356

fied by calculating the mean error of the probability357

distributions between the DMM and fθ∗ .358

MEPD =

∑Y
y abs(fθ∗(x, y)−DMM(x, y))

|Y | , (4)359

where abs(·) is the absolute value function.360

fθ∗(x, y) represents the probability that the data361

x is predicted to be y. When the MEPD of the data362

is less than the threshold γ, it is considered to be363

poisoned. Otherwise, it is clean data.364

3.4 Adversarial Knowledge Distillation365

Traditional knowledge distillation focuses on guid-366

ing the student model to learn the feature distri-367

butions of the teacher model, thereby facilitating368

knowledge transfer and enhancing generalization369

(Phuong and Lampert, 2019). However, in the task370

of backdoor defense, directly applying traditional371

knowledge distillation methods can lead the stu-372

dent model to simultaneously learn both the clean373

mapping and backdoor mapping from the poisoned 374

teacher model, making it difficult to eliminate back- 375

doors (detailed discussion in Section 4.3). In ad- 376

dition, although some studies utilize task-related 377

clean datasets to distill a clean model from the poi- 378

soned model, such as W2SDefense (Zhao et al., 379

2024b), they require a large amount of clean data, 380

which limits their practical application. To ad- 381

dress this issue, we propose an Adversarial Knowl- 382

edge Distillation (AKD) method, which employs 383

an adversarial distillation strategy to promote the 384

learning of clean mapping while suppressing the 385

learning of backdoor mapping on limited clean and 386

poisoned data (as shown in Figure 2(c)). Specifi- 387

cally, the teacher model is the poisoned model fθ∗ 388

with frozen parameters, while the student model 389

(CM) shares the same architecture and parameters 390

as fθ∗ . The AKD framework adopts a cycle iter- 391

ation mechanism, performing trust distillation on 392

a small amount of clean data and punish distilla- 393

tion on a small amount of poisoned data identified 394

in the previous step. By alternating between the 395

two types of distillation, the backdoor mapping is 396

eliminated without reducing the clean mapping. 397

To be specific, trust distillation utilizes the clean 398

data Dfew
c to instruct the CM reinforce the learn- 399

ing of clean mapping from the fθ∗ . The loss func- 400

tion is shown below: 401

Ltrsut = λLhard + (1− λ) ∗ (Lsoft), (5) 402

where λ is the hyper-parameter. Lhard and Lsoft 403

denotes the Eq. 1 and 2. 404

Punish distillation applies a small number of 405

poisoned data Dfew∗
p identified by DMM to prevent 406

the CM from learning the backdoor mapping of 407

the fθ∗ to erase the backdoor via the penalty loss 408

function. The loss function as follows: 409

Lpenalty = −(λLhard + (1− λ) ∗ (Lsoft)). (6) 410

The optimize objectives of AKD as follows: 411

θ̃∗ = arg min
θ∗

{E
(xi,yi)∼Dfew

c
[Ltrust(fθ∗(xi), yi)] 412

+ E
(xi,y∗)∼Dfew∗

p
[Lpenalty(fθ∗(xi), y

∗)]}. (7) 413

The algorithm of the BeDKD is listed in Appendix 414

A. During the training stage, the AKD performs 415

a cycle iteration mechanism, alternating between 416

trust and punish distillation. By alternating these 417

two distillations, AKD ensures that the clean map- 418

ping is strengthened through the trust distillation, 419

while the backdoor mapping is gradually erased 420

during the punish distillation. 421

5

4 Evaluation422

4.1 Evaluation Settings423

Datasets. We conduct experiments on three pub-424

lic benchmark datasets: Stanford Sentiment Tree-425

bank (SST2) (Socher et al., 2013), AGnews (Zhang426

et al., 2015), and Offensive Language Identifica-427

tion Dataset (OLID) (Dai et al., 2020). Following428

previous studies (Qi et al., 2021a; He et al., 2023a;429

Pei et al., 2024), the poisoned rates of datasets are430

set to 20%. More details are listed in Appendix B.431

Attacks. We simulate three prominent backdoor432

attacks to poison the widely adopted victim model433

BERT. We use three backdoor attacks: AddSent434

(Dai et al., 2019), BadWords (Chen et al., 2021),435

and SynBkd (Qi et al., 2021b). More details are436

listed in Appendix C.437

Baselines. To verify the performance of BeDKD,438

we compare it with five mainstream defenses: Fine-439

Tuning (FT) (Yosinski et al., 2014), ONION (Qi440

et al., 2021a), IMBERT (He et al., 2023a), Text-441

Guard (Pei et al., 2024), and W2SDefense (Zhao442

et al., 2024b). Details are listed in Appendix D.443

Metrics. To be fair, we follow previous studies444

(Qi et al., 2021a; He et al., 2023a; Pei et al., 2024)445

and utilize four commonly adopted metrics: At-446

