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ABSTRACT

Model compression plays a crucial role in deployment, as it can significantly re-
duce computational costs with minimal loss in accuracy. However, recent studies
have shown that model compression may involve additional bias, posing fairness
risks that can potentially lead to social impact. As a result, mitigating bias during
model compression has emerged as an important topic. In this work, we focus
on structured neural network pruning, a widely adopted model compression tech-
nique that remains rarely explored in the context of fairness. Specifically, we
introduce evolutionary algorithms as a general yet powerful approach to achieve
fairness-aware structured pruning. That is, we formulate structured pruning as a
subset selection problem and use evolutionary search to identify an optimal set
of structural components to retain, balancing both accuracy and fairness objec-
tives. Given the multi-objective nature and the large combinatorial search space
of structural components, we further incorporate multi-objective evolution and co-
operative coevolution to effectively address them. To verify the effectiveness of
our method, we conduct experiments that cover three typical fairness scenarios:
class-wise and group-wise fairness in classification models, and toxicity in lan-
guage models. Compared with classic structured pruning methods and state-of-
the-art competitors on fairness-aware structured pruning, our method can preserve
better fairness while keeping competitive accuracy, demonstrating the superiority
of evolutionary optimization for fairness-aware structured pruning in practice.

1 INTRODUCTION

Recent years have witnessed the blossom of model ability and their applications. Nevertheless, the
impressive performance usually come at the cost of increasing computational requirements, pos-
ing great challenges for deployment, especially for resource-limited scenarios (Menghani| [2023).
To mitigate the burdens, model compression is playing an increasingly important role in practice,
which can significantly reduce the computation cost from perspectives of both storage and infer-
ence time while keeping the original precision. In fact, prevailing model compression techniques
including quantization (Rastegari et al.,|2016)), knowledge distillation (Hinton et al., 2015]), and neu-
ral network pruning (Li et al.| 2017 have been widely studied in the last decade. However, recent
works (Hooker et al.,[2019;2020; lofinova et al., 2023; Joseph et al., 2020; |Stoychev & Gunes), [2022)
indicate that the fairness of compressed models can be severely damaged, raising new concerns on
the employment of model compression.

The fairness of machine learning models has been studied for a long history (Mehrabi et al.,|[2022),
which is important especially in high-stack scenarios like diagnosis (Lin et al.| [2023) and credit
estimation (Shumovskaia et al., [2020). Generally, fairness measures the discrepancy of model per-
formance on different classes or groups. For example, the models for hiring decisions should keep
consistent precision on different social groups, preventing from potential bias (Cohen et al., [2020).
Models for multi-class classification are expected to hold the same accuracy on each alternative
class, avoiding the loss of efficacy on specific classes behind the overall good accuracy (Hooker
et al} |2019). Meanwhile, the development of language models has also drawn significant attention
to their fairness, particularly regarding toxicity words and social bias in generated content (Dhamala
et al., 2021} Dixon et al., 2018). Accordingly, various metrics have been proposed to quantify the
fairness of models from different views (Han et al.||2024). Great efforts have also been paid on im-
proving fairness, such as data resampling (Yu, [2021)), adversarial training (Madras et al., 2018) and
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correction (Menon & Williamson, [2018), which can be referred in recent surveys (Mehrabi et al.,
2022; Hort et al., 2023 Pessach & Shmueli, [2022).

Recently, a variety of works reveal that prevailing model compression methods can cause unexpected
fairness degradation in resulted models. That is, compared with the original models, even that the
overall performance of the compressed models is still good, the fairness of them can be explicitly
damaged. (Hooker et al.|[2019) first indicated that in compressed multi-class classification models,
certain classes may suffer a disproportionately increasing portion of error, despite ostensibly good
average performance of all classes. The following work (Hooker et al., |2020) demonstrates that
certain groups of data bear disproportionately high portion of the error after compression. [Paganini
(2020) further illustrated the fairness issues and advocated a comprehensive evaluation of com-
pressed models from a Pareto-optimal perspective, considering compression ratio, accuracy, and
fairness simultaneously. These findings draw attention to the importance of compressing models in
a fairness-aware manner, which has become an emerging topic.

Since various model compression methods are designed and implemented from different perspec-
tives, it is impractical to simply enhance their fairness using a unified approach. Instead, previous
studies typically focus on a single model compression method, such as knowledge distillation (Blak-
eney et al., [2021)), quantization (Liu et al., 2025), and unstructured neural network pruning (Lin
et al.l 2022; Tang et al., 2023 [Zhang et al., 2023)), leaving structured neural network pruning
rarely explored. The only prior work (Zayed et al.| [2024) focuses on pruning the attention heads
of Transformer-based language models using a greedy strategy, which exhaustively evaluates the
impact of removing each head on the quality and fairness of generated contents, and retains the most
effective ones. Nevertheless, it only considers a specific fairness scenario of mitigating toxicity in
language models, and the greedy strategy is not scalable, which means that it is impractical for other
common architectures such as Convolution Neural Networks (CNNs), where thousands of structural
components are candidates for pruning. On the other side, although numerous works have explored
fairness-aware unstructured neural network pruning, these approaches are difficult to be adapted
to structured neural network pruning due to the discrete solution space of structural components.
Moreover, structured neural network pruning is more valuable (He & Xiaol [2024)), as the resulting
regular structures are better suited to modern hardware and software, bringing genuine acceleration.

In this work, we focus on addressing fairness-aware structured neural network pruning. Prevailing
structured neural network pruning methods are usually based on criteria like weight magnitude (L1
et al., [2017). However, these criteria are not directly relevant to fairness, potentially leading to un-
desirable fairness in compressed models (Zayed et al.,[2024). To enable fairness-aware structured
neural network pruning in a wide range of scenarios, we propose a unified framework: Fairness-
aware Pruning via Evolution (F-PvE). Specifically, we leverage evolutionary optimization, which
has proven effective in related tasks such as conventional structured pruning (Zhou et al.| 2021}
Shang et al., [2022) and neural architecture search (Liu et al., 2023), to tackle the challenges of
fairness-aware structured pruning. To this end, we formulate structured pruning as a subset selection
problem, where the goal is to identify a subset of structural components to retain while pruning the
rest. The evolutionary algorithm is designed to simultaneously optimize both accuracy and fairness
of the resulting pruned network, which is fully determined by the selected subset of components.
Noting that it involves multiple objectives and large-scale combinatorial search space of candidate
components, we further employ multi-objective evolution (Zhou et al., |2011)) and cooperative co-
evolution (Ma et al., [2019) to address these challenges separately. That is, for architectures with
relatively few components (e.g., pruning heads in Transformers), we adopt multi-objective evolution
techniques such as NSGA-II (Deb et al.,|2002) to achieve a better trade-off of accuracy and fairness.
For architectures with a large number of components (e.g., CNNs), we turn to adopt cooperative
coevolution, leveraging a divide-and-conquer strategy to enhance scalability and effectiveness.

