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ABSTRACT

The reliability of supervised classifiers is severely hampered by their limitations
in dealing with unexpected inputs, leading to great interest in out-of-distribution
(OOD) detection. Recently, OOD detectors trained on synthetic outliers, espe-
cially those generated by large diffusion models, have shown promising results in
defining robust OOD decision boundaries. Building on this progress, we present
Non-Linear Class-wise Invariant Sampling (NCIS), which enhances the quality
of synthetic outliers by operating directly in the diffusion model’s embedding
space, rather than combining disjoint models as in previous work, and by mod-
eling class-conditional manifolds with a conditional volume-preserving network,
allowing for a more expressive characterization of the training distribution. We
demonstrate that these improvements yield new state-of-the-art OOD detection re-
sults on standard ImageNet100 and CIFAR100 benchmarks and provide insights
into the importance of data pre-processing and other key design choices. We will
make our code available upon acceptance.

1 INTRODUCTION

Modern deep learning classifiers can classify unseen images into thousands of classes when trained
on sufficiently broad datasets. However, unexpected samples from unseen classes will also be
confidently assigned to one of the training classes (Hendrycks & Gimpel, 2017). In most cases,
model outputs do not provide information about the reliability of a prediction, leading to silent fail-
ures that undermine the trustworthiness of these systems. This has led to significant research on
detecting and filtering out these unexpected samples, a subject area known as out-of-distribution
(OOD) detection. Specifically, OOD detection aims to enhance the reliability of downstream
systems by identifying and removing samples that fall outside the known training distribution.
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Figure 1: Random outliers generated for
three CIFAR100 classes by our method.
Using these as auxiliary outliers during train-
ing greatly improves the OOD detection per-
formance of modern classifiers.

To identify samples that do not belong to the training
distribution, OOD detectors seek to learn a bound-
ary that separates in-distribution (ID) samples from
OOD samples. A major difficulty in doing so is the
lack of real OOD samples at training time. Recent
advancements in supervised OOD detection tackle
this challenge by generating synthetic OOD samples
and using them during training to shape the deci-
sion boundary. These synthetic OOD samples can
be generated in feature space (Du et al., 2022; Tao
et al., 2023) or pixel space (Chen et al., 2024; Du
et al., 2024), with pixel-space approaches demon-
strating superior performance. However, creating
realistic and effective pixel-space OOD samples re-
mains challenging. The standard approach (Chen
et al., 2024; Du et al., 2024) is to use large, pre-
trained text-conditioned diffusion models, like Sta-
ble Diffusion, conditioned on perturbed prompts that
lead to OOD images for specific classes.
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Figure 2: Comparison between (a) Dream-OOD, (b) linear invariants on our embeddings, and
(c) our method on a toy example. The disjoint embeddings and normalization of Dream-OOD
greatly limit the flexibility of the generated outliers. Linear invariants similarly lack capacity. On
the other hand, our approach can generate successful outliers by modeling arbitrary distributions.

Different types of prompt perturbations produce outlier images of different quality, and, therefore,
finding good perturbations is crucial to generating useful OOD samples. Ideally, the perturbations
should locate the prompts in the boundaries of the diffusion model’s conditioning space where the
model transitions from producing valid ID images to OOD images (e.g., Fig. 2(c)). However, pre-
vious pixel-space outlier synthesis methods have overlooked the key challenge of identifying such
boundaries within the diffusion model’s conditioning space, instead relying on heuristics and ap-
proximations that fall short in effectively locating these regions. For example, Dream-OOD (Du
et al., 2024) and BOOD (Liao et al., 2025), the current state-of-the-art methods, train an image en-
coder that maps ID images to a feature space, encouraging each image embedding to be similar to
the text embedding of its respective class name. Yet, this approach lacks a mechanism to ensure
alignment between the learned image embeddings and the diffusion model’s conditioning space.
Consequently, embeddings considered as ID by the embedding model may lie in OOD regions of
the conditioning space and vice versa. Moreover, Dream-OOD draws low-likelihood samples from
class-conditional spherical Gaussian distributions fitted to the ID image embeddings (Fig 2a), but
there is no evidence that the prompt embeddings in the conditioning space behave in this manner.