tack Success Rate (ASR), Clean Accuracy (CACC),447

False Acceptance Rate (FAR), and False Rejection448

Rate (FRR). ASR measures the accuracy of poi-449

soned models on poisoned data. CACC assesses450

the accuracy of both poisoned and clean models451

on clean data. FAR represents the percentage of452

poisoned data classified as clean out of all poisoned453

data. FRR indicates the percentage of clean data454

classified as poisoned out of all clean data.455

Implementation Details. We conduct experiments456

in the same setting on 3090 GPUs and Python 3.8.457

We leverage the AdamW optimizer with the learn-458

ing rate of 3 × 10−5 to train the poisoned model459

for 10 epochs. According to previous experience,460

the temperatures T of the DMM and AKD are set461

to 1.5 and 2.5, respectively. The α and λ are both462

set to 0.3. We train the DMM and AKD for 20463

epochs and 50 epochs, respectively. To be fair, the464

threshold γ of MEDP is set to 0.1, the number of465

each class nc is set to 320, and the number of poi-466

soned data np is 32 in our main experiments. The467

sensitivity analysis of γ, nc, and np are explored in468

Section 4.4.469

4.2 Comparison Results 470

Table 1 summarizes the performance comparison of 471

our proposed method with the other four backdoor 472

defense baselines. The column of "No defense" 473

is listed to show the ASR and CACC of poisoned 474

models without any defenses. The experimental re- 475

sults demonstrate that all backdoor attacks always 476

achieve more than 99% ASR. 477

The proposed BeDKD significantly outperforms 478

all baselines on most attack settings and lowers 479

around 99% of all backdoor attacks without com- 480

promising CACC in most cases. For BadWords 481

and AddSent backdoor attacks, their triggers are 482

visible rare words and fixed sentences, respectively. 483

Although most baselines can mitigate these attacks, 484

BeDKD achieves lower ASR and higher CACC, 485

especially the average ASR and CACC on the three 486

datasets achieve 0.01% and 88.41%, which is better 487

than the best baseline, W2SDefense (average ASR 488

15.92% and CACC 87.83%). For SynBkd, BeDKD 489

surpasses the best baselines and reduces the aver- 490

age ASR to 1.5% (↓15% than W2SDefense). These 491

results demonstrate that BeDKD can effectively 492

defend against both visible and invisible trigger 493

patterns. On the OLID dataset, all defense base- 494

lines cannot work well because the scale of the 495

dataset is small. While our proposed BeDKD still 496

effectively defends against all backdoor attacks on 497

the OLID dataset and reduces the average ASR to 498

0.56% (↓8.47% than W2SDefense). Overall, our 499

BeDKD makes a satisfactory trade-off between 500

backdoor defense and model performance on a 501

small amount of clean data. More experiments 502

on different victims are listed in Appendix E. 503

4.3 Ablation Study 504

The Impact of DMM and AKD. We further con- 505

duct ablation experiments on the BERT model to 506

examine the contributions of DMM and AKD in 507

our method to the results, and the experimental 508

results are presented in Table 2. As illustrated in 509

Table 2, both the DMM and AKD significantly en- 510

hance the effectiveness of defense. The FT and KD 511

methods both suffer from trigger residue, where 512

they only reduce the ASR by almost 30% and 1%, 513

respectively. When the DMM is incorporated into 514

FT and KD, the ASR decreases by nearly 60% on 515

SST2, while the CACC remains unchanged. Sim- 516

ilarly, employing the AKD and DMM to defend 517

against three backdoor attacks results in a further 518

reduction of ASR by nearly 30%, with CACC only 519

6

Attacks
No Defense Fine-Tuning ONION IMBERT TextGuard W2SDefense Ours

ASR↑ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑
SST2

Clean - 91.97 - 89.79 - 90.02 - 83.95 - 89.45 - 89.91 - 91.06
BadWords 100.00 91.63 63.06 88.65 49.32 89.40 20.95 83.95 35.59 89.56 21.17 89.79 0.00 90.14
AddSent 100.00 91.62 72.07 88.07 91.67 88.07 18.02 85.67 21.40 90.02 55.63 91.17 0.00 91.17
Syntax 95.27 91.51 66.22 89.22 90.09 90.02 89.86 86.01 48.42 89.11 40.09 90.71 2.48 90.48

Average 98.42 91.68 67.12 88.93 77.03 89.38 42.94 84.90 35.14 89.54 38.96 90.40 0.83 90.71
OLID

Clean - 82.79 - 83.14 - 81.98 - 80.58 - 84.19 - 80.70 - 81.39
BadWords 100 83.95 92.08 79.30 79.17 80.93 82.08 82.33 59.58 84.07 10.83 79.30 0.00 80.81
AddSent 100 81.98 95.83 79.88 95.00 82.09 85.42 81.51 100.00 84.88 6.25 79.42 0.00 81.28
Syntax 99.58 82.67 96.25 81.28 98.75 80.35 98.33 82.33 96.67 83.95 10.00 80.70 1.67 79.88