To validate the effectiveness of our method in fairness-aware structured pruning, we conduct exper-
iments across three representative fairness scenarios: class-wise degradation in multi-class classifi-
cation, group-wise degradation in classification with sensitive attributes, and social bias in language
models. These experiments cover both CNN and Transformer architectures. Experimental results
show that our method consistently outperforms both prevailing structured pruning approaches and
state-of-the-art fairness-aware structured pruning methods across all three tasks. Our main contri-
butions are summarized as follows:
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* We propose F-PvE, the first general approach for fairness-aware structured neural network
pruning, which adopts evolutionary optimization techniques to identify fair subsets of struc-
tural units to retain in pruned models.

* To tackle the challenges arising from the multi-objective nature and the large combinatorial
search space, we further incorporate multi-objective evolutionary algorithms and coopera-
tive coevolution to enhance the performance.

* We conduct experiments across three representative fairness scenarios, covering the struc-
tured pruning of both CNNs and Transformers. The results demonstrate the superiority of
our method over state-of-the-art competitors.

2 BACKGROUNDS

2.1 FAIRNESS IN COMPRESSED MODELS

Model compression has garnered great attention over the past decade, where numbers of methods are
developed and successfully deployed, creating substantial values in various applications. However,
recent works reveal that behind the good performance on the original tasks, potential bias can be
introduced or may be present (Hooker et al.| 2019} [2020; [Stoychev & Gunes) 2022} Tofinova et al.,
2023). These works primarily focus on image classification as a case study, concluding that although
the overall accuracy of compressed models is comparable to that of their uncompressed models,
the influence of compression on the accuracy of individual classes or specific data groups can be
significantly different, potentially leading to unpredictable fairness risks.

Meanwhile, it is worth noting that accuracy usually conflicts with prevailing fairness met-
rics (Zliobaite, 2015). For instance, in an extreme case, a random classification model may be
considered to be absolutely fair, as it treats all classes or groups equally by assigning predictions at
random. It is expected that if compressed models bear degradation of accuracy, the fairness of them
can sometimes benefit from the trade-off relationship and surpass the uncompressed models. Such
phenomenon can be observed in our experiments and previous studies (Zhang et al., 2023). On the
other hand, research on language models (Xu & Hu, 2022; Zayed et al.,|2024) has shown that model
compression can potentially serve as regularization tools, helping to improve fairness with sacrifice
of quality in generated contents. These findings highlight the importance of fairness-aware model
compression, and compressed models should be evaluated from a Pareto-optimal perspective that
jointly considers accuracy and fairness, as advocated by [Paganini| (2020).

2.2 FAIRNESS-AWARE MODEL COMPRESSION

Growing attention has been given in recent years to achieve fairness-aware model compression. Sub-
stantial efforts are on enhancing conventional model compression techniques, including knowledge
distillation (Blakeney et al., 2021)), quantization (Liu et al., 2025), and neural network pruning (Lin
et al., 2022} Tang et al.| [2023 |Zhang et al.| [2023} [Zayed et al.,|2024). Among these, neural network
pruning has attracted particular interest due to its clear motivation and competitive performance.
However, existing works are primarily on unstructured pruning. For example, [Lin et al.[(2022)) de-
signed a tailored pruning metric based on the importance of weights across different data groups
and applied pruning accordingly using a greedy strategy. Tang et al.|(2023)) leveraged the concept of
the well-known Lottery Ticket Hypothesis (Frankle & Carbin, [2019) and identified sparse network
initializations that inherently exhibit fairness. Zhang et al.|(2023) attached an element-wise mask to
the weight matrix of a neural network and induced sparsity in the mask by minimizing an adversar-
ial loss. On the other hand, fairness-aware structured pruning has rarely been explored. Moreover,
existing unstructured pruning methods are difficult to be adapted to structured pruning, due to the
discrete solution space defined by structural components.

2.3  STRUCTURED NEURAL NETWORK PRUNING

Structured neural network pruning targets the removal of regular structural components in neural
networks, such as filters in CNNs and attention heads in Transformers (Cheng et al. [2024). Com-
pared with unstructured pruning, structured pruning is considered more practical for accelerating
inference on modern hardware and software platforms. Over the past decade, a variety of structured
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pruning methods have been proposed (Cheng et al., [2024). Among them, the most widely adopted
are criteria-based methods, which rely on predefined heuristics, such as weight magnitude (Li et al.,
2017), to assess the importance of structural components. Recently, evolutionary algorithms have
also demonstrated great potential to search for solutions to structured pruning (Zhou et al.l 2021}
Shang et al.| [2022)). Depending on the architecture of the target model, structured pruning may lead
to performance degradation. Consequently, it is often accompanied by fine-tuning and sometimes
performed iteratively, in order to improve the performance of the pruned model in practice.

On the other hand, achieving fairness-aware structured pruning is more challenging than unstruc-
tured pruning, as the discrete nature of structural components makes it impractical to apply gradient-
based techniques such as adversarial training (Zhang et al., [2023). To date, the only prior work on
fairness-aware structured pruning (Zayed et al.| 2024) targets at pruning attention heads in language
models using a greedy strategy. Specifically, it exhaustively evaluates the impact of each head on
both perplexity and toxicity by comparing the outcomes of retaining versus removing it, and then di-
rectly retains the top-performing heads based on this evaluation. In this work, we propose a general
approach for fairness-aware structured pruning based on evolutionary optimization. To address the
inherent challenges, we incorporate cooperative coevolution (Ma et al., [2019) and multi-objective
evolution (Zhou et al., 2011) techniques that have also been employed for normal structured prun-
ing (Shang et al.l[2022; Zhou et al., 2021)).