In this work, we develop two new techniques to explicitly find ID regions within the diffusion
model’s conditioning space and sample elements along their boundaries:

Diffusion-based embedding. We propose an embedding procedure that uses the diffusion model
directly to create image embeddings, bypassing the need for external embedding functions or surro-
gate models. This approach, similar to prompt tuning, represents each training image by an embed-
ding that maximizes the likelihood of the diffusion model generating that image, allowing a precise
characterization of the ID regions within the conditioning space.

Non-linear parametric distributions. We introduce a conditional volume-preserving net-
work (cVPN) for fitting class-wise manifolds and show how it can be used to fit arbitrarily complex
class-conditional distributions to the training image embeddings. The complex distributions enabled
by the cVPN allow for more precise sampling along the ID/OOD boundaries in the conditioning
space compared to the over-simplistic Gaussian distribution (Fig. 2(a) and (b)).

By combining these two techniques, our method, Non-Linear Class-wise Invariant Sampling
(NCIS), can synthesize realistic and diverse outliers, as illustrated in Fig. 1, thereby enhancing the
classifier’s capacity to detect OOD samples. Our experiments show that NCIS achieves state-of-the-
art performance on two canonical benchmarks (ImageNet-100 and CIFAR-100 as in-distributions),
with ablation studies confirming the individual impact of each component.

2 RELATED WORK

Many works on supervised OOD detection, including most early ones, base their scoring function
on the post-hoc processing of the classifier. These can, for instance, be based directly on the log-
its (Chen et al., 2025; Hendrycks & Gimpel, 2017; Liang et al., 2018; Liu et al., 2020; 2023), the
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features learned by the model (Guo et al., 2025; Lee et al., 2018b; Ren et al., 2021; Ling et al., 2025;
Liu & Qin, 2025; Sastry & Oore, 2020), or the gradients of the classifier (Behpour et al., 2024;
Huang et al., 2021). Other approaches adapt the classifier training process for better OOD detection
in mind by, for instance, modifying the loss function (DeVries & Taylor, 2018; Hsu et al., 2020; Lee
et al., 2018a; Liu et al., 2020), designing auxiliary self-supervised objectives (Ahmed & Courville,
2020; Winkens et al., 2020), or distillation (Tang et al., 2025; Yang & Xu, 2025).

One popular trend is to use large auxiliary datasets as fake OOD samples during training, a technique
known as Outlier Exposure (OE) (Hendrycks et al., 2019a). The rationale behind this approach is
that by exposing the model to a diverse set of general samples, it can better learn to recognize
what it does not know. While OE has been successfully applied to increase the performance of
many OOD detectors (e.g., Fort et al. (2021); Hendrycks et al. (2019a); Papadopoulos et al. (2021);
Sastry & Oore (2020)), its usefulness is limited when the OE distribution is far from the OOD
distribution (Reiss & Hoshen, 2023), and, for many domains, obtaining a relevant large and diverse
dataset to use as pseudo-OOD samples is infeasible.

As such, current approaches rely only on in-distribution data to build their detectors. The state-of-
the-art approaches opt to synthesize outliers, which are used to regularize the classification model
during training to improve its OOD detection. This can be done in feature space (Du et al., 2022;
Li et al., 2025; Tao et al., 2023) or pixel space (Chen et al., 2024; Du et al., 2024; Liao et al.,
2025; Yoon et al., 2025), with the latter showing superior performance. Our approach also generates
outliers in pixel space, allowing for interpretability, but we build upon previous work by aligning
the embeddings and modeling non-linearities, allowing for a significant performance improvement.