Average 99.86 82.85 94.72 80.90 90.97 81.34 88.61 81.69 85.42 84.27 9.03 80.03 0.56 80.84
AGnews

Clean - 93.96 - 92.87 - 92.33 - 93.12 - 91.93 - 93.93 - 92.86
BadWords 100.00 94.01 51.09 92.47 29.65 91.97 12.30 93.13 63.32 91.65 1.67 93.94 0.04 93.53
AddSent 100.00 93.9 43.46 92.43 65.75 91.86 11.81 93.01 2.18 91.65 0.00 93.92 0.00 93.53
Syntax 99.88 93.92 35.16 92.83 94.91 91.18 94.37 92.55 5.75 91.75 0.39 93.91 0.02 94.00

Average 99.96 93.95 43.24 92.65 63.44 91.84 39.49 92.95 23.75 91.75 0.69 93.93 0.02 93.48

Table 1: ASR and CACC of the proposed method compare with baselines. The bold and underline are the best and
second best values. "Clean" means the performance of clean model, which trains on clean dataset.

Defense
BadWords AddSent SynBkd

ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑
FT 63.06 88.65 72.07 88.07 66.22 89.22

FT+DMM 19.60 88.30 10.59 89.33 22.97 87.84
KD 100.00 91.74 100.00 91.4 94.60 91.97

KD+DMM 20.50 91.86 14.41 91.63 40.54 91.17
DMM+AKD 0.00 90.14 0.00 91.17 2.48 90.48

Table 2: Performance of DMM and ADK on the SST2.

Attacks Loss Functions FAR↓ FRR↓

BadWords Lhard 0.00 4.13
Lhard+Lsoft 0.00 0.92

AddSent Lhard 76.13 4.59
Lhard+Lsoft 0.00 0.69

SynBkd Lhard 66.67 3.90
Lhard+Lsoft 42.12 1.38

Table 3: Performance of the loss function in DMM.

decreasing almost 1%. This indicates that the AKD520

effectively erases the backdoor mapping to the max-521

imum extent while preserving the clean mapping.522

Consequently, our proposed BeDKD, which inte-523

grates the DMM and AKD, achieves the lowest524

ASR while maintaining acceptable CACC.525

The Impact of Loss Function. We explore the526

roles of Lhard (Eq. 1) and Lsoft (Eq. 2) in the527

DMM on the SST2, and the experimental results528

are shown in Table 3. The lower FRR means the529

probability distribution difference of clean map-530

ping is larger, while the lower FAR means the prob-531

ability distribution difference of backdoor mapping532

is smaller. For Lhard, FRR is close to 4% on all533

three backdoor attacks, but FAR is close to 70% on534

the AddSent and SynBkd, indicating that Lhard is535

not only effective in destroying the clean mapping536

but also in destroying the backdoor mapping of the537

DMM. After the addition of Lsoft, the FRR on all 538

three attacks dropped to about 1%, and the FAR all 539

dropped significantly, especially on the AddSent. 540

Notably, compared with BadWords and AddSent 541

attacks, the FAR achieves up to 42.2% on SynBkd 542

attack. The main reason is that the invisible trigger 543

pattern (SynBkd attack) confuses the clean map- 544

ping and the backdoor mapping for the same target 545

label classification (T-SNE of poisoned model is 546

provided in Appendix F). The distilled DMM not 547

only breaks the clean mapping but also affects the 548

backdoor mapping slightly. However, the goal of 549

DMM is to identify a small number of poisoned 550

data rather than all poisoned data. Therefore, the 551

DMM should achieve the lowest FRR and lower 552

FAR. These results illustrate that using only the 553

simple Lhard loss function will destroy both the 554

clean mapping and the backdoor mapping, while 555

combining the Lhard and Lsoft loss functions can 556

preserve the attention distributions of the backdoor 557

mapping as much as possible and destroy the clean 558

mapping of the DMM. 559

4.4 Sensitivity Analysis 560

The Impact of the Clean Number nc and Poi- 561

soned Number np. To explore the sensitivity of 562

AKD to nc and np, we examine the effects of dif- 563

ferent scales of clean and poisoned data in terms of 564

CACC and ASR on the SST2. As shown in Figure 565

3,when the nc is fixed at 320, the convergence rate 566

of AKD becomes faster as the scale of the poisoned 567

data np increases, especially on the SynBkd. As 568

demonstrated in Table 4, when the np is fixed at 569

32, CACC shows an overall upward trend and ASR 570

7

0

20

40

60

80

100

0 10 20 30 40

8-ASR
8-CACC
16-ASR
16-CACC
32-ASR
32-CACC

0

20

40

60

80

100

0 10 20 30 40

8-ASR
8-CACC
16-ASR
16-CACC
32-ASR
32-CACC

0

20

40

60

80

100

0 10 20 30 40

8-ASR
8-CACC
16-ASR
16-CACC
32-ASR
32-CACC

epoches epoches epoches

(3) SST2-SynBkd(2) SST2-AddSent(1) SST2-BadWords

Figure 3: ASR and CACC of different scale of poisoned data np on the SST2 when nc = 320. The solid and dashed
lines are CACC and ASR, respectively.

