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ABSTRACT

Gradient-based meta-learning is gaining prominence in implicit neural representa-
tions (INRs) to accelerate convergence. However, existing approaches primarily
concentrate on meta-learning weight initialization for unimodal signals. This
focus falls short when data is scarce, as noisy gradients from a small set of ob-
servations can hinder convergence and trigger overfitting. Moreover, real-world
data often stems from joint multimodal distributions, which share common or
complementary information across modalities. This presents an opportunity to
enhance convergence and performance, particularly when dealing with limited data.
Unfortunately, existing methods do not fully exploit this potential due to their main
focus on unimodal setups. In this work, we introduce a novel optimization-based
meta-learning framework, Multimodal Iterative Adaptation (MIA), that addresses
these limitations. MIA fosters continuous interaction among independent unimodal
INR learners, enabling them to capture cross-modal relationships and refine their
understanding of signals through iterative optimization steps. To achieve this goal,
we introduce additional meta-learned modules, dubbed State Fusion Transformers
(SFTs). Our SFTs are meta-learned to aggregate the states of the unimodal learners
(e.g. parameters and gradients), capture their potential cross-modal interactions,
and utilize this knowledge to provide enhanced weight updates and guidance to the
unimodal learners. In experiments, we demonstrate that MIA significantly improves
the modeling capabilities of unimodal meta-learners, achieving substantial enhance-
ments in generalization and memorization performances over unimodal baselines
across a variety of multimodal signals, ranging from 1D synthetic functions to
real-world vision, climate, and audiovisual data.

1 INTRODUCTION

Implicit neural representations (INRs) are a class of neural networks that is designed to represent
complex signals or data as coordinate-to-feature mapping functions. Since a variety of real-world
data can be represented as functions, (e.g. an image is a function I(x, y) = (r, g, b) mapping 2D
coordinates to color intensity values), numerous efforts have been made to formulate data as functions
and represent them with INRs in a wide variety of domains or modalities, including audios (Sitzmann
et al., 2020), time series (Fons et al., 2022), images (Sitzmann et al., 2020), videos (Chen et al.,
2021a), 3D geometries (Park et al., 2019) and scenes (Mildenhall et al., 2020). They have shown
remarkable promise in applications such as compression (Dupont et al., 2022b; Kim et al., 2022b),
generation (Skorokhodov et al., 2021; Yu et al., 2022), super-resolution (Chen et al., 2021b; 2022),
and novel-view synthesis (Takikawa et al., 2021; Barron et al., 2023) scenarios.

However, fitting a neural network to such a function from randomly initialized weights has been
found to be notoriously inefficient; for example, it requires hundreds or thousands of optimization
steps to converge (Sitzmann et al., 2020; Mildenhall et al., 2020), and learned representations do
not generalize well on novel input coordinates under the few-shot learning regimes (Tancik et al.,
2021; Jain et al., 2021). To overcome such limitations, there have been increasing studies to apply
gradient-based meta-learning techniques (Tancik et al., 2021; Dupont et al., 2022a) to facilitate the
learning of INRs. The key idea is to pre-train a weight initialization that is close to the optimal
weights for a wide range of signals, from which each online INR learner effectively adapts and
generalizes to unseen signals given partial observations with a limited number of optimization steps.
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Figure 1: The existing methods primarily focus on learning meta-initialized weights on unimodal
signals, only to adapt them separately in each modality without considering their potential interactions.
In contrast, our proposed MIA facilitates the interaction among the independent learners and the
capture of cross-modal relationships, enabling iterative refinement of their knowledge on the signals.

Despite the success, the majority of research predominantly focuses on meta-learning of weight
initialization within unimodal signal distributions. This unimodal meta-initialization can pose
significant limitations when data is scarce, since noises inherently arise in the gradient computation
from a small set of observations (Zhang et al., 2019; Simon et al., 2020). This can be detrimental
to the learning process, slowing down convergence and leading to overfitting. However, real-world
signals often originate from joint multimodal distributions, where they frequently share common or
complementary information with one another; for example, data collected jointly from multi-sensory
systems such as medical devices, weather stations, or self-driving cars.

To this end, we introduce a new optimization-based meta-learning framework, featuring a novel
Multimodal Iterative Adaptation (MIA) paradigm at its core. MIA facilitates continuous interaction
across the independent unimodal INR learners by accessing to their learning progress or states (e.g.
weights and gradients) and discovering their cross-modal relations through iterative optimization
steps. This not only enables the effective capture of the intricate structures present in multimodal
signal distributions, but also empowers more efficient navigation through the complex optimization
landscapes, leading to enhanced modeling of multimodal signals with limited observations and a
small number of optimization steps.

To achieve this goal, we augment MIA with additional meta-learned modules, coined State Fusion
Transformers (SFTs). SFTs are meta-learned to achieve three objectives: (1) aggregating learning
states from independent unimodal INR learners, (2) discovering rich unimodal and multimodal
interactions within the states, and (3) leveraging this knowledge to enhance weight updates and
guidance to individual INR learners throughout iterative adaptation procedures.

In experiments, we apply our technique to existing unimodal INR meta-learning frameworks such
as Functa (Dupont et al., 2022a) and Composers (Kim et al., 2023), and evaluate them on a variety
of multimodal signal regression scenarios, including modeling 1D synthetic functions (Kim et al.,
2022a), ERA5 global climate data (Hersbach et al., 2019), 2D CelebA visual images (Xia et al.,
2021), and Audiovisual-MNIST (AV-MNIST) data (Vielzeuf et al., 2018). The results consistently
show that our multimodal adaptation strategy MIA significantly improves the modeling capability of
the unimodal meta-learners, achieving at least 61.4% and 81.6% error reduction in generalization
and memorization over the unimodal baselines, respectively.

2 PRELIMINARIES

Implicit neural representations (INRs). INRs are a class of neural networks, often parameterized
as a stack of MLPs, that are designed to approximate a function f : x 7→ y mapping the coordinates
x to the features y. We interchangeably use data, signals, and functions throughout the paper. Given
a set of coordinate-feature pairs D = {(xi, yi)}Pi=1 of a function, an INR fINR(·; θ) with randomly
initialized weights θ is optimized to minimize a loss function as below:

L(D; θ) =
1

P

P∑
i=1

||fINR(x
i; θ)− yi||22. (1)

Despite the recent advances, optimizing individual INRs from randomly initialized weights θ are
notoriously inefficient (Sitzmann et al., 2020; Mildenhall et al., 2020) and they often do not generalize
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Figure 2: An illustration on our proposed Multimodal Iterative Adaptation (MIA). Left: At each
step k, each INR learner (fθm) calculates the loss (L(k)

nm) given the parameters (ϕ(k)
nm) and data

(xnm, ynm) during the forward pass (black arrow), followed by computing gradients (g(k)nm) to update
the parameters. Before updating the parameters with the gradients (red arrow), we enhance them via
State Fusion Transformers (SFTs) to better guide the learners (blue arrow). Middle: SFTs aggregate
the states ({ϕ(k)

nm, g
(k)
nm}m), capture the unimodal and cross-modal interactions respectively via USFTs

and MSFTs, and fuse this knowledge to compute enhanced updates ({ḡ(k)nm}m) via Fusion MLPs.
Right: This guidance accelerates convergence of the learners to better solutions (See Appendix F.3).

well on few-shot regimes (Tancik et al., 2021; Jain et al., 2021), i.e. when P is small. To address
these problems, gradient-based meta-learning techniques have been proposed.

Meta-Learning Approach. Two notable examples of such meta-learning frameworks are
Functa (Dupont et al., 2022b;a; Bauer et al., 2023) and Instance Pattern Composers (Kim et al., 2023)
(i.e. Composers for brevity). They have shown promise in modeling various types of complex signals
thanks to its modality-agnostic and scalable design. These methods build upon CAVIA (Zintgraf et al.,
2018) and implement two key ideas: (1) They meta-learn INR parameters θ that capture data-agnostic
knowledge, providing strong priors that enable faster convergence when modeling each signal. (2)
They introduce additional context parameters ϕ ∈ RS×D, a set of D-dimensional features1 that are
adapted to each signal. These features encapsulate data-specific variations and conditions of the
meta-learned INRs fINR(·; θ) via modulation schemes (Perez et al., 2018; Schwarz et al., 2023).

Formally, given a dataset D = {Dn}Nn=1 of N functions, the objective in Eq (1), which fits an INR to
a function Dn = {(xin, yin)}

Pn
i=1, is extended to accommodate both of the parameters (θ, ϕ) as below:

L(Dn; θ, ϕn) =
1

Pn

Pn∑
i=1

||fINR(x
i
n; θ, ϕn)− yin||22. (2)

Then, INR weights θ and context parameters ϕ are optimized with the meta-objective as follows:

θ, ϕ = argmin
θ,ϕ

En

[
L(Dn; θ, ϕ

(K)
n )

]
, where (3)

ϕ(k)n = ϕ(k−1)
n − α · ∇

ϕ
(k−1)
n

L(Dn; θ, ϕ
(k−1)
n ), for k = 1, . . . ,K. (4)

Here, α is a learning rate and ϕ(0)n = ϕ. Intuitively, the objective can be cast as a bi-level optimization
problem: (1) In the inner loop (Eq. 4), each online INR learner is first initialized with weights θ
and ϕ(0) and then adapted to each function Dn through ϕ(k) (k = 1, . . . ,K). (2) In the outer loop
(Eq. 3), the meta learner updates the INR weights θ and context parameters ϕ so that each fitted INR
fINR(·; θ, ϕ(K)

n ) represents the function Dn well within K steps.

