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ABSTRACT

Recently many deep models have been proposed for multivariate time series (MTS)
forecasting. In particular, Transformer-based models have shown great potential
because they can capture long-term dependency. However, existing Transformer-
based models mainly focus on modeling the temporal dependency (cross-time
dependency) yet often omit the dependency among different variables (cross-
dimension dependency), which is critical for MTS forecasting. To fill the gap, we
propose Crossformer, a Transformer-based model utilizing cross-dimension depen-
dency for MTS forecasting. In Crossformer, the input MTS is embedded into a 2D
vector array through the Dimension-Segment-Wise (DSW) embedding to preserve
time and dimension information. Then the Two-Stage Attention (TSA) layer is
proposed to efficiently capture the cross-time and cross-dimension dependency.
Utilizing DSW embedding and TSA layer, Crossformer establishes a Hierarchical
Encoder-Decoder (HED) to use the information at different scales for the final
forecasting. Extensive experimental results on six real-world datasets show the
effectiveness of Crossformer against previous state-of-the-arts.

1 INTRODUCTION

Multivariate time series (MTS) are time series with multiple dimensions, where each dimension
represents a specific univariate time series (e.g. a climate feature of weather). MTS forecasting
aims to forecast the future value of MTS using their historical values. MTS forecasting benefits the
decision-making of downstream tasks and is widely used in many fields including weather (Angryk
et al., 2020), energy (Demirel et al., 2012), finance (Patton, 2013), etc. With the development
of deep learning, many models have been proposed and achieved superior performances in MTS
forecasting (Lea et al., 2017; Qin et al., 2017; Flunkert et al., 2017; Rangapuram et al., 2018; Li et al.,
2019a; Wu et al., 2020; Li et al., 2021). Among them, the recent Transformer-based models (Li et al.,
2019b; Zhou et al., 2021; Wu et al., 2021a; Liu et al., 2021a; Zhou et al., 2022; Chen et al., 2022)
show great potential thanks to their ability to capture long-term temporal dependency (cross-time
dependency).

Besides cross-time dependency, the cross-dimension dependency is also critical for MTS forecasting,
i.e. for a specific dimension, information from associated series in other dimensions may improve
prediction. For example, when predicting future temperature, not only the historical temperature,
but also historical wind speed helps to forecast. Some previous neural models explicitly capture the
cross-dimension dependency, i.e. preserving the information of dimensions in the latent feature space
and using convolution neural network (CNN) (Lai et al., 2018) or graph neural network (GNN) (Wu
et al., 2020; Cao et al., 2020) to capture their dependency. However, recent Transformer-based models
only implicitly utilize this dependency by embedding. In general, Transformer-based models embed
data points in all dimensions at the same time step into a feature vector and try to capture dependency
among different time steps (like Fig. 1 (b)). In this way, cross-time dependency is well captured, but
cross-dimension dependency is not, which may limit their forecasting capability.

∗Junchi Yan is the correspondence author. This work was in part supported by NSFC (61972250, U19B2035,
62222607) and Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102).
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To fill the gap, we propose Crossformer, a Transformer-based model that explicitly utilizes cross-
dimension dependency for MTS forecasting. Specifically, we devise Dimension-Segment-Wise
(DSW) embedding to process the historical time series. In DSW embedding, the series in each
dimension is first partitioned into segments and then embedded into feature vectors. The output
of DSW embedding is a 2D vector array where the two axes correspond to time and dimension.
Then we propose the Two-Stage-Attention (TSA) layer to efficiently capture the cross-time and
cross-dimension dependency among the 2D vector array. Using DSW embedding and TSA layer,
Crossformer establishes a Hierarchical Encoder-Decoder (HED) for forecasting. In HED, each layer
corresponds to a scale. The encoder’s upper layer merges adjacent segments output by the lower layer
to capture the dependency at a coarser scale. Decoder layers generate predictions at different scales
and add them up as the final prediction. The contributions of this paper are:

1) We dive into the existing Transformer-based models for MTS forecasting and figure out that
the cross-dimension dependency is not well utilized: these models simply embed data points of
all dimensions at a specific time step into a single vector and focus on capturing the cross-time
dependency among different time steps. Without adequate and explicit mining and utilization of
cross-dimension dependency, their forecasting capability is empirically shown limited.

2) We develop Crossformer, a Transformer model utilizing cross-dimension dependency for MTS
forecasting. This is one of the few transformer models (perhaps the first to our best knowledge) that
explicitly explores and utilizes cross-dimension dependency for MTS forecasting.

3) Extensive experimental results on six real-world benchmarks show the effectiveness of our
Crossformer against previous state-of-the-arts. Specifically, Crossformer ranks top-1 among the 9
models for comparison on 36 out of the 58 settings of varying prediction lengths and metrics and
ranks top-2 on 51 settings.

2 RELATED WORKS

Multivariate Time Series Forecasting. MTS forecasting models can be roughly divided into
statistical and neural models. Vector auto-regressive (VAR) model (Kilian & LÃtkepohl, 2017) and
Vector auto-regressive moving average (VARMA) are typical statistical models, which assume linear
cross-dimension and cross-time dependency. With the development of deep learning, many neural
models have been proposed and often empirically show better performance than statistical ones.
TCN (Lea et al., 2017) and DeepAR (Flunkert et al., 2017) treat the MTS data as a sequence of
vectors and use CNN/RNN to capture the temporal dependency. LSTnet (Lai et al., 2018) employs
CNN to capture cross-dimension dependency and RNN for cross-time dependency. Another category
of works use graph neural networks (GNNs) to capture the cross-dimension dependency explicitly
for forecasting (Li et al., 2018; Yu et al., 2018; Cao et al., 2020; Wu et al., 2020). For example,
MTGNN (Wu et al., 2020) uses temporal convolution and graph convolution layers to capture cross-
time and cross-dimension dependency. These neural models capture the cross-time dependency
through CNN or RNN, which have difficulty in modeling long-term dependency.

Transformers for MTS Forecasting. Transformers (Vaswani et al., 2017) have achieved success
in natural language processing (NLP) (Devlin et al., 2019), vision (CV) (Dosovitskiy et al., 2021)
and speech processing (Dong et al., 2018). Recently, many Transformer-based models have been
proposed for MTS forecasting and show great potential (Li et al., 2019b; Zhou et al., 2021; Wu et al.,
2021a; Liu et al., 2021a; Zhou et al., 2022; Du et al., 2022). LogTrans (Li et al., 2019b) proposes
the LogSparse attention that reduces the computation complexity of Transformer from O(L2) to
O
(
L(logL)2

)
1. Informer (Zhou et al., 2021) utilizes the sparsity of attention score through KL

divergence estimation and proposes ProbSparse self-attention which achieves O(L logL) complexity.
Autoformer (Wu et al., 2021a) introduces a decomposition architecture with an Auto-Correlation
mechanism to Transformer, which also achieves the O(L logL) complexity. Pyraformer (Liu et al.,
2021a) introduces a pyramidal attention module that summarizes features at different resolutions and
models the temporal dependencies of different ranges with the complexity ofO(L). FEDformer (Zhou
et al., 2022) proposes that time series have a sparse representation in frequency domain and develop a
frequency enhanced Transformer with the O(L) complexity. Preformer (Du et al., 2022) divides the
embedded feature vector sequence into segments and utilizes segment-wise correlation-based attention

1In this paper, the meaning of complexity refers to both time and space overhead and they are often the same.
This is also in line with the presentation in existing works (Wu et al., 2021a; Liu et al., 2021a).
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Figure 1: Illustration for our DSW embedding. (a) Self-attention scores from a 2-layer Transformer
trained on ETTh1, showing that MTS data tends to be segmented. (b) Embedding method of previous
Transformer-based models (Li et al., 2019b; Zhou et al., 2021; Wu et al., 2021a; Liu et al., 2021a):
data points in different dimensions at the same step are embedded into a vector. (c) DSW embedding
of Crossformer: in each dimension, nearby points over time form a segment for embedding.

for forecasting. These models mainly focus on reducing the complexity of cross-time dependency
modeling, but omits the cross-dimension dependency which is critical for MTS forecasting.