0

20

40

60

80

100

0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

FAR
FRR

0

20

40

60

80

100

0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

FAR
FRR

0

20

40

60

80

100

0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

FAR
FRR

(1) SST2-BadWords (2) SST2-AddSent (3) SST2-SynBkd

� � �

Figure 4: FAR and FRR of different threshold γ on the SST2.

shows a small fluctuation with the increase of nc.571

The main reason is that the proportion of clean data572

and poisoned data will impact the learning of the573

final model. A larger proportion (nc/np) makes574

the final model learn the clean mapping and re-575

duces the penalty force of the backdoor mapping,576

resulting in the clean model still retaining part of577

the backdoor mapping. While a small proportion578

(nc/np) makes the final model pay more attention579

to destroying the backdoor mapping and reducing580

the learning of the clean mapping, resulting in a581

lower CACC. In summary, when the nc is 320 and582

the np is 32, the proposed method achieves the best583

defense effect on both ASR and CACC.584

The Impact of Threshold γ. As shown in Fig-585

ure 4, with the increase of the threshold γ, the586

FAR gradually decreases while the FRR gradu-587

ally increases. The lower FRR means the prob-588

ability distribution difference of clean mapping is589

larger, while the lower FAR means the probabil-590

ity distribution difference of backdoor mapping is591

smaller. Due to the invisible trigger pattern, the592

FAR achieves up to 40% on SynBkd attack when593

γ = 0.1. However, as discussed in Section 4.3, the594

goal of DMM is to identify a handful of poisoned595

data accurately rather than all poisoned data. There-596

fore, the DMM should achieve the lowest FRR and597

lower FAR. Overall, when γ = 0.1, the optimal598

balance between FAR and FRR can be achieved.599

nc
BadWords AddSent SynBkd

ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑
80 0.00 90.02 0.00 88.19 0.90 85.09
160 0.00 90.14 0.00 90.25 2.70 89.45
320 0.00 90.14 0.00 91.17 2.48 90.48
640 7.66 90.94 0.00 91.40 4.50 90.71

Table 4: CACC and ASR of different scale of clean data
nc on the SST2. For clean data Dfew

c , nc is the number
of clean samples in each class.

5 Conclusion 600

In this paper, we propose a novel backdoor de- 601

fense method, called BeDKD, which balances back- 602

door defense and model performance using a small 603

amount of clean and poisoned data. The DMM 604

identifies a handful of poisoned data through a 605

small number of clean data and knowledge dis- 606

tillation, which disrupts the clean mapping and 607

keeps the backdoor mapping. The AKD preserves 608

the clean mapping and suppresses the backdoor 609

mapping of the poisoned model using clean and 610

identified poisoned data through a cycle iteration 611

mechanism. Extensive experimental results illus- 612

trate that our proposed BeDKD can effectively re- 613

duce the ASR without significantly reducing the 614

CACC via a small number of clean and poisoned 615

data. Our work has provided a defense strategy 616

against backdoor attacks that makes a satisfactory 617

trade-off between ASR and CACC as much as pos- 618

sible, enhancing the security of DNNs. 619

8

Limitations620

Our proposed method has the following limita-621

tions: (1) Our method relies on the assumption622

that we can access the poisoned training set and623

the poisoned model. (2) Our method mainly de-624

fends against the poisoned classification models,625

and the effectiveness of BeDKD against the genera-626

tive LLMs remains to be investigated. (3) Although627

we have conduct extensive experiments on three628

mainstream backdoor attacks, three datasets, and629

five defenses to evaluate the effectiveness of our630

BeDKD, we agree that more attack methods and631

defenses should be investigated.632

Ethical Statement633

The BeDKD proposed in this paper is mainly for634

defending against backdoor attacks to enhance the635

security and credibility of the model. It is important636

to note that the proposed BeDKD does not involve637

creating new backdoor attacks but rather defends638

against existing backdoor attacks. In this paper,639

all the attacks and defenses were conducted on640

publicly available clean benchmark datasets and641

clean models, and no poisoned datasets or victim642

models were uploaded into third-party websites.643

References644

Sangdoo Yun Jin Young Choi Byeongho Heo, Min-645
sik Lee. 2019. Knowledge transfer via distillation of646
activation boundaries formed by hidden neurons. In647
AAAI.648

Chuanshuai Chen and Jiazhu Dai. 2021. Mitigating649
backdoor attacks in lstm-based text classification sys-650
tems by backdoor keyword identification. Neurocom-651
puting.652

Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael653
Backes, Shiqing Ma, Qingni Shen, Zhonghai Wu, and654
Yang Zhang. 2021. Badnl: Backdoor attacks against655
nlp models with semantic-preserving improvements.656
In ACSAC.657

Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. 2019. A658
backdoor attack against lstm-based text classification659
systems. IEEE Access.660

Wenliang Dai, Tiezheng Yu, Zihan Liu, and Pascale661
Fung. 2020. Kungfupanda at SemEval-2020 task662
12: BERT-based multi-TaskLearning for offensive663
language detection. In Proceedings of the Fourteenth664
Workshop on Semantic Evaluation.665

Thomas Davidson, Dana Warmsley, Michael Macy, and666
Ingmar Weber. 2017. Automated hate speech detec-667
tion and the problem of offensive language. Proceed-668

ings of the International AAAI Conference on Web 669
and Social Media, 11(1):512–515. 670

Wei Du, Tianjie Ju, Ge Ren, GaoLei Li, and Gongshen 671
Liu. 2024. Backdoor NLP models via AI-generated 672
text. In LREC-COLING. 673

Yansong Gao, Yeonjae Kim, Bao Gia Doan, Zhi Zhang, 674
Gongxuan Zhang, Surya Nepal, Damith C. Ranas- 675
inghe, and Hyoungshick Kim. 2022. Design and 676
evaluation of a multi-domain trojan detection method 677
on deep neural networks. IEEE Transactions on De- 678
pendable and Secure Computing. 679

Xuanli He, Jun Wang, Benjamin Rubinstein, and Trevor 680
Cohn. 2023a. IMBERT: Making BERT immune to 681
insertion-based backdoor attacks. In Proceedings of 682
the 3rd Workshop on Trustworthy Natural Language 683
Processing. 684

Xuanli He, Qiongkai Xu, Jun Wang, Benjamin Rubin- 685
stein, and Trevor Cohn. 2023b. Mitigating backdoor 686
poisoning attacks through the lens of spurious corre- 687
lation. In EMNLP. 688

Yingzhe He, Guozhu Meng, Kai Chen, Xingbo Hu, and 689
Jinwen He. 2022. Towards security threats of deep 690
learning systems: A survey. IEEE Transactions on 691
Software Engineering. 692

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. 693
Distilling the knowledge in a neural network. In 694
NIPS Deep Learning and Representation Learning 695
Workshop. 696

Yujin Huang, Terry Yue Zhuo, Qiongkai Xu, Han 697
Hu, Xingliang Yuan, and Chunyang Chen. 2023. 698
Training-free lexical backdoor attacks on language 699
models. In Proceedings of the ACM Web Conference. 700

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke 701
Zettlemoyer. 2018. Adversarial example generation 702
with syntactically controlled paraphrase networks. In 703
NAACL. 704

Lesheng Jin, Zihan Wang, and Jingbo Shang. 2022. 705
WeDef: Weakly supervised backdoor defense for 706
text classification. In EMNLP. 707

Jiazhao Li, Zhuofeng Wu, Wei Ping, Chaowei Xiao, and 708
V.G.Vinod Vydiswaran. 2023. Defending against 709
insertion-based textual backdoor attacks via attribu- 710
tion. In ACL Findings. 711

Jiazhao Li, Yijin Yang, Zhuofeng Wu, V.G.Vinod Vy- 712
diswaran, and Chaowei Xiao. 2024. ChatGPT as 713
an attack tool: Stealthy textual backdoor attack via 714
blackbox generative model trigger. In NAACL. 715

Shaofeng Li, Tian Dong, Benjamin Zi Hao Zhao, Min- 716
hui Xue, Suguo Du, and Haojin Zhu. 2022a. Back- 717
doors against natural language processing: A review. 718
IEEE Security & Privacy. 719

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, 720
Bo Li, and Xingjun Ma. 2021. Neural attention dis- 721
tillation: Erasing backdoor triggers from deep neural 722
networks. In ICLR. 723

9

https://doi.org/10.1609/icwsm.v11i1.14955
https://doi.org/10.1609/icwsm.v11i1.14955
https://doi.org/10.1609/icwsm.v11i1.14955

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia.724
2022b. Backdoor learning: A survey. IEEE Transac-725
tions on Neural Networks and Learning Systems.726

Zhuoran Ma, Jianfeng Ma, Yinbin Miao, Ximeng Liu,727
Kim-Kwang Raymond Choo, and Robert H Deng.728
2021. Pocket diagnosis: Secure federated learning729
against poisoning attack in the cloud. IEEE Transac-730
tions on Services Computing.731

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,732
Dan Huang, Andrew Y. Ng, and Christopher Potts.733
2011. Learning word vectors for sentiment analysis.734
In Proceedings of the 49th Annual Meeting of the735
Association for Computational Linguistics: Human736
Language Technologies, pages 142–150, Portland,737
Oregon, USA. Association for Computational Lin-738
guistics.739