While these methods are competitive baselines for modeling complex signals across various modali-
ties, their applicability is mainly demonstrated in memorizing unimodal signals when sufficient data is
available due the inability to generalize well with limited data and consider cross-modal interactions.

3 APPROACH

We delve into our novel gradient-based meta-learning framework for INRs, which effectively captures
and leverages cross-modal interactions. We first extend the previous unimodal frameworks to

1In Functa, it is parameterized as a grid of local features while Composers adopt non-local ones.
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multimodal setups in a straightforward way. We then present MIA, a novel adaptation scheme
that allows independent unimodal learners to exchange their current learning progress and acquired
knowledge about the signals through attention mechanism. Figure 2 overviews our framework.

We consider a dataset D = {Dn}Nn=1 with N pairs of multimodal signals. Each pair
Dn = {Dnm}Mm=1 is composed of signals from M different modalities. Each signal Dnm =

{(xinm, yinm)}Pnm
i=1 contains Pnm coordinate-feature points which could vary with signals.

A Naive Framework for Multimodal Signals. We begin with a simple baseline that combines
per-modality meta-learners together while treating each of them separately. This framework consists
of a set of independent per-modality INR parameters θ = {θm}Mm=1 and context parameters ϕ =

{ϕm}Mm=1. Then, the loss function for a signal Dnm = {(xinm, yinm)}Pnm
i=1 is formulated as

L(Dnm; θm, ϕnm) =
1

Pnm

Pnm∑
i=1

||ŷinm − yinm||22, where ŷimn = fINR(x
i
mn; θm, ϕnm). (5)

Next, we modify the meta-objective to promote both memorization and generalization performances
during the optimization. For this, we split each data into support Dtrain

nm and query Dval
nm sets, and use

the following gradient-based algorithm to meta-learn the parameters for each modality:

θm, ϕm = argmin
θm,ϕm

En

[
L(Dval

nm; θm, ϕ
(K)
nm )

]
, where (6)

ϕ(k+1)
nm = ϕ(k)nm − αm · g(k)nm, g(k)nm = ∇

ϕ
(k)
nm

L(Dtrain
nm ; θm, ϕ

(k)
nm), (7)

for k = 0, . . . ,K − 1 with ϕ(0)nm = ϕm. αm is a learning rate for ϕ(k)nm of each modality.

Multimodal Iterative Adaptation (MIA). In the above parametrizations, each unimodal learner
is adapted separately. Thus, we propose to adapt them jointly via our MIA, which facilitates their
iterative interaction and promotes seamleass refinement of their understanding of the signals.

The core component in MIA is State Fusion Transformers (SFTs), additional meta-learned modules
that aim at offering improved guidance to INR learners. This is achieved via a three-step process:
(1) aggregating the states of the unimodal learners, (2) capturing both unimodal and cross-modal
interactions to promote the knowledge exchange across them, (3) and utilizing this knowledge to
improve the weight updates of the learners. The SFTs consist of Unimodal State Fusion Transformers
(USFTs), Multimodal State Fusion Transformers (MSFTs), and Fusion MLPs.

For each modality, we first compute state representations z
(k)
nm ∈ RSm×Dz of unimodal learners. We

concatenate the context parameters ϕ
(k)
nm ∈ RSm×Dϕ and gradients g

(k)
nm ∈ RSm×Dϕ along the feature

dimension, followed by a projection MLPs. Then, the representations are fed into USFTs with L1

transformer blocks and per-modality parameters ξm:

ẑ(k)nm = USFTm(z(k)nm; ξm), for m = 1, . . . ,M, (8)

where ẑ
(k)
nm are updated state representations by USFTs, which dedicate to modeling dependencies

among a set of states within a modality. Next, we combine these per-modality representations
into a sequence ẑ

(k)
n = {ẑ(k)nm}Mm=1 and input to the MSFTs with L2 transformer blocks and shared

parameters ξs. This results in more comprehensive multimodal state representations z̃
(k)
n considering

potential cross-modal interactions.

z̃(k)n = MSFT(ẑ(k)n ; ξs), where ẑ(k)n = {ẑ(k)nm}Mm=1. (9)
The final step is to integrate them all and generate enhanced weight updates for the learners. We
concatenate the computed per-modality state representations z

(k)
mn, ẑ

(k)
mn, z̃

(k)
mn ∈ RS×Dz along the

feature dimension, followed by processing each of the features with Fusion MLPs:

ḡ(k)mn = FusionMLP(z̄(k)mn; ξm), where z̄(k)mn = [z(k)mn ∥ ẑ(k)mn ∥ z̃(k)mn]. (10)

Here, ḡ(k)n = {ḡ(k)mn}Mm=1 is the generated weight updates for the unimodal learners. They are used to
adapt ϕ(k)nm for each inner step k = 0, . . . ,K − 1, while the parameters of SFTs ξ = ξs ∪ {ξm}Mm=1
along with those of INRs θ and ϕ are meta-learned in the outer-optimization stage:

θ, ϕ, ξ = argmin
θ,ϕ,ξ

En,m

[
L(Dval

nm; θm, ϕ
(K)
nm )

]
, where ϕ(k+1)

nm = ϕ(k)nm − ḡ(k)nm. (11)
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Note that utilizing attention mechanisms for multimodal fusion and adopting meta-learned modules
for enhanced weight updates are actively studied concepts in their respective domains of multimodal
learning (Bachmann et al., 2022) and learning to optimize (Baik et al., 2023). To the best of our
knowledge, however, none of the methods have explored the marriage of both, which holds great po-
tential in effective navigation of the multimodal signal distributions and their optimization landscapes.

4 RELATED WORK

Training INRs from scratch has proven to be an expensive endeavor, despite their notable success in
various applications. Meta-learning has emerged as a promising solution to address this challenge.

Encoder-based INR Learning. This class of methods utilizes encoder networks for predicting the
parameters of INRs. While the majority of these methods primarily focus on modeling unimodal
signal distributions, Multitask Neural Processes (MTNPs) (Kim et al., 2022a) aim to approximate
multimodal signal distributions by incorporating multimodal feed-forward encoder networks with
specialized attention and pooling mechanisms tailored for this setup. Nevertheless, this class of
methods often suffers from underfitting issues (Garnelo et al., 2018), especially when dealing with
complex signals. Careful parametrization of the encoder and INR architectures is found to be critical
to alleviate such problems (Kim et al., 2019; Guo et al., 2023; Mehta et al., 2021; Kim et al., 2023).

Optimization-based Meta-learning. Drawing inspiration from well-established model-agnostic
meta-learning algorithms like MAML (Finn et al., 2017) and CAVIA (Zintgraf et al., 2018), these
methods primarily concentrate on learning meta-initialization to enhance the efficiency of computation
and sample usage (Tancik et al., 2021; Bauer et al., 2023). While effective in many cases, the sole
reliance of such meta-initialized weights often encounters challenges when facing poorly conditioned
optimization landscapes (Vicol et al., 2021) or dealing with limited data due to high variances and
noises in gradients (Simon et al., 2020). Moreover, existing methods mostly focus on unimodal
setups, overlooking potential cross-modal interactions for enhanced convergence and performance.

Learning to optimize (L2O). Our method is related to the work in L2O, a complementary meta-
learning approach that emphasizes enhancing weight optimization algorithms, rather than on pre-
training weight initializations. The common objective is to empower an optimizer to meta-learn
underlying structures of data and accelerate convergence through gradient preconditioning (Kang
et al., 2023) and learning rate scheduling (Baik et al., 2023). For this, L2O methods have explored the
utilization of various state features of learners, including parameters, gradients, and their higher-order
statistics and relations (Gärtner et al., 2023), similar to ours. To the best of our knowledge, however,
none of them have explored the potential of utilizing their cross-modal structures as ours.

5 EXPERIMENTS

We demonstrate that our proposed multimodal iterative adaptation strategy, MIA, indeed improves
convergence and generalization of state-of-the-art meta-learning INR models. More comprehensive
qualitative results can be found in Appendix A.

Baselines. We choose Functa (Dupont et al., 2022a) and Composers (Kim et al., 2023) as our base
INR models upon which our framework and other baselines build. They are simply referred to as
CAVIA in the following sections. As baselines, we consider recent L2O approaches that can be
easily integrated into CAVIA, including MetaSGD (Li et al., 2017), GAP (Kang et al., 2023), and
ALFA (Baik et al., 2023). They are partly similar to ours since they aim to meta-learn a set of
parameters to accelerate the convergence by gradient preconditioning. However, unlike ours, these
methods do not consider potential cross-modal interactions between the learners. Also, we include
MTNPs (Kim et al., 2022a) as our baseline, which is based on Neural Processes (NPs) (Garnelo
et al., 2018) and designed to approximate multimodal signals. Unlike ours, this method replaces
the iterative optimization process with multimodal encoder networks with specialized attention and
pooling mechanisms. Lastly, to isolate the impact of specific model design or parameterization, we
introduce an additional encoder-based meta-learning baseline. This method employs the encoder
parameterized with the same transformer architecture backbone as our SFTs yet uses it to directly
predict the parameters of INRs, instead of adapting them via optimization. We refer to this baseline
as Encoder. For fair comparisons, we use the same INR architecture backbones for all the methods.
We set K = 3 for the optimization-based methods. Please refer to Appendix D.2 for the details.
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Table 1: Quantitative comparisons on the multimodal 1D synthetic functions. We report the normal-
ized MSEs (×10−2) computed over distinct ranges of sampling ratios, averaged over 5 random seeds.