At the same time, there exists a large body of work in unsupervised OOD detection literature, typ-
ically based on generative models (Nalisnick et al., 2018; Schirrmeister et al., 2020; Serrà et al.,
2019; Zhang et al., 2025), self-supervised learning (Hendrycks et al., 2019b; Sehwag et al., 2021),
or pre-trained models (Doorenbos et al., 2022; Reiss & Hoshen, 2023; Xiao et al., 2021). However,
their compatibility with the supervised setting is rarely explored. Relevant to the present work is the
concept of data invariants (Doorenbos et al., 2022), which characterizes what makes a sample in-
distribution without labels, and follow-up work on learning non-linear invariants (Doorenbos et al.,
2024), where a network was developed that can learn non-linear relations that collectively describe
a training dataset. We are the first to bring this concept to supervised OOD detection and introduce
appropriate modifications to adapt these methods to this new context.

Finally, we make heavy use of diffusion models in our work. Diffusion models are generative
models capable of generating high-quality samples resembling their training dataset. These models
have found success in a large number of applications, including image generation (Dhariwal &
Nichol, 2021), dataset building (Wu et al., 2023), and industrial anomaly detection (Fučka et al.,
2025). Many of these advancements were made possible by large pre-trained diffusion models, such
as Stable Diffusion (Rombach et al., 2021), which we also rely on. In particular, we build a training
set representation in diffusion embedding space using techniques similar to those in personalized
text-to-image generation (e.g., Gal et al. (2023)). However, we use this to represent the manifold of
a dataset rather than single concepts.

3 METHOD

OOD detection aims to determine whether a given test sample originates from the same distribution
as the training data. Samples drawn from the training distribution are considered in-distribution (ID),
while those that deviate are considered out-of-distribution (OOD). OOD detection can be formulated
as finding a scoring function s : X → R that assigns a score of in-distributionness s(x) to each in-
put x. In the context of supervised OOD detection, where the downstream task involves a classifier
trained on a labeled dataset, the OOD detection is typically integrated into the classifier by introduc-
ing a training regularization term that encourages higher free energy to ID samples and lower free
energy to OOD samples, effectively using the free energy as the OOD score function. However, to
achieve this energy separation, the regularization term requires ID samples, available in the training
data, as well as OOD samples, which must be artificially generated. Our method aims to produce
high-quality OOD images that, when used by the regularization term at training time, boost the ro-
bustness of the classifier to OOD samples. The following sections describe the components of our
method and how they are combined.
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3.1 EMBEDDING IMAGES IN THE DIFFUSION CONDITIONING SPACE

Algorithm 1 Obtaining diffusion embedding for
an image x.
Require: Training image x, label embedding ey ,

number of iterations, batch size, learning rate η,
trained diffusion model ϵθ.
e← ey ▷ Initialize with the token embedding
of the label
for number of iterations do

▷ Sample t and ϵ for the entire batch
t ∼ Uniform({1, ..., T}, batch size)
ϵ ∼ N (0, I, batch size)
▷ Loss calculation with Eq. 1
L = ∥ϵ− ϵθ(x̂t, t, e)∥2
e← e− η∇eL ▷ Gradient descent

end for
return e

We embed the training images directly within
the native conditioning space of Stable Diffu-
sion, which we call the diffusion conditioning
space or simply diffusion space. For each train-
ing image-label pair (x, y), we derive an em-
bedding e by minimizing the standard noise-
prediction loss used in diffusion models with
respect to the condition vector e,

argmin
e

Et,ϵ∼N (0,I) ∥ϵ− ϵθ(x̂t, t, e)∥2+R(e, ey),

(1)
where x̂t is the noisy version of x with noise ϵ
and ey is the Stable Diffusion token embedding
for the label y. The regularization term R en-
courages e to remain close to the token embed-
ding for the label y. In practice, we implement
this regularization term by initializing e to ey
and minimizing only the first term in Eq. 1 over
a limited number of iterations (set to 3 in our
experiments). The process is summarized in
Alg. 1. We apply this embedding process across the training set to obtain a collection of diffusion
embeddings {ei}Ni=1.