Thuy Dung Nguyen, Tuan Nguyen, Phi Le Nguyen,740
Hieu H Pham, Khoa D Doan, and Kok-Seng Wong.741
2024. Backdoor attacks and defenses in federated742
learning: Survey, challenges and future research di-743
rections. Engineering Applications of Artificial Intel-744
ligence.745

Xudong Pan, Mi Zhang, Beina Sheng, Jiaming Zhu,746
and Min Yang. 2022. Hidden trigger backdoor attack747
on nlp models via linguistic style manipulation. In748
USENIX Security Symposium.749

Hengzhi Pei, Jinyuan Jia, Wenbo Guo, Bo Li, and Dawn750
Song. 2024. Textguard: Provable defense against751
backdoor attacks on text classification. In NDSS.752

Mary Phuong and Christoph Lampert. 2019. Towards753
understanding knowledge distillation. In ICML.754

Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao,755
Zhiyuan Liu, and Maosong Sun. 2021a. ONION:756
A simple and effective defense against textual back-757
door attacks. In EMNLP.758

Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang,759
Zhiyuan Liu, Yasheng Wang, and Maosong Sun.760
2021b. Hidden killer: Invisible textual backdoor761
attacks with syntactic trigger. ACL-IJCNLP.762

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,763
Dario Amodei, Ilya Sutskever, and 1 others. 2019.764
Language models are unsupervised multitask learn-765
ers. OpenAI blog.766

Abdur Rahman, M Shamim Hossain, Nabil A Alra-767
jeh, and Fawaz Alsolami. 2020. Adversarial exam-768
ples—security threats to covid-19 deep learning sys-769
tems in medical iot devices. IEEE Internet of Things770
Journal.771

Richard Socher, Alex Perelygin, Jean Wu, Jason772
Chuang, Christopher D. Manning, Andrew Ng, and773
Christopher Potts. 2013. Recursive deep models for774
semantic compositionality over a sentiment treebank.775
In EMNLP.776

Xiaofei Sun, Xiaoya Li, Yuxian Meng, Xiang Ao, 777
Lingjuan Lyu, Jiwei Li, and Tianwei Zhang. 2023. 778
Defending against backdoor attacks in natural lan- 779
guage generation. AAAI. 780

Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2020. 781
Contrastive representation distillation. In ICLR. 782

Kshitiz Tiwari, Shuhan Yuan, and Lu Zhang. 2022. Ro- 783
bust hate speech detection via mitigating spurious 784
correlations. In AACL. 785

Jordan Vice, Naveed Akhtar, Richard Hartley, and Aj- 786
mal Mian. 2024. Bagm: A backdoor attack for ma- 787
nipulating text-to-image generative models. IEEE 788
Transactions on Information Forensics and Security. 789

Yichen Wan, Youyang Qu, Wei Ni, Yong Xiang, Longx- 790
iang Gao, and Ekram Hossain. 2024. Data and model 791
poisoning backdoor attacks on wireless federated 792
learning, and the defense mechanisms: A compre- 793
hensive survey. IEEE Communications Surveys & 794
Tutorials. 795

Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, 796
Harit Vishwakarma, Saurabh Agarwal, Jy-yong Sohn, 797
Kangwook Lee, and Dimitris Papailiopoulos. 2020. 798
Attack of the tails: Yes, you really can backdoor 799
federated learning. NeurIPS. 800

Jun Wang, Chang Xu, Francisco Guzmán, Ahmed El- 801
Kishky, Yuqing Tang, Benjamin Rubinstein, and 802
Trevor Cohn. 2021. Putting words into the system’s 803
mouth: A targeted attack on neural machine trans- 804
lation using monolingual data poisoning. In ACL 805
Findings. 806

Jun Wang, Qiongkai Xu, Xuanli He, Benjamin Rubin- 807
stein, and Trevor Cohn. 2024. Backdoor attacks on 808
multilingual machine translation. In NAACL. 809

Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao 810
Zhu, Shaokui Wei, Danni Yuan, and Chao Shen. 811
2022. Backdoorbench: A comprehensive benchmark 812
of backdoor learning. NeurIPS. 813

Zhaohan Xi, Tianyu Du, Changjiang Li, Ren Pang, 814
Shouling Ji, Jinghui Chen, Fenglong Ma, and Ting 815
Wang. 2023. Defending Pre-trained Language Mod- 816
els as Few-shot Learners against Backdoor Attacks. 817
In NeurIPS. 818

Jun Yan, Vansh Gupta, and Xiang Ren. 2022. Bite: Tex- 819
tual backdoor attacks with iterative trigger injection. 820
In ACL. 821

Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and 822
Xu Sun. 2021. RAP: Robustness-Aware Perturba- 823
tions for defending against backdoor attacks on NLP 824
models. In EMNLP. 825

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod 826
Lipson. 2014. How transferable are features in deep 827
neural networks? In NeurIPS. 828

10

https://aclanthology.org/P11-1015/

Sergey Zagoruyko and Nikos Komodakis. 2017. Paying829
more attention to attention: Improving the perfor-830
mance of convolutional neural networks via attention831
transfer. In ICLR.832

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.833
Character-level convolutional networks for text clas-834
sification. In NeurIPS.835

Yuxuan Zhang, Lei Liu, and Li Liu. 2023. Cuing with-836
out sharing: A federated cued speech recognition837
framework via mutual knowledge distillation. ACM838
MM.839

Bingchen Zhao and Kai Han. 2021. Novel visual cate-840
gory discovery with dual ranking statistics and mu-841
tual knowledge distillation.842

Shuai Zhao, Leilei Gan, Anh Tuan Luu, Jie Fu, Lingjuan843
Lyu, Meihuizi Jia, and Jinming Wen. 2024a. Defend-844
ing against weight-poisoning backdoor attacks for845
parameter-efficient fine-tuning. In NAACL Findings.846

Shuai Zhao, Xiaobao Wu, Cong-Duy Nguyen, Mei-847
huizi Jia, Yichao Feng, and Luu Anh Tuan. 2024b.848
Unlearning backdoor attacks for llms with weak-849
to-strong knowledge distillation. arXiv preprint850
arXiv:2410.14425.851

Xingyi Zhao, Depeng Xu, and Shuhan Yuan. 2024c. De-852
fense against backdoor attack on pre-trained language853
models via head pruning and attention normalization.854
In ICML.855

Xingyi Zhao, Depeng Xu, and Shuhan Yuan. 2024d. De-856
fense against backdoor attack on pre-trained language857
models via head pruning and attention normalization.858
In ICML.859

Ya Zhao, Rui Xu, Xinchao Wang, Peng Hou, Haihong860
Tang, and Mingli Song. 2020. Hearing lips: Im-861
proving lip reading by distilling speech recognizers.862
AAAI.863

Biru Zhu, Yujia Qin, Ganqu Cui, Yangyi Chen, Weilin864
Zhao, Chong Fu, Yangdong Deng, Zhiyuan Liu, Jin-865
gang Wang, Wei Wu, and 1 others. 2022. Moderate-866
fitting as a natural backdoor defender for pre-trained867
language models. NeurIPS.868

11

A Algorithm or BeDKD869

The algorithm of proposed BeDKD are presented870

in Algorithm 1. First, we flip the labels of a small871

amount of clean data to obtain the flipped set. Sec-872

ond, the flipped set is used to distill the DMM873

through knowledge distillation under the guidance874

of the teacher-poisoned model. Third, we iden-875

tify a handful of poisoned data through the prob-876

ability difference between the distilled DMM and877

poisoned model. Finally, we distill a clean model878

from the poisoned model through AKD on a small879

amount of clean and poisoned data.880

B Datasets881

We conduct experiments on SST2 (Socher et al.,882

2013), AGnews (Zhang et al., 2015), and OLID883

(Dai et al., 2020). The SST2 is a sentiment884

analysis dataset, containing 67,349 training sam-885

ples and 873 testing samples. The AGnews is a886

topic classification dataset, consisting of four cat-887

egories—World, Sports, Business, and Sci/Tech888

—with 120,000 training samples and 7,600 testing889

samples. The OLID is a toxic classification dataset890

with 13,240 training samples and 860 testing sam-891

ples. For SST2, the target label is "Negative". For892

AGnews, the target label is "Sports". For OLID,893

the target label is "No offensive".894

C Attacks895

(1) AddSent (Dai et al., 2019) chooses the low per-896

plexity sentence as triggers. (2) BadWords (Chen897

et al., 2021) considers 5 rarely used words ("cf",898

"mn", "tq", "mb", and "bb") as triggers. (3) Syn-899

Bkd (Qi et al., 2021b) utilizes the syntactically900

controlled paraphrase model (SCPN) (Iyyer et al.,901

2018) to generate sentence triggers with the spe-902

cific syntactic template "S(SBAR)(,)(NP)(VP)(.)".903

Following the previous studies (Qi et al., 2021a; He904

et al., 2023a; Pei et al., 2024; Zhao et al., 2024b),905

the poisoned rate is set to 20%.906

D Baselines907

(1) FT (Yosinski et al., 2014): Assumes that there908

are 20% clean data for fine-tuning poisoned models.909

(2) ONION (Qi et al., 2021a) uses GPT2-Large910

(Radford et al., 2019) to compute the change of911

perplexity of each token. (3) IMBERT (He et al.,912

2023a) set the target number of suspicious tokens913

K to 3. (4) TextGuard (Pei et al., 2024) sets the914

total number of groups m=9. (5) W2SDefense915

Attacks Victims
No Defense Ours

ASR↑ CACC↑ ASR↓ CACC↑

BadWords
BERT 100.00 91.63 0.00 90.14

BERT-Large 100.00 92.20 3.83 91.14
RoBERTa 100.00 91.97 0.00 92.32

AddSent
BERT 100.00 91.62 0.00 91.17

BERT-Large 100.00 93.81 0.00 90.71
RoBERTa 100.00 92.32 0.00 91.86

Syntax
BERT 95.27 91.51 2.48 90.48

BERT-Large 95.65 92.32 1.80 89.00
RoBERTa 94.14 93.46 3.38 91.63

Table 5: ASR and CACC of BeDKD on different victim
models. The datasets is SST2.

(Zhao et al., 2024b) fine-tunes a BERT through 916

the full-parameter fine-tune and utilizes it as the 917

teacher model to fine-tune the victim models 918

through parameter-efficient fine-tuning (PEFT) on 919

the proxy clean datasets. For SST2, the proxy clean 920

dataset is IMDB (Maas et al., 2011) (100,000 sam- 921

ples). For OLID, the proxy clean dataset is Hate- 922

speech (Davidson et al., 2017) (24,783 samples). 923

For AGnews, the proxy clean dataset consists of 924

8,000 clean samples from the AGnews. 925

E Effectiveness of BeDKD on Different 926

Victim Models 927

To explore the effectiveness of our proposed 928

BeDKD on different victim models, we conduct 929

experiments on three victim models: bert-base 930

(BERT), bert-large (BERT-Large), and roberta-base 931

(RoBERTa). The experimental results are presented 932

in Table 5, and "No Defense" denotes the perfor- 933

mance of victim models before defense. Our pro- 934

posed BeDKD reduces the ASR of three victim 935

models on three attacks less than 3.83% without 936

significantly reducing CACC. 937

F T-SNE Visualization 938

To further verify the effectiveness of our proposed 939

BeDKD, we leverage T-SNE to obtain the feature 940

visualization on 4,500 samples from the SST2. We 941

randomly select 1,500 samples from each class and 942

1,500 samples from poisoned data. As shown in 943

Figure 5, the poisoned samples of the "After" row 944

successfully cluster to the ground-truth label com- 945

pared with the "Before" row. As shown in "Before", 946

compared with visible trigger patterns (BadWords 947

and AddSent attacks), the backdoor mapping of 948

invisible trigger patterns (SynBkd attack) and clean 949

mapping of the target label are closer to each other. 950

The main reason for this phenomenon may be that 951

invisible triggers typically induce more nuanced 952

12

BadWords AddSent SynBkd

Before

After

Negative

Positive
Positive

Negative

Negative

Positive
Positive

Negative

Negative

Positive
Positive

Negative

Figure 5: T-SNE visualization of our proposed BeDKD on 1,500 samples for clean class and 1,500 poisoned
samples on the SST2. The target label of poisoned data is "Negative". "Before" column represents the visualization
of poisoned model. "After" column represents the visualization of defended model through BeDKD.

perturbations, making them less distinguishable953

from the intrinsic features associated with the clean954

mapping of target label. Even though our proposed955

BeDKD still achieves success in defending against956

invisible SynBkd attack, as shown in "After".957

13

Algorithm 1 BeDKD

Input: a small number of clean data Dfew
c ; the

training set D∗; the poisoned model fθ∗ ; the
number of poisoned data np; the threshold γ; and
the epoches of DMM Nm and AKD Nk

Output: clean model CM

1: # Directional mapping module distillation
2: Flip the labels of Dfew

c and obtain flipped
Dfew′

c

3: Copy the parameters of fθ∗ to initial DMM
4: for Epoch in range(0, Nm) do
5: for (x, y

′
) ∈ Dfew′

c do
6: Optimize LDMM by Eq. 3
7: end for
8: end for
9: # Poisoned data identification

10: Initial poisoned set Dfew∗
p = {}

11: for (x, y) ∈ D∗ do
12: Output the probability fθ∗(x) of poisoned

model
13: Output the probability DMM(x) of direc-

tional mapping module
14: Compute MEDP by Eq. 4
15: if MEPD < γ and len(Dfew∗

p) < np

then
16: Dfew∗

p .append((x, y))
17: end if
18: end for
19: # Adversarial Knowledge Distillation
20: Copy fθ∗ to initial student model CM
21: for Epoch in range(0, Nk) do
22: # Trust Distillation
23: for (x, y) ∈ Dfew

c do
24: Optimize Ltrust by Eq. 5
25: end for
26: # Punish Distillation
27: for (x∗, yt) ∈ Dfew∗

p do
28: Optimize Lpenalty by Eq. 6
29: end for
30: end for
31: return clean model CM

14

	Introduction
	Related Work
	Backdoor Attack
	Backdoor Defense
	Knowledge Distillation

	Methodology
	Preliminaries
	Overview of BeDKD
	Distilled DMM for Locating Poisoned Data
	Adversarial Knowledge Distillation

	Evaluation
	Evaluation Settings
	Comparison Results
	Ablation Study
	Sensitivity Analysis

	Conclusion
	Algorithm or BeDKD
	Datasets
	Attacks
	Baselines
	Effectiveness of BeDKD on Different Victim Models
	T-SNE Visualization