Vision Transformers. Transformer is initially applied to NLP for sequence modeling, recent works
apply transformer to CV tasks to process images (Dosovitskiy et al., 2021; Touvron et al., 2021; Liu
et al., 2021b; Chen et al., 2021; Han et al., 2021). These works achieve state-of-the-art performance
on various tasks in CV and inspire our work. ViT (Dosovitskiy et al., 2021) is one of the pioneers of
vision transformers. The basic idea of ViT is to split an image into non-overlapping medium-sized
patches, then it rearranges these patches into a sequence to be input to the Transformer. The idea of
partitioning images into patches inspires our DSW embedding where MTS is split into dimension-
wise segments. Swin Transformer (Liu et al., 2021b) performs local attention within a window to
reduce the complexity and builds hierarchical feature maps by merging image patches. Readers can
refer to the recent survey (Han et al., 2022) for comprehensive study on vision transformers.

3 METHODOLOGY

In multivariate time series forecasting, one aims to predict the future value of time series xT+1:T+τ ∈
Rτ×D given the history x1:T ∈ RT×D, where τ , T is the number of time steps in the future and
past, respectively2. D > 1 is the number of dimensions. A natural assumption is that these D
series are associated (e.g. climate features of weather), which helps to improve the forecasting
accuracy. To utilize the cross-dimension dependency, in Section 3.1, we embed the MTS using
Dimension-Segment-Wise (DSW) embedding. In Section 3.2, we propose a Two-Stage Attention
(TSA) layer to efficiently capture the dependency among the embedded segments. In Section 3.3,
using DSW embedding and TSA layer, we construct a hierarchical encoder-decoder (HED) to utilize
information at different scales for final forecasting.

3.1 DIMENSION-SEGMENT-WISE EMBEDDING

To motivate our approach, we first analyze the embedding methods of the previous Transformer-based
models for MTS forecasting (Zhou et al., 2021; Wu et al., 2021a; Liu et al., 2021a; Zhou et al., 2022).
As shown in Fig. 1 (b), existing methods embed data points at the same time step into a vector:
xt → ht,xt ∈ RD,ht ∈ Rdmodel , where xt represents all the data points in D dimensions at step
t. In this way, the input x1:T is embedded into T vectors {h1,h2, . . . ,hT }. Then the dependency
among the T vectors is captured for forecasting. Therefore, previous Transformer-based models
mainly capture cross-time dependency, while the cross-dimension dependency is not explicitly
captured during embedding, which limits their forecasting capability.

Transformer was originally developed for NLP (Vaswani et al., 2017), where each embedded vector
represents an informative word. For MTS, a single value at a step alone provides little information.

2In this work, we mainly focus on forecasting using only past data without covariates. But covariates can be
easily incorporated in Crossformer through embedding. Details are shown in Appendix D.2.
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While it forms informative pattern with nearby values in time domain. Fig. 1 (a) shows a typical
attention score map of original Transformer for MTS forecasting. We can see that attention values
have a tendency to segment, i.e. close data points have similar attention weights.

Based on the above two points, we argue that an embedded vector should represent a series segment
of single dimension (Fig. 1 (c)), rather than the values of all dimensions at single step (Fig. 1 (b)).
To this end, we propose Dimension-Segment-Wise (DSW) embedding where the points in each
dimension are divided into segments of length Lseg and then embedded:

x1:T =

{
x
(s)
i,d |1 ≤ i ≤

T

Lseg
, 1 ≤ d ≤ D

}
x
(s)
i,d =

{
xt,d|(i− 1)× Lseg < t ≤ i× Lseg

} (1)

where x(s)
i,d ∈ RLseg is the i-th segment in dimension d with length Lseg . For convenience, we assume

that T, τ are divisible by Lseg3. Then each segment is embedded into a vector using linear projection
added with a position embedding:

hi,d = Ex
(s)
i,d +E

(pos)
i,d (2)

where E ∈ Rdmodel×Lseg denotes the learnable projection matrix, and E
(pos)
i,d ∈ Rdmodel denotes

the learnable position embedding for position (i, d). After embedding, we obtain a 2D vector array
H =

{
hi,d|1 ≤ i ≤ T

Lseg
, 1 ≤ d ≤ D

}
, where each hi,d represents a univariate time series segment.

The idea of segmentation is also used in Du et al. (2022), which splits the embedded 1D vector
sequence into segments to compute the Segment-Correlation in order to enhance locality and reduce
computation complexity. However, like other Transformers for MTS forecasting, it does not explicitly
capture cross-dimension dependency.

3.2 TWO-STAGE ATTENTION LAYER

For the obtained 2D array H, one can flatten it into a 1D sequence so that it can be input to a canonical
Transformer like ViT (Dosovitskiy et al., 2021) does in vision. While we have specific considerations:
1) Different from images where the axes of height and width are interchangeable, the axes of time
and dimension for MTS have different meanings and thus should be treated differently. 2) Directly
applying self-attention on 2D array will cause the complexity of O(D2 T 2

L2
seg

), which is unaffordable
for large D. Therefore, we propose the Two-Stage Attention (TSA) Layer to capture cross-time and
cross-dimension dependency among the 2D vector array, as sketched in Fig. 2 (a).

Cross-Time Stage Given a 2D array Z ∈ RL×D×dmodel as the input of the TSA Layer, where L
and D are the number of segments and dimensions, respectively. Z here can be the output of DSW
embedding or lower TSA layers. For convenience, in the following, we use Zi,: to denote the vectors
of all dimensions at time step i, Z:,d for those of all time steps in dimension d. In the cross-time
stage, we directly apply multi-head self-attention (MSA) to each dimension:

Ẑtime:,d = LayerNorm
(
Z:,d + MSAtime(Z:,d,Z:,d,Z:,d)

)
Ztime = LayerNorm

(
Ẑtime + MLP(Ẑtime)

) (3)

where 1 ≤ d ≤ D and LayerNorm denotes layer normalization as widely adopted in Vaswani et al.
(2017); Dosovitskiy et al. (2021); Zhou et al. (2021), MLP denotes a multi-layer (two in this paper)
feedforward network, MSA(Q,K,V) denotes the multi-head self-attention (Vaswani et al., 2017)
layer where Q,K,V serve as queries, keys and values. All dimensions (1 ≤ d ≤ D) share the same
MSA layer. Ẑtime,Ztime denotes the output of the MSA and MLP.

The computation complexity of cross-time stage is O(DL2). After this stage, the dependency among
time segments in the same dimension is captured in Ztime. Then Ztime becomes the input of
Cross-Dimension Stage to capture cross-dimension dependency.

3If not, we pad them to proper length. See details in Appendix D.1.

4



Published as a conference paper at ICLR 2023

Cross-Dimension Stage

𝒁𝒁

𝒁𝒁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝒀𝒀
(𝒁𝒁𝑑𝑑𝑡𝑡m)

𝐷𝐷

𝐿𝐿

(a)

……𝒁𝒁𝑡𝑡,:𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝒁𝒁𝑡𝑡,:
𝑑𝑑𝑡𝑡𝑡𝑡

𝐷𝐷

……

MSA𝑑𝑑𝑡𝑡𝑡𝑡(𝒁𝒁𝑡𝑡,:𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝒁𝒁𝑡𝑡,:𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝒁𝒁𝑡𝑡,:𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

(b)

……

……

𝒁𝒁𝑡𝑡,:𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑩𝑩𝑡𝑡,:(𝑐𝑐 = 3)

𝒁𝒁𝑡𝑡,:
𝑑𝑑𝑡𝑡𝑡𝑡

MSA1𝑑𝑑𝑡𝑡𝑡𝑡(𝑹𝑹𝑡𝑡,:, 𝒁𝒁𝑡𝑡,:𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝒁𝒁𝑡𝑡,:𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

MSA2
𝑑𝑑𝑡𝑡𝑡𝑡(𝒁𝒁𝑡𝑡,:𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑩𝑩𝑡𝑡,:, 𝑩𝑩𝑡𝑡,:)

𝐷𝐷
(c)

Figure 2: The TSA layer. (a) Two-Stage Attention Layer to process a 2D vector array representing
multivariate time series: each vector refers to a segment of the original series. The whole vector array
goes through the Cross-Time Stage and Cross-Dimension Stage to get corresponding dependency.
(b) Directly using MSA in Cross-Dimension Stage to build the D-to-D connection results in O(D2)
complexity. (c) Router mechanism for Cross-Dimension Stage: a small fixed number (c) of “routers”
gather information from all dimensions and then distribute the gathered information. The complexity
is reduced to O(2cD) = O(D).