Modality Sine Gaussian Tanh ReLU

Range Rmin 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05
Rmax 0.02 0.05 0.10 0.02 0.05 0.10 0.02 0.05 0.10 0.02 0.05 0.10

Functa 45.45 16.58 3.316 19.83 4.603 1.043 23.02 3.788 0.587 84.49 13.54 2.992
w/ MetaSGD 44.69 16.46 3.326 19.75 4.334 1.055 26.16 4.528 0.718 69.86 10.45 2.044
w/ GAP 44.76 16.49 3.297 19.54 4.518 1.052 23.46 3.799 0.555 63.17 10.12 1.862
w/ ALFA 48.09 18.67 5.160 19.09 4.910 1.580 22.45 4.200 0.872 53.83 8.303 1.536
w/ MTNPs 13.34 4.718 1.871 2.019 1.513 1.285 4.678 0.794 0.340 17.75 1.315 0.398
w/ Encoder 7.746 3.157 1.409 1.287 0.972 0.838 1.305 0.349 0.114 5.980 0.720 0.122
w/ MIA 6.386 2.058 0.547 1.057 0.571 0.281 1.285 0.378 0.131 5.069 1.012 0.115

Composers 37.90 17.40 5.539 6.916 3.495 1.584 14.90 3.974 0.975 50.02 11.75 3.426
w/ MetaSGD 38.26 17.28 5.427 6.887 3.221 1.388 14.99 3.938 0.981 51.97 11.65 3.530
w/ GAP 37.53 17.52 5.397 6.630 3.409 1.526 14.40 3.828 0.978 50.90 10.85 3.128
w/ ALFA 36.53 14.87 4.115 5.650 2.770 1.154 14.18 3.426 0.799 42.96 6.814 1.481
w/ MTNPs 16.62 4.859 0.766 2.256 1.252 0.708 4.670 0.743 0.121 11.47 0.897 0.114
w/ Encoder 8.385 3.878 1.939 1.332 1.097 0.906 1.348 0.371 0.111 5.745 0.719 0.134
w/ MIA 5.564 1.844 0.627 0.975 0.528 0.237 1.257 0.343 0.128 4.715 0.943 0.156

Datasets & Metrics. We demonstrate the versatility of our method in four datasets: (1) 1D synthetic
functions (Kim et al., 2022a), (2) 2D CelebA images (Xia et al., 2021), (3) ERA5 global climate
dataset (Hersbach et al., 2019), and (4) Audiovisual-MNIST (AV-MNIST) dataset (Vielzeuf et al.,
2018). To construct the support set Dtrain

nm , we sample Pnm ×Rnm random coordinate-feature pairs
from the full set Dnm = {(xinm, yinm)}Pnm

i=1 , where the sampling ratio Rnm ∈ [Rmin
m , Rmax

m ] is drawn
independently for each signal. We use the full set as the query set Dval

nm during the outer loop
evaluation to promote both memorization and generalization. Please find Appendix D.1 for more
details. For comparisons, we report mean squared errors (MSEs) over distinct ranges of sampling
ratios to investigate the models’ ability to generalize to signals under different support set sizes.

5.1 MULTIMODAL 1D SYNTHETIC FUNCTIONS

Setups. Following prior works (Finn et al., 2017; Guo et al., 2020; Kim et al., 2022a), we begin
with a simple yet controlled 1D synthetic function regression setting. Specifically, we first define a
canonical form of parametric multimodal functions as below:

ynm = an · Actm(bn · xnm + cn) + dn, where Actm ∈ {Sine, Gaussian, Tanh, ReLU}. (12)

Each function Dnm is instantiated with the shared parameters (an, bn, cn, dn) and modality-specific
non-linear activation functions Actm(·). We follow Kim et al. (2022a) to construct the dataset: We
define a uniform grid of Pnm = 200 coordinates within a range of x ∈ [−5, 5]. We sampleN = 1000
function parameters (an, bn, cn, dn) shared across modalities and add per-modality Gaussian noises
ϵnm ∼ N (0, 0.02) to control the cross-modal correlations. We use [Rmin

m , Rmax] = [0.01, 0.1].

Results. We present the quantitative results in Table 1, where we report normalized MSEs by the
scale parameter anm per function, MSE = 1

N

∑N
n=1

1
a2
nm

∥ŷnm − ynm∥22, following Kim et al. (2022a).
The methods with no ability to handle multimodal signal jointly (CAVIA, MetaSGD, GAP, ALFA)
fail to approximate the functions, showing high MSEs in all ranges of sampling ratios. In contrast, the
multimodal methods (MTNP, Encoder, and ours) are able to reconstruct each signal more precisely,
even with extremely small number of support sets (e.g. R < 0.02). Moreover, while MTNPs and
Encoder show strong fitting performances on smooth and low-curvature signals (i.e. Tanh and ReLU)
when data is sufficient, our method achieves the best performances overall among the multimodal
methods, verifying its effectiveness in utilizing cross-modal interactions to enhance generalization.

5.2 MULTIMODAL 2D CELEBA DATASET

Setups. We conduct experiments on more complex 2D image function regression settings (Tancik
et al., 2021; Kim et al., 2022a). We consider three different visual modalities of 2D facial data based
on CelebA (Liu et al., 2015; Xia et al., 2021), namely RGB images (Karras et al., 2018), surface
normal maps 2, and sketches (Xia et al., 2021). Following (Kim et al., 2022a), we resize all data to
32× 32 resolution. We interpret them as functions mapping 2D coordinates x ∈ [−1, 1]2 to output

2We use a pre-trained model (Eftekhar et al., 2021) to obtain surface normals on CelebA-HQ RGB images.

6



Under review as a conference paper at ICLR 2024

Table 2: Results on the multimodal 2D CelebA image function regression. We report the MSEs
(×10−3) computed over distinct ranges of sampling ratios, averaged over 5 different seeds.

Modality RGBs Normals Sketches

Range Rmin 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
Rmax 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

Functa 13.32 4.008 2.900 2.408 5.079 2.401 2.028 1.859 13.57 6.966 5.368 4.756
w/ MetaSGD 13.02 3.830 2.685 2.182 4.923 2.268 1.864 1.682 12.72 6.278 4.532 3.839
w/ GAP 12.84 3.726 2.543 2.024 4.805 2.184 1.762 1.570 12.43 6.023 4.166 3.407
w/ ALFA 11.83 3.257 1.957 1.362 4.115 1.806 1.285 1.014 10.80 4.801 2.463 1.283
w/ MTNPs 9.871 4.807 4.105 3.644 3.983 2.552 2.339 2.221 9.680 6.568 5.395 4.819
w/ Encoder 7.810 3.266 2.486 2.042 3.463 1.934 1.597 1.412 8.645 5.222 3.658 2.800
w/ MIA 6.946 2.563 1.627 1.135 2.979 1.530 1.118 0.869 7.667 4.042 2.142 1.011

Composers 22.41 12.41 11.09 10.24 8.613 6.583 6.415 6.292 19.17 15.73 14.88 14.63
w/ MetaSGD 20.11 10.25 9.000 8.268 8.218 5.979 5.753 5.601 18.95 15.43 14.49 14.20
w/ GAP 20.07 10.05 8.785 8.039 8.149 5.847 5.616 5.461 18.58 15.24 14.39 14.15
w/ ALFA 15.12 4.887 3.376 2.681 5.444 2.399 1.773 1.469 12.57 5.984 3.416 2.124
w/ MTNPs 9.902 4.957 4.269 3.813 4.184 2.747 2.545 2.437 9.791 6.425 5.163 4.544
w/ Encoder 10.21 4.278 3.205 2.599 4.106 2.287 1.889 1.665 9.904 5.602 3.697 2.644
w/ MIA 9.764 3.418 1.913 1.017 3.749 1.763 1.062 0.526 9.505 4.708 2.336 0.855

GT MIAEncoderALFASupp. GT MIAEncoderALFASupp. GT MIAEncoderALFASupp.

Figure 3: Qualitative comparisons on CelebA. Compared to the baselines, our MIA better generalizes
in the extremely low-shot setting (first pane) and renders more rich high-frequency details or nuances
in RGB (second pane), Sketch (second pane), and Normal (third pane) images when data is sufficient.

features y ∈ Rd, where d varies with the modality. We use 90% of the entire dataset for meta-training
and the rest for the meta-testing, and set [Rmin

m , Rmax
m ] = [0.001, 1.000] for all the modalities.

Results. Table 2 summarizes the quantitative results. Similar to the synthetic scenario, the multimodal
baselines with the encoders (MTNPs, Encoder) show better generalization over the unimodal baselines
(CAVIA, MetaSGD, GAP, ALFA) under low-shot settings (R ≤ 0.25). However, given sufficient
number of support sets (R ≥ 0.50), the multimodal encoder baselines perform worse than the
unimodal counterpart ALFA. This could be attributed as underfitting phenomenon (Kim et al., 2019;
Guo et al., 2023) suffered by the encoder-based meta-learning approaches. Unlike the baselines, our
proposed method outperforms the baselines in all the ranges of support set sizes. In Figure 3, we
confirm our method produces the most pleasing qualitative results, showing strong generalization
with limited data while preserving high-frequency details and noises when sufficient data is available.

