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ABSTRACT

We introduce a new mechanism within the Utility-Optimized Local Differential
Privacy (ULDP) framework that enables censoring with plausible deniability when
collecting and analyzing sensitive data. Our approach addresses scenarios where
certain values—such as large numerical responses—are more privacy-sensitive than
others, while accompanying categorical information may not be private on its own
but could still be identifying. The mechanism selectively withholds identifying
details when a response might indicate sensitive content, offering asymmetric
privacy protection. Unlike previous methods, it avoids the need to predefine
which values are sensitive, making it more adaptable and practical. Although
the mechanism is designed for ULDP, it can also be applied under symmetric
LDP settings, where it still benefits from censoring and reduced privacy cost. We
provide theoretical guarantees, including uniform consistency and pointwise weak
convergence results. Extensive numerical experiments demonstrate the validity of
developed methodologies.

1 INTRODUCTION

Although crowd-sourced data aggregation has led to impressive large-scale telemetry-driven services,
such as Google Maps and Apple’s predictive keyboard, collecting statistics from personal data while
preserving individual privacy remains a fundamental challenge in the age of big data. Differential
Privacy (DP) Dwork et al. (2006a), has become the prevailing standard for privacy-preserving analysis
recognized by its notable deployments in the U.S. Census Bureau’s 2020 Census Hotz & Salvo (2022);
Abowd & Hawes (2023). Although DP (or central-DP for contrast), controls the leakage of privacy at
publication, it is vulnerable towards curator side breaches (see Ayyagari (2012); Quach et al. (2022);
Lee (2022); Khan et al. (2022); Hantke et al. (2024) for such incidents and studies). Such events call
for protection that is closer to its source, the protocol of data collection. Local Differential Privacy
(LDP) Duchi et al. (2013) has emerged as a powerful alternative. By removing the need for a trusted
curator, LDP allows users to locally randomize their responses, ensuring that even the data collector
cannot infer sensitive information with high confidence. LDP protocols have been widely adopted
for collecting privatized data, including major companies like Tiktok TikTok Engineering (2023),
Google Erlingsson et al. (2014) and Microsoft Ding et al. (2017).

While LDP offers robust privacy guarantees, it inherently imposes a non-negligible utility loss, even
under optimal conditions Steinberger (2024). This trade-off is already evident in the basic task
of frequency estimation Wang et al. (2017). The situation is exacerbated when multiple attributes
are collected Liu et al. (2023); Arcolezi et al. (2023): either by combining the attributes into a
high-dimensional domain, which increases the complexity and potential error, or by splitting the
privacy budget among attributes, leading to reduced accuracy for each. Both approaches have been
shown to significantly degrade estimation accuracy in such settings. Considering this, it is natural
to ask whether we must pay for all aspects of privacy equally—or whether we can instead choose
what to protect. We begin by observing that sensitivity is often asymmetric in numerical attributes.
For instance, high income may be considered sensitive due to tax or benefit implications, while low
income is less concerning. Similarly, high debt or frequent insurance claims may reveal undesirable
traits, whereas low values are relatively innocuous. In other domains, the opposite is true—such as
GPA, where low values are more embarrassing or private. At the same time, many real-world surveys
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also include categorical demographic attributes such as nationality, gender, or postal code to support
fairness, subgroup analysis, or other stratified inference tasks. Naively applying LDP to such data
requires protecting every attribute equally, effectively treating nonsensitive fields as if they are just as
sensitive. Moreover, even attributes that are not sensitive on their own can act as quasi-identifiers
Borrero-Foncubierta et al. (2025); Wong et al. (2019) when combined, increasing re-identification
risks. This is especially true for continuous nonsensitive variables (e.g., precise income or debt),
which may be nearly unique and thus indirectly revealing. Adding noise uniformly wastes privacy
budget or discourages truthful reporting when users are unwilling to disclose sensitive data with
identifiers. One solution is defining a fixed sensitive region Murakami & Kawamoto (2019): define
a region of sensitivity and allow disclosure of values outside. But such regions can be arbitrary,
vary across individuals, and shift over time. In contrast, the direction of sensitivity tends to be more
stable—for example, it is much more likely that higher debt is sensitive than low.

1.1 RELATED WORKS

Without the constraint of DP, empirical cumulative distribution functions can already be close to
the underlying truth; such studies may date back to Komlós et al. (1975). On the central model,
where a trusted curator has access to raw data, various mechanisms have been proposed for accurate
distribution estimation. Barber & Duchi (2014) demonstrated that histogram estimators are optimal
for Lipschitz distributions under the L2 risk in the presence of differential privacy constraints. Later,
Lalanne et al. (2023) extended this work by analyzing the cost of central privacy in estimating the
density of densities in the Lipschitz and Sobolev spaces.

In the context of LDP, the estimation of distributions over continuous domains presents unique
challenges. For discrete domains, frequency oracle mechanisms such as RAPPOR Erlingsson et al.
(2014) and Hadamard Response Acharya et al. (2019) have been developed. These methods can be
extended to continuous data through discretizations, but this approach may compromise the inherent
structure of the continuous domain. To better preserve the characteristics of continuous data, several
LDP perturbation techniques have been proposed. These include the direct application of the Laplace
mechanism Dwork et al. (2006b), the piecewise mechanism Wang et al. (2019), its refinement for
improved utility Li et al. (2020), and more recently, a binary response-based approach Liu et al.
(2024). These methods aim to balance the trade-off between privacy and accuracy, particularly under
the constraints of limited information channels inherent to LDP.

The concept of Utility-Optimized Local Differential Privacy (ULDP) was introduced in Murakami &
Kawamoto (2019), initially for frequency estimation via modified randomized response and RAPPOR-
style mechanisms. This framework aims to enhance utility by allowing users to specify sensitive
regions, thereby relaxing the privacy constraints on non-sensitive data. Subsequent work Zhang
et al. (2024) has extended ULDP to the pϵ, δq setting, with a refined control on privacy leakage, and
Zhang et al. (2024) proposed mean estimation techniques for numerical data in the same framework,
allowing robust private aggregation of continuous values. To the best of our knowledge, however,
there has been no prior work addressing the estimation of the CDF of a continuous variable—whether
standalone or paired with a categorical demographic attribute—under any form of utility-optimized
LDP.

1.2 OUTLINE

We begin by reviewing the relevant definitions and background on CDF estimation and differential
privacy frameworks. This is followed by a description of our data collection procedure, which
employs a deterministic preprocessing step that maps the original secret information to a binary
response—similar in spirit to Liu et al. (2024), but without introducing random perturbation at this
stage. The resulting binary response is then processed through a randomized ULDP mechanism. This
two-step design avoids the need to predefine a sensitive region and instead only specifies the direction
of sensitivity (e.g., larger values are considered sensitive).

Next, we construct an estimator based on the privatized binary data. A key observation is that the
privacy mechanism and the statistical estimation procedure can be cleanly separated by adopting
an alternative interpretation of the randomized response: it can be viewed as a truthful response
from a transformed variable, akin to techniques in Liu et al. (2024) and conceptually similar to data
encountered in competing risks settings in medical statistics. Building on this insight, we develop
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a maximum likelihood estimator (MLE) by discretizing the data and solving a bound-constrained
optimization problem, resulting in an estimator with a data-driven support.