Formally, the diffusion embedding e of an image x is a maximum-a-posteriori estimate that max-
imizes the likelihood of Stable Diffusion generating the same image x, with the regularization
term acting as the prior. Therefore, the set of training diffusion embeddings {ei}Ni=1 forms a non-
parametric distribution capturing the regions in the diffusion conditioning space where Stable Dif-
fusion is most likely to produce in-distribution (ID) samples. The optimal OOD samples lie in the
boundaries of these regions. In the following sections, we describe how to represent these regions
using non-linear parametric distributions for easy sampling along the region boundaries.

3.2 FITTING CLASS-WISE NON-LINEAR MANIFOLDS TO ID DATA

As introduced in Doorenbos et al. (2022; 2024), the manifolds where the in-distribution (ID) data lies
can be effectively modeled by identifying functions, or invariants, that remain approximately con-
stant across the ID samples. These invariants capture essential properties of the ID data, remaining
stable for ID samples but diverging for OOD samples. In particular, the non-linear invariants (NL-
Invs) introduced in Doorenbos et al. (2024) find ID data invariants g within the latent space by
solving

min
g

∑
i

∥g(ei)∥22 (2)

s.t. det(J(ei) · JT (ei)) ̸= 0 ∀i, (3)

where the constraint ensures that the Jacobian is full-rank. This full-rank condition is achieved by
design through a volume preserving network (VPN), constructed as a sequence of bijective layers
(interleaved orthogonal and coupling layers) with unimodular Jacobians. During training, the VPN
minimizes only the primary term in Eq. 2, and its volume-preserving structure prevents the network
from collapsing to a trivial (near-)constant projection and artificially minimizing Eq. 2.

We extend the original formulation of NL-Invs to a supervised OOD detection framework, allowing
the model to learn class-conditional manifolds within the space of the diffusion embeddings. To
do so, we introduce a conditional volume-preserving network (cVPN), which implements a func-
tion f : RD × Y 7→ RD that is bijective with respect to its first argument and conditioned on the
second argument representing the class. The first K < D output dimensions of f correspond to the
invariants, g = f1:K , while the remaining dimensions model the variability within the ID data, and
K is a hyperparameter of the method. Fitting the cVPN is done by optimizing a problem analogous
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to Eqs. equation 2 and equation 3,

min
g

∑
i

∥g(ei, yi)∥22 (4)

s.t. det(J(ei, yi) · JT (ei, yi)) ̸= 0 ∀i. (5)

The trained cVPN thus maps elements from the diffusion space to an invariant space, ensuring that
fk(ei, y) ≈ fk(ej , y) ≈ 0 for all k < K when ei and ej are diffusion embeddings of images from
the same class y.

To integrate class-specific information effectively, the cVPN replaces the original coupling layers
from Doorenbos et al. (2024) with conditional coupling layers that incorporate class information
through a learnable embedding function hθ : Y 7→ R⌈D/2⌉. This function maps the class label y
into a feature space of dimension ⌈D/2⌉, enabling the conditional coupling layers to adapt based on
class context. The class embedding is passed to the MLP τ of the conditional coupling layer. The
conditional coupling layer is thus defined as

ccl(x, y) = concatenate (x1:d + τ(xd+1:D, hθ(y)),xd+1:D) , (6)

where d is typically set to ⌈D/2⌉. Its inverse is

ccl−1(x, y) = concatenate (x1:d − τ(xd+1:D, hθ(y)),xd+1:D) . (7)

3.3 PROBABILITY DISTRIBUTION OF ID SAMPLES
=

1e
-6

=
1e

-5
=

1e
-4

=
1e

-3
=

1e
-2

Figure 3: Effect of regularization on
generated outliers. Outliers get pro-
gressively more OOD with stronger reg-
ularization, providing an intuitive way
to control their out-of-distributionness.