5.3 MULTIMODAL CLIMATE DATA

Setups. ERA5 (Hersbach et al., 2019) is a global climate dataset that provides hourly estimates on a
wide range of atmospheric variables measured globally over a grid of equally spaced latitudes and
longitudes. Out of all the available variables, we consider the measurements on temperature, pressure,
and humidity. Following Dupont et al. (2022c), we use a grid resolution of 46×90, and normalize the
coordinates as x ∈ [−1, 1]2 and features as y ∈ [0, 1]. We use 80% of the dataset for meta-training
while using the rest for meta-testing, and set [Rmin

m , Rmax
m ] = [0.001, 1.000] for all the modalities.

Results. As shown in Table 3, ALFA shows decent performances out of all the unimodal baselines,
even outperforming both multimodal baselines in the absence and abundance of data (e.g. when
parameterized with Functa and in Pressure modality). This could be explained by the property of
atmospheric variables that are relatively stable over time and the regions, where the fast convergence
could be the key to excel in this setup. Finally, our method outperforms all the baselines, validating
its effectiveness in modeling real-world multimodal climate data (results in Fig. 4 support this claim).

5.4 MULTIMODAL AUDIO-VISUAL AVMNIST DATASET

Setups. Unlike previous setups, modeling audiovisual signals presents unique challenges arising
from the heterogeneity in coordinate systems and lack of explicit spatiotemporal alignments between

7
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Table 3: Results on ERA5 dataset in MSEs (×10−5)
across different sampling ratios.

Modality Temperature Pressure Humidity

Range Rmin 0.00 0.25 0.50 0.00 0.25 0.50 0.00 0.25 0.50
Rmax 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00

Functa 6.83 3.53 3.38 1.42 0.98 0.95 33.7 23.4 21.8
w/ MetaSGD 6.10 3.13 2.97 1.41 0.95 0.92 31.4 20.5 18.4
w/ GAP 6.57 2.73 2.47 1.45 0.66 0.58 32.3 22.0 19.7
w/ ALFA 4.07 1.56 1.26 0.62 0.19 0.15 27.7 15.4 11.4
w/ MTNPs 4.72 3.86 3.75 1.45 1.40 1.38 29.8 27.5 27.0
w/ Encoder 2.59 1.55 1.41 0.65 0.35 0.32 17.3 14.4 13.5
w/ MIA 2.02 1.01 0.72 0.42 0.15 0.11 15.8 11.4 8.22

Composers 7.91 7.26 7.19 2.29 2.21 2.20 48.9 48.3 48.1
w/ MetaSGD 8.00 7.26 7.19 2.21 2.16 2.15 39.9 38.6 38.4
w/ GAP 8.30 7.48 7.40 2.33 2.28 2.27 38.1 35.2 34.7
w/ ALFA 7.03 6.17 6.06 1.91 1.81 1.79 37.4 33.6 33.0
w/ MTNPs 4.49 3.62 3.53 1.39 1.33 1.31 29.6 26.9 26.3
w/ Encoder 4.28 3.18 3.06 1.34 1.11 1.08 24.8 21.6 21.0
w/ MIA 3.83 2.46 1.34 1.10 0.65 0.41 22.0 14.6 6.58

Table 4: Results on AV-MNIST in MSEs
(×10−4) across different sampling ratios.

Modality Images Audios

Range Rmin 0.00 0.25 0.50 0.25 0.50 0.75
Rmax 0.25 0.50 1.00 0.50 0.75 1.00

Functa 29.7 7.98 3.84 2.98 3.03 3.00
w/ MetaSGD 29.5 7.75 3.65 0.88 0.42 0.24
w/ GAP 29.8 7.98 3.83 0.93 0.48 0.30
w/ ALFA 27.3 6.84 3.18 0.78 0.36 0.20
w/ MTNPs 29.3 11.9 7.25 2.36 2.30 2.22
w/ Encoder 22.3 5.66 2.71 0.76 0.46 0.33
w/ MIA 19.7 4.80 2.05 0.48 0.26 0.11

Composers 33.4 9.86 2.77 1.02 0.47 0.22
w/ MetaSGD 34.6 11.4 4.48 1.00 0.46 0.22
w/ GAP 33.1 10.1 3.56 1.08 0.59 0.37
w/ ALFA 30.4 8.19 2.37 1.04 0.49 0.22
w/ MTNPs 29.9 12.0 7.52 2.57 2.56 2.52
w/ Encoder 22.8 6.02 2.62 0.91 0.56 0.39
w/ MIA 19.1 4.26 1.29 0.66 0.29 0.14
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Figure 4: Qualitative comparisons in ERA5 and AV-MNIST. Left: Our method achieves the lowest
errors (rendered in viridis color) in modeling real-world climate data. Right: Our method accurately
predicts digit types with little image data, while recovering the structures of audios more faithfully.

modalities. We employ AVMNIST dataset (Vielzeuf et al., 2018), a collection of greyscale digit
images (LeCun et al., 2010) and their pronounced audios (Jackson, 2016). We use the original images
of a 28× 28 resolution, while we trim the audios with a sampling rate of 2kHz and a duration of 1
second. We employ the original train/test split for meta-training and meta-testing, respectively. We
set the sampling ratio ranges [Rmin

m , Rmax
m ] to [0.001, 1.000] and [0.250, 1.000] for images and audios.

Results. In Table 4, we see that Functa-based CAVIA entirely collapses in the audio modality,
probably due to the high complexity in capturing high-frequency contents and noises in audios within
limited optimization steps. MTNPs also fails at approximating the audio signals properly, achieving
the second highest errors. We conjecture that this is due to their specialized attention and pooling
mechanisms, particularly designed for multimodal signals sharing homogeneous coordinate systems
and with explicit spatial alignment between modalities (Kim et al., 2022a). Unlike MTNPs, the
another encoder-based method (Encoder) succeeds in modeling both signals, supporting the claims in
the literature that careful parameterization can improve their fitting performances (Guo et al., 2023).
Finally, our approach achieves the best performances in both modalities and all ranges of sampling
ratios. Interestingly, our method predicts digit classes accurately given only one support point from
an image (please see Figure 4), demonstrating its strong cross-modal generalization capability.

5.5 ANALYSIS STUDY

Performances vs modules. We investigate the roles of the three modules (i.e. USFTs, MSFTs, and
Fusion MLPs) of SFTs in terms of both memorization and generalization performances. We construct
ablated methods by gradually augmenting Composers with USFTs, MSFTs, and Fusion MLPs one at
a time. We evaluate their fitting performances over the provided support sets and unobserved non-
support parts separately, indicating the performances on memorization and generalization, respectively.
We report the relative error reduction achieved by each method compared to the vanilla Composers,
averaged across the modalities. As in the results of Table 5a, USFTs specialize in enhancing modality-
specific patterns that are useful for memorization, while MSFTs further emphasize shared information
for generalization. Finally, Fusion MLPs effectively integrate the representations from USFTs and
MSFTs, achieving superior performances on both memorization and generalization.
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Table 5: Ablation study on the components in SFTs on generalization (G) and memorization (M)
ability. We report relative error reduction (↑) achieved by ablated methods over Composers.

Modules Syn. Celeb. AVM.

USFTs MSFTs MLPs G M G M G M

✓ ✗ ✗ 44.4 63.6 58.3 92.1 60.7 84.1
✓ ✓ ✗ 86.7 75.5 61.5 92.5 63.9 84.6
✓ ✓ ✓ 88.7 81.6 61.4 93.0 65.6 88.7

(a) Impact of USFTs, MSFTs, and Fusion MLPs.

States Syn. Celeb. AVM.

Params Grads G M G M G M

✓ ✗ N/A N/A N/A N/A N/A N/A
✗ ✓ 83.7 58.4 60.6 91.6 61.7 87.3
✓ ✓ 88.7 81.6 61.4 93.0 65.6 88.7

(b) Impact of parameters and gradients.
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Figure 5: Relative error reduction (↑) when multimodal support set sizes increase. Colors indicate
sampling ratios of the target modality, while the x-axis represents sampling ratios of the sources.

Performances vs types of states. We also study the impact of states utilized by SFTs, namely
parameters and gradients. Similar to the previous analysis, we design two additional baselines by
ablating either parameters or gradients from our full approach, and report their relative error reduction
compared to Composers. Table 5b reports the results. We find the parameters-only method fails
entirely (reported as N/A), while the best performance is achieved when incorporating both. This
suggests that how the loss landscape is changing (i.e. gradients) is the most crucial information while
incorporating the current knowledge of the learners (i.e. parameters) as well further boosts the capture
of the underlying structures of multimodal signals and their associated optimization landscapes.