3  FAIRNESS-AWARE PRUNING VIA EVOLUTION (F-PVE)

In this work, we propose a general fairness-aware structured neural network pruning method based
on evolutionary optimization, named F-PvE. From the view of structured pruning, a neural net-
work consists of a number of structured components (e.g., filters in CNNs and attention heads in
Transformers), which serve as the basic unit for pruning. Considering this, structured pruning can
naturally be formulated as a subset selection problem, which can be solved with evolutionary op-
timization techniques (Shang et al., 2022)). Let ®~ denote the neural network to be pruned, where
C denotes the set of structured components in ®. Structured pruning aims to identify the optimal
subset C* C C, such that
C* = argmax M(C"),
c'ce

where M(-) denotes the performance evaluation of C’. Typically, M(C") is designed to assess the
performance of a neural network constructed from C” on specific metrics, i.e., accuracy or fairness
calculated on prepared dataset. With explicit evaluation M (-), evolutionary algorithms can be easily
adapted to solve the subset selection problem, which have shown impressive performance from both
theoretical and practical perspectives (Qian et al., 2015). Specifically, it maintains a population of
individuals where each individual represents a subset C’ C C (i.e., a pruning solution). We represent
each subset C’ C C with a binary vector made of 0 and 1 with length equal to |C|, where each bit
indicates whether a specific unit in C is retained or pruned.

A standard evolutionary process proceeds as follows: the population is updated iteratively, through
the reproduction of new individuals via mutation, and environmental selection. For mutation, a
parent individual is randomly selected from the population. Each bit in the parent vector is flipped
with a predefined probability (i.e., the mutation rate), generating a new child individual. To ensure
a controllable pruning ratio, the resulting binary vector is adjusted so that the proportion of zeros
matches the target. Specifically, if the proportion of zeros exceeds the target, a number of zero
bits are randomly flipped to ones; conversely, if it falls below the target, one-bits are flipped to
zeros. Typically, in each generation, a number of child individuals equal to the population size are
produced. For environmental selection, all parent and child individuals are ranked based on the
evaluation M(+). The top-performing individuals are retained, while the rest are discarded. After a
number of generations, the final population serves as the solutions.

Note that the evaluation M (-) plays a crucial role, which guides the direction of evolution. We can
achieve fairness-aware structured pruning by incorporating fairness with accuracy in M () simulta-
neously. A straightforward but effective approach is to use a weighted sum of accuracy and fairness,
which is common for multi-objective problems and shows good practical performance. However,
using a predefined weight means that the evolution process is towards a specific point on the trade-
off spectrum, which usually requires trial-and-error in practice to meet user preferences. To address
this issue, we adopt the well-known multi-objective evolutionary algorithm NSGA-II (Deb et al.,
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2002), aiming to obtain a set of Pareto-optimal solutions with respect to accuracy and fairness. This
allows users to select from Pareto-optimal solutions based on their preference after evolving. Mean-
while, the large number of candidate basic units for pruning poses challenges for efficient evolution.
To overcome this, we employ cooperative coevolution (Ma et al.,|2019), which applies a divide-and-
conquer strategy to partition the search space, and evolves each subspace in an cooperative manner,
enabling more effective exploration. In the following subsections, we will first present the fairness
evaluation under three typical fairness scenarios considered in this work. Subsequently, we will
introduce F-PvE with multi-objective evolution and cooperative coevolution.

3.1 ASSESSMENT OF FAIRNESS
3.1.1 CLASS-WISE DEGRADATION IN MULTI-CLASS CLASSIFICATION

In multi-class classification, the models are employed to predict the correct class from multiple
alternatives. [Hooker et al.| (2019) indicated that model compression can result in disparate impact
on different classes. That is, the accuracy on some of the classes can degrade disastrously, while
the accuracy on some of the classes can maintain or even be improved after pruning. To quantify
the disparate impact, we define Extremum of disparate Impact (EDI), the extremum difference of
accuracy changes among classes. Denote the set of classes as S, and the accuracy on a specific
class s € S of the original unpruned model and pruned model as A,(s) and A, (s) respectively, we

calculate EDI as " 4 4 1
EDI = max(—p(s) — O(S)) - min(—p(s) — Ao(s)

(s S W P R

3.1.2 GROUP-WISE DEGRADATION IN CLASSIFICATION WITH SENSITIVE GROUPS

Taking hiring decisions as an example, machine learning models are often employed to predict
whether a candidate should be accepted based on their features, which constitutes a typical binary
classification task. However, as sensitive attributes such as gender or race may be present in the
data, the model may inadvertently favor certain groups, leading to fairness concerns. In other words,
we aim to ensure that the model’s decisions are independent of these sensitive attributes. To quan-
tify the discrepancy among groups, we employ the prevailing metric Difference of Equalized Odds
(DEO) (Hardt et al.l 2016) to measure the fairness degree of models. Consider binary classification
with two sensitive groups. Denote the sensitive class as A € {0, 1}, the target class as Y € {0, 1},

and the predicted results as Y e {0, 1}, we can calculate DEO as

DEO= ) QPr( =1]A=0,Y =y)—Pr(Y =1|[A=1,Y =y)|.
y€{0,1}

3.1.3 SOCIAL BIAS IN GENERATED CONTENTS OF LANGUAGE MODELS

Language models have achieved remarkable success in recent years. However, the generated content
may involve underlying social bias, which can lead to severe fairness issues (Dixon et al.,|2018)). To
quantify the bias in language models, we employ the definition of Toxicity (Dhamala et al., [2021])).
That is, the content is considered to be with toxicity if it leads individuals to disengage from a
discussion. Following the implementations in prior works that studied fairness in pruned language
models (Zayed et al.l 2024), we employ BERT for toxicity assessment, and measure the bias of
language models by calculating the Discrepancy of Toxicity (DT) in groups. Denote the groups as
G, and the toxicity of a specific group g € G as tox(g), We can calculate DT as