We leverage the bijective nature of the cVPN network to
fit non-linear parametric distributions to the ID diffusion
embeddings. Specifically, we map the diffusion embed-
dings to the invariant space, evaluating vi = f(ei, yi)
for each embedding ei and its corresponding label yi.
This process yields a collection of invariant-space vec-
tors {vi}Ni=1. We then fit class-conditional Gaussian dis-
tributions to these invariant-space vectors for each class y,

pv(vi | y) ∼ N (vi;µy,Σy + λI), (8)

µy =
1

Ny

∑
i:yi=y

vi, (9)

Σy =
1

Ny

∑
i:yi=y

(vi − µy)(vi − µy)
⊤, (10)

where the regularization factor λ applied to the covari-
ance matrix serves two primary purposes. First, it pre-
vents numerical issues that might arise from the invariant
dimensions approaching near-zero values. Second, it en-
ables control over the degree of out-of-distributionness of
the generated outliers. By setting λ to be small relative to
the variant dimensions but large relative to the invariant dimensions, higher values of λ yield outliers
with more extreme values in the invariant dimensions, as illustrated in Fig. 3. We ablate the effect
of λ in Sec. 5.

The class-conditional Gaussian distributions defined in the invariant space induce non-linear class-
conditional probability density functions in the diffusion space,

pe(e | y) = pv(f(e, y) | y) · |J(e, y)| , (11)

where the determinant of the Jacobian is 1 by design, resulting in the simplified expression pe(e |
y) = pv(f(e, y) | y). These distributions thus describe the regions in the diffusion conditioning
space where Stable Diffusion is most likely to produce in-distribution (ID) samples (Sec. 3.1).
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Methods
SVHN PLACES365 LSUN ISUN TEXTURES Average

AccFPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑
kNN 81.12 73.65 79.62 78.21 63.29 85.56 73.92 79.77 73.29 80.35 74.25 79.51 79.04
ViM 81.20 77.24 79.20 77.81 43.10 90.43 74.55 83.02 61.85 85.57 67.98 82.81 79.04

ReAct 82.85 70.12 81.75 76.25 80.70 83.03 67.40 83.28 74.60 81.61 77.46 78.86 79.04
Synthesis methods

VOS 78.50 73.11 84.55 75.85 59.05 85.72 72.45 82.66 75.35 80.08 73.98 79.48 78.56
NPOS 11.14 97.84 79.08 71.30 56.27 82.43 51.72 85.48 35.20 92.44 46.68 85.90 78.23

Dream-OOD 58.75 87.01 70.85 79.94 24.25 95.23 1.10 99.73 46.60 88.82 40.31 90.15 78.94
FodFoM 44.05 91.12 40.30 91.04 39.34 92.66 41.19 92.36 31.47 94.00 39.27 92.20 -

NCIS (ours) 14.43±3.5 96.76±0.8 8.72±0.5 97.71±0.2 21.72±3.1 95.39±0.5 1.42±0.5 99.56±0.1 7.9±0.5 97.96±0.3 10.84±0.8 97.48±0.2 78.86±0.5

Table 1: Comparative evaluation with CIFAR-100 as the in-distribution data. Bold and
underlined indicate best and second best per column, respectively. Our results are over 3 seeds.
Baseline performances taken from Chen et al. (2024); Du et al. (2024).

3.4 OOD SAMPLE GENERATION

Generating an OOD image for a given class y follows naturally from the properties of the distri-
butions established above. First, we apply rejection sampling in the invariant space to obtain an
outlier v′ from the low-likelihood regions of the Gaussian distribution pv(v

′ | y). Then, we map
this outlier back to the diffusion space using the inverse of the cVPN f , yielding an embedding
e′ = f−1(v′; y). Finally, we condition the Stable Diffusion model on prompts of the form “A high-
quality image of a ⟨e′⟩” to generate an OOD image x′. The entire process is denoted as x′ ∼ Pout.