Cross-Dimension Stage We can use a large Lseg for long sequence in DSW Embedding to reduce
the number of segments L in cross-time stage. While in Cross-Dimension Stage, we can not partition
dimensions and directly apply MSA will cause the complexity of O(D2) (as shown in Fig. 2 (b)),
which is unaffordable for datasets with large D. Instead, we propose the router mechanism for
potentially large D. As shown in Fig. 2 (c), we set a small fixed number (c << D) of learnable
vectors for each time step i as routers. These routers first aggregate messages from all dimensions by
using routers as query in MSA and vectors of all dimensions as key and value. Then routers distribute
the received messages among dimensions by using vectors of dimensions as query and aggregated
messages as key and value. In this way, the all-to-all connection among D dimensions are built:

Bi,: = MSAdim1 (Ri,:,Z
time
i,: ,Ztimei,: ), 1 ≤ i ≤ L

Z
dim

i,: = MSAdim2 (Ztimei,: ,Bi,:,Bi,:), 1 ≤ i ≤ L

Ẑdim = LayerNorm
(
Ztime + Z

dim
)

Zdim = LayerNorm
(
Ẑdim + MLP(Ẑdim)

) (4)

Encoder layer
Decoder layer

Hidden vectors
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Figure 3: Architecture of the Hierarchical Encoder-Decoder
in Crossformer with 3 encoder layers. The length of each
vector denotes the covered time range. The encoder (left)
uses TSA layer and segment merging to capture dependency
at different scales: a vector in upper layer covers a longer
range, resulting in dependency at a coarser scale. Exploring
different scales, the decoder (right) makes the final prediction
by forecasting at each scale and adding them up.

where R ∈ RL×c×dmodel (c is a con-
stant) is the learnable vector array
serving as routers. B ∈ RL×c×dmodel
is the aggregated messages from all
dimensions. Z

dim
denotes output

of the router mechanism. All time
steps (1 ≤ i ≤ L) share the same
MSAdim1 ,MSAdim2 . Ẑdim,Zdim de-
note output of skip connection and
MLP respectively. The router mech-
anism reduce the complexity from
O(D2L) to O(DL).

Adding up Eq. 3 and Eq. 4, we model
the two stages as:

Y = Zdim = TSA(Z) (5)

where Z, Y ∈ RL×D×dmodel denotes
the input and output vector array of
TSA layer, respectively. Note that the
overall computation complexity of the
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TSA layer is O(DL2 +DL) = O(DL2). After the Cross-Time and Cross-Dimension Stages, every
two segments (i.e. Zi1,d1 ,Zi2,d2) in Z are connected, as such both cross-time and cross-dimension
dependencies are captured in Y.

3.3 HIERARCHICAL ENCODER-DECODER

Hierarchical structures are widely used in Transformers for MTS forecasting to capture information
at different scales (Zhou et al., 2021; Liu et al., 2021a). In this section, we use the proposed DSW
embedding, TSA layer and segment merging to construct a Hierarchical Encoder-Decoder (HED). As
shown in Fig. 3, the upper layer utilizes information at a coarser scale for forecasting. Forecasting
values at different scales are added to output the final result.

Encoder In each layer of the encoder (except the first layer), every two adjacent vectors in time
domain are merged to obtain the representation at a coarser level. Then a TSA layer is applied to
capture dependency at this scale. This process is modeled as Zenc,l = Encoder(Zenc,l−1):{

l = 1 : Ẑenc,l = H

l > 1 : Ẑenc,li,d = M[Zenc,l−12i−1,d · Z
enc,l−1
2i,d ], 1 ≤ i ≤ Ll−1

2 , 1 ≤ d ≤ D

Zenc,l = TSA(Ẑenc,l)

(6)

where H denotes the 2D array obtained by DSW embedding; Zenc,l denotes the output of the
l-th encoder layer; M ∈ Rdmodel×2dmodel denotes a learnable matrix for segment merging; [·]
denotes the concatenation operation; Ll−1 denotes the number of segments in each dimension in
layer l − 1, if it is not divisible by 2, we pad Zenc,l−1 to the proper length; Ẑenc,l denotes the
array after segment merging in the i-th layer. Suppose there are N layers in the encoder, we use
Zenc,0,Zenc,1, . . . ,Zenc,N , (Zenc,0 = H) to represent the N + 1 outputs of the encoder. The
complexity of each encoder layer is O(D T 2

L2
seg

).

Decoder Obtaining the N + 1 feature arrays output by the encoder, we use N + 1 layers (indexed
by 0, 1, . . . , N ) in decoder for forecasting. Layer l takes the l-th encoded array as input, then outputs
a decoded 2D array of layer l. This process is summarized as Zdec,l = Decoder(Zdec,l−1,Zenc,l):{

l = 0 : Z̃dec,l = TSA(E(dec))

l > 0 : Z̃dec,l = TSA(Zdec,l−1)

Z
dec,l

:,d = MSA
(
Z̃dec,l:,d ,Zenc,l:,d ,Zenc,l:,d

)
, 1 ≤ d ≤ D

Ẑdec,l = LayerNorm
(
Z̃dec,l + Z

dec,l
)

Zdec,l = LayerNorm
(
Ẑdec,l + MLP(Ẑdec,l)

)
(7)

where E(dec) ∈ R
τ

Lseg
×D×dmodel denotes the learnable position embedding for decoder. Z̃dec,l is the

output of TSA. The MSA layer takes Z̃dec,l:,d as query and Zenc,l:,d as the key and value to build the

connection between encoder and decoder. The output of MSA is denoted as Z
dec,l

:,d . Ẑdec,l,Zdec,l

denote the output of skip connection and MLP respectively. We use Zdec,0,Zenc,1, . . . ,Zdec,N to
represent the decoder output. The complexity of each decoder layer is O

(
D τ(T+τ)

L2
seg

)
.

Linear projection is applied to each layer’s output to yield the prediction of this layer. Layer
predictions are summed to make the final prediction (for l = 0, . . . , N ):

for l = 0, . . . , N : x
(s),l
i,d = WlZdec,li,d xpred,lT+1:T+τ =

{
x
(s),l
i,d |1 ≤ i ≤

τ

Lseg
, 1 ≤ d ≤ D

}
xpredT+1:T+τ =

N∑
l=0

xpred,lT+1:T+τ

(8)

where Wl ∈ RLseg×dmodel is a learnable matrix to project a vector to a time series segment.
x
(s),l
i,d ∈ RLseg denotes the i-th segment in dimension d of the prediction. All the segments in layer
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Table 1: MSE/MAE with different prediction lengths. Bold/underline indicates the best/second.
Results of LSTMa, LSTnet, Transformer, Informer on the first 4 datasets are from Zhou et al. (2021).

Models LSTMa LSTnet MTGNN Transformer Informer Autoformer Pyraformer FEDformer Crossformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

h1

24 0.650 0.624 1.293 0.901 0.336 0.393 0.620 0.577 0.577 0.549 0.439 0.440 0.493 0.507 0.318 0.384 0.305 0.367
48 0.720 0.675 1.456 0.960 0.386 0.429 0.692 0.671 0.685 0.625 0.429 0.442 0.554 0.544 0.342 0.396 0.352 0.394
168 1.212 0.867 1.997 1.214 0.466 0.474 0.947 0.797 0.931 0.752 0.493 0.479 0.781 0.675 0.412 0.449 0.410 0.441
336 1.424 0.994 2.655 1.369 0.736 0.643 1.094 0.813 1.128 0.873 0.509 0.492 0.912 0.747 0.456 0.474 0.440 0.461
720 1.960 1.322 2.143 1.380 0.916 0.750 1.241 0.917 1.215 0.896 0.539 0.537 0.993 0.792 0.521 0.515 0.519 0.524

