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Abstract—Nonnegative matrix factorization (NMF) models
have found success in a variety of applications, including
document clustering and classification, image processing, and
bioinformatics. However, the optimization formulations typically
employed for NMF models are often very sensitive to noise and
corruption in the data. We introduce a quantile-based variant
of the popular multiplicative updates method for training the
Frobenius norm-formulation of NMF which avoids the effects
of corruption in the data. Our numerical experiments illustrate
the promise of this method, and show that in some scenarios,
this method applied to the corrupted data recovers factorizations
nearly as good as those learned on the uncorrupted data.

Index Terms—Nonnegative matrix factorization, corruption-
robust model, quantile-based methods, multiplicative updates

I. INTRODUCTION

As the size of regularly encountered datasets continues to
grow, there has been recent emphasis on the development of
methods that extract meaningful latent trends from this data.
A significant line of research has sought to use dimensionality
reduction [30] and topic modeling techniques [31] to identify
fundamental archetypes in the data. Many of these approaches
are based on matrix factorization or the popular model non-
negative matrix factorization (NMF) [22].

However, the presence of corruption, outliers, and adversar-
ial noise or perturbations can be entirely disruptive to these
techniques or machine learning models in general [3], all while
the input data is often too large for end users to inspect
for spurious results [21], [26]. The need for methods that
are robust to corruption, outliers, and adversarial noise has
only expanded in recent years and is increasingly the focus
across numerous subfields of numerical linear algebra [8],
[16], optimization [1], statistics [18], and machine learning [2].

A. Nonnegative Matrix Factorization

Given a nonnegative matrix D ∈ Rn1×n2

≥0 , and a desired
rank r ∈ N, NMF seeks to decompose D into a product of
nonnegative dictionary matrix W ∈ Rn1×r

≥0 and nonnegative
representation matrix H ∈ Rr×n2

≥0 so that

D ≈WH =

r∑
j=1

wj ⊗ hj , (1)

JH was partially supported by NSF DMS #2211318 and NSF CAREER
#2440040.

where wj is a column of W and hj is a row of H; see Fig-
ure 1 for a visualization of this model. Typically, r is chosen
such that r < min{n1, n2} to reduce the dimension of the
original data matrix or reveal latent themes in the data. Each
column of H provides the approximation of the respective
column in D in the lower-dimensional space spanned by the
columns of W . The columns of W are interpreted as parts
which nonnegatively combine to approximate the columns of
D. By looking at the row of H corresponding to a column
of W , one sees to which data (columns of D) that part
contributes. The nonnegativity of the NMF factor matrices
yields clear interpretability; thus, NMF has found application
in document clustering [11], [28], [33], and image processing
and computer vision [12], [17], [22], amongst others.

Several formulations for this nonnegative approximation
have been studied [5], [22], [23], [34]; for example,

argmin
W≥0,H≥0

∥D −WH∥2F and argmin
W≥0,H≥0

D(D∥WH),

where D(·∥·) is the information divergence. One reason for
this popularity is that ∥ · ∥F -NMF and D(·∥·)-NMF corre-
spond to the maximum likelihood estimator given an assumed
latent generative model and a Gaussian and Poisson model
of uncertainty, respectively [4], [10], [32]. Popular training
methods include multiplicative updates [22]–[24], projected
gradient descent [25], and alternating least squares [19], [20].

B. Notation and Problem Setting

In what follows, we consider the problem of learning a rank-
r NMF for the given data matrix D ∈ Rn1×n2 ; that is, we
seek W ∈ Rn1×r and H ∈ Rr×n2 so that D ≈ WH . In
this paper, we consider the case where the data is additively
formed by two pieces, D = D̃ +C, where the uncorrupted
data D̃ = W̃ H̃ is exactly factorizable (but unavailable to us),
and the additive corruption C is sparse. We define the fraction
of corruptions to be β, that is β := |supp(C)|

n1n2
.

Let Qq(E) denote the empirical q-quantile of the matrix E
over all its entries,

Qq(E) = q-quantile {Eij : i ∈ [n1], j ∈ [n2]} ,

where the q-quantile of a finite set S ⊂ R is defined to be
the ⌈q|S|⌉-th smallest element of S; that is, s ∈ S such that
|{r ∈ S : r ≤ s}| = ⌈q|S|⌉. |S| denotes the cardinality of S.
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Fig. 1: Given a desired rank r, NMF is formulated as a factorization of a data matrix D ∈ Rn1×n2

≥0 into the product of a
dictionary matrix W ∈ Rn1×r

≥0 and representation matrix H ∈ Rr×n2

≥0 .