DT = Z\G\ tox(g) — |G|Ztoa:

9geG g'eG

3.2 F-PVE WITH MULTI-OBJECTIVE EVOLUTION

To address problems with multiple objectives, a common strategy is using a weighted sum of the
objectives, which is simple yet effective. However, determining an appropriate weight value often
requires tedious trial-and-error tuning according to user preferences. To overcome this limitation,
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we adopt multi-objective evolution. Specifically, we employ the widely used NSGA-II (Deb et al.,
2002), which has demonstrated strong performance in tasks with two objectives. The main mecha-
nism is that, we use non-dominated sorting and crowding distance in environmental selection. Given
the individuals for selection, all non-dominated ones are moved to the population of next genera-
tion, and this process continues until the population size is reached. If it exceeds the population
size, they are further ranked based on their crowding distance, computed as the sum of distances
to their neighboring individuals in the objective space. In addition, we employ binary tournament
selection to choose parents for mutation, which randomly samples two individuals, selects the better
one, aiming to improve efficiency of evolution. The procedure is outlined in Algorithm 1}

Algorithm 1 F-PvE with multi-objective evolution

Input: The original model ® to be pruned
Parameter: Population size N; number G of generations; mutation rate r
Output: A set S of Pareto-optimal pruned models

1: Initialize the population by randomly sampling N individuals, and evaluate their accuracy and

fairness;

while G is not reached do
Generate NN child individuals via binary tournament parent selection and mutation, and eval-
uate them;

4:  Leverage non-dominated sorting and crowding distance to select N individuals from the par-

ent and child individuals, as the next generation of population
: end while
6: return the Pareto-optimal set S of the final population

W

3.3 F-PVE wWITH COOPERATIVE COEVOLUTION

Since the number of structured units in deep neural networks can be exceedingly large (e.g, in
ResNet50 (He et al., [2016), there exist over ten thousand candidate filters to be pruned), how to
effectively evolve poses great challenges. To address it, we introduce cooperative coevolution (Ma
et al., 2019) in F-PvE, which has been applied in normal structured pruning and shown good per-
formance (Shang et al.| |2022). Cooperative coevolution leverages a divide-and-conquer strategy
that organizes the structural units into distinct groups, with each group evolving in a cooperative
manner. That is, each group focuses on the decision of retaining and pruning on its assigned units,
which represents a part of the neural network. For the evaluation of a given individual within a
group, the pruned partial network corresponding to that individual is combined with the unpruned
partial networks associated with other groups, resulting in a complete neural network that can be
used to assess performance. This strategy facilitates efficient local search within each group. Note
that a proper grouping is crucial, as units with competitive relationships should be organized into
the same group. To address this, we employ DepGraph (Fang et al., 2023), a general approach to
identify the relationship among structural units, and apply grouping accordingly. The procedure of
F-PVE with cooperative coevolution is outlined in Algorithm [2] Specifically, for the convenience
of combining solutions in each group, we simply define the fitness of an individual as a weighted
sum of accuracy and fairness, such that we can easily identify the best solutions in each group for
combination. Each group evolves via a standard evolution process, through iterative reproduction of
new individuals via mutation, combined with an elite environmental selection strategy that greedily
retains the top-performing individuals.

Algorithm 2 F-PvE with cooperative coevolution

Input: The original model ® to be pruned
Parameter: Number G of generations for evolving subgroups; population size N; mutation rate
Output: The pruned model ® ¢
1: Divide the structural units of ®¢ into groups;
2: Parallelly apply evolution process for G generations in each group, with population size /N and
mutation rate r;
3: Select the individual with the best fitness value in each group, and integrate them into a pruned
model &~
4: return the pruned model ¢ ¢~
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4 EXPERIMENTS

To examine the effectiveness of the proposed F-PvE, we conduct experiments on three typical fair-
ness problems, including class-wise degradation in multi-class classification, group-wise degrada-
tion in classification with sensitive groups, and social bias in generated contents of language models.
Given the distinct nature of these tasks, we organize the section by task. Due to space limitations,
we provide our additional results in the Appendix, and summarize the contents and conclusions at
the end of this section. Our codes for reproducing the results are provided in the supplementary.

4.1 TASK 1: CLASS-WISE DEGRADATION IN MULTI-CLASS CLASSIFICATION

Settings. We evaluate F-PvE on two common settings for structured pruning: ResNet-56 on CIFAR-
100 (Krizhevsky, 2009) and ResNet-50 on CUB-200 (Wah et al., 201 1)), with convolution filters as
basic units. Due to the large search spaces (2,032 and 22,720 filters, respectively), we apply F-PvE
with cooperative coevolution. The top-1 classification accuracy of the model and fairness measured
by EDI serve as the objectives during pruning, and we assign a weight A to balance accuracy and
fairness. That is, the fitness score of a pruned model is defined as: (A, —A,)/A, — A - EDI, where
A, and A, denote the top-1 accuracy of the original and pruned model, respectively, and EDI is
subtracted as it should be minimized. Both accuracy and EDI are evaluated on the training set of the
corresponding task during evolution. The population size /N, number G of generations and mutation
rate r are set as 5, 10 and 0.05, respectively, which can be increased to potentially achieve better
performance with additional search budgets. For comparison, we follow previous work on fairness-
aware structured pruning and implement prevailing structured pruning methods based on criteria,
including the weight magnitude /; and /5 norm (Li et al.l 2017, Hessian (LeCun et al., |1989), and
FPGM (He et al.}2019). All pruned models are finetuned on the training set under the same settings
(details are provided in Appendix). On CIFAR-100, we use iterative pruning, removing 5% of the
convolution filters and finetuning the pruned network in each iteration, while on CUB-200, we adopt
one-shot pruning without iteration.

Table 1: Comparison results on Task 1, where 20% of the structural components are pruned (Bold
indicates the best).