We establish the L2- and L8- uniform consistency of the ULDP CDF estimator under a general
privacy mechanism, with convergence rates of Oppn´1{3q , Oppn´1{3 log nq respectively. Further-
more, we derive pointwise weak convergence results at interior points. These findings are consistent
with the results obtained for the case K “ 1 under the LDP mechanism studied in Liu et al. (2024),
which rely on the Chernoff distribution properties described in Groeneboom (1989). Building on the
ULDP CDF estimator, we also demonstrate how to construct consistent estimators for the predictive
probabilities of categorical outcomes, conditioned on a given range of sensitive features. To the
best of our knowledge, this is the first work to establish these asymptotic properties for ULDP CDF
estimation and its application to multi-category prediction.

Finally, we discuss the implementation details of the algorithm and validate the effectiveness of our
proposed protocol through numerical experiments, demonstrating its practical utility and accuracy in
estimating the CDF under the ULDP framework.

The remainder of the paper is organized as follows. Section 2 introduces the background on differential
privacy frameworks. Section 3 describes the problem setting and methodology. Section 4 establishes
the asymptotic properties of the proposed estimator, and Section 5 investigates its finite sample
performance. Additional simulation results and all technical proofs are provided in the Appendix.

2 PRELIMINARIES

2.1 DIFFERENTIAL PRIVACY: CENTRAL AND LOCAL MODELS

Differential Privacy (DP) provides a rigorous framework for protecting individual information
in data analysis. At its core, DP ensures that the output of a computation remains statistically
indistinguishable whether or not any one individual’s data is included. This protects against inference
attacks, even by adversaries with substantial auxiliary knowledge.

Definition 1 (Dwork et al., 2006a) A randomized algorithm A is pϵ, δq-differentially private if, for
all datasets S, S1 differing on a single individual’s data and all measurable subsets E of outputs,

PrApSq P Es ď eϵPrApS1q P Es ` δ.

In the central DP (CDP) model, this guarantee is enforced by a trusted data curator who aggregates
the dataset and injects noise into the final output. While CDP typically yields high utility, it assumes
users trust the curator with their raw data.

In contrast, the local models remove the need for trust: each user independently applies a randomiza-
tion mechanism to their data before sharing it. The formal definition is as follows:

Definition 2 (Joseph et al., 2019) A randomized mechanism R : X Ñ Y satisfies pϵ, δq-LDP if, for
all inputs x, x1 P X and measurable subsets S Ď Y ,

PrRpxq P Ss ď eϵPrRpx1q P Ss ` δ.

In LDP, each user has full control over their privacy, and no trusted aggregator is required. However,
the noise introduced at the individual level often imposes a high utility cost—particularly when
estimating fine-grained statistics or when multiple attributes must be protected.

2.2 UTILITY-OPTIMIZED LOCAL DIFFERENTIAL PRIVACY

To mitigate the utility degradation under LDP, utility-optimized local differential privacy (ULDP) was
proposed, initially for categorical distribution estimation (Murakami & Kawamoto, 2019). ULDP
provides strong privacy guarantees only over a predefined sensitive region of the input domain while
allowing exact outputs for the non-sensitive region when it does not risk user privacy. The formal
definition is as follows:
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Definition 3 (Murakami & Kawamoto, 2019) A randomized mechanism Q : X Ñ Y satisfies
pXS ,YP , ϵq-ULDP if:

1. For any y P YI :“ YzYP , there exists x P XN :“ X zXS such that

Q py | xq ą 0 and Q
`

y | x1
˘

“ 0 for all x1 ‰ x.

2. For any x, x1 P X and any y P YP , Q py | xq ď eϵQ py | x1q .

This definition is slightly generalized in Zhang et al. (2024) to allow a continuous output space Y
and relaxed probabilistic guarantees. However, we adopt the original discrete formulation, as these
generalizations are not relevant to our setting.

In this definition, XS denotes the sensitive subset of the input domain, and YP represents the subset
of outputs over which DP-style indistinguishability is enforced. For convenience, we refer to XS ,
XN “ X zXS , YP , and YI “ YzYP as sensitive inputs, safe inputs, sensitive outputs, and safe
outputs, respectively.

Notably, sensitive inputs never produce safe outputs. This design choice not only simplifies analysis
and improves utility but also adds a safety guarantee because mapping to a safe but rare output may
reveal it was perturbed from a sensitive input. Therefore, sensitive inputs always map to sensitive
outputs, and perturbation occurs entirely within the sensitive output space (except in the degenerate
case where there is only one sensitive output, in which case no perturbation is needed). Meanwhile,
safe inputs may be mapped either to sensitive or safe outputs to provide plausible deniability for
sensitive inputs.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We consider a population of n users, each holding a data pair pX,Y q drawn i.i.d. from an unknown
joint distribution over r0, 1s ˆ t1, . . . ,Ku. Here, X is a numerical variable that may be sensitive,
and Y is a categorical variable that typically represents demographic information. Without loss of
generality, we assume X P r0, 1s, with larger values of X corresponding to increasingly sensitive
information.

Our privacy goal follows the ULDP framework: any output that reveals or suggests that a user holds
a larger value of X must be protected by standard ϵ-indistinguishability. That is, for any two inputs
differing in X their corresponding output distributions must remain within a multiplicative factor of
eϵ for any sensitive output.

The utility goal is to estimate the joint distribution function F0kptq “ PpX ď t, Y “ kq for
each category k “ 1, . . . ,K, which describes the cumulative distribution of X conditioned on the
categorical label. Estimation quality may be measured under various norms; in this work, we focus on
the L8 norm as a canonical metric for evaluating the maximum estimation error across the domain.

3.2 ULDP DATA COLLECTION

Unlike the CDP setting where raw data is collected and perturbed by a trusted aggregator, the design
of the data collection procedure is crucial in the local setting. This is particularly challenging for
continuous variables, where existing LDP or ULDP mechanisms such as additive noise (e.g., Laplace
mechanism) or square wave encoding introduce large variance and often produce values outside the
support, making recovery difficult Fan (1992).

In addition, direct application of ULDP requires the predefined specification of a sensitive region in
X , as done in Zhang et al. (2024). This requirement is at odds with the practical observation that
sensitivity boundaries are difficult to determine and may vary over time. Predefining such regions
rigidly may lead to inconsistent protection.

Motivated by recent works Liu et al. (2024); Nikita & Steinberger (2025), we adopt a binary encoding
that bypasses the need for specifying a sensitive subset of X and improves estimation accuracy. In
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particular, each user is issued a threshold ti, sampled from a random variable T with a predetermined
distribution G over r0, 1s (e.g., the uniform distribution). The user then compares their private value
xi with the threshold ti and computes the binary indicator 1xiąti .