E
T

T
m

1

24 0.621 0.629 1.968 1.170 0.260 0.324 0.306 0.371 0.323 0.369 0.410 0.428 0.310 0.371 0.290 0.364 0.211 0.293
48 1.392 0.939 1.999 1.215 0.386 0.408 0.465 0.470 0.494 0.503 0.485 0.464 0.465 0.464 0.342 0.396 0.300 0.352
96 1.339 0.913 2.762 1.542 0.428 0.446 0.681 0.612 0.678 0.614 0.502 0.476 0.520 0.504 0.366 0.412 0.320 0.373
288 1.740 1.124 1.257 2.076 0.469 0.488 1.162 0.879 1.056 0.786 0.604 0.522 0.729 0.657 0.398 0.433 0.404 0.427
672 2.736 1.555 1.917 2.941 0.620 0.571 1.231 1.103 1.192 0.926 0.607 0.530 0.980 0.678 0.455 0.464 0.569 0.528

W
T

H

24 0.546 0.570 0.615 0.545 0.307 0.356 0.349 0.397 0.335 0.381 0.363 0.396 0.301 0.359 0.357 0.412 0.294 0.343
48 0.829 0.677 0.660 0.589 0.388 0.422 0.386 0.433 0.395 0.459 0.456 0.462 0.376 0.421 0.428 0.458 0.370 0.411
168 1.038 0.835 0.748 0.647 0.498 0.512 0.613 0.582 0.608 0.567 0.574 0.548 0.519 0.521 0.564 0.541 0.473 0.494
336 1.657 1.059 0.782 0.683 0.506 0.523 0.707 0.634 0.702 0.620 0.600 0.571 0.539 0.543 0.533 0.536 0.495 0.515
720 1.536 1.109 0.851 0.757 0.510 0.527 0.834 0.741 0.831 0.731 0.587 0.570 0.547 0.553 0.562 0.557 0.526 0.542

E
C

L

48 0.486 0.572 0.369 0.445 0.173 0.280 0.334 0.399 0.344 0.393 0.241 0.351 0.478 0.471 0.229 0.338 0.156 0.255
168 0.574 0.602 0.394 0.476 0.236 0.320 0.353 0.420 0.368 0.424 0.299 0.387 0.452 0.455 0.263 0.361 0.231 0.309
336 0.886 0.795 0.419 0.477 0.328 0.373 0.381 0.439 0.381 0.431 0.375 0.428 0.463 0.456 0.305 0.386 0.323 0.369
720 1.676 1.095 0.556 0.565 0.422 0.410 0.391 0.438 0.406 0.443 0.377 0.434 0.480 0.461 0.372 0.434 0.404 0.423
960 1.591 1.128 0.605 0.599 0.471 0.451 0.492 0.550 0.460 0.548 0.366 0.426 0.550 0.489 0.393 0.449 0.433 0.438

IL
I

24 4.220 1.335 4.975 1.660 4.265 1.387 3.954 1.323 4.588 1.462 3.101 1.238 3.970 1.338 2.687 1.147 3.041 1.186
36 4.771 1.427 5.322 1.659 4.777 1.496 4.167 1.360 4.845 1.496 3.397 1.270 4.377 1.410 2.887 1.160 3.406 1.232
48 4.945 1.462 5.425 1.632 5.333 1.592 4.746 1.463 4.865 1.516 2.947 1.203 4.811 1.503 2.797 1.155 3.459 1.221
60 5.176 1.504 5.477 1.675 5.070 1.552 5.219 1.553 5.212 1.576 3.019 1.202 5.204 1.588 2.809 1.163 3.640 1.305

Tr
af

fic

24 0.668 0.378 0.648 0.403 0.506 0.278 0.597 0.332 0.608 0.334 0.550 0.363 0.606 0.338 0.562 0.375 0.491 0.274
48 0.709 0.400 0.709 0.425 0.512 0.298 0.658 0.369 0.644 0.359 0.595 0.376 0.619 0.346 0.567 0.374 0.519 0.295
168 0.900 0.523 0.713 0.435 0.521 0.319 0.664 0.363 0.660 0.391 0.649 0.407 0.635 0.347 0.607 0.385 0.513 0.289
336 1.067 0.599 0.741 0.451 0.540 0.335 0.654 0.358 0.747 0.405 0.624 0.388 0.641 0.347 0.624 0.389 0.530 0.300
720 1.461 0.787 0.768 0.474 0.557 0.343 0.685 0.370 0.792 0.430 0.674 0.417 0.670 0.364 0.623 0.378 0.573 0.313

l are rearranged to get the layer prediction xpred,lT+1:T+τ . Predictions of all the layers are summed to
obtain the final forecasting xpredT+1:T+τ .

4 EXPERIMENTS

4.1 PROTOCOLS

Datasets We conduct experiments on six real-world datasets following Zhou et al. (2021); Wu
et al. (2021a). 1) ETTh1 (Electricity Transformer Temperature-hourly), 2) ETTm1 (Electricity
Transformer Temperature-minutely), 3) WTH (Weather), 4) ECL (Electricity Consuming Load), 5)
ILI (Influenza-Like Illness), 6) Traffic. The train/val/test splits for the first four datasets are same as
Zhou et al. (2021), the last two are split by the ratio of 0.7:0.1:0.2 following Wu et al. (2021a).

Baselines We use the following popular models for MTS forecasting as baselines:1) LSTMa (Bah-
danau et al., 2015), 2) LSTnet (Lai et al., 2018), 3) MTGNN (Wu et al., 2020), and recent
Transformer-based models for MTS forecasting: 4) Transformer (Vaswani et al., 2017), 5) In-
former (Zhou et al., 2021), 6) Autoformer (Wu et al., 2021a), 7) Pyraformer (Liu et al., 2021a)
and 8) FEDformer (Zhou et al., 2022).

Setup We use the same setting as in Zhou et al. (2021): train/val/test sets are zero-mean normalized
with the mean and std of training set. On each dataset, we evaluate the performance over the changing
future window size τ . For each τ , the past window size T is regarded as a hyper-parameter to search
which is a common protocol in recent MTS transformer literature (Zhou et al., 2021; Liu et al., 2021a).
We roll the whole set with stride = 1 to generate different input-output pairs. The Mean Square Error
(MSE) and Mean Absolute Error (MAE) are used as evaluation metrics. All experiments are repeated
for 5 times and the mean of the metrics reported. Our Crossformer only utilize the past series to
forecast the future, while baseline models use additional covariates such as hour-of-the-day. Details
about datasets, baselines, implementation, hyper-parameters are shown in Appendix A.

4.2 MAIN RESULTS

As shown in Table 1, Crossformer shows leading performance on most datasets, as well as on
different prediction length settings, with the 36 top-1 and 51 top-2 cases out of 58 in total. It is
worth noting that, perhaps due to the explicit use of cross-dimension dependency via GNN, MTGNN
outperforms many Transformer-based baselines. While MTGNN has been rarely compared in existing
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Table 2: Component ablation of Crossformer: DSW embedding, TSA layer and HED on ETTh1.

Models Transformer DSW DSW+TSA DSW+HED DSW+TSA+HED

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.620 0.577 0.373 0.418 0.322 0.373 0.406 0.454 0.305 0.367
48 0.692 0.671 0.456 0.479 0.365 0.403 0.493 0.512 0.352 0.394

168 0.947 0.797 0.947 0.731 0.473 0.479 0.614 0.583 0.410 0.441
336 1.094 0.813 0.969 0.752 0.553 0.534 0.788 0.676 0.440 0.461
720 1.241 0.971 1.086 0.814 0.636 0.599 0.841 0.717 0.519 0.524
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Figure 4: Evaluation on hyper-parameter impact and computational efficiency. (a) MSE against hyper-
parameter segment length Lseg in DSW embedding on ETTh1. (b) MSE against hyper-parameter
number of routers c in the Cross-Dimension Stage of TSA layer on ETTh1. (c) Memory occupation
against the input length T on ETTh1. (d) Memory occupation against number of dimensions D on
synthetic datasets with different number of dimensions.

transformers for MTS forecasting literatures. FEDformer and Autoformer outperform our model on
ILI. We conjecture this is because the size of dataset ILI is small and these two models introduce the
prior knowledge of sequence decomposition into the network structure which makes them perform
well when the data is limited. Crossformer still outperforms other baselines on this dataset.

4.3 ABLATION STUDY

In our approach, there are three components: DSW embedding, TSA layer and HED. We perform
ablation study on the ETTh1 dataset in line with Zhou et al. (2021); Liu et al. (2021a). We use
Transformer as the baseline and DSW+TSA+HED to denote Crossformer without ablation. Three
ablation versions are compared: 1) DSW 2) DSW+TSA 3) DSW+HED.