(a) ResNet56 on CIFAR-100 (Iterative pruning) (b) ResNet50 on CUB-200 (One-shot pruning)

Method ACC% T EDI) Method ACC%1 EDI{
Original Model 72.78 - Original Model 84.81 -

Random 69.30 0.4136 Random 83.09 0.6609

I 69.55 0.3942 I 83.33 0.6855

l2 69.72 0.4178 la 83.18 0.5839

Hessian 69.49 0.4105 Hessian 83.30 0.6224

FPGM 69.71 0.4548 FPGM 83.25 0.6937

F-PVE (A=0) 69.86 0.4636 F-PVE (A=0) 83.58 0.6301

F-PvE (A=0.01) 69.79 0.3938 F-PvE (A=0.01) 83.39 0.5743

Analysis. The main results of pruned mod-

els on test sets are provided in Table [T} where sy FREG=000 (‘Hff{;{f‘“
the values are average of four independent runs -
since evolution and finetuning can both involve
randomness. On CIFAR-100, F-PvE with A = ‘»
0 (i.e., optimizing accuracy only) achieves the
highest top-1 accuracy of 69.86%, but also re-
sults in the worst EDI of 0.4636, as fairness is 5
not considered during evolution. In contrast, F- T — = —
PvE with A = 0.01 achieves a slightly lower Percentage Change of Accuracy (%) Percentge Change of Accuracy (%)
accuracy of 69.79%, but significantly improves
fairness with the best EDI of 0.3938. Mean-
while, compared to the baselines, F-PvE with A\ = 0.01 achieves better accuracy and fairness si-
multaneously, demonstrating its superiority. Similar results are observed on CUB-200. To further
analyze class-wise accuracy changes, we visualize the number of classes across different levels of
percentage change in accuracy in Figure [IL As expected, F-PVE with A = 0.01 leads to smaller
discrepancies among classes, resulting in better fairness.

Number of Cl:
Number of (‘l}\mn*x

Figure 1: Class-wise accuracy change on Task 1.
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4.2 TASK 2: GROUP-WISE DEGRADATION IN CLASSIFICATION WITH SENSITIVE GROUPS

Settings. We examine F-PvE by pruning ResNet-18 on CelebA (Liu et al., [2015), a widely used
benchmark to study fairness-aware model compression (Zhang et al., |2023). To emphasize the im-
pact of pruning, we halve the architecture and randomly shrink the dataset to 10% (details are in the
Appendix). Attractive is set as the target class and Gender is set as the sensitive class. We leverage
the top-1 accuracy on target class and fairness metric DEO for evaluation. As it also involves a large-
scale search space (i.e, 3904 filters for ResNet18), we employ F-PvE with cooperative coevolution.
Similar to Task 1, the fitness of a pruned neural network during evolution is computed as a weighted
sum (A, — A,)/A, — A - (DEO, — DEO,)/DEO,, which is evaluated on the training set of the
task. The same to Task 1, the population size N, number G of generations and mutation rate r are
set as 5, 10 and 0.05, respectively. For comparison, we implement /1, {5, Hessian, and FPGM. All
methods adopt iterative pruning, removing 10% convolution filters of each layer and finetuning the
pruned network in each iteration, until 40% of filters are pruned.

Table 2: Results of pruning ResNet-18-Half on CelebA in Task 2 (bold indicates the best; underline
indicates the runner-up).

Method PR =10% PR =20% PR =30% PR =40%
ACC%t DEO| ACC%t DEO| ACC%t DEO| ACC%t DEO]
Original model 80.06 0.5049 80.06 0.5049 80.06 0.5049 80.06 0.5049
1 79.61 0.4753 79.42 0.4632 79.17 0.4555 79.08 0.4637
lo 79.64 0.4665 79.43 0.4608 79.21 0.4598 79.21 0.4640
Hessian 79.62 0.4684 79.38 0.4683 79.27 0.4653 78.96 0.4619
FPGM 79.59 0.4723 79.42 0.4668 79.11 0.4572 79.16 0.4583
F-PvE (A = 0) 79.77 0.4798 79.46 0.4657 79.33 0.4616 79.31 0.4633
F-PvE (A = 0.1) 79.81 0.4682 79.57 0.4589 79.27 0.4532 79.29 0.4551
Analysis. The results of pruned models on
test sets are presented in Table [2} where each CelebA
value represents the average of eight indepen- 0481 e Ratios * Y
dent runs. We can observe that F-PvE with o 10% 2 ;
A = 0.1 consistently achieves better DEO com- = 0.47 . . ¥ Hossian
pared to F-PvE with A = 0, demonstrating the £ . : * e
effectiveness of incorporating fairness into the 0.46 s * o
fitness evaluation of individuals during evolu- e (=0
tion. Compared with the competing methods, 79.2 794 79.6 798
except for the small pruning ratio (PR) of 10%, ACCYt

F-PvE with A = 0.1 consistently achieves bet-
ter accuracy and lower DEO simultaneously.
We further present the results in Figure [2] for a clearer comparison. All methods exhibit a con-
sistent trend: higher pruning ratios lead to lower accuracy but improved DEO. This is reasonable
due to the inherent trade-off of accuracy and fairness. Meanwhile, we can find that F-PvE with
A = 0.1 achieves the best balance, with its markers positioned closer to the bottom-right corner.

Figure 2: Illustration of comparison on Task 2.

4.3 TASK 3: SOCIAL BIAS IN GENERATED CONTENTS OF LANGUAGE MODELS

Settings. Following the only prior work on fairness-aware structured pruning, FASP (Zayed et al.,
2024])), we evaluate our method under the same settings, which target at social bias in pruned lan-
guage models. Specifically, we prune attention heads in Transformers. To assess model perfor-
mance, we use WikiText-2 and report perplexity (PPL) to measure accuracy. For fairness, we adopt
DT as the metric. We adopt the open-source implementation of FASP and follow its data split strat-
egy, using a validation set for evaluation of impact on heads or pruned models, and a test set for
final performance comparison, which ensures a fair comparison. For evaluation, we prune GPT-
2 and DistilGPT-2 (Radford et al., 2019), which contain 144 and 72 candidate attention heads,
respectively. Given the relatively small number of structured components, we apply F-PvE with
multi-objective evolution. Additionally, we evaluate a variant of F-PVE using a weighted sum of
accuracy and fairness as the fitness function, and the results still remain competitive (provided in
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Figure 3: Comparison results on Task 3. The Pareto-optimal solutions are illustrated.

the Appendix), demonstrating the effectiveness of evolution for fairness-aware structured pruning.
In the evolution process, the population size NN is set to 32, the mutation rate r to 0.1, and the total
number G of generations to 25. We present the performance of F-PvE at various stages throughout
the evolution for clear comparison.