This comparison serves two purposes. First, the bit 1xiąti is a function of xi and thus not more
sensitive than xi itself—it can be computed from xi but not vice versa. Second, it introduces an
asymmetry in sensitivity: reporting 1xiąti “ 1 suggests that xi may be large and therefore sensitive,
while 1xiąti “ 0 does not indicate sensitive information and can be treated as non-sensitive while,
eliminating the need to predefine a fixed sensitive zone in X .

This structure also aligns well with the objectives of ULDP. Naively, after preprocessing with
threshold comparison and combining with the categorical label Y , each user produces one of 2K
possible outcomes—pairs p1xiąti , yiq, which we denote as X “ t0, 1u ˆ t1, . . . ,Ku. Among these,
half—those XS “ tp1, yq|y P t1, . . . ,Kuu—are considered sensitive.

A standard LDP random response mechanism A : X Ñ X would be costly in terms of utility. The
probability of returning the true value is

P pApxq “ xq “
eϵ

eϵ ` 2K ´ 1
.

For example, when K “ 4 and ϵ “ 1, this results in a truthful response probability of less than 28%,
with the remaining probability spread uniformly across the other 2K ´ 1 “ 7 outputs.

A direct application of the utility-optimized randomized response mechanism under ULDP (Murakami
& Kawamoto (2019), Definition 3) yields truthful reporting probabilities of approximately 47% for
sensitive outputs and around 30% for safe outputs under the same parameters (see F for details).1
While these rates represent an improvement over standard LDP, they remain suboptimal.

To serve the dual purposes of utility and privacy, we propose suppressing the report of Y for sensitive
outputs entirely as follows:

Definition 4 (Asymmetrically Censored Randomized Response (ACRR)):

Given a privacy budget ϵ ą 0, define the output domain using one-hot encoding vectors as E “

te1, e2, . . . , eK , eK`1u Ă t0, 1uK`1, where each ei is the one-hot vector with a 1 at the i-th position
and 0 elsewhere.

The ACRR mechanism M : X Ñ E is defined as follows:

Mpp0, kqq “

#

ek with probability 1 ´ e´ϵ,

eK`1 with probability e´ϵ,
for k “ 1, . . . ,K,

and Mpp1, kqq “ eK`1, for k “ 1, . . . ,K.

As a special case of the utility-optimized randomized response mechanism Murakami & Kawamoto
(2019), this approach provides pXN , teK`1u, ϵq-ULDP. Numerically, for ϵ “ 1 and K “ 4, the
probability of truthful reporting is over 63% for safe inputs and exactly 100% for sensitive inputs.
Notably, these probabilities remain independent of K due to censoring, which further improves utility
by eliminating the need for perturbation in the degenerate case of a singleton sensitive output set.

An additional advantage of this approach is conditional censoring: if the output indicates that the
numerical response is potentially sensitive (x ą t), the mechanism suppresses disclosure of the
accompanying categorical identifier Y . This conditional suppression reduces re-identification risks,
enhancing privacy even further beyond the basic ULDP guarantees. See Appendix A for a real world
example of a such survey.

3.3 RECOVERING THE DISTRIBUTION FROM THE ULDP DATA VIEW

The ACRR provides an ULDP view of the data in the formation of one hot vectors of length K ` 1.
Next, we consider how to recover the original distribution from it.

1Safe inputs are less likely to be truthfully reported because they must be perturbed to provide plausible
deniability for sensitive inputs.
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To intuitively understand how recovery remains possible even under censoring mechanisms, let us
temporarily remove randomness by setting ϵ “ `8. In this case, all indicator functions are true and
all labels about Y are true or missing.

Observe that for any threshold u ă 1, the joint cumulative distribution function F0kpuq “ PpX ď

u, Y “ kq can be estimated without requiring any information from the part of X ą u.

Precisely, suppose that before applying the LDP mechanism, the data collected from user i is
summarized by

∆i “ p∆i,k, 1 ď k ď K ` 1q “ p1xiďti, yi“1, . . . ,1xiďti, yi“K , 1xiątiq,

where xi is the continuous variable and yi P t1, . . . ,Ku is the categorical label.

Based on the observed data t∆iu
n
i“1, we consider the following log-likelihood function for the

distribution F “ pF0k, F1k, . . . , F0Kq and F` “
řK

k“1 F0k.:

ℓpFq “

n
ÿ

i“1

˜

K
ÿ

k“1

∆i,k logF0kptiq ` ∆i,K`1 logp1 ´ F`ptiqq

¸

. (1)

The estimation of each cumulative distribution function (CDF) F0k is obtained simultaneously by
maximizing the log-likelihood function equation 1, subject to monotonicity constraints. Notice that
each distribution F0k can be estimated individually using only the data t∆i,kuni“1, by maximizing
the log-likelihood function

ℓpF0kq “

n
ÿ

i“1

p∆i,k logF0kptiq ` p1 ´ ∆i,kq logp1 ´ F0kptiqqq . (2)

However, this approach neglects the dependence structures among the distributions F0k. Additionally,
it is less efficient due to ignoring information contained in ∆i,K`1 (see Maathuis & Hudgens (2011)).
This form of shape-constrained minimization surprisingly coincides with survival-censored data. In
Hudgens et al. (2001), an Expectation-Maximization (EM) algorithm was proposed that transforms
the MLE for truncated competing-risks data into an EM problem on the unknown interval-and-type
allocations. Later an Iterative Convex Minorant (ICM) algorithm (Groeneboom & Jongbloed, 2014)
was derived with more computational efficiency, which we will later adopt for experiments.

The idea of the ICM algorithm is to approximate the loss function using a weighted sum of squares
and then perform iterative optimization by computing the left derivative of the convex minorant
over a collection of points. Detailed descriptions of the algorithm can be found in Section 7.3 of
Groeneboom & Jongbloed (2014). Notably, the minimization of (1) leads to a step function on ti
since the value elsewhere is irrelevant to the likelihood.

Surprisingly, setting ϵ ă 8 does not significantly complicate the recovery process.

After applying the LDP mechanism M, we observe a perturbed indicator, which can be equivalently
viewed as a sample from a new random variable pX‹, Y ‹q drawn from a distribution distorted by the
mechanism. Accordingly, we define the transformed indicator

∆‹
i “ p1x‹

i ďti, y‹
i “1, . . . ,1x‹

i ďti, y‹
i “K , 1x‹

i ątiq,

as if the perturbed data were generated truthfully from pX‹, Y ‹q. Let

F ‹
0kptq “ PpX‹ ď t, Y ‹ “ kq, for k “ 1, . . . ,K,

and define the CDF vector under this distorted distribution as

F‹ptq “ pF ‹
01ptq, . . . , F ‹

0Kptqq, F ‹
`ptq “

K
ÿ

k“1

PpX‹ ď t, Y ‹ “ kq

In this formulation, the observed empirical estimates pF‹ptq can be computed from the data Ep∆iq,
and the original target CDF vector Fptq can be recovered by inverting the distortion introduced by the
mechanism, which is where we pay the price of random perturbation, as the variance will be inflated
in this procedure. We will quantify that in the next section.
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4 ASYMPTOTIC PROPERTIES

Beyond the ACRR algorithm, we prove the theoretical results on a broader family of censored
perturbation algorithms, including the algorithm in Liu et al. (2024), an LDP variant of ACRR (see
Appendix F), which also benefits from the censoring.