We analyze the results shown in Table 2. 1) DSW performs better than Transformer on most settings.
The only difference between DSW and Transformer is the embedding method, which indicates
the usefulness of DSW embedding and the importance of cross-dimension dependency. 2) TSA
constantly improves the forecasting accuracy. This suggests that it is reasonable to treat time and
dimension differently. Moreover, TSA makes it possible to use Crossformer on datasets where the
number of dimensions is large (e.g. D = 862 for dataset Traffic). 3) Comparing DSW+HED with
DSW, HED decreases the forecasting accuracy when prediction length is short but increases it for
long term prediction. The possible reason is that information at different scales is helpful to long term
prediction. 4) Combining DSW, TSA and HED, our Crossformer yields best results on all settings.

4.4 EFFECT OF HYPER-PARAMETERS

We evaluate the effect of two hyper-parameters: segment length (Lseg in Eq. 1) and number of routers
in TSA (c in Cross-Dimension Stage of TSA) on the ETTh1 dataset. Segment Length: In Fig. 4(a),
we prolong the segment length from 4 to 24 and evaluate MSE with different prediction windows.
For short-term forecasting (τ = 24, 48), smaller segment yields relevantly better results, but the
prediction accuracy is stable. For long-term forecasting (τ ≥ 168), prolonging the segment length
from 4 to 24 causes the MSE to decrease. This indicates that long segments should be used for
long-term forecasting. We further prolong the segment length to 48 for τ = 336, 720, the MSE is
slightly larger than that of 24. The possible reason is that 24 hours exactly matches the daily period of
this dataset, while 48 is too coarse to capture fine-grained information. Number of Routers in TSA
Layer: Number of Routers c controls the information bandwidth among all dimensions. As Fig. 4(b)
shows, the performance of Crossformer is stable w.r.t to c for τ ≤ 336. For τ = 720, the MSE is
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large when c = 3 but decreases and stabilizes when c ≥ 5. In pratice, we set c = 10 to balance the
prediction accuracy and computation efficiency.

4.5 COMPUTATIONAL EFFICIENCY ANALYSIS

Table 3: Computation complexity per layer of
Transformer-based models. T denotes the length of
past series, τ denotes the length of prediction window,
D denotes the number of dimensions, Lseg denotes the
segment length of DSW embedding in Crossformer.

Method Encoder layer Decoder layer

Transformer (Vaswani et al., 2017) O(T 2) O(τ(τ + T ))
Informer (Zhou et al., 2021) O(T log T ) O (τ(τ + log T ))

Autoformer (Wu et al., 2021a) O(T log T ) O((T2 + τ) log
(
T
2 + τ)

)
Pyraformer (Liu et al., 2021a) O(T ) O(τ(τ + T ))
FEDformer (Zhou et al., 2022) O(T ) O(T2 + τ)

Crossformer (Ours) O
(

D
L2
seg
T 2
)

O
(

D
L2
seg
τ(τ + T )

)

The theoretical complexity per layer of
Transformer-based models is compared in
Table 3. The complexity of Crossformer
encoder is quadratic w.r.t T . However, for
long-term prediction where large Lseq is
used, the coefficient 1

L2
seq

term can signif-
icantly reduce its practical complexity. We
evaluate the memory occupation of these
models on ETTh1.4 We set the predic-
tion window τ = 336 and prolong input
length T . For Crossformer, Lseg is set to
24, which is the best value for τ ≥ 168
(see Fig. 4 (a)). The result in Fig. 4 (c) shows that Crossformer achieves the best efficiency among
the five methods within the tested length range. Theoretically, Informer, Autoformer and FEDformer
are more efficient when T approaches infinity. In practice, Crossformer performs better when T is
not extremely large (e.g. T ≤ 104).

We also evaluate the memory occupation w.r.t the number of dimensions D. For baseline models
where cross-dimension dependency is not modeled explicitly, D has little effect. Therefore, we
compare Crossformer with its ablation versions in Section 4.3. We also evaluate the TSA layers that
directly use MSA in Cross-Dimension Stage without the Router mechanism, denoted as TSA(w/o
Router). Fig. 4 (d) shows that Crossformer without TSA layer (DSW and DSW+HED) has quadratic
complexity w.r.t D. TSA(w/o Router) helps to reduce complexity and the Router mechanism further
makes the complexity linear, so that Crossformer can process data with D = 300. Moreover, HED
can slightly reduce the memory cost and we analyze this is because there are less vectors in upper
layers after segment merging (see Fig. 3). Besides memory occupation, the actual running time
evaluation is shown in Appendix B.6.

5 CONCLUSIONS AND FUTURE WORK

We have proposed Crossformer, a Transformer-based model utilizing cross-dimension dependency
for multivariate time-series (MTS) forecasting. Specifically, the Dimension-Segment-Wise (DSW)
embedding embeds the input data into a 2D vector array to preserve the information of both time
and dimension. The Two-Stage-Attention (TSA) layer is devised to capture the cross-time and cross-
dimension dependency of the embedded array. Using DSW embedding and TSA layer, a Hierarchical
Encoder-Decoder (HED) is devised to utilize the information at different scales. Experimental results
on six real-world datasets show its effectiveness over previous state-of-the-arts.

We analyzed the limitations of our work and briefly discuss some directions for future research: 1) In
Cross-Dimension Stage, we build a simple full connection among dimensions, which may introduce
noise on high-dimensional datasets. Recent sparse and efficient Graph Transformers (Wu et al., 2022)
can benefit our TSA layer on this problem. 2) A concurrent work (Zeng et al., 2023) which was
accepted after the submission of this work received our attention. It questions the effectiveness of
Transformers for MTS forecasting and proposes DLinear that outperforms all Transformers including
our Crossformer on three of the six datasets (details are in Appendix B.2). It argues the main reason
is that MSA in Transformer is permutation-invariant. Therefore, enhancing the ordering preserving
capability of Transformers is a promising direction to overcome this shortcoming . 3) Considering
datasets used in MTS analysis are much smaller and simpler than those used in vision and texts,
besides new models, large datasets with various patterns are also needed for future research.

4Pyraformer is not evaluated as it requires the additional compiler TVM to achieve linear complexity.
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A DETAILS OF EXPERIMENTS

A.1 BENCHMARKING DATASETS

We conduct experiments on the following six real-world datasets following Zhou et al. (2021); Wu
et al. (2021a):
1) ETTh1 (Electricity Transformer Temperature-hourly) contains 7 indicators of an electricity
transformer in two years, including oil temperature, useful load, etc. Data points are recorded every
hour and train/val/test is 12/4/4 months.
2) ETTm1 (Electricity Transformer Temperature-minutely) contains the same indicators as ETTh1
but data points are recorded every 15 miniutes. Train/val/test split is same as ETTh1.
3) WTH (Weather) contains 12 meteorological indicators in U.S. in 4 years, including visibility,
wind speed, etc. Train/val/test is 28/10/10 months.
4) ECL (Electricity Consuming Load) contains hourly electricity consumption (in Kwh) of 321
clients in two years. Train/val/test is 15/3/4 months.
5) ILI (Influenza-Like Illness) contains 7 weekly recorded indicators of patients data from Centers
for Disease Control and Prevention of the United States between between 2002 and 2021. The ratio
of train/validation/test splits is 0.7:0.1:0.2.
6) Traffic contains hourly road occupancy rates measured by 862 sensors on San Francisco Bay area
freeways in 2 years. The ratio of train/validation/test splits is 0.7:0.1:0.2.

The train/val/test splits for ETTh1, ETTm1, WTH, ECL are same as Zhou et al. (2021), for ILI and
Traffic are same as Wu et al. (2021a).

The first four datasets are publicly available at https://github.com/zhouhaoyi/
Informer2020 and the last two are publicly available at https://github.com/thuml/
Autoformer.