Performances vs sizes of the multimodal contexts. We validate whether our SFTs can (1) correctly
identify valuable cross-modal patterns in learners’ states and (2) utilize them to benefit the learners.
For the first aspect, we examine how attention patterns of MSFTs relate to the quality of gradients.
We calculate the Pearson correlation coefficient, represented as Cij , which reflects the relationship
between attention weights assigned to the learner’s state representations for modality i and the support
set size for modality j. We use support set size as a proxy for gradient quality since the amount of
gradient noises often relate to the size of the support sets (Zhang et al., 2019). Notably, as presented
in Table 9, we observe strong positive correlations along the diagonal, suggesting that MSFTs refrain
from updating the state representations for a specific modality when observations within that modality
suffice. Conversely, the strong negative correlations off the diagonal imply that MSFTs compensate
for suboptimal gradient quality in one modality by directing more attention to other modalities.

To examine the second aspect, we assess the performances on one target modality while the sizes of
multimodal support sets from other modalities are varied. As in previous experiments, we report the
relative error reduction by our method compared to the one obtained without the supports from the
other modalities. Figure 5 visualizes the results that, in general, increased availability of multimodal
support sets contributes to better performances in the target modality, while the benefit gained from
multimodal observations becomes more significant when the size of the target support sets is smaller.
Based on these investigations, we confirm the model’s ability to correctly identify and leverage
cross-modal interactions, signifying its potential for applications where data constraints often prevail.

6 CONCLUSION

We introduced a new gradient-based meta-learning framework for INRs, resulting in substantial
improvements in the convergence and performance of existing meta-learning INR frameworks. It was
primarily attributed to our novel Multimodal Iterative Adaptation (MIA), which empowers separate
INR learners to collaborate and exchange their learning progress or knowledge through State Fusion
Transformers (SFTs). This unique adaptation scheme harnesses the cross-modal interactions among
the states of the learners, facilitating rapid convergence and enhancing model performance.
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APPENDIX

This section provides more results and details that could not be included in the main paper.

A MORE QUALITAIVE RESULTS
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Figure 6: Qualitative comparisons on 1D synthetic functions. The black and blue lines represent the
ground-truth and approximated signals recovered by each method, respectively, while red crossmarks
pinpoint the locations of the provided support points. While all the methods operate well in relatively
smooth and low-curvature signals (e.g. Tanh and ReLU), the baselines either fail entirely in Sine
and Gaussian modalities (i.e. the unimodal approaches) or struggle to approximate them correctly
(i.e. the multimodal baselines). Unlike the baselines, our MIA fits almost perfectly to all functions,
verifying its capability in fusing multiple source of information to improve the performances.
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Figure 7: Qualitative comparisons on CelebA 2D visual modalities. Compared to the baselines, our
MIA can render high-frequency details and nuances contained in each modality signal thanks to its
enhanced convergence and memorization capability (upper pane). Even in the absence of sufficient
data, our method can generalize well via strong ability in cross-modal generalization (lower pane).
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Figure 8: Qualitative comparisons on ERA5 global climate data. The first row of each pane indicates
the grount-truth signals and provided support points, while the rest represents the approximations and
their absolute errors achieved by each method. Our MIA shows superior generalization capability than
the existing baselines, demonstrating its versatility in applications for real-world climate estimation.

15



Under review as a conference paper at ICLR 2024

C
AV

IA
M

et
aS

G
D

G
A

P
A

LF
A

M
TN

P
En

co
de

r
M
IA

Su
pp

or
t

G
T

N
or

m
al

s
R

G
B

s
Sk

et
ch

s
N

or
m

al
s

R
G

B
s

Sk
et

ch
s

CAVIA MetaSGD GAP ALFA MTNP Encoder MIASupportGT

N
or

m
al

s
R

G
B

s
Sk

et
ch

s
N

or
m

al
s

R
G

B
s

Sk
et

ch
s

Fu
nc

ta

C
om

po
se

rs
Fu

nc
ta

C
om

po
se

rs

GT Support

Temperatures

GT Support

Pressures

GT Support

Humidities

Prediction Absolute Error Prediction Absolute Error Prediction Absolute Error

C
AV

IA
M

et
aS

G
D

G
A

P
A

LF
A

M
TN

P
En

co
de

r
M
IA

C
om

po
se

rs

GT Support

Temperatures

GT Support

Pressures

GT Support

Humidities

Prediction Absolute Error Prediction Absolute Error Prediction Absolute Error

Figure 9: Qualitative comparisons on ERA5 global climate data. The first row of each pane indicates
the grount-truth signals and provided support points, while the rest represents the approximations and
their absolute errors achieved by each method. Our MIA shows superior convergence speed than the
existing baselines, which struggle to approximate the climate data precisely and show high errors
even when abundant observations are available.
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Figure 10: Qualitative comparisons on AV-MNIST. Our method successfully infer the digit classes
from audio signals when little data is available from images (left two columns), while enjoying
superior fitting performances when sufficient data is available (rightmost column).
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B DETAILS OF THE INR FRAMEWORKS

In this work, we adopt the meta-learning frameworks for INRs proposed in Functa (Dupont et al.,
2022a; Bauer et al., 2023) and Composer (Kim et al., 2023). They builds upon CAVIA (Zintgraf
et al., 2018), where two separate parameters are meta-learned: the INR parameters θ and the context
parameters ϕ ∈ RS×Dϕ . In particular, the parameters θ of INRs are meta-learned to capture
underlying structure of data or data-agnostic shared information across signals. In addition, the
context parameters ϕ ∈ RS×Dϕ , a set of Dϕ-dimensional features, are adapted to each signal and
encode per-signal variations or characteristics, which are then utilized to condition the parameters of
INRs to recover the signals they are modeling. Besides the shared concepts, they differ in how they
construct and utilize the context parameters to condition the INR parameters, which we detail below.

Functa. In Functa, the context parameters ϕn ∈ RS×Dϕ for each signal are constructed as a spatially-
arranged grid of Dϕ-dimensional features, where each of them encodes local variations in a signal.
This grid of features is then utilized to modulate the activations of each INR layer. To do so, the set
of features is first processed by an additional linear convolutional module as ψn = fconv(ϕn; θconv),
followed by bilinear/trilinear interpolation to compute a layer-wise affine transformation parameters
ψn(x) = Interp(x;ψn) that scale and/or shift the activations of each layer in INRs given an input
coordinate x. In the original paper, the authors of Functa opt to adopt a shift-only modulation scheme
since it shows better rate-distortion (compression vs performance) trade-offs than using both. In
contrast, we adopt a scale-only modulation scheme since it is empirically shown to perform slightly
better in our earlier experiments. Also, we do not modulate the activations of the first and last layers
since we empirically find it stabilizes the training without hurting the performances.

Composers. Unlike Functa that adopt local grid of features and FiLM-like modulation scheme (Perez
et al., 2018) applied to multiple layers of INRs, Composers introduce a set of non-local features
Vn ∈ RS×Dϕ that are used as a low-rank approximation Wn = UVn on parameters Wn of a single
layer in INRs. Here, U ∈ RS×Dϕ is another low-rank approximation matrix that is incorporated in
the INR parameters θ and captures global patterns shared across various signals, which are composed
and modulated in a data-specific manner via Vn . Following the original work (Kim et al., 2023), we
approximate the second layer of INRs using U and Vn.

Throughout all experiments, we use a 5-layer MLPs with 128 hidden dimensions and ReLU non-
linearities in-between as a base INR architecture for both Functa and Composers. We also use random
fourier features (Tancik et al., 2020) with σ = 30 to encode positional information, except that we do
not use these features for the experiments on the 1D synthetic dataset.

C DETAILS ON STATE FUSION TRANSFORMERS (SFTS)

We construct USFTs and MSFTs using the transformer block of ViT (Dosovitskiy et al., 2021),
where each of them is parameterized by one transformer block (i.e. L1 = L2 = 1) with a width of
192, a MLP dimension of 192, and 3 attention heads. In addition, we set the dimension of state
representations z(k)nm ∈ RSm×Dz to Dz = 192 for both USFTs and MSFTs in all experiments.

To compute the state representations z(k)nm for each modality, we first apply LayerNorm (Ba et al.,
2016) to the parameters ϕmn ∈ RSm×Dϕ and the gradients gmn ∈ RSm×Dϕ separately to stabilize
the training. Then, we concatenate them along the feature dimension (i.e. [ϕmn ∥ gmn] ∈ RSm×2Dϕ ),
followed by projecting them to the hidden space of USFTs and obtain the state representations z(k)nm

via a two-layer MLPs with a hidden dimension of 192 and ReLU activations, which is dedicated
to each modality. In addition, we add positional embedding to the state representations before
feeding them into USFTs, where we use sinusoidal positional encodings (Mildenhall et al., 2020) and
learnable embedding for Functa and Composers, respectively. Finally, we parameterize Fusion MLPs
with a 3-layer MLPs with a hidden dimension of 192 and ReLU non-linear activations. Also, we
embed LayerNorm into the first and the penultimate layers of Fusion MLPs to stabilize the training.