First, we define the censor map C : X Ñ E , where p0, kq is mapped to ek for k “ 1, . . . ,K, and all
other values are mapped to eK`1.

Then, any randomized mapping from E to E can be represented by a pK ` 1q ˆ pK ` 1q transition
matrix L, where Li,j denotes the probability that ei is mapped to ej . Let WL denote the randomization
mechanism induced by L. Then, the ACRR mechanism can be expressed as the composition of WL
and the censoring map C, where L is defined as follows:

„

p1 ´ e´ϵqIK e´ϵ ¨ 1K

01ˆK 1

ȷ

.

Then, it is worth noting that the relationship between the true distribution Fptq and the observed
distribution F‹ptq is F‹ptq “ L ¨ Fptq, and recovery amounts to computing Fptq “ L´1F‹ptq,
provided L is invertible. This framework accommodates a broad class of mechanisms beyond simple
randomized response and allows for principled estimation under LDP with finite ϵ.

While it may seem natural to build on existing uniform consistency results for current-status data,
doing so is not straightforward in our setting. The ULDP mechanism introduces additional non-
differentiable points—artifacts of privacy perturbation that fall outside the assumptions underlying
classical analyses. To address this, we first establish key local properties of the estimator in neigh-
borhoods unaffected by these irregularities. We then leverage compactness via the Heine–Borel
theorem to extend these local results to uniform control over the entire interval. Consequently, the
forthcoming consistency theorem for our ULDP estimator is not a trivial extension but requires a
tailored argument beyond standard current-status techniques.

Before we state the main results, we introduce the Lp,G consistency, along with the corresponding
Lp,G norm, defined as }Fptq}

p
p,G “

řK
k“1

ş

|Fkptq|pdGptq, for a K-dimensional function Fptq and a
distribution function G. When the distribution G admits a density function g supported on r0, 1s, the
consistency reduces to the standard Lp consistency with the Lp norm }Fptq}pp “

řK
k“1

ş

|F ptq|pdt.

Theorem 1 Recalling T „ G for distribution function G over r0, 1s and when T is independent of
pX,Y q, one has

}Fptq ´ pFptq}1,G “ Opp}L´1}8n´1{3q, }Fptq ´ pFptq}2,G “ Oppλ´1
minpLqn´1{3q,

where λminpAq is the minimum eigenvalue of A.

Further, if G and F0k, k “ 1, . . . ,K have positive density function g and f0k on r0, 1s, then,

sup
tPr0,1s

}Fptq ´ pFptq}8 “ Opp}L´1}8n´1{3 log1{3 nq.

The convergence rates for both Lp and uniform consistency are in line with those of typical shape-
constrained estimators, and they also align with the special case when K “ 1 studied in Liu et al.
(2024). For the ACRR algorithm λ´1

minpLq “ 1{p1 ´ e´ϵq, which coincides with the reciprocal
probability of truthful response of safe inputs.

Next, we establish the point-wise weak convergence result of proposed ULDP CDF estimator, which
cannot be improved to simultaneous results on r0, 1s due to nontightness, as explained in Huang &
Wellner (1997).

Theorem 2 For t0 P p0, 1q, if Gpt0q and F0kpt0q,k “ 1, . . . ,K, are continuously differentiable at
t0 with positive derivatives gpt0q and f0kpt0q, one has that

n1{3pFpt0q ´ pFpt0qq
d

ÝÑ L´1Ft0p0q,

where the random variable Ft0p0q is defined in Appendix C due to the space limitations.
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Notably, when K “ 1 and one applies the privacy mechanism in Liu et al. (2024), the point-wise
asymptotic distribution L´1Fp0q will degenerate to

␣

4
`

rF`pt0q ` 1´r
2

˘ `

1`r
2 ´ rF`pt0q

˘

fpt0q
(1{3

argmaxtPR
␣

W ptq ´ t2
(

pr2gpt0qq1{3
,

which is consistent with results in Liu et al. (2024). We establish the details in Appendix C.

For the prediction probability over a range of X , it is worth noting that for any 0 ă t0 ă t1 ă 1 and
k “ 1, . . . ,K, the conditional probability is given by

hkpt0, t1q :“ PpY “ k | t0 ă X ď t1q “
PpY “ k, t0 ă X ď t1q

Ppt0 ă X ď t1q
“

F0kpt1q ´ F0kpt0q

F`pt1q ´ F`pt0q
.

Therefore, the conditional probability hkpt0, t1q can be estimated via pFpt0q and pFpt1q:

phkpt0, t1q “
pF0kpt1q ´ pF0kpt0q

pF`pt1q ´ pF`pt0q
.

The asymptotic properties of phkpt0, t1q follow from Theorems 1 and 2.

Theorem 3 Let 0 ă t0 ă t1 ă 1. Suppose that Gpt0q, Gpt1q, and F0kpt0q, F0kpt1q for k “

1, . . . ,K are continuously differentiable at t0 and t1 with positive derivatives gpt0q, gpt1q, f0kpt0q,
and f0kpt1q, respectively. Then,

}hpt0, t1q ´ phpt0, t1q}8 “ Op

´

}L´1}8n´1{3 log1{3 n
¯

,

and

n1{3
´

hpt0, t1q ´ phpt0, t1q

¯

d
ÝÑ

L´1Ft1p0q ´ L´1Ft0p0q

}L´1Ft1p0q ´ L´1Ft0p0q}`

,

where hpt0, t1q “ thkpt0, t1quKk“1, phpt0, t1q “ tphkpt0, t1quKk“1, and }b}` :“
řK

k“1 bk for a K-
dimensional vector b.

At the boundary t0 “ 0, we define pFpt0q “ 0, ensuring the estimator is well-defined on the full
interval r0, 1s. The conclusions of Theorem 3 remain valid at t0 “ 0. However, at t1 “ 1, while
consistency still holds, the weak convergence result no longer applies due to the nondifferentiable
behavior introduced by the ULDP mechanism at the boundary.

These boundary cases enable estimation of both PpY “ k | X ď uq and PpY “ k | X ą uq. The
latter is particularly interesting for applications involving censored sensitive regions, as it allows
us to estimate the demographic distribution within those zones. However, the estimation quality
for PpY “ k | X ą uq is generally worse than that for PpY “ k | X ď uq, due to reduced label
information and the need to estimate F0kp1q (whereas F0kp0q “ 0 is known by definition).

5 IMPLEMENTATION AND EXPERIMENTS

While theoretical guarantees for our estimator have been established, we introduce several practical
implementation strategies that further improve empirical performance.