A.2 BASELINE METHODS

We briefly describe the selected baselines:
1) LSTMa (Bahdanau et al., 2015) treats the input MTS as a sequence of multi-dimensional vectors.
It builds an encoder-decoder using RNN and automatically aligns target future steps with their
relevant past.
2) LSTnet (Lai et al., 2018) uses CNN to extract cross-dimension dependency and short term cross-
time dependency. The long-term cross-time dependency is captured through RNN. The source code
is available at https://github.com/laiguokun/LSTNet.
3) MTGNN (Wu et al., 2020) explicitly utilizes cross-dimension dependency using GNN. A graph
learning layer learns a graph structure where each node represents one dimension in MTS. Then
graph convolution modules are interleaved with temporal convolution modules to explicitly cap-
ture cross-dimension and cross-time dependency respectively. The source code is available at
https://github.com/nnzhan/MTGNN.
4) Transformer is closed to the original Transformer (Vaswani et al., 2017) that uses self-attention
mechanism to capture cross-time dependency. The Informer-style one-step generative decoder is
used for forecasting, therefore this is denoted as Informer† in Informer (Zhou et al., 2021).
5) Informer (Zhou et al., 2021) is a Transformer-based model using the ProbSparse self-attention
to capture cross-time dependency for forecasting. The source code of Transformer and Informer is
available at https://github.com/zhouhaoyi/Informer2020.
6) Autoformer (Wu et al., 2021a) is a Transformer-based model using decomposition architecture
with Auto-Correlation mechanism to capture cross-time dependency for forecasting. The source code
is available at https://github.com/thuml/Autoformer.
7) Pyraformer (Liu et al., 2021a) is a Transformer-based model learning multi-resolution represen-
tation of the time series by the pyramidal attention module to capture cross-time dependency for
forecasting. The source code is available at https://github.com/alipay/Pyraformer.
8) FEDformer (Zhou et al., 2022) is a Transformer-based model that uses the seasonal-trend de-
composition with frequency enhanced blocks to capture cross-time dependency for forecasting. The
source code is available at https://github.com/MAZiqing/FEDformer.
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A.3 HYPER-PARAMETER SELECTION AND IMPLEMENTATION DETAILS

A.3.1 MAIN EXPERIMENTS

For the main experiments, we use the Crossformer with 3 encoder layers. The number of routers
in TSA layer c is set to 10. For dataset ETTh1, ETTm1, WTH and ILI, dimension of hidden state
dmodel is set to 256, the head number of multi-head attention is set to 4; For dataset ECL and Traffic,
dimension of hidden state dmodel is set to 64, the head number of multi-head attention is set to 2. The
segment length Lseg is chosen from {6, 12, 24} via grid search. We use MSE as loss function and
batch size is set to 32. Adam optimizer is used for training and the initial learning rate is chosen
from {5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5} via grid search. The total number of epochs is 20. If the
validation loss does not decreases within three epochs, the training process will stop early.

For baseline models, if the original papers conduct experiments on the dataset we use, the hyper-
parameters (except input length T ) recommended in the original papers are used, including the
number of layers, dimension of hidden states, etc. Otherwise, the hyper-parameters are chosen
through grid search using the validation set.

Following Zhou et al. (2021), on datasets ETTh1, WTH, ECL and Traffic, for different prediction
length τ , the input length T is chosen from {24, 48, 96, 168, 336, 720}; on ETTm1, the input length
is chosen from {24, 48, 96, 192, 288, 672}; on ILI, the input length is chosen from {24, 36, 48, 60}.
All models including Crossformer and baselines are implemented in PyTorch and trained on a single
NVIDIA Quadro RTX 8000 GPU with 48GB memory.

A.3.2 EFFICIENCY ANALYSIS

To evaluate the computational efficiency w.r.t the input length T in Figure 4(c) of the main paper, we
align the hyper-parameters of all Transformer-based models as follows: prediction length τ is set to
336, number of encoder layers is set to 2, dimension of hidden state dmodel is set to 256, the head
number of multi-head attention is set to 4.

To evaluate the computational efficiency w.r.t the number of dimensions D in Figure 4(d) of the main
paper, we align the hyper-parameters of ablation versions of Crossformer as follows as: both input
length T and prediction length τ are set to 336, number of encoder layers is set to 3, dmodel is set to
64, the head number of multi-head attention is set to 2.

Experiments in the computational efficiency analysis section are conducted on a single NVIDIA
GeForce RTX 2080Ti GPU with 11GB memory.

A.4 DETAILS OF ABLATION VERSIONS OF CROSSFORMER

We describe the models we used in ablation study below:

1) DSW represents Crossformer without TSA and HED. The input is embedded by DSW embedding
and flatten into a 1D sequence to be input to the original Transformer. The only difference between
this model and the Transformer is the embedding method.

2) DSW+TSA represents Crossformer without HED. Compared with Crossformer, the encoder does
not use segment merging to capture dependency at different scales. The decoder takes the final output
of encoder (i.e. Zenc,N ) as input instead of using encoder’s output at each scale.

3) DSW+HED represents Crossformer without TSA. In each encoder layer and decoder layer, the 2D
vector array is flatten into a 1D sequence to be input to the original self-attention layer for dependency
capture.

B EXTRA EXPERIMENTAL RESULTS

B.1 SHOWCASES OF MAIN RESULTS

Figure 5 shows the forecasting cases of three dimensions of the ETTm1 dataset with prediction length
τ = 288. For dimension “HUFL”, all the five models capture the periodic pattern, but Crossformer is
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Figure 5: Forecasting cases of three dimensions: High UseFul Load (HUFL), High UseLess Load
(HULL) and Low UseFul Load (LUFL) of the ETTm1 dataset with prediction length τ = 288. The
red / blue curves stand for the ground truth / prediction. Each row represents one model and each
column represents one dimension.

the closest to the ground truth. For “HULL”, Pyraformer fails to capture the periodic pattern from
the noisy data. For “LUFL” where the data has no clear periodic pattern, MTGNN, FEDformer and
Crossformer capture its trend and show significantly better results than the other two models.

Figure 6 shows the forecasting cases of three dimensions of the WTH dataset with prediction length
τ = 336. For dimension “DBT”, all the five models capture the periodic pattern. For “DPT”,
Autoformer and FEDformer fails to capture increasing trend of the data. For “WD”, all models
capture the periodic pattern from the noisy data, and the cruves output by MTGNN and Crossformer
are sharper than the other three models.

B.2 COMPARISON WITH EXTRA METHODS

We further compare with two additional concurrent methods which were either not peer-
reviewed (Grigsby et al., 2022) or were accepted after the submission of this work (Zeng et al.,
2023): 1) STformer (Grigsby et al., 2022), a Transformer-based model that directly flattens the
multivariate time-series x1:T ∈ RT×D into a 1D sequence to be input to Transformers; 2) DLin-
ear (Zeng et al., 2023), a simple linear model with seasonal-trend decomposition that challenges
Transformer-based models for MTS forecasting. Results are shown in Table 4 and LSTMa and
LSTnet are omitted as they are not competitive with other models.

The basic idea of STformer is similar to our Crossformer: both of them extend the 1-D attention to 2-
D. The explicit utilization of cross-dimension dependency makes STformer competitive with previous
Transformer-based models on ETTh1, ETTm1 and WTH, especially for short-term prediction.
However, STformer directly flattens the raw 2-D time series into a 1-D sequence to be input to the
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Figure 6: Forecasting cases of three dimensions: Dry Bulb Temperature (DBT), Dew Point Tempera-
ture (DPT) and Wind Direction (WD) of the WTH dataset with prediction length τ = 336. The red /
blue curves stand for the ground truth / prediction. Each row represents one model and each column
represents one dimension.

Transformer. This straightforward method does not distinguish the time and dimension axes and
is computationally inefficient. Therefore, besides the good performance for short-term prediction,
STformer has difficulty in long-term prediction and encounters the out-of-memory (OOM) problem
on high-dimensional datasets (ECL and Traffic). While Crossformer uses the DSW embedding to
capture local dependency and reduce the complexity. The TSA layer with the router mechanism is
devised to deal with the heterogeneity of time and dimension axis and further improve efficiency.

DLinear is on par with our Crossformer on ETTh1 and ETTm1 (τ ≤ 96); has similar performance
with FEDformer on ILI; performs worse than Crossformer on WTH; outperforms all Transformer-
based models including our Crossformer on ETTm1 (τ ≥ 288), ECL and Traffic. Considering
its simplicity, the performance is impressive. Based on the results, we analyze the limitations of
Crossformer and propose some directions to improve it in the future:

1) In Cross-Dimension Stage of TSA layer, we simply build an all-to-all connection among D
dimensions with the router mechanism. Besides capturing the cross-dimension dependency, this full
connection also introduces noise, especially for high-dimensional dataset. We think high-dimensional
data has the sparse property: each dimension is only relevant to a small fraction of all dimensions.
Therefore, utilizing the sparsity to reduce noise and improve the computation efficiency of the TSA
layer could be a promising direction.