We also attach PyTorch-style pseudo code for MIA in Listing 1 and SFTs in Listing 2, respectively.
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def inner_optimization_step(inr_model_dict, sft_model, modes,

ctx_params_dict, x_spt_dict, y_spt_dict):

# inr_model_dict: A dictionary of Pytorch modules of INRs for each modality.

# sft_model: Pytorch module for State Fusion Transformers.

# modes: A list of modalities.

# ctx_params_dict: a dictionary of the context parameters of INRs for each modality.

# x_spt_dict: A dictionary of the provided support coordinates for each modality.

# y_spt_dict: A dictionary of the provided support features for each modality.

grad_dict = dict()

for mode in modes:

# for each modality, predict features `y` with given support cooridnates `x`.
y_pred = inr_model_dict[mode](x_spt_dict[mode], ctx_params_dict[mode])

loss = mse_loss(y_pred, y_spt_dict[mode])

# compute gradients w.r.t context parameters.

grad_dict[mode] = torch.autograd.grad(

loss,

ctx_params_dict[mode],

create_graph = True # Set to `True` during meta-training, otherwise `False`.
)[0]

# compute enhanced weight updates via SFTs.

grad_dict = fuse_states(sft_model, modes, grad_dict, ctx_params_dict)

for mode in modes:

# update context parameters using the enhanced gradients for each modality.

ctx_params_dict[mode] = ctx_params_dict[mode] - grad_dict[mode]

return ctx_params_dict

Listing 1: PyTorch style pseudo-code for inner optimization step via MIA.

def fuse_states(sft_model, modes, grad_dict, ctx_params_dict):

# sft_model: Pytorch module for State Fusion Transformers.

# modes: A list of modalities.

# grad_dict: a dictionary of the gradients w.r.t the context parameters for each modality.

# ctx_params_dict: a dictionary of the context parameters of INRs for each modality.

ori_state_dict = dict()

uni_state_dict = dict()

multi_state_dict = dict()

states = []

for mode in modes:

# project gradients and context params to the hidden space

ori_state_dict[mode] = sft_model.proj_mlp[mode](grad_dict[mode],

ctx_params_dict[mode])

# add positional embedding and apply USFT for each modality

state = ori_state_dict[mode] + sft_model.pos_emb[mode]

uni_state_dict[mode] = sft_model.usft[mode](state)

states.append(uni_state_dict[mode])

# concat states for all modalities and apply MSFT

states = torch.cat(states, dim = 1)

states = sft_model.msft(states)

for mode in modes:

# calculate enhanced gradients by applying FusionMLP for each modality

multi_state_dict[mode] = split(states, mode)

state = torch.cat([ori_state_dict[mode],

uni_state_dict[mode],

multi_state_dict[mode]], dim = -1)

grad_dict[mode] = sft_model.fusion_mlp[mode](state)

return grad_dict

Listing 2: PyTorch style pseudo-code for State Fusion Transformers (SFTs).
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Table 6: List of common configurations for each dataset.

Hyperparameters Synthetic CelebA ERA5 AVMNIST

modalities Sine, Gaussian
Tanh, Relu

RGB, Normal
Sketch

Temperature
Pressure
Humidity

Images
Audios

number of data train 900 27143 11327 60000

test 100 2821 2328 10000

batch size 64 32 16 32

epoch 16,000 300 300 300

resolution (200, 1)
RGB - (32, 32, 3)

Normal - (32, 32, 3)
Sketch - (32, 32, 1)

(46, 90, 1) Images - (28, 28, 1)
Audios - (2000, 1)

sampling range
[Rmin, Rmax]

[0.01, 0.1] [0.001, 1] [0.001, 1] Images - [0.001, 1]
Audios - [0.250, 1]

outer learning rate 10−4

momentum (β1, β2) for Adam (0.9, 0.999)

total inner step K for
optimization-based methods 3

scale for uncertainty lr 1 1 0.1 10

width/depth of INRs 128/5

dimension of
context parameters

ϕ

Functa (8, 16) (8, 8, 16) (8, 16, 16) Images - (8, 8, 4)
Audios - (64, 32)

Composer (8, 128) (64, 128) (128, 128) Images - (64, 128)
Audios - (64, 128)

σ for fourier feature None 30.0 30.0 30.0

bootstrapping factor
for evaluation 10 4 4 4

D MORE EXPERMINENTAL DETAILS AND RESULTS

D.1 COMMON DETAILS

We subsample coordinate-feature pairs from the full set during the meta-training phase to promote
the generalization, as well as memorization. For each signal Dnm, the sampling ratio Rnm is
independently and identically drawn from a uniform distribution U(Rmin

m , Rmax
m ) for each modality

m to construct the support sets Dtrain
n . For evaluation, we employ a bootstrapping technique on

the meta-test dataset. We iteratively sample the support and query sets multiple times for each
data to mitigate potential variances that may arise from the sampling process. For 1D synthetic
experiments, we apply a bootstrapping factor of 10, while for other scenarios, the factor is set to 4. In
all experiments, we use Adam optimizer (Kingma & Ba, 2014) for meta-optimization, with a learning
rate of 10−4 and the momentum parameters are set as (β1, β2) = (0.9, 0.999).

Also, we apply uncertainty-aware loss weighting technique (Kendall et al., 2018) for all multimodal
methods. Please find Table 6 for the clear list of common configurations for each dataset.

D.2 BASELINES

CAVIA. We use a global fixed learning rate of α = 1.0 to adapt the context parameters of CAVIA-like
methods (Functa and Composers) in the inner-loop for all experiments.

MetaSGD. Li et al. (2017) propose to use a meta-learned per-parameter learning rate α ∈ RS×Dϕ in
the inner-loop adaptation phase, which is optimized along with the meta-learner in the outer-loop
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optimization phase. We apply this technique to adapt the context parameters of CAVIA-based
frameworks, where we initialize their initial values to 1.0 in all experiments.

GAP. Kang et al. (2023) propose to accelerate the optimization process via Geometry-Adaptive
Preconditioner (GAP), which preconditions the gradients G(k) at inner step k by manipulating its
singular values with meta-learned parameters M. The procedure can be written as:

G̃(k) = U(k)(M ·Σ(k))V(k)T
, where G(k) = U(k)Σ(k)V(k)T

. (13)

In the original paper (Kang et al., 2023), gradient matrix unfolding technique is introduced to facilitate
SVD on the gradients of convolutional weights. Different from the original setup, now the shape of the
context parameters and their associated gradient matrices is RS×Dϕ . Therefore, we do not using this
unfolding technique and define the meta parameters as M = diag(Sp(M1), . . .Sp(Mmin(S,Dϕ))).

In addition, we experiment with Approximate GAP as well and report the best performances achieved
from the two methods. This approximated version bypasses the need of SVD for calculating the
preconditioned gradients by G̃(k) ≃ MG(k).

ALFA. ALFA is proposed to meta-learn the weight update procedure along with the weights to
facilitate the learning. Unlike GAP, ALFA introduces an additional meta-learned neural network
h(ϕ(k), g(k); ξ) that dynamically predicts learning rates α(k) and weight decaying terms β(k) in a
data-specific manner and for each inner step k, given the current parameters ϕ(k) and their gradients
g(k) of the learners. The resulting weight update rule can be described as follows:

ϕ(k+1) = β(k) · ϕ(k) − α(k) · g(k), where g(k) = ∇ϕ(k)L(k). (14)

To construct the meta-learned network h, we follow the original setup (Baik et al., 2023) and
parametrize it with a 2-layer MLPs with ReLU activations. Also, we reduce the context parameters
and gradients by averaging them along the feature dimensions (i.e. g, ϕ ∈ RS×Dϕ → ḡ, ϕ̄ ∈ RS)
and feed them into the meta-learned network h. Finally, we augment the predicted learning rates and
decaying terms α(k), β(k) ∈ RS with additional meta-learned weights α0, β0 ∈ RS , as suggested in
the paper. We set the initial values of α0, β0 to 1.

MTNP. Multitask Neural Processes (MTNPs) (Kim et al., 2022a) is another class of meta-learning
appproach for INRs based on Neural Processes (Garnelo et al., 2018), aimed at modeling multimodal
signal distributions, similar to ours. This method replaces iterative optimization steps with feed-
forward encoder networks to directly predict the parameters of INRs from observed signals. For this,
MTNPs adopts a dual-stream and hierarchical fusion approach to capture cross-modal relationships
among signals. The first stream, driven by a latent encoder, is tasked to capture uncertainty in
recovering the entire function given partial observations and to infer global latent variables shared
by the observed data points for each signal in a modality (Dmn). On the other hand, the second
stream is guided by a deterministic encoder and is responsible for extracting local per-coordinate
representations specific to each data point (xnm, ynm) that belongs to a signal in a modality. In
addition, to improve the expressive power of the model, each stream is composed of a stack of
specialized hierarchical multi-head attention blocks, where the earlier part captures the dependencies
among data points within a modality and the latter discover their potential cross-modal relationships.
For instance, in the first latent stream, cross-modal relationships among global latent variables for
each modality are captured. Similarly, multimodal dependencies among local representations that
belong to the same coordinate are considered in the second deterministic stream. We refer more
interested readers to Section 3 and Figure 2 in the original paper of MTNPs (Kim et al., 2022a).

We apply two modifications to MTNPs to adapt it in our experiments: (1) We change the output
dimension of the latent encoder so that it directly predicts the context parameters ϕnm ∈ RSnm×Dϕ

that conditions the parameters of INRs. (2) For experiments on AVMNIST, we omit the module
in the deterministic stream that captures cross-modal interactions among the axis-aligned local
representations since there is no one-to-one correspondence between the image and audio coordinates.