First, the multi-category case introduces significant computational overhead. Computing the estimator
for n “ 105 samples can take about one minute, with runtime growing superlinearly in n (see
Appendix E.1). This is consistent with the trend observed in the single-category setting Liu et al.
(2024), but with substantially larger constants. To address this, we adopt a divide-and-conquer
strategy: we partition the dataset into M equally sized subsets, compute the estimator on each subset,
and average the results. Empirically, we find that setting M “ 4 both reduces computation time and
slightly improves estimation accuracy.

Second, although the estimated CDFs are guaranteed to be non-decreasing and start at zero under the
mechanism, randomness and the corrective division by the truthful reporting rate 1 ´ e´ϵ can cause

8
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the total estimated CDF to slightly exceed 1. While prior work such as Liu et al. (2024) proposes
retroactively capping the total CDF at 1, it is not straightforward to apply this constraint to each
sub-CDF F0k individually, since the true values F0kp1q (i.e., the marginal category proportions)
are unknown. Empirically, we find that capping the total CDF at 1 and stopping the growth of all
sub-CDFs beyond that point yields performance very close to an oracle that knows the true marginal
proportions. Alternative adjustment rules are compared in Appendix E.2.

For the numerical evaluation, we consider the case K “ 4, with the true joint CDFs F0kpxq defined
as 0.2x, 0.3x1{4, 0.3x4, and 0.2maxp0, 3x ´ 2q, respectively.

We examine privacy budgets ϵ P t1, 2, 3u, corresponding to strong to moderate privacy regimes. For
context, Apple reportedly used ϵ “ 2 for sensitive health statistics and ϵ “ 4 for emoji usage Apple
(2020). Sample sizes n range from 103 to 106, with 100 independent replications per setting. To
eliminate cross-run correlations, experiments with different sample sizes are conducted independently.
As the maximum likelihood estimator is not unique and interpolation may introduce bias, we retain
the staircase form of the estimated CDFs for fair comparison.

Performance is evaluated using two metrics: the L8 error over r0, 1s, and the ℓ8 error in estimating
PpY “ k,X ă 1{2q. The means and standard deviations are reported in Table 1. Notably, we can
also estimate PpY “ k,X ą 1{2q, which corresponds to the distribution within the censored region.
The corresponding numerical results are provided in the Appendix E.3.

As shown in Table 2, Appendix E.3, both the uniform consistency and prediction error improve
steadily with increasing sample size, confirming the consistency of the estimator. Higher values of ϵ
(weaker privacy) also lead to improved accuracy, as expected. Notably, the prediction error remains
reasonably low even under strong privacy constraints (ϵ “ 1). We further investigate the relative error
in Section E.4 and illustrate our method on real-world data in Section E.5.

6 CONCLUSION AND FUTURE WORKS

In this paper, we proposed a flexible ULDP mechanism that adaptively censors potentially sensitive
responses without requiring a predefined sensitive region. This is achieved through (i) transforming
and privatizing binary sensitivity indicators and (ii) applying a randomized-response step. Our
two-stage design decouples privacy preservation from statistical estimation: the privatized data can
be interpreted as truthful samples from a transformed variable, and the CDF estimator is computed
via a bound-constrained discretized maximum-likelihood procedure.

We establish that the proposed estimator achieves L2- and sup-norm consistency at rates Oppn´1{3q

and Oppn´1{3 log nq, respectively, with pointwise weak convergence in the interior following the
classical Chernoff limit distribution. These theoretical guarantees extend naturally to multi-category
prediction under ULDP. Simulations confirm both the practical accuracy and computational viability
of the approach across a range of settings, marking the first rigorous treatment of ULDP-based CDF
estimation and prediction with provable asymptotic properties.

Despite these contributions, several limitations remain. First, the reconstruction of the distribution is
based on a capping mechanism, which enforces a fixed upper bound on the estimated CDF. While
effective, this approach may obscure the true distributional structure near the boundary. A potentially
more informative direction would involve jointly estimating the CDF under the constraint, possibly
leading to richer theoretical insights.

Although the proposed method is computationally efficient for small to moderate numbers of cate-
gories, the complexity increases substantially with K. In particular, the runtime grows significantly
compared to the K “ 1 case, making the approach less practical for applications involving very
large datasets (e.g., n ą 108). Developing scalable algorithms or approximation techniques for
high-throughput scenarios is thus a valuable avenue for future research.

Finally, like other nonparametric estimators under privacy constraints, it does not achieve the paramet-
ric Oppn´1{2q rate of the non-private empirical CDF. Addressing these statistical limitations—while
preserving ULDP guarantees—remains an important and challenging open problem.

9
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REPRODUCIBILITY STATEMENT

All numerical experiments and real-data analyses are fully reproducible via the code included in the
submitted anonymized supplementary materials.
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A A SAMPLE SURVEY BASED ON ACRR

Assuming that researchers aim to estimate how outstanding credit-card debt (X) is distributed across
universities (Y ) while safeguarding respondents with high debt.

Disclosing a high debt level together with an identifying attribute (alma mater) raises privacy concerns.
We therefore treat “high debt” as the sensitive direction and design a survey that never reveals both
high debt and university simultaneously.

Survey protocol for each participant

1. Sample a personal threshold T „ G (for example, G uniform on r0, $25 000s).
2. Ask the participant to follow the random procedure below.

Credit-Card Debt and Alma Mater Questionnaire

1. Your threshold: T “ $18 000.

2. Flip a fair coin.
Heads: mark Yes in Step 4 and skip Step 3.
Tails: continue to Step 3.

3. Compare your own debt x with T .
If x ą T : mark Yes.
If x ď T : tick the university you graduated from.

4. Select exactly one option
˝ Yes
˝ University A ˝ University B ˝ University C

This protocol offers plausible deniability that some low-debt participants output “Yes” solely because
the coin landed heads, so high-debt participants who also answer “Yes” are ϵ indistinguishable from
them (ϵ « 0.7). Conditional disclosure ensures that only low-debt respondents with a tails outcome
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and x ď T reveal their university. There is no joint leakage because the final response space contains
either “Yes” or one university label—never both.

Despite the heavy censoring of individual responses, the underlying distribution can still be accurately
reconstructed by applying the recovery procedure described in Section 3.3.
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B PROOF OF THEOREM 1

Since Pp∆i|Xi, Yi, Tiq “ P p∆‹|Xi, Yi, Tiq, one can transform the CDF F estimation with data ∆i

under LDP into CDF F‹ estimation with data ∆‹
i under non-DP. Using ∆‹

i to recover F‹ is a typical
current status problem. Applying Theorem 4.1 and Collary 4.2 in Groeneboom et al. (2008a), one
obtains the L1,G and L2,G consistency with order n´1{3,i.e.,

}F‹ptq ´ pF‹ptq}1,G “ Oppn´1{3q, }F‹ptq ´ pFptq}2,G “ Oppn´1{3q.

Based on the linear mapping between pF‹, pF‹q and pF, pFq, one has that

}Fptq ´ pFptq}1,G “ Opp}L´1}8n´1{3q, }Fptq ´ pFptq}2,G “ Oppλ´1
minpLqn´1{3q.