2) Authors of DLinear (Zeng et al., 2023) argue that the Transformer-based models have difficulty in
preserving ordering information because the attention mechanism is permutation-invariant and the
absolute position embedding injected into the model is not enough for time series forecasting, which
is an order-sensitive task. Although Yun et al. (2020) theoretically proves that Transformers with
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Table 4: MSE/MAE comparison with extra methods: STformer (Grigsby et al., 2022) and DLin-
ear (Zeng et al., 2023). Bold/underline indicates the best/second. OOM indicates out-of-memory
problem. Gray background marks the CNN-GNN-based model; yellow marks Transformer-based
models where cross-dimension dependency is omitted; blue marks Transformer-based models explic-
itly utilizing cross-dimension dependency; red marks the linear model with series decomposition.

Models MTGNN Transformer Informer Autoformer Pyraformer FEDformer STformer Crossformer DLinear

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.336 0.393 0.620 0.577 0.577 0.549 0.439 0.440 0.493 0.507 0.318 0.384 0.368 0.441 0.305 0.367 0.312 0.355
48 0.386 0.429 0.692 0.671 0.685 0.625 0.429 0.442 0.554 0.544 0.342 0.396 0.445 0.465 0.352 0.394 0.352 0.383
168 0.466 0.474 0.947 0.797 0.931 0.752 0.493 0.479 0.781 0.675 0.412 0.449 0.652 0.608 0.410 0.441 0.416 0.430
336 0.736 0.643 1.094 0.813 1.128 0.873 0.509 0.492 0.912 0.747 0.456 0.474 1.069 0.806 0.440 0.461 0.450 0.452
720 0.916 0.750 1.241 0.917 1.215 0.896 0.539 0.537 0.993 0.792 0.521 0.515 1.071 0.817 0.519 0.524 0.486 0.501

E
T

T
m

1

24 0.260 0.324 0.306 0.371 0.323 0.369 0.410 0.428 0.310 0.371 0.290 0.364 0.278 0.348 0.211 0.293 0.217 0.289
48 0.386 0.408 0.465 0.470 0.494 0.503 0.485 0.464 0.465 0.464 0.342 0.396 0.445 0.458 0.300 0.352 0.278 0.330
96 0.428 0.446 0.681 0.612 0.678 0.614 0.502 0.476 0.520 0.504 0.366 0.412 0.420 0.455 0.320 0.373 0.310 0.354
288 0.469 0.488 1.162 0.879 1.056 0.786 0.604 0.522 0.729 0.657 0.398 0.433 0.733 0.597 0.404 0.427 0.369 0.386
672 0.620 0.571 1.231 1.103 1.192 0.926 0.607 0.530 0.980 0.678 0.455 0.464 0.777 0.625 0.569 0.528 0.416 0.417

W
T

H

24 0.307 0.356 0.349 0.397 0.335 0.381 0.363 0.396 0.301 0.359 0.357 0.412 0.307 0.359 0.294 0.343 0.357 0.391
48 0.388 0.422 0.386 0.433 0.395 0.459 0.456 0.462 0.376 0.421 0.428 0.458 0.381 0.416 0.370 0.411 0.425 0.444
168 0.498 0.512 0.613 0.582 0.608 0.567 0.574 0.548 0.519 0.521 0.564 0.541 0.497 0.502 0.473 0.494 0.515 0.516
336 0.506 0.523 0.707 0.634 0.702 0.620 0.600 0.571 0.539 0.543 0.533 0.536 0.566 0.564 0.495 0.515 0.536 0.537
720 0.510 0.527 0.834 0.741 0.831 0.731 0.587 0.570 0.547 0.553 0.562 0.557 0.589 0.582 0.526 0.542 0.582 0.571

E
C

L

48 0.173 0.280 0.334 0.399 0.344 0.393 0.241 0.351 0.478 0.471 0.229 0.338 0.356 0.432 0.156 0.255 0.155 0.258
168 0.236 0.320 0.353 0.420 0.368 0.424 0.299 0.387 0.452 0.455 0.263 0.361 0.516 0.527 0.231 0.309 0.195 0.287
336 0.328 0.373 0.381 0.439 0.381 0.431 0.375 0.428 0.463 0.456 0.305 0.386 OOM 0.323 0.369 0.238 0.316
720 0.422 0.410 0.391 0.438 0.406 0.443 0.377 0.434 0.480 0.461 0.372 0.434 OOM 0.404 0.423 0.272 0.346
960 0.471 0.451 0.492 0.550 0.460 0.548 0.366 0.426 0.550 0.489 0.393 0.449 OOM 0.433 0.438 0.299 0.367

IL
I

24 4.265 1.387 3.954 1.323 4.588 1.462 3.101 1.238 3.970 1.338 2.687 1.147 3.150 1.232 3.041 1.186 2.940 1.205
36 4.777 1.496 4.167 1.360 4.845 1.496 3.397 1.270 4.377 1.410 2.887 1.160 3.512 1.243 3.406 1.232 2.826 1.184
48 5.333 1.592 4.746 1.463 4.865 1.516 2.947 1.203 4.811 1.503 2.797 1.155 3.499 1.234 3.459 1.221 2.677 1.155
60 5.070 1.552 5.219 1.553 5.212 1.576 3.019 1.202 5.204 1.588 2.809 1.163 3.715 1.316 3.640 1.305 3.011 1.245

Tr
af

fic

24 0.506 0.278 0.597 0.332 0.608 0.334 0.550 0.363 0.606 0.338 0.562 0.375 0.747 0.447 0.491 0.274 0.351 0.261
48 0.512 0.298 0.658 0.369 0.644 0.359 0.595 0.376 0.619 0.346 0.567 0.374 OOM 0.519 0.295 0.370 0.270
168 0.521 0.319 0.664 0.363 0.660 0.391 0.649 0.407 0.635 0.347 0.607 0.385 OOM 0.513 0.289 0.395 0.277
336 0.540 0.335 0.654 0.358 0.747 0.405 0.624 0.388 0.641 0.347 0.624 0.389 OOM 0.530 0.300 0.415 0.289
720 0.557 0.343 0.685 0.370 0.792 0.430 0.674 0.417 0.670 0.364 0.623 0.378 OOM 0.573 0.313 0.455 0.313

trainable positional embedding are universal approximators of sequence-to-sequence functions, the
ordering information still needs to be enhanced in practice. We think that relative position encoding
in texts (Ke et al., 2021; Dufter et al., 2022) and vision (Wu et al., 2021b) could be useful for ordering
information enhancement.

3) The sizes of datasets used for time series forecasting are much smaller than those for texts and
vision, and the patterns in time series datasets are also simpler. Considering vision transformers
surpass inductive bias and achieves excellent results compared to CNNs after pre-trained on large
amounts of data (Dosovitskiy et al., 2021), Transformers for time series may also require large-size
datasets with various patterns to exploit their full potential.

As quoted from the paper, authors mentioned that DLinear “does not model correlations among
variates”. Therefore, incorporating cross-dimension dependency into DLinear to further improve
prediction accuracy is also a promising direction. Moreover, our DSW embedding to enhance locality
and HED to capture dependency at different scales can also be potentially useful to further inspire
and enhance DLinear.

B.3 ABLATION STUDY OF THE ROUTER MECHANISM

The ablation study of the three main components of Crossformer is shown in Sec. 4.3. In this section,
we conduct an ablation study of the router mechanism, a sub-module in TSA layer, and evaluate its
impact on prediction accuracy. It should be noticed that the router mechanism is mainly proposed to
reduce the computation complexity when D is large. Results are shown in Table 5. Adding TSA(w/o
Router) constantly improves the prediction accuracy of DSW and DSW+HED, showing the necessity
of capturing cross-time and cross-dimension dependency in two different stages. For short term
prediction (τ ≤ 168), the performances of TSA(w/o Router) and TSA are similar, no matter whether
HED is used or not. For long term prediction (τ ≥ 336), the router mechanism slightly improves the
prediction accuracy. The possible reason is that we set separate routers for each time step, which
helps capture long-term dependency that varies over time.
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Table 5: Complementary results to ablation study in Table 2. TSA(w/o Router) denotes TSA layer
without the router mechanism that directly uses MSA in the Cross-Dimension Stage.