3.5 CLASSIFIER REGULARIZATION WITH SYNTHETIC OOD SAMPLES

Synthetic OOD samples, together with real ID samples from the training data, are used to regularize
the classifier, enhancing its ability to distinguish ID from OOD inputs as proposed in Du et al.
(2022; 2024); Tao et al. (2023). This approach combines the standard cross-entropy loss LCE with
an additional regularization term, Lood, yielding

L = LCE + β · Lood, (12)

where the hyperparameter β controls the influence of the regularization. The regularization
term Lood is designed to encourage distinct classifier energy levels for ID and OOD samples,

Lood = Ex∼Pout

[
− log

1

1 + exp(ϕ ◦ E ◦ fθ(x))

]
+Ex∼Pin

[
− log

exp(ϕ ◦ E ◦ fθ(x))
1 + exp(ϕ ◦ E ◦ fθ(x))

]
. (13)

Here, the classifier fθ processes the input image x to produce the class logits for labels in Y . The
energy function E, as defined in Liu et al. (2020), transforms these logits into an energy score that
reflects the model’s certainty about a given sample being ID or OOD. The function ϕ, implemented
as an MLP, transforms energy values into logits, effectively classifying each sample x as either ID
or OOD. Thus, the composition s = ϕ◦E ◦fθ serves as the OOD scoring function at inference time.

4 EXPERIMENTS

Following previous works (Du et al., 2022; 2024), we conduct experiments on two benchmarks:

CIFAR-100 (Krizhevsky et al., 2009) as ID dataset with SVHN (Netzer et al., 2011),
Places365 (Zhou et al., 2017), LSUN (Yu et al., 2015), iSun (Xu et al., 2015), and Tex-
tures (Cimpoi et al., 2014) as OOD datasets;

ImageNet-100 (Deng et al., 2009) as ID with iNaturalist (Van Horn et al., 2018), Places (Zhou
et al., 2017), Sun (Xiao et al., 2010), and Textures (Cimpoi et al., 2014) as OOD.

See the appendix for more details. We report the false positive rate at 95% true positive rate (FPR95)
and the area under the ROC curve (AUC) for OOD detection, with the positive class being ID. We
also report the accuracy (Acc) of the classifier on the downstream classification task.

We follow the protocol described in Du et al. (2024) to isolate the effects of our outlier synthesis
approach from other factors. We train a ResNet-34 with stochastic gradient descent, using a learning

6
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Methods
INATURALIST PLACES SUN TEXTURES Average

AccFPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑
kNN 28.67 95.57 65.83 88.72 58.08 90.17 12.92 90.37 41.38 91.20 87.64
ViM 75.50 87.18 88.30 81.25 88.70 81.37 15.60 96.63 67.03 86.61 87.64

ReAct 22.40 96.05 45.10 92.28 37.90 93.04 59.30 85.19 41.17 91.64 87.64

Synthesis methods
VOS 43.00 93.77 47.60 91.77 39.40 93.17 66.10 81.42 49.02 90.03 87.50

NPOS 53.84 86.52 59.66 83.50 53.54 87.99 8.98 98.13 44.00 89.04 85.37
Dream-OOD 24.10 96.10 39.87 93.11 36.88 93.31 53.99 85.56 38.76 92.02 87.54

FodFoM 35.75 93.13 39.23 92.02 33.91 93.62 42.13 91.31 37.75 92.52 -
NCIS (ours) 20.7±0.2 96.56±0.2 34.6±0.4 94.07±0.2 35.43±0.8 94.13±0.2 44.83±1.8 88.5±0.9 33.89±0.6 93.32±0.2 87.24±0.1

Table 2: Comparative evaluation with IMAGENET-100 as the in-distribution data. Bold and
underlined indicate best and second best per column, respectively. Our results are over three seeds.
Baseline performances taken from Chen et al. (2024); Du et al. (2024).

rate of 10−1 for CIFAR100 and 10−3 for ImageNet100, decaying with a cosine annealing schedule,
momentum of 0.9, weight decay of 5 · 10−4, and a batch size of 160. We also use Stable Diffu-
sion v1.4, using DDIM sampling with 50 steps, to generate the synthetic outliers and set β to 1.0.

The classifier is trained for 20 epochs on ImageNet-100 and 250 epochs on CIFAR100. Training
embeddings are obtained by optimizing equation 1 for three iterations with a batch size of 32, ensur-
ing sufficient exposure to different DDIM steps. We set the number of invariants K to the average
largest number of principal components that jointly account for less than p = 2% of the variance
per class (Doorenbos et al., 2024). We set a regularization strength of λ = 10−5 in our experiments,
and we analyze the impact of different values in the ablation study.