For uniform consistency, due to the CDF function F‹ is not absolutely continuous, it is not trivial to
apply the existing results of current status problem. We will derive the local consistency on some
interval first, and then combines this intervals to establishes the uniform consistency.

In detail, for t0 P r0, 1s, one denotes the interval Iωpt0q “ pt0 ´ ω, t0 ` ωq, if F ‹
` pt0q ą 0,

Ir pt0q “ pt0, t0 ` ωq if F ‹
` pt0q “ 0, and Ir pt0q “ pt0 ´ ω, t0q if F ‹

` pt0q “ 1, for some ω ą 0.
Notices that if F0k,k “ 1, . . . ,K have positive density function g and f0k on r0, γs, then F ‹

0k’s are
continuously differentiable at t0 with positive and bounded away from zero derivatives in interval
Irpt0q for any t0 P r0, 1s and some ω ą 0. Therefore, according to Lemmas 4.1 and 4.4 of Malov
(2021), one has that

sup
tPIωpt0q

}F‹ptq ´ pF‹ptq}8 “ Oppn´1{3 log1{3 nq.

Recalling that r0, 1s is a compact set, we select a finite cover
␣

Iωj
ptjq

(d

j“1
of the interval. Then we

find that

sup
tPr0,1s

}F‹ptq ´ pF‹ptq}8 “ max
jPt1,...,du

sup
tPIωj

ptjq

}F‹ptq ´ pF‹ptq}8 “ Oppn´1{3 log1{3 nq.

Finally, Based on the linear mapping between pF‹, pF‹q and pF, pFq, one has that

sup
tPr0,1s

}Fptq ´ pFptq}8 “ Opp}L´1}8n´1{3 log1{3 nq.

C PROOF OF THEOREM 2

To introduce our pointwise asymptotic results, we first define the distribution Ft0

Let W “ pW1, . . . ,WKq be a K-tuple of two-sided Brownian motion processes originating from
zero, with mean zero and covariances

E tWjptqWkpsqu “ p|s| ^ |t|q1tst ą 0uΣjk, s, t P R, j, k P t1, . . . ,Ku,

where

Σjk “ g pt0q
´1 ␣

1tj “ kuF ‹
0k pt0q ´ F ‹

0j pt0qF ‹
0k pt0q

(

.

Moreover, Vt0 “ pV1,t0 , . . . , VK,t0 ) is a vector of drifted Brownian motions, defined by

Vk,t0ptq “ Wkptq `
1

2
f‹
0k pt0q t2, k “ 1, . . . ,K

Similarly, let V`,t0 “
řK

k“1 Vk,t0 ,W` “
řK

k“1 Wk. Following Theorem 1.7 in Groeneboom et al.

(2008b), for some t0 P p0, 1q, there exists an almost surely unique K-tuple pHt0 “

´

pH1,t0 , . . . ,

pHK,t0

¯

of convex functions with right-continuous derivatives Ft0ptq “ pF1,t0ptq, . . . ,FK,t0ptqq sat-

isfying the following three conditions, where ak,t0 “ pF0kpt0qq´1, and aK`1,t0 “ p1 ´ F`pt0qq´1,
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• ak,t0
pHk,t0ptq `aK`1,t0

pH`,t0ptq ď ak,t0Vk,t0ptq `aK`1,t0V`,t0ptq, for k “ 1, . . . ,K, t P

R.

•
ş

!

ak,t0
pHk,t0ptq ` aK`1,t0

pH`,t0ptq ´ ak,t0Vk,t0ptq ´ aK`1,t0V`,t0ptq
)

d pFkptq “ 0, k “

1, . . . ,K.
• For all M ą 0 and k “ 1, . . . ,K, there are points τ1k ă ´M and τ2k ą M so that
ak pHk,t0ptq ` aK`1,t0

pH`,t0ptq “ ak,t0Vk,t0ptq ` aK`1,t0V`,t0ptq for t “ τ1k and t “ τ2k.

Similarly, for t0 P p0, 1q, if F0kpt0q,k “ 1, . . . ,K, are continuously differentiable at t0 with positive
derivatives f0kpt0q, then F ‹

0kpt0q,k “ 1, . . . ,K, are continuously differentiable at t0 with positive
derivatives f‹

0kpt0q. One applies Theorem 1.8 of Groeneboom et al. (2008b), and obtains

n1{3pF‹pt0q ´ pF‹pt0qq
d

ÝÑ Ft0p0q.

Combined with continuous mapping theorem, the proof is completed.

If K “ 1 and one applies the privacy mechanism in Liu et al. (2024), then one only needs to
estimate F`ptq. Then relationship F‹ptq “ LFptq10ătă1 ` 1t“1 will degenerate to F ‹

`ptq “

trF`ptq ` p1 ´ rq{2u0ătă1 ` 1t“1 and f‹
`ptq “ rfptq. Hence„ the variance term Σjk of two-sided

Brownian motion W will degenerate to
␣

4
`

rF`pt0q ` 1´r
2

˘ `

1`r
2 ´ rF`pt0q

˘(

pgpt0qq
.

Based on the relationships between Brownian motion and Chernoff distribution, see Groeneboom
(1989),

argmax
tPR

␣

W ptq ´ ct2
( d

“ c´1{3Ft0p0q
d
“ c´1{3 argmax

tPR

␣

W ptq ´ t2
(

,

for some c ą 0. Let c “
t4prF`pt0q`

1´r
2 qp 1`r

2 ´rF`pt0qqfpt0qu
pgpt0qq

, the point-wise asymptotic distribution
L´1Fp0q will degenerate to

␣

4
`

rF`pt0q ` 1´r
2

˘ `

1`r
2 ´ rF`pt0q

˘

fpt0q
(1{3

pargmaxtPR
␣

W ptq ´ t2
(

, q

pr2gpt0qq1{3
.

D PROOF OF THEOREM 3

The consistent result is derived by Theorem 1 deriectly.

For second result, one notice that for any 0 ă t0 ă t1 ă 1, Fpt0q ´ pFpt0q and Fpt1q ´ pFpt1q are
asymptotically independent, see page 131 in Huang & Wellner (1997) for the local dependence
structure of this type of process in a closely related problem. Then, following Theorem 2,

n1{3
!

Fpt0q ´ pFpt0qq,Fpt1q ´ pFpt1qq

)

d
ÝÑ tFt0p0q,Ft1p0qu .

Apply the continuous mapping theorem, the theorem is proved.

E ADDITIONAL NUMERICAL RESULTS

E.1 DIVIDE AND CONQUER IN THE ICM ALGORITHM

In this subsection, we are using the same setting as in Chapter 5, where we set ϵ “ 1. All experiments
are run on a single core of an AMD 9950X CPU. The figure below illustrates the mean and median
computational time when running the ICM algorithm:
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Figure 1: Mean and median computational time for the ICM algorithm

The plot demonstrates that it takes approximately one second to process n “ 50000 data points.
Linear regression shows that computational time increases at a rate of approximately n1.49.

Since this rate is superlinear, we consider a divide-and-conquer strategy, where the data is randomly
split into four even-sized portions, and the final result is summarized by taking the average.