Encoder. We construct another encoder-based method that adopts the architecture design of SFTs for
the multimodal encoders. This multimodal encoder is composed of four parts: (1) a cross-attention
block that aggregates the observed data points (Dtrain

nm ) for each modality and extract signal represen-
tations znm ∈ RSm×Dz from them, (2) a unimodal transformer block that captures and enhances
potential dependencies within each modality representation, (3) a multimodal transformer block that
further captures cross-modal interactions among the representations from different modalities and
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improves the representations, and (4) a projection MLPs that predicts the context parameters ϕnm
of INRs for each modality. Here the unimodal and multimodal transformer blocks share the same
architecture design with our USFTs and MSFTS, respectively.

E COMPARISONS WITH EXISTING MULTIMODAL META-LEARNING STUDIES

Multimodal meta-learning is not new in the domain of meta-learning. However, existing studies (Vuo-
rio et al., 2018; 2019; Abdollahzadeh et al., 2021; Sun et al., 2023) differ significantly from our work
in terms of the notion of modality and problem setups. This not only makes direct comparisons
challenging but also hinders fair comparisons since evaluating their frameworks or ours to within
each other’s context requires substantial modifications in the methodologies. Nonetheless, in this
section, we describe the problem setup and the method focused by these studies, followed by their
comparative evaluation results in the context of our joint multimodal signal modeling scenarios.

MMAML & KML. Unlike the prevalent focus of meta-learning and meta-testing on single-domain
problems, exemplified by few-shot classification tasks on a single individual dataset like Omniglot,
mini-Imagenet, or CUB datasets, works such as Vuorio et al. (2018; 2019) and Abdollahzadeh
et al. (2021) extend their scope to encompass multiple domains of datasets. For example, they
explore simple regression problems across a union of sinusoidal, linear, and tanh functions, few-shot
classification tasks combining Omniglot, mini-Imagenet, and CUB datasets, or reinforcement learning
scenarios across various environments such as Point Mass, Reacher, and Ant. In these studies, each
domain, whether dataset or environment, is treated as a distinct modality, leading to their concept of
multimodal meta-learning. Importantly, this concept of multimodality differs from the traditional
understanding related to data types, as explicitly clarified in Section 3 of Abdollahzadeh et al. (2021).

These works highlight that meta-learning a single initialization may be suboptimal due to the
multimodal nature of the problem. To address this, they introduce an additional meta-learned module
known as a task encoder. The role of this task encoder is to identify the latent modality of the observed
data and predict modulation parameters. These parameters guide the learned single initialization
towards modality-specific initializations. Experimental results indicate that the task encoder indeed
learns to identify the modality (or dataset domain), and consequently, adapting from modality-specific
initializations yields better performance than relying on a modality-agnostic single initialization.

However, it’s important to note that in these papers, each data point is assumed to be sampled iid
from the union of datasets. As a result, the learner adapts independently to each data point, without
explicitly leveraging cross-modal relationships among modalities or incorporating mechanisms
for multimodal fusion. For these reasons, we categorize these approaches as inherently unimodal
meta-learning methods.

Upon close inspection for enabling a fair comparative evaluation on these approaches, we apply the
following modifications to our Encoder baseline to construct MMAML (Vuorio et al., 2018; 2019):
(1) we remove the multimodal transformer in Encoder, (2) share its unimodal encoders and INR
parameters across all modalities so that the framework operates on a per-modality basis, (3) and allow
the estimated context parameters by the unimodal encoders to be optimized for K steps, similar to
the other optimization-based approaches.

AMML. Unlike the previously mentioned studies, Sun et al. (2023) delve into a scenario where
multimodality relates specifically to data types. Their primary focus lies in addressing multimodal
sentiment analysis problems, where the learner is tasked with classifying discrete sentiment scores
ranging from 1 to 7 or binary sentiment classes (positive or negative). Since this classification relies
on diverse sources of information represented in different modalities, encompassing texts, images,
and audios, the task is referred to as multimodal inference in their work.

In their work, the authors underscore the limitations of existing methodologies, pointing out their
inability to consider the heterogeneous convergence properties of each unimodal encoder network.
Naively adapting these encoders using identical optimization algorithms (e.g. SGD with the same
learning rate) results in suboptimal unimodal encoder networks. Consequently, the fusion of these
suboptimal representations yields unsatisfactory outcomes for the final prediction.

To address this, Sun et al. (2023) propose a meta-learning approach involving the independent
adaptation of each modality-specific encoder using the unimodal classification loss within the inner
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Table 7: Quantitative comparisons on the multimodal 1D synthetic functions. We report the normal-
ized MSEs (×10−2) computed over distinct ranges of sampling ratios, averaged over 5 random seeds.

Modality Sine Gaussian Tanh ReLU

Range Rmin 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05
Rmax 0.02 0.05 0.10 0.02 0.05 0.10 0.02 0.05 0.10 0.02 0.05 0.10

Functa 44.26 16.07 3.319 18.81 4.388 0.953 22.61 3.667 0.586 65.29 10.79 2.157
w/ MMAML 43.35 10.09 1.233 30.87 4.270 0.698 17.20 2.351 0.312 72.79 5.630 0.261
w/ AMML 10.12 4.462 1.717 1.253 0.959 0.638 1.719 0.541 0.267 7.063 1.254 0.305
w/ MIA 6.386 2.058 0.547 1.057 0.571 0.281 1.285 0.378 0.131 5.069 1.012 0.115

Composers 37.40 16.70 5.284 5.923 3.149 1.460 14.81 4.053 1.029 48.49 11.98 3.232
w/ MMAML 44.26 11.63 1.570 31.09 4.664 0.895 16.46 2.330 0.309 74.75 5.845 0.294
w/ AMML 14.57 9.549 7.706 1.699 1.462 1.086 2.411 1.021 0.725 10.19 2.340 0.907
w/ MIA 5.564 1.844 0.627 0.975 0.528 0.237 1.257 0.343 0.128 4.715 0.943 0.156

Table 8: Quantative comparisons on the multimodal 2D CelebA image function regression. We report
MSEs (×10−3) computed over distinct ranges of sampling ratios, averaged over 5 random seeds.

Modality RGBs Normals Sketches

Range Rmin 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
Rmax 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

Functa 13.44 4.117 3.052 2.577 5.067 2.448 2.092 1.928 13.29 7.065 5.704 5.209
w/ MMAML 11.22 3.775 2.772 2.264 4.311 2.266 1.872 1.672 10.96 6.021 4.452 3.751
w/ AMML 8.110 2.909 1.853 1.334 3.341 1.689 1.243 1.000 8.192 4.332 2.278 1.124
w/ MIA 6.946 2.563 1.627 1.135 2.979 1.530 1.118 0.869 7.667 4.042 2.142 1.011

Composers 26.40 15.83 14.30 13.21 6.979 4.830 4.630 4.517 17.99 14.36 13.27 12.86
w/ MMAML 12.35 4.228 2.806 2.029 4.902 2.567 2.028 1.725 11.29 5.757 3.646 2.521
w/ AMML 11.28 5.195 3.971 3.241 4.209 2.336 1.745 1.339 9.813 5.084 2.727 1.319
w/ MIA 9.764 3.418 1.913 1.017 3.749 1.763 1.062 0.526 9.505 4.708 2.336 0.855

loop. Following this inner-loop adaptation phase, a multimodal fusion network integrates the
extracted representations derived from these individually adapted unimodal encoders. Finally, the
fused representations are utilized for predicting class labels for sentimental analysis. It’s also worth
mentioning that Transformer structures are employed for independent modality-specific encoder
(such as the pre-trained BeRT for the text encoder and Vanilla Transformers for image and acoustic
encoders), whereas they are not utilized for multimodal fusion.

Since their framework is not directly applicable to our joint multimodal function regression scenarios,
we investigat the effectiveness of their adaptation-in-the-inner-loop followed by fusion-in-the-outer-
loop scheme by applying our method’s MIA only in the final optimization step.

Results. Each compared method is run 5 times with different random seeds on Synthetic and CelebA
datasets and their results are averaged. The results are in Table 7 and 8. From the tables, we
conclude the following things: (1) MMAML greatly improves the memorization performances of
CAVIA (Functa and Composer) thanks to the task encoder network, while it fails to generalize better
than CAVIA due to its inherently unimodal nature of MMAML. (2) AMML further improves the
generalization performances of CAVIA thanks to its multimodal-fusion-in-the-outer-loop scheme.
However, its performances still fall short than our MIA, demonstrating the effectiveness of joint
multimodal iterative adaptation of the learners during the adaptation stages.
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Table 9: Pearson Correlation Coefficient (Cij) between the attention scores of MSFTs assigned to
the learner’s state representations for modality i and the support set size for modality j.

C
Functa Composers

Sine Gaussian Tanh ReLU Sine Gaussian Tanh ReLU

Sine 0.561 -0.393 -0.434 -0.357 0.620 -0.520 -0.455 -0.523
Gaussian -0.089 0.290 -0.074 -0.020 -0.406 0.473 -0.262 -0.222
Tanh -0.163 -0.068 0.319 -0.036 -0.493 -0.439 0.597 -0.421
ReLU -0.144 -0.082 -0.165 0.270 -0.265 -0.226 -0.117 0.353

(a) Coefficients on multimodal 1D synthetic functions.

C
Functa Composers

RGBs Normals Sketchs RGBs Normals Sketchs

RGBs 0.779 -0.645 -0.579 0.518 -0.807 0.434
Normals -0.794 0.843 -0.381 -0.830 0.849 -0.142
Sketchs -0.923 -0.891 0.973 -0.859 -0.254 0.882

(b) Coefficients on multimodal 2D CelebA images.