C. Related Work

To address non-Gaussian or Poisson noise in data matrices,
on which regular NMF performs poorly, Guo and Zhang [13]
propose Sparse Corruption Non-Negative Matrix Factorization
(SCNMF). SCNMF uses the parameterized objective function

min
W≥0,H≥0,S

∥S∥1 + α1 ∥D−WH− S∥2F + α2

∥∥∥D̃−WH
∥∥∥2
F
,

where D ≈WH+ S is the corrupted input matrix, S is the
sparse error matrix, and D̃ = WH is the uncorrupted input
matrix. In SCNMF, both the corrupted and uncorrupted data
are known, which is unrealistic in many applications.

In [9], Dı́az and Steele evaluated three different NMF
models based on the L1, L2, and L2,1 norms on the basis of
robustness to Gaussian and salt-and-pepper noise. They found
that the algorithms based on the L1 norm and L2,1 norm were
more robust, performing similarly on feature selection and
robustness to both types of noise. The algorithm based on
the L1 norm was particularly interesting as it allowed for the
identification and removal of noise; however, it suffered from
slower computation than algorithms for other models.

Recent works have proposed methods that introduce quan-
tile statistics of the in-iteration residual information to detect
and avoid corrupted data in large-scale unconstrained linear
systems and linear regression [6], [14], [15]. These methods
have been based upon the randomized Kaczmarz method [29].
Quantile information has previously been introduced into
linear least-squares models to provide robustness to outlier
or corrupted measurements [27].

D. Contributions and Organization

Our primary contribution is introducing the quantile-statistic
into the popular multiplicative updates method for NMF, pro-
ducing a method which is robust to additive, sparse corruption
in the data. We provide an initial theoretical result which
illustrates a simple case under which the NMF objective on
the uncorrupted data is known to be non-increasing; that is the
factorization learned by our method on the corrupted data
obeys the same guarantees as the factorization learned by
regular multiplicative updates applied to the uncorrupted data.
We additionally illustrate the promise of our method with a
suite of numerical experiments on real and synthetic data.

II. QUANTILE MULTIPLICATIVE UPDATES

We propose a variant of the classical multiplicative updates
(MU) method of Lee and Seung [23]. Our algorithm, quantile
multiplicative updates (QMU), seeks to avoid the effect of

corrupted entries in the input data matrix D by masking the
effects of matrix entries in D corresponding to unusually large
magnitude entries in the residual matrix E = |D −WH|
given approximate factors W and H . To avoid updating
according to the effect of elements suspected of being cor-
rupted, we adapt the weighted NMF (WNMF) multiplicative
update rules [35] to mask those suspected corrupted entries.
We identify suspected corruptions by identifying those entries
of E which are larger than a significant fraction, q, of the
entries of E; that is, Eij > Qq(E). Each iteration of our
algorithm consists of two parts; first, we calculate the masking
matrix which masks any entries corresponding to entries of
E larger than a quantile of all entries of E in Algorithm 2;
second, in Algorithm 1 we apply the weighted multiplicative
update using the masking matrix computed in Algorithm 2.

Algorithm 1 Quantile Multiplicative Updates (QMU)

1: Input: data matrix D ∈ Rn1×n2 , integer N , quantile q
2: Initialize W ∈ Rn1×r, H ∈ Rr×n2 , M ∈ Rn1×n2

3: for i = 1, · · · , N do
4: M ← QUANTILE MASK(D,W ,H, q)
5: W ←W ◦ (M◦D)H⊤

(M◦WH)H⊤

6: H ←H ◦ W⊤(M◦D)
W⊤(M◦WH)

7: return W ,H,M

Algorithm 2 Quantile Mask

1: Input: data matrix D, factors W , H , quantile q
2: Initialize M ∈ Rn1×n2

3: E ← |D −WH|
4: for i = 1, · · · , n1, j = 1, · · · , n2 do

5: Mij ←

{
1 if Eij ≤ Qq(E