Figure 2: Computational time under the divide-and-conquer strategy

Under this strategy, the growth rate of computational time is significantly reduced. However, for
smaller sample sizes, the overhead associated with splitting the data may result in slightly longer
runtimes. However, the total computational time for small datasets remains under one second.

Importantly, improvement in computational efficiency does not come at the cost of accuracy of
estimation. In contrast, all divide-and-conquer strategies we considered, namely splitting the data
into 2, 4, and 8 parts, consistently produce better results compared to the baseline (without division).
We illustrate this below for the case of ϵ “ 1.
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Figure 3: Error Under Different Divide-and-Conquer Settings

The observed improvement may be partly explained by Theorems 1 and 2, which show that the
variance of the proposed ULDP estimator is of order n1{3. When the data set is divided into subsets
L, the variance of the resulting divide-and-conquer estimator is expected to scale heuristically as
L´1{6n1{3. However, the impact of bias under this strategy remains unclear and is analytically
difficult to characterize. In particular, in the extreme case of L “ n, the estimator reduces to the
empirical cumulative distribution function, which almost surely converges to an incorrect distribution.
This suggests the existence of an optimal choice of L, although identifying it theoretically is a
complex problem beyond the scope of this paper.
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E.2 COMPARING TO ALTERNATIVE ORACLE CAPPING MECHANISM

Although having the estimated CDF exceed 1 does not violate the theoretical error bounds presented
in our main results, it can be problematic in practical, real-world streaming applications. Formally,
the aggregated estimated CDF F̂0ptq “

řK
k“1 F̂0kptq can sometimes surpass 1 due to randomness

and adjustments from the ULDP mechanism. To address this, we propose a method that ensures the
estimates remain interpretable and potentially improve accuracy.

We introduce a correction based on the rule of stopping at 1, denoted as qF stop_at_one
0k ptq:

qF stop_at_one
0k ptq “

$

&

%

F̂0kptq, if F̂0ptq ď 1,

limsÑinftuą0:F̂0puqą1u´ F̂0kpsq, otherwise.

This method halts the growth of all sub-CDF estimates simultaneously at the earliest point where the
aggregate estimate first exceeds unity, thereby maintaining monotonicity and interpretability without
altering previous estimates.

To evaluate its performance, we compare against an oracle based method, denoted qF oracle
0k . This

oracle assumes knowledge of the true marginal values F0kp1q, and thus caps each sub-CDF estimate
at the true marginal proportion:

qF oracle
0k ptq “ minpF̂0kptq, F0kp1qq,

Although practically unattainable, this oracle serves as an optimal performance benchmark. We find
that by applying the stopping rule, the corrected estimates can reach results similar to the oracle,
offering a practical solution that ensures both interpretability and accuracy in streaming applications.

The empirical results comparing these methods are presented below.

Table 1: Empirical results of uniform consistency (standard deviation) under the proposed capping
mechanism and the oracle method
n

Stop at one Oracle
ϵ “ 1 ϵ “ 2 ϵ “ 3 ϵ “ 1 ϵ “ 2 ϵ “ 3

1 ˆ 103 0.098(0.024) 0.085(0.018) 0.086(0.019) 0.082(0.015) 0.075(0.016) 0.074(0.014)
2 ˆ 103 0.082(0.020) 0.071(0.018) 0.066(0.016) 0.072(0.016) 0.063(0.013) 0.059(0.014)
5 ˆ 103 0.062(0.013) 0.055(0.012) 0.054(0.010) 0.055(0.011) 0.051(0.011) 0.049(0.013)
1 ˆ 104 0.051(0.012) 0.045(0.010) 0.044(0.010) 0.045(0.009) 0.042(0.008) 0.041(0.009)
2 ˆ 104 0.041(0.010) 0.038(0.008) 0.037(0.009) 0.039(0.009) 0.037(0.008) 0.036(0.009)
5 ˆ 104 0.034(0.008) 0.029(0.006) 0.028(0.006) 0.031(0.007) 0.030(0.007) 0.029(0.007)
1 ˆ 105 0.029(0.006) 0.025(0.005) 0.024(0.006) 0.027(0.007) 0.025(0.006) 0.024(0.005)
2 ˆ 105 0.024(0.005) 0.022(0.005) 0.021(0.005) 0.024(0.006) 0.021(0.005) 0.021(0.005)
5 ˆ 105 0.019(0.005) 0.018(0.004) 0.017(0.005) 0.019(0.004) 0.017(0.003) 0.017(0.003)
1 ˆ 106 0.017(0.004) 0.014(0.004) 0.013(0.003) 0.016(0.003) 0.014(0.003) 0.013(0.003)

Notably, the proposed capping mechanism achieves performance close to the oracle, particularly for
large sample sizes; therefore, we recommend using this correction in conjunction with our method,
and it is adopted in all empirical evaluations presented in this paper.
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E.3 TABLES IN SECTION 5

Table 2: Empirical results of uniform consistency and prediction error (standard deviation))

n
Uniform Consistency Prediction Error

ϵ “ 1 ϵ “ 2 ϵ “ 3 ϵ “ 1 ϵ “ 2 ϵ “ 3
1 ˆ 103 0.098(0.024) 0.085(0.018) 0.086(0.019) 0.059(0.036) 0.053(0.029) 0.053(0.028)
2 ˆ 103 0.082(0.020) 0.071(0.018) 0.066(0.016) 0.042(0.025) 0.041(0.020) 0.036(0.019)
5 ˆ 103 0.062(0.013) 0.055(0.012) 0.054(0.010) 0.030(0.016) 0.028(0.014) 0.028(0.015)
1 ˆ 104 0.051(0.012) 0.045(0.010) 0.044(0.010) 0.023(0.014) 0.020(0.013) 0.019(0.010)
2 ˆ 104 0.041(0.010) 0.038(0.008) 0.037(0.009) 0.019(0.010) 0.018(0.010) 0.016(0.009)
5 ˆ 104 0.034(0.008) 0.029(0.006) 0.028(0.006) 0.013(0.007) 0.011(0.005) 0.010(0.006)
1 ˆ 105 0.029(0.006) 0.025(0.005) 0.024(0.006) 0.011(0.006) 0.009(0.005) 0.009(0.005)
2 ˆ 105 0.024(0.005) 0.022(0.005) 0.021(0.005) 0.008(0.004) 0.007(0.004) 0.007(0.004)
5 ˆ 105 0.019(0.005) 0.018(0.004) 0.017(0.005) 0.006(0.004) 0.005(0.003) 0.005(0.003)
1 ˆ 106 0.017(0.004) 0.014(0.004) 0.013(0.003) 0.005(0.002) 0.004(0.002) 0.003(0.002)

Table 3: Prediction error: mean (standard deviation) of PpY “ k,X ą 1{2q.