We compare NCIS against the current state-of-the-art in outlier synthesis baselines: VOS (Du et al.,
2022), NPOS (Tao et al., 2023), Dream-OOD (Du et al., 2024), and FodFoM (Chen et al., 2024).
Additionally, we include three strong post-hoc OOD baselines: kNN (Sun et al., 2022), ViM (Wang
et al., 2022), and ReAct (Sun et al., 2021). All methods use only in-distribution data for a fair
comparison. As we use the same code-base and training settings from Du et al. (2024), we report
baseline numbers from their experiments.

5 DISCUSSION

We find that NCIS method reaches a new state-of-the-art (Tab. 1 and Tab. 2), surpassing the best
FPR95 by 28.43 and 3.86 on CIFAR100 and ImageNet100, respectively. NCIS achieves the best
performance on six out of the nine experiments, placing second in two more, thereby outperforming
all other methods. Specifically, we improve upon all other outlier synthesis methods, whether the
synthesis occurs in feature or image space. NCIS surpasses the feature-space methods VOS and
NPOS by 63.14 and 35.84 on CIFAR100, respectively. The improvement over the other pixel-space
method, Dream-OOD, is particularly striking, demonstrating that the performance gains can be at-
tributed to the quality of the generated outliers, as training hyperparameters were kept unchanged.
We provide qualitative examples and an in-depth ablation study in the next sections to visualize the
faithfulness of our outliers and analyze what drives these gains in performance.

Nonetheless, there are still some cases where NCIS underperforms, such as on Textures. In this case,
we believe the discrepancy arises because pixel-space methods tend to generate semantically anoma-
lous images, while texture images are OOD primarily due to low-level statistics, where feature-space
methods may excel. Overall, this variability in results is the norm in OOD detection (e.g., Doorenbos
et al. (2022); Tao et al. (2023)), and NCIS is, on average, the best method by a large margin.

5.1 QUALITATIVE EXAMPLES

Fig. 4 shows qualitative examples of outliers generated by our method along with images gener-
ated by Dream-OOD, taken directly from the official repository1. For CIFAR100, these images are
provided in 32x32, hence their lower resolution. The Dream-OOD images bear little resemblance
to their supposed class. In contrast, our outliers are closer to the original meaning but still clearly

1github.com/deeplearning-wisc/dream-ood
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Figure 4: Nine random generated outliers by our method and Dream-OOD for CIFAR100 (top)
and ImageNet-100 (bottom). Our generated outliers are closer to the intended meaning, providing
a better signal to learn the ID/OOD decision boundary.

Resizing Sampling Embeddings Mean FPR

Nearest NPOS Dream 48.8
Bilinear NPOS Dream 33.5
Bilinear Linear invariants Dream 29.5
Bilinear Linear invariants Ours 20.2
Bilinear cVPN Ours 18.6

Both cVPN Ours 12.8

Table 3: Ablating NCIS on CIFAR100. We report the mean FPR95 over the five OOD datasets,
training with 6400 outliers. All components are important to reach the best performance.

show outlying attributes, such as a leopard-print boot instead of a leopard or a green clay hamster,
providing a better signal for OOD detection.

5.2 ABLATION STUDIES

We ablate the impact of three specific components in NCIS on CIFAR-100:

Embedding type. We compare our diffusion space embeddings (Sec. 3.1) against the embeddings
used by Dream-OOD and BOOD.

Sampling distributions. We evaluate our non-linear probability distributions modeled via the cVPN
(Sec. 3.2) against simpler Gaussian distributions fitted to the ID embeddings in diffusion space and
against the sampling method from NPOS.

Pixel interpolation method. Synthetic OOD samples are resized before being used to compute the
regularization term (Sec. 3.5). We compare bilinear and nearest neighbor interpolation, as well as
randomly applying bilinear or nearest neighbor interpolation during training as data augmentation.
In all cases, tIn all cases, tIn all cases, the interpolation method used at test time is fixed to match
the evaluation protocol used in Du et al. (2024).