Analysis. As FASP has been shown to outperform criteria-based structured pruning methods (Zayed
et al.|[2024)), we focus the comparison on F-PvE and FASP for clarity. In FASP, the evaluation cost is
3 x HeadsNum, as each head is evaluated three times to reduce the effect of randomness and ensure
reliable impact estimation for greedy selection. In contrast, F-PVE evaluates each individual only
once, with a cost of N x g, where ¢ < G denotes the number of completed generations. Figure [3]
illustrated the results. For F-PvE, we illustrate the Pareto-optimal solutions at initial stage (initial
generation), middle stage with comparable cost to FASP (¢ = 15 for GPT-2 and g = 7 for DistilGPT-
2), and final stage (g = 25) respectively. We can observe that F-PVE converges fast, showing
significant progress from the initial to early stages. At early stage, F-PVE can outperform FASP,
yielding solutions superior in both accuracy and fairness. By the final stage, F-PVE exhibits a clear
advantage, not only providing a variety of Pareto-optimal solutions, but also obtaining significantly
superior solutions (e.g., on DistilGPT-2, with competitive PPL and significantly better DT).

4.4 ADDITIONAL RESULTS

Due to space limitations, we place some additional but interesting results in Appendix, summarized
as follows: (1) Additional fairness metrics: We use the entropy of class-wise accuracy change after
pruning as fairness metric, which also demonstrates the superiority of F-PvE. (2) Effectiveness of
weighted sum strategy: We delve into the weighted sum strategy. Results show that on specific
preference controlled by A, it can surpass multi-objective evolution; preference can be effectively
controlled by \. (3) Combination with fairness-enhancing techniques: We primarily verify ad-
versarial training for finetuning process on Task 2, showing that the superiority of F-PvE is adaptable
to other techniques for improving fairness.

S5 LIMITATIONS AND DISCUSSIONS

Limitations. (1) Efficiency. As a search-based approach, F-PVE requires a higher computation bud-
get for pruning compared with classic criteria-based methods, but the overhead remains acceptable
as presented in Appendix. Meanwhile, inference budget is more critical in practice, and F-PvE
consistently demonstrates superior performance across various pruning ratios. (2) More scenarios.
The real-world involves various fairness scenarios. With limitations in open-source benchmarks and
computation resources, we include three typical fairness scenarios, covering the pruning of CNNs
and Transformers. We will explore the applicability to broader scenarios in the future.

Discussions. Structured pruning has received considerable attention, yet how to achieve fairness-
aware structured pruning remains underexplored. This work proposes the first general fairness-
aware structured neural network pruning method via evolution, which we hope can spark further
research on this important topic. Moreover, integrating existing fairness techniques (Pessach &
Shmueli, 2022) with structured pruning also holds great potential in practice. As our primary goal
is highlighting the effectiveness of evolutionary optimization on this task, we only adopt simple
operators and frugal hyper-parameter settings. We believe that incorporating advanced evolutionary
techniques could further enhance performance, which we leave for future work.
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A OVERVIEW OF THE APPENDIX

The Appendix includes:

* A supplementary introduction to the setup of experiments, including the models for prun-
ing, finetuning, and other details to reproduce the results.

* Results on additional fairness metrics, the effectiveness of weighted sum strategies, and the
combination with fairness-enhancing techniques (i.e., adversarial training), as summarized
in the paper. Meanwhile, we provide additional results of Task 3, including results on
validation set and results of repeated runs.

B DETAILED EXPERIMENTAL SETTINGS

The experiments on Task 1 and Task 2 are implemented from scratch in Pytorch. For Task 3,
we implement our method and baseline method based on the official implementation of the prior
work FASP (https://github.com/chandar-lab/FASP). The implementation of DepGraph in F-PvE
with cooperative coevolution is adopted from its official repository (https://github.com/VainF/Torch-
Pruning). The implementation of the comparison methods /1, I, Hessian and FPGM is based on
https://github.com/VainF/Torch-Pruning as well. All of our experiments are conducted on an Ubuntu
server equipped with two NVIDIA RTX A6000 Ada Generation GPUs. The detailed introduction
on each task is provided below.

B.1 TASK 1: CLASS-WISE DEGRADATION IN MULTI-CLASS CLASSIFICATION

ResNet-56 on CIFAR-100

The model for pruning: We train the model from scratch for 200 epochs using SGD as the optimizer,
with initial learning rate as 0.1, weight decay as 0.0001, momentum as 0.9, and batch size as 128.
The learning rate is decayed at epochs 120, 150, and 180 using a multi-step schedule. We further
apply an early-stop strategy to select the best model for pruning. The data augmentation pipeline
includes random cropping (32 x32 pixels with 4-pixel padding), horizontal flipping (50% probabil-
ity), and normalization (with mean as [0.5071, 0.4867, 0.4408] and standard deviation as [0.2675,
0.2565, 0.2761]).

Finetuning: During finetuning, we use the same data augmentation strategy as that for training the
model for pruning, but adjust the learning rate to 0.01, increase the batch size to 256, and finetune
for 100 epochs. For a fair comparison, in the implementation of F-PvE and all the competitors, we
do not apply early-stop strategy.

Other details: We prune each layer in the neural networks equally, with the the same proportion
equal to the pruning ratio. For iterative pruning, in each iteration, we prune the neural network and
finetune the resulting model. The finetuned model then serves as the neural network for pruning in
the next iteration. We conduct four independent runs in the experiments, with seeds as {2021, 2022,
2023, 2024}. Each single run can be finished within 12 hours on a single GPU (note that the time is
not strictly precise as it depends on the server load).

ResNet-50 on CUB-200

The model for pruning: We leverage the pretrained model on ImageNet as the starting point, and
further train it for 88 epochs, with initial learning rate as 0.002, weight decay as 0.0001, momentum
as 0.9, and batch size as 8. We employ a cosine annealing learning rate scheduler. We further apply
the early-stop strategy to select the best model as the model for pruning. For data augmentation,
we resize images to 512x512 pixels, followed by random cropping to 448 x448 pixels and horizon-
tal flipping (with 50% probability), with normalization using ImageNet-standard parameters (with
mean as [0.485, 0.456, 0.406] and standard deviation [0.229, 0.224, 0.225]).