n
Prediction Error

ϵ “ 1 ϵ “ 2 ϵ “ 3
1 ˆ 103 0.138 (0.055) 0.108 (0.046) 0.107 (0.045)
2 ˆ 103 0.114 (0.042) 0.090 (0.036) 0.087 (0.034)
5 ˆ 103 0.080 (0.029) 0.073 (0.025) 0.064 (0.028)
1 ˆ 104 0.067 (0.024) 0.058 (0.023) 0.054 (0.025)
2 ˆ 104 0.054 (0.021) 0.046 (0.016) 0.041 (0.017)
5 ˆ 104 0.037 (0.015) 0.034 (0.015) 0.034 (0.013)
1 ˆ 105 0.031 (0.012) 0.028 (0.011) 0.024 (0.011)
2 ˆ 105 0.025 (0.009) 0.020 (0.009) 0.019 (0.009)
5 ˆ 105 0.017 (0.007) 0.015 (0.006) 0.014 (0.005)
1 ˆ 106 0.013 (0.004) 0.011 (0.004) 0.009 (0.004)
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E.4 RELATIVE ERROR ANALYSIS

In addition to the uniform consistency in Section 5, we also consider relative uniform consistency,
defined as

sup
tPp0,1q

max
kPt1,2,3,4u

F0kptq ´ pFkptq

F0kp1q
.

The numerical results are provided in the table at the end of this response. Since F0kp1q P r0.2, 0.3s,
we expect the relative error to be inflated by a factor between 1{0.3 « 3.33 and 1{0.2 “ 5. Empiri-
cally, the observed inflation factor is about 3.74 on average with standard deviation 0.23, which lies
within the theoretical range. This indicates that the maximum relative error is not concentrated only
on the most frequent or the least frequent categories.

Furthermore, we do not observe any significant differences in the relative error across different values
of ϵ. For sufficiently large n, the relative errors remain reasonable, implying no notable increase in
error for less common categories.

Table 4: Relative Empirical results of uniform consistency and prediction error (standard deviation).

n
Uniform consistency

ϵ “ 1 ϵ “ 2 ϵ “ 3
1 ˆ 103 0.416 (0.110) 0.348 (0.079) 0.337 (0.069)
2 ˆ 103 0.335 (0.075) 0.283 (0.060) 0.263 (0.056)
5 ˆ 103 0.233 (0.053) 0.210 (0.044) 0.207 (0.042)
1 ˆ 104 0.190 (0.037) 0.176 (0.040) 0.160 (0.035)
2 ˆ 104 0.161 (0.034) 0.144 (0.031) 0.132 (0.024)
5 ˆ 104 0.125 (0.025) 0.113 (0.025) 0.106 (0.020)
1 ˆ 105 0.102 (0.020) 0.088 (0.016) 0.084 (0.014)
2 ˆ 105 0.083 (0.017) 0.075 (0.017) 0.073 (0.016)
5 ˆ 105 0.068 (0.016) 0.061 (0.014) 0.060 (0.013)
1 ˆ 106 0.061 (0.015) 0.054 (0.013) 0.051 (0.013)
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E.5 REAL DATA ANALYSIS

For validation of the proposed method on real-world data, we used the government salary dataset
available in the R package fairadapt, which contains 204,309 salary records. In this dataset, salary
is treated as the continuous response and race (7 categories) as the categorical variable. Although
this dataset is not privacy-sensitive in the sense of containing ground-truth protected attributes for
disclosure, it serves as a practical validation example.

We applied the following preprocessing steps. We removed outliers with salaries exceeding $200,000,
which account for less than 0.2% of the records. Following the same approach as for the synthetic
data, we randomly sampled without replacement subsets of sizes 5,000, 10,000, 20,000, 50,000,
100,000, and 200,000 (nearly the full dataset). Smaller sample sizes (e.g., 1,000 and 2,000) were
excluded because some race categories would be absent. For each sample size, we ran experiments
with privacy budgets ϵ P t1, 2, 3u. Each setting was repeated for 100 independent repetitions. The
reported quantities are the average L8 errors with standard deviations (in parentheses).

Table 5: Consistency on real data

n
ϵ

1 2 3
5 ˆ 103 0.084 (0.019) 0.075 (0.017) 0.073 (0.016)
1 ˆ 104 0.067 (0.013) 0.060 (0.012) 0.058 (0.011)
2 ˆ 104 0.058 (0.012) 0.049 (0.009) 0.044 (0.008)
5 ˆ 104 0.044 (0.008) 0.040 (0.007) 0.039 (0.007)
1 ˆ 105 0.038 (0.006) 0.035 (0.007) 0.033 (0.006)
2 ˆ 105 0.033 (0.005) 0.029 (0.005) 0.028 (0.004)

These results demonstrate performance comparable to the synthetic data, with a slightly higher error
primarily attributable to class imbalance: approximately 90% of observations belong to the White
group.
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F THE VARIANTS OF ACRR

The ACRR mechanism can be modified to conform with the classical definition of local differential
privacy. Consider the following randomized mechanism MLDP1 : X Ñ E , which satisfies ϵ-LDP:

MLDP1pp0, kqq “

#

ej with probability 1
K`eϵ for j ‰ k,

ek with probability eϵ

K`eϵ .

MLDP1pp1, kqq “

#

ej with probability 1
K`eϵ for j “ 1, ¨ ¨ ¨ ,K,

eK`1 with probability eϵ

K`eϵ .

This guarantees ϵ-LDP, as the ratio of any two output probabilities is bounded by eϵ.

Although this mechanism introduces more noise compared to ACRR, it can still be analyzed using
the framework using the framework developed in Chapter 4. In particular, the associated perturbation
matrix L P RpK`1qˆpK`1q has the following structure:

LLDP1 “
1

K ` eϵ

»

—

—

–

eϵ 1 ¨ ¨ ¨ 1
1 eϵ ¨ ¨ ¨ 1
...

...
. . .

...
1 1 ¨ ¨ ¨ eϵ

fi

ffi

ffi

fl

.

Notice that according to Theorems 1, 2, and 3, the matrix L´1
LDP1 acts as a multiplicative factor in the

error bound. A direct computation shows that:

}L´1
LDP1}8 “

1 ` e´ϵp2K ´ 1q

1 ´ e´ϵ
,

whereas for the ACRR mechanism, we have:

}L´1}8 “
1 ` e´ϵ

1 ´ e´ϵ
.

This indicates that asymmetric privacy protection eliminates the inflation dependent on K in the error
bound.

Even though LDP1 performs poorly in other respects, it still benefits from the censoring mechanism.
To see why, consider a standard LDP2 random response mechanism that perturbs X to X (rather than
to E). In this case, the perturbation matrix becomes a 2K ˆ 2K matrix:

LLDP2 “
1

2K ` eϵ ´ 1

»

—

—

–

eϵ 1 ¨ ¨ ¨ 1
1 eϵ ¨ ¨ ¨ 1
...

...
. . .

...
1 1 ¨ ¨ ¨ eϵ

fi

ffi

ffi

fl

.

Its inverse has infinity norm:

}L´1
LDP2}8 “

1 ` e´ϵp4K ´ 3q

1 ´ e´ϵ
,

which further inflates the error by nearly a factor of 2 compared to the censored mechanism.
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