Models DSW DSW+ DSW+TSA DSW+HED DSW+HED+ DSW+TSA+HEDTSA(w/o Router) TSA(w/o Router)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.373 0.418 0.320 0.376 0.322 0.373 0.406 0.454 0.311 0.375 0.305 0.367
48 0.456 0.479 0.356 0.396 0.365 0.403 0.493 0.512 0.363 0.406 0.352 0.394

168 0.947 0.731 0.487 0.493 0.473 0.479 0.614 0.583 0.416 0.444 0.410 0.441
336 0.969 0.752 0.585 0.564 0.553 0.534 0.788 0.676 0.487 0.499 0.440 0.461
720 1.086 0.814 0.665 0.615 0.636 0.599 0.841 0.717 0.540 0.542 0.519 0.524
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(a) Query Time Segment T + 1 ∼ T + 6
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(b) Query Time Segment T + 19 ∼ T + 24

Figure 7: Attention scores calculated by the decoder of the ablation version of Crossformer (i.e.
DSW) on dataset ETTh1. The input length, prediction length and segment length are set as T =
168, τ = 24, Lseg = 6. The x axis in each sub-figure represents the time steps serve as keys in
attention mechanism, while the y axis denotes dimensions. Brighter color denotes higher attention
weights.

B.4 DEPENDENCY VISUALIZATION

As the attention scores computed by Crossformer are abstract and hard to visualize, we visualize
scores computed by the ablation version, DSW, in Figure 7. In addition to cross-time dependency
that other Transformer models can compute, Crossformer also provides information about cross-
dimension dependency. As shown in Figure 7, when predicting Dim #1, the model focus on both
Dim #1 and #3. When predicting Dim #5, instead of focus on Dim #5 itself, more attention is paid to
Dim #4.

B.5 HIERARCHICAL PREDICTION PATTERN VISUALIZATION

Figure 8 shows the hierarchical prediction patterns output by our HED. The top prediction layer,
Layer 3, captures the low frequency general trend and periodic pattern of the future value. By adding
predictions at finer scales, finer high frequency patterns are added and the prediction get closer to the
ground truth curve.

B.6 RUNNING TIME EFFICIENCY ANALYSIS

In the main paper, we show the memory occupation w.r.t input length T and number of dimensions
D. Here we evaluate the running time. Figure 9 (a) shows the running time per batch of Crossformer
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Figure 8: Hierarchical prediction visualization of ETTm1 with dimension HUFL and prediction
length τ = 288. From top left to bottom right, we gradually add layer predictions at finer scales.
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Figure 9: Evaluation on computational speed. (a) Running time per batch w.r.t the input length T on
ETTh1. (b) Running time per batch w.r.t number of dimensions D on synthetic datasets by different
numbers of dimensions.

and other Transformer-based models w.r.t input length T . FEDformer is much slower than other
Transformer-based models. Crossformer achieves the best computation speed among the five methods
within the tested length range.

Figure 9 (b) shows the running time per batch of Crossformer and its ablation versions w.r.t the
number of dimensions D. Crossformers without TSA layer (DSW and DSW+HED) are faster when
D is small (D ≤ 30). However, they have difficulty processing high-dimensional MTS due to the
quadratic complexity w.r.t D. Indeed, for a single NVIDIA GeForce RTX 2080Ti GPU with 11GB
memory, DSW and DSW+HED encounters the out-of-memory (OOM) problem when D > 50.
Moreover, TSA(w/o Router) encounter the OOM problem when D > 200.

C DISCUSSION ON THE SELECTION OF HYPER-PARAMETERS

We recommend to first determine the segment length Lseg, as it is related to both the model perfor-
mance and computation efficiency. The general idea is to use small Lseg for short-term prediction and
large Lseg for long-term prediction. Some priors about the data also help to select Lseg . For example,
if the hourly sampled data has a daily period, it is better to set Lseg = 24. Next, we select the number
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Table 6: MSE and MAE evaluation with different segment lengths on ETTm1 dataset. * denotes
segment length used in the main text, which is a divisor of T, τ .

Metric MSE MAE MSE MAE MSE MAE

Segment Length Lseg 5 6* 7

T = 288, τ = 48 0.291 0.349 0.300 0.352 0.284 0.346

Segment Length Lseg 22 24* 26

T = 672, τ = 288 0.401 0.424 0.404 0.427 0.409 0.429

of layers for encoder and decoder N . Crossformer with larger N can utilize information of more
scales, but also requires more computing resources. The number of routers in TSA layer c can be
set to 5 or 10 to balance the prediction accuracy and computation efficiency. Finally, dimension
of hidden states dmodel and head number of multi-head attention can be determined based on the
available computing resources.

D SUPPLEMENTARY DESIGN TO CROSSFORMER

D.1 HANDLING INDIVISIBLE LENGTH

In the main paper, we assume that the input length T and prediction length τ are divisible by segment
length Lseg . In this section, we use padding mechanism to handle cases where the assumption is not
satisfied.

If T is not divisible by Lseg , we have (k1− 1)Lseg < T < k1Lseg for some k1. We pad k1Lseg − T
duplicated x1 in front of x1:T to get x′1:T :

x′1:T =
[
x1, . . . ,x1︸ ︷︷ ︸
k1Lseg−T

,x1:T

]
(9)

where [, ] denotes the concatenation operation. x′1:T ∈ Rk1Lseg×D can be input to the encoder of
Crossformer.

If τ is not divisible by Lseg , we have (k2 − 1)Lseg < τ < k2Lseg for some k2. We set the learnable
position embedding for decoder as E(dec) ∈ Rk2×D×dmodel and input it to the decoder to get an
output in shape of Rk2Lseg×D. Then the first τ steps of the output is used as xpredT+1:T+τ .

We conduct experiment on ETTm1 dataset to evaluate the effect of indivisible length. Results in
Table 6 show that with padding mechanism, indivisible length does not degrade model performance,
for both short-term prediction and long-term prediction.

D.2 INCORPORATING COVARIATES

In the main text, we only use historical series x1:T to forecast the future xT+1:T+τ . In this section,
we try to incorporate covariates c1:T+τ into Crossformer. We use a straightforward method: first
embed the covariates into point-wise vectors {d1,d2, . . . ,dT+τ} like previous Transformer-based
models do (Zhou et al., 2021; Wu et al., 2021a; Liu et al., 2021a). Then, merge the point-wise vectors
into segment-wise vectors using learnable linear combination. Finally, add the segment-wise vectors
to each dimension of the 2D vector array obtained by DSW embedding:

ct → dt, 1 ≤ t ≤ T

d
(s)
i =

∑
0<j≤Lseg

αjd(i−1)×Lseg+j , 1 ≤ i ≤ T

Lseg

hcovi,d = hi,d + d
(s)
i , 1 ≤ i ≤ T

Lseg
, 1 ≤ d ≤ D

(10)

where→ denotes embedding method for point-wise covariates. αj , 1 ≤ j ≤ Lseg denotes learnable
factors for linear combination. d(s)

i denotes the segment-wise covariate embedding. hcovi,d denotes the
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Table 7: MSE and MAE evaluation of Crossformer without/with covariates on ETTh1 dataset.

Models Crossformer Crossformer+Cov

Metric MSE MAE MSE MAE

24 0.305 0.367 0.308 0.368
48 0.352 0.394 0.358 0.399

168 0.410 0.441 0.412 0.440
336 0.440 0.461 0.438 0.465
720 0.519 0.524 0.522 0.531

embedded vector with covariate information for the i-th segment in dimension d, where hi,d is the
embedded vector obtained from DSW embedding in the main text. The processing for the input of
the decoder is similar, the segment-wise covariate embedding is added to the position embedding for
decoder, i.e. E(dec).

We conduct experiments on ETTh1 dataset to evaluate the effect of covariates. Hour-of-the-day, day-
of-the-week, day-of-the-month and day-of-the-year are used as covariates. Results in Table 7 show
that incorporating covariates does not improve the performance of Crossformer. The possible reason
is this straightforward embedding method does not cooperate well with Crossformer. Incorporating
covariates into Crossformer to further improve prediction accuracy is still an open problem.
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