Finetuning: During finetuning, we use the same data augmentation strategy and training settings as
those used in training the model for pruning. The finetuning is conducted for 50 epochs. For a fair
comparison, in the implementation of F-PvE and all competing methods, we do not apply early-stop
strategy.
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Other details: We prune each layer in the neural networks equally. Note that we do not use iterative
pruning on this task, since it can lead to severe degradation of accuracy. A possible reason is that the
size of CUB-200 is relatively small, and we use pretrained weights on ImageNet in the model for
pruning to improve accuracy, which is, however, not well-suited to the iterative pruning manner. We
applied four single runs in the experiments, with seeds as {2021, 2022, 2023, 2024}. Each single
run can be finished within 10 hours on one GPU as provided.

B.2 TASK 2: GROUP-WISE DEGRADATION IN CLASSIFICATION WITH SENSITIVE GROUPS

In task 2, we prune ResNet-18 on CelebA, a widely used benchmark to study the group-wise fairness
in classification with sensitive groups. Nevertheless, we observed that directly applying structured
pruning on original ResNet-18 on CelebA results in only minimal degradation of performance, sug-
gesting that the dataset and neural network themselves are much too redundant. To verify the effec-
tiveness of different structured pruning methods, we increase the difficulty of the task with a simple
modification. Specifically, we reduce the training data size to 10% through random sampling, and
slim ResNet-18 by halving the number of convolution filters in each layer. Meanwhile, we choose
Attractive as the target class and Gender as the sensitive class, which is widely used in previous
studies, due to its desirable property of class balance. These settings allow for a more accurate
assessment of the pruning methods’ effectiveness.

The model for pruning: The model is trained from scratch for 50 epochs using SGD, with initial
learning rate as 0.1, weight decay as 0.0001, momentum as 0.9 and batch size as 256. We apply co-
sine annealing scheduler to the learning rate. For data augmentation, images are resized to 224 x224
pixels with augmentations including vertical and horizontal flipping (Each one has 50% probabil-
ity), random rotation (+15°), and normalization (with mean as [0.506, 0.426, 0.383] and standard
deviation as [0.266, 0.245, 0.241]).

Finetuning: We use the same training settings and data augmentation procedure as those used in
training the model for pruning, to finetune the pruned models for 20 epochs. Similarly to Task 1, we
do not apply early-stop strategy for all the methods in order to ensure a fair comparison.

Other details: Similar to Task 1, we prune each layer in the neural networks equally. For iterative
pruning, we prune the neural network and finetune the resulting model in each iteration, and the
finetuned model then serves as the neural network for pruning in the next iteration. We conduct
eight independent runs, with seeds {1, 2, 3, 4, 5, 6, 7, 8}. Each run can be finished within 18 hours
on a single GPU (note that the time is approximate as it depends on the server load).

B.3 TASK 3: SOCIAL BIAS IN GENERATED CONTENTS OF LANGUAGE MODELS

The implementation of Task 3 is largely based on the official repository of the prior work FASP.
Specifically, the models used for pruning are obtained from Hugging Face, and the pruned models
are directly evaluated on the corresponding test set without finetuning. The required time to pro-
duce the results of F-PvE with multi-objective evolution is approximately 2 days and 7 days for
DistilGPT-2 and GPT-2 on a single GPU, respectively. Due to limitation of computation resources,
we report the results using random seed 1 as the main results in the paper, and we provide results
with multiple independent runs on GPT-2, demonstrating that F-PvE consistently outperforms FASP
across different seeds.

C ADDITIONAL RESULTS

C.1 ADDITIONAL FAIRNESS METRIC

To verify that our method F-PvE can generalize to broad scenarios and metrics, we conduct ex-
periments on another fairness metric under Task 1, using the one-shot pruning setting that prunes
ResNet50 on CUB-200. That is, instead of EDI, we calculate the entropy of class-wise accuracy
changes after pruning, and take it as the fairness metric. A lower entropy indicates a more uniform
impact across classes, and thus, it should be minimized. At the pruning ratio of 40%, we run F-PvE
with entropy and EDI as the fairness metric, respectively. The results are provided in Table [3 and
which demonstrate that compared to the competing methods, F-PvE achieves the best fairness
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with competitive accuracy under both fairness metric. Moreover, we can observe that the rank-
ings among criteria-based methods on different settings can vary significantly. For example, FPGM
ranks second under EDI, but performs best on entropy; Hessian achieves the best performance under
EDI but ranks lowest under entropy. These findings further underscore the importance of explicitly
incorporating fairness during pruning.

Table 3: Comparison results (Entropy) of ResNet-50 on Cub-200 with PR = 40%. Bold indicates
the best.

Method ACC%1 Entropyl
Original Model 84.81 -

lh 82.33 1.7705
l2 82.42 1.8061
Hessian 82.22 1.8056
FPGM 82.41 1.7350
F-PvE (A =0) 82.85 1.8009
F-PvE (A = 0.01) 82.79 1.7094

Table 4: Comparison results (EDI) of ResNet-50 on Cub-200 PR = 40%. Bold indicates the best
performance.

Method ACC% 1 EDI|
Original Model 84.81 -
I 82.23 0.6807
lo 82.42 0.6804
Hessian 82.22 0.5932
FPGM 82.41 0.6329
F-PvE (A =0) 82.85 0.6697
F-PvE (A = 0.01) 82.78 0.5614

C.2 EFFECTIVENESS OF WEIGHTED SUM STRATEGY

For problems involving multi-objectives, the weighted sum strategy is a commonly used approach
that can achieve good performance on specific preference controlled by the weight value. However,
the tuning of weight value according to user preference can be tedious and non-trivial, which can
be addressed by multi-objective optimization techniques that directly return a set of Pareto-optimal
solutions. Since F-PvE with cooperative coevolution is not compatible to multi-objective evolu-
tion techniques due to the conflict of the divide-and-conquer strategies and the inherent behavior of
maintaining Pareto-optimal solution set, we adopt the weighted sum strategy to optimize accuracy
and fairness simultaneously in F-PvE with cooperative coevolution. In this subsection we aim to ad-
dress two research questions. Q1. Can the weighted sum strategy achieve competitive performance
compared to multi-objective evolution for a specific preference? Q2. Can the user preference be
effectively controlled by adjusting the weight value \? For Q1, we conduct additional experiments
on Task 3, implementing F-PvE with the weighted sum strategy and comparing it to F-PvE with
multi-objective evolution. For Q2, we investigate the effect of different A settings on Task 1.