Our findings indicate that the three components are essential to achieve optimal performance (Fig. 5).
We found that the pixel interpolation method had a more pronounced effect than anticipated. In
particular, we observed large drops in performance that seemed to appear when the interpolation
methods used at training and testing were mismatched. This finding suggests that OOD detectors
focus more on low-level statistics than on semantic features. Similar conclusions have been found in
other OOD subfields (Havtorn et al., 2021; Schirrmeister et al., 2020; Serrà et al., 2019), but this is
the first demonstration of this effect in the outlier synthesis context. Note that our method still out-
performs Dream-OOD when using the same resizing strategy, and all other baselines are unaffected
by the interpolation method. Results in Tab. 3 also suggest that performing data augmentation on
the interpolation method at training time is the most effective approach to dealing with this issue.
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Figure 5: Ablating NCIS. We report the FPR95 (↓) with CIFAR100 as the in-distribution. NCIS
is robust to λ (a) and p (b). (c) shows that a large synthetic dataset is important to achieve good
performance. (d) shows that NCIS can safely use a fraction of the training data without sacrificing
much performance (results with 3200 outliers).

Methods INAT PLACES SUN TEX Mean Acc

ResNet-34 20.1 35.8 35.0 48.5 34.9 87.1
ViT-B/16 18.0 30.0 36.6 18.7 25.8 92.9

ConvNeXt 12.4 32.2 25.9 18.1 22.2 94.3

Table 4: Results in FPR95 using different architectures on ImageNet100. NCIS is also success-
ful with large vision transformers and modern CNNs.

Hyperparameter sensitivity. We investigate the impact of the regularization factor λ and the num-
ber of invariants p on the performance with 3200 generated outliers (Fig. 5). We observe that lower
values of λ, which produce samples closer to the training data manifold, generally improve OOD de-
tection up to a threshold around λ = 10−5, after which performance begins to decline. Our method
is robust to variations in p, with substantial changes in performance arising only at values above 5.

Different architectures. We compare the ViT-B/16 and ConvNeXt-B architectures on ImageNet-
100 in Tab. 4. Larger architectures, which achieve better classification performance, also improve
OOD detection when used with NCIS, demonstrating it works effectively with different models.

Number of outliers. We examine how the quantity of synthetic outliers used during training impacts
the performance in Fig. 5(c). We observe a power-law relationship where increasing the number
of outliers significantly enhances OOD detection. This suggests that generating a large synthetic
dataset is key to achieving good results.

Computational cost. Compared to Du et al. (2024), our approach simplifies training by removing
the need for training a text-conditioned latent space and sampling from its embeddings. Instead, we
introduce the need to train the cVPN and obtain the diffusion embeddings. The overhead the cVPN
introduces is minimal, as training takes 30-40 minutes on a single RTX3090 GPU, and the sam-
pling cost is negligible. However, obtaining the embeddings of the training data is computationally
more intensive, taking around 13 hours using 8 A100 GPUs for CIFAR100. Nonetheless, results in
Fig. 5(d) suggest that this computational load can be reduced with minimal impact on performance
by limiting the number of ID embeddings used for fitting ID probability distributions.

6 CONCLUSION

This work presents NCIS, a novel method for generating outliers to enhance OOD detection. By
operating directly in the embedding space of Stable Diffusion and modeling complex distributions
within the training data with a conditional volume-preserving network, NCIS improves upon prior
methods to achieve state-of-the-art results on two widely used OOD benchmarks. Findings from
our follow-up analyses highlight that OOD detectors are easily misled by low-level image statistics
rather than image semantics, underscoring the need for careful treatment of such features in future
designs. Overall, we show that outlier synthesis effectively boosts OOD detectors without needing
labor-intensive collection and curation of real OOD samples. A current limitation of NCIS is its
reliance on the frozen image decoder of Stable Diffusion, which constrains its ability to generate
realistic outliers for domains like medical imaging. Future work will explore the benefits of using
domain-specific diffusion models for outlier synthesis.
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