F MORE ANALYSIS ON MIA

F.1 CORRELATION BETWEEN ATTENTION PATTERN AND OBSERVATION QUALITY

Table 9 presents Pearson Correlation Coefficient (Cij) between the attention scores of MSFTs
assigned to the learner’s state representations for modality i and the support set size for modality j.
The table reveals the internal mechanism on when and how SFTs facilitate the interaction among the
learners, as discussed in the main paper. In this section we provide the methodology to calculate the
correlation.

Given a joint multimodal signal Dn = {Dnm}Mm=1, K-step adaptation of the context parameters
{ϕnm}Mm=1 ∈ RS×Dϕ with MSFTs of H multihead attention produces the attention score map An

with a shape ofK×H×MS×MS. We reshape this attention score map to (K×H×S×S)×M×M ,
followed by reducing the leading dimensions to obtain an average attention score matrix Ān with a
shape of M ×M . This matrix quantifies the average interactions among the learners, where the (i, j)
element of this matrix amounts to the average attention scores directed from the learner of modality i
towards the learner of modality j. Finally, we compute the Pearson correlation coefficient C between
these average attention score maps and the sizes of the support sets {|Dnm|}m across N sets of joint
multimodal signals, where Cij amounts to the correlation between {Ān(i, j)}n and {|Dnj |}n.

F.2 EVOLVING ATTENTION MAPS THROUGH OPTIMIZATION STEPS

Figure 12 illustrates the evolving interactions among the learners through optimization steps k =
1, · · · ,K. We quantify this degree of interactions among the learners Āk ∈ RM×M for k = 1, · · · ,K
by aggregating the attention scores of MSFTs over joint multimodal signals and optimization steps.
This procedure involves the following steps: (1) We first reshape An (defined as Section F.1) to
R(H×S×S)×K×M×M (2) Then, this reshaped matrix is reduced to Āk

n ∈ RK×M×M . (3) Finally, this
reduced matrix is averaged across the set of N joint multimodal signals as Āk = 1

N

∑
n Ā

k
n.

F.3 ANALYSIS STUDY ON LEARNING TRAJECTORIES VIA MIA

We investigate how the learning trajectories of MIA and naive gradient descent (CAVIA) differ in
situations where observations are sparse. To do this, we freeze the weight θm of the INR metatrained
by CAVIA and re-metatrain it by adding the SFTs to the update process. After that, we visualized
the learning trajectory of both methods according to the observation quality. Since the dimension of
context parameters space is too high to visualize, we utilize Principal Component Analysis (PCA),
following the methodology outlined in Li et al. (2018), to effectively project the trajectories into a
two-dimensional space.
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Step 1 Step 2 Step 3

Step 1 Step 2 Step 3

(a) Multimodal 1D synthetic functions.

Step 1 Step 2 Step 3

Step 1 Step 2 Step 3

(b) Multimodal 2D CelebA images.

Figure 12: Evolving interactions at each optimization step k = 1, 2, 3. Each (i, j) element in the
matrices indicates the average attention score assigned by the learner of modality i to the learner
of modality j. Please refer to Appendix F.2 for the detailed method for computing these matrices.
The patterns show that learners tend to interact extensively with each other in the beginning (high
off-diagonal attention scores in Step 1) and gradually attend more on themselves towards the end
(high diagonal attention scores in Step 3). This highlights MIA’s adaptability in ensuring a balanced
utilization of multimodal interactions, emphasizing the necessity of applying multimodal adaptation
iteratively for each optimization step.

Figure 13 illustrates that as the size of the support set for additional modalities expands, the learning
trajectory with MIA shifts towards more effective solutions, moving away from local minima. This
improvement is attributed to the SFTs’ ability to enhance the noisy gradients derived from limited
observations by utilizing information from other modalities’ learners. Conversely, when adapting
through standard gradient descent, the absence of cross-modal interactions results in a static learning
trajectory, regardless of the observation from other modalities. In particular, when observations are
scarce, this often results in poor performance compared to MIA, as it cannot escape to the local
minima.

F.4 ANALYSIS STUDY ON NEGATIVE TRANSFER FROM OTHER MODALITIES

In this study, we delve deeper into the impact of noisy state information from source modalities
m′ on the target learner m. We evaluate the robustness of SFTs against potential negative transfer
of incorrect information across modalities. To do this, we inject varying levels of Gaussian noise
ϵnm ∼ N (0, γI), into the gradient inputs g(k)nm′ of the SFTs. As the noise level γ increases, the state
information becomes irrelevant to the target learner. Specifically, we measure the average MSEs and
the average attention scores between state tokens of the target learners, as varying the noise level
from 10−5 to 1.0.
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(a) Functa

(b) Composers

Figure 13: Learning trajectory of RGBs context parameters for a 3-step adaptation process with
or without MIA, depending on the support set size of RGB. For each plot, the green dotted line
represents the trajectory adapted with GD and the colored solid line represents the trajectory adapted
with MIA according to the support set sizes of the different modalities (Normals + Sketches). The
left side of the legend means the support set ratio of other modalities and the right side means the
final reconstruction performance (MSEs).

Table 10: Results on CelebA dataset in MSEs (×10−3) and averaged unimodal attention scores of
MSFTs when injecting noise to gradients of other modalities’ learner with varying noise level γ.

Functa Composers

γ RGBs Normals Sketchs RGBs Normals Sketchs

0.00000 0.948 / 0.502 0.769 / 0.579 0.578 / 0.710 0.667 / 0.635 0.289 / 0.690 0.255 / 0.637
0.00001 0.976 / 0.525 0.774 / 0.644 0.581 / 0.720 0.664 / 0.630 0.288 / 0.696 0.255 / 0.643
0.00005 0.982 / 0.527 0.774 / 0.651 0.582 / 0.719 0.664 / 0.631 0.288 / 0.709 0.253 / 0.651
0.00010 0.987 / 0.527 0.775 / 0.653 0.582 / 0.718 0.673 / 0.656 0.290 / 0.727 0.253 / 0.658
0.00050 1.056 / 0.539 0.786 / 0.664 0.583 / 0.726 0.708 / 0.720 0.293 / 0.748 0.256 / 0.681
0.00100 1.092 / 0.549 0.796 / 0.677 0.584 / 0.741 0.714 / 0.724 0.293 / 0.752 0.256 / 0.687
0.00500 1.122 / 0.560 0.819 / 0.705 0.587 / 0.772 0.718 / 0.727 0.294 / 0.755 0.256 / 0.690
0.01000 1.124 / 0.561 0.823 / 0.709 0.588 / 0.775 0.717 / 0.727 0.294 / 0.755 0.256 / 0.690
0.10000 1.126 / 0.562 0.826 / 0.712 0.589 / 0.777 0.718 / 0.727 0.294 / 0.755 0.256 / 0.691
1.00000 1.127 / 0.562 0.826 / 0.713 0.589 / 0.778 0.718 / 0.727 0.294 / 0.755 0.256 / 0.691

As shown in Table 10, while there is a marginal rise in MSEs upon the introduction of noise, no
additional performance degradation is noted beyond a certain noise level. Intriguingly, as the gradient
noise from learners of other modalities increases, there is a concurrent increase in unimodal attention
scores for the learner of the target modality. This strongly indicates that SFTs inherently have the
ability to handle potential negative transfers across modalities.

F.5 ABLATION STUDY FOR COMPONENTS OF SFTS
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Table 11: Ablation study on the components in SFTs on generalization and memorization ability. We
report relative error reduction (↑) achieved by ablated methods (2-8) over vanilla Composers (1) on
multimodal 1D synthetic function dataset.

Modules Synthetic

USFTs MSFT FusionMLPs Generalization Memorization

(1) ✗ ✗ ✗ 0.00 0.00
(2) ✗ ✗ ✓ 38.9 54.2
(3) ✓ ✗ ✗ 44.4 63.6
(4) ✓ ✗ ✓ 43.1 68.0
(5) ✗ ✓ ✗ 86.8 71.6
(6) ✗ ✓ ✓ 86.8 76.7
(7) ✓ ✓ ✗ 86.7 75.5
(8) ✓ ✓ ✓ 88.7 81.6

This section provides an extensive ablation study encompassing all possible component combinations
to investigate how each of them contribute to performance. We focus on the impact of each component
on vanilla Composers in the synthetic dataset. The results are shown in Table 11.

The table shows the substantial impact of FusionMLPs in enhancing the weight updates of vanilla
Composers when used independently (1 vs 2) or in combination with USFTs, MSFTs, or both (3 vs
4, 5 vs 6, 7 vs 8). This demonstrates the general versatility of FusionMLPs in enhancing gradient
directions or magnitudes.

Moreover, we observe that incorporating USFTs significantly enhances memorization capabilities
(1-2 vs 3-4). This emphasizes the advantageous role of USFTs in capturing modality-specific patterns
within the learners’ states.

In contrast, MSFTs excel in leveraging cross-modal interactions among the learners’ states, leading
to a substantial improvement in the generalization performances of Composers (3-4 vs 5-8).

Lastly, the most optimal performance is achieved when utilizing a combination of USFTs, MSFTs,
and FusionMLPs, underlining the indispensable roles of each component within SFTs. This analysis
validates the unique and crucial contribution of each component to the overall effectiveness of CAVIA.
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