Q1. Can the weighted sum strategy achieve competitive performance compared to multi-objective
evolution for a specific preference? We conduct experiments on GPT-2 and DistilGPT-2 with prun-
ing ratios as 10% and 20%, respectively. For the weighted sum strategy, we adopt a standard evolu-
tionary algorithm with population size as 10 and mutation rate as 0.1. On GPT-2 and DistilGPT-2,
it evolves for 20 generations and 10 generations, respectively, where the cost for the evaluation of
accuracy and fairness is even less than half of that for the prior work FASP. For comparison, we
also illustrate the Pareto-optimal sets obtained by F-PVE with multi-objective evolution (to ensure a
comparable evaluation budget with FASP, we use the solutions from generation 15 for GPT-2, and
generation 5 for DistilGPT-2). The results on validation set (used for evaluating the impact of atten-
tion heads during pruning) and test set are shown in Figure 4 and Figure[5] The red line represents
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Figure 4. Comparison results of weighted sum strategy and multi-objective evolution on fitness
calculated with A = 0.1. The illustrated results are on the validation set.
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Figure 5: Comparison results of weighted sum strategy and multi-objective evolution on fitness
calculated with A = 0.1. The illustrated results are on the test set.

the fitness of best individual in the population, for F-PvE with the weighted sum strategy. Each green
dash line represents the fitness of a solution in the Pareto-optimal set of F-PvE with multi-objective
evolution. The blue dash line represents the fitness of FASP. These results demonstrate that the
weighted sum strategy is effective in optimizing both accuracy and fairness within F-PvE, achiev-
ing superior pruning results for specific preferences while requiring significantly fewer evaluation
resources.

Q2. Can the user preference be effectively controlled by adjusting the weight value A? To verify
this, we run F-PvE with the weighted sum strategy under different values of A (0, 0.01, and 0.1).
The results are in Table |5} where we observe that as A increases, accuracy gradually decreases
while fairness improves. This shows the trade-off between accuracy and fairness can be effectively
controlled by A.
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Figure 6: Comparison results (validation set) on Task 3. The Pareto-optimal solutions of F-PvE at
different stages are illustrated.

Table 5: A\ Comparison results on ResNet-56 (CIFAR-100) PR=20%. Bold indicates the best per-
formance.

Method ACC%T EDI)
Original Model 72.78 -
F-PVE (A =0) 69.86 0.4636

F-PvE (A = 0.01) 69.79 0.3938
F-PvE (A =0.1) 69.74 0.3850

C.3 COMBINATION WITH FAIRNESS-ENHANCING TECHNIQUES

There are various methods proposed to enhance the fairness of models from different perspectives,
which can potentially be combined to further improve the fairness of pruned models. Here we lever-
age adversarial training (Madras et al.,2018) as an example. Adversarial training is one of the most
popular methods to address fairness issues in classification with sensitive classes (Task 2). The core
idea is to learn fair feature representations during training, by attaching an auxiliary classifier to the
feature representations and using its gradient information to reduce potential sensitive class informa-
tion. This process encourages the learned feature representations to be independent of the sensitive
classes, thus improving fairness. Details of the implementation are available in our code. Note that
a significant drawback of adversarial training is that it is very sensitive to hyperparameter settings.
Therefore, our implementation is a preliminary exploration. We employ the Adam optimizer with
an initial learning rate of 0.0001, along with a cosine annealing learning rate scheduler. The loss
weight of classifier for the target classes and sensitive classes is set as w = 0.5. The results are pro-
vided in Table [6] which reports the average performance over four independent runs with random
seeds {2021, 2022, 2023, 2024}. From the results, we observe that adversarial training significantly
improves fairness compared to our main results in the paper, with acceptable sacrifice on accuracy.
Meanwhile, F-PvE is still effective, as it enables better trade-off between accuracy and fairness.

Table 6: Debias Comparison results on ResNet-18-Half (CelebA) PR = 20%. Bold indicates the
best performance.

Method ACC%1 DEOJ
Original Model 80.06 0.5049
I 78.75 0.2958

F-PvE (A = 0) 79.21 0.2976
F-PvE (A = 0.1) 79.16 0.2832
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C.4 ADDITIONAL RESULTS ON TASK3

Results on the validation set

In the main paper, we report the results of Task 3 on the test set. Here, we additionally provide
the corresponding results on the validation set for interested readers. Note that the validation set is
used in F-PVE to evaluate individuals during the evolutionary process, and is also utilized in the
prior work FASP to assess the impact of individual attention heads. As shown in the results, the
performance on the validation set is generally consistent with the test set.

Results of repeated runs

Considering that illustrating the Pareto-optimal solutions of multiple stages and multiple runs
simultaneously can make the visualization disordered, we only illustrate the results of multiple
stages of one single run with seed as 1, in our main paper. Here we illustrate the Pareto-optimal
solutions of multiple runs but a single stage (identified by the number of generations) with seed
1, 2, 3. Due to limited computational resources, we use GPT-2 with a pruning ratio of 0.2 as a
representative case study. The results on validation set and test set are provided in Figure[/] We
can observe that after evolving for 25 generations, all runs surpass the baseline method FASP by
obtaining a frontier constructed by the set of Pareto-optimal solutions that can cover FASP, or
achieve competitive performance with a frontier that lies close to FASP. Furthermore, when we
enlarge the number of generations to 50, we find that the performance of F-PvE can be further

improved, demonstrating that additional evaluation budgets can lead to better trade-offs between
accuracy and fairness.
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Figure 7: Results of multiple independent runs on Task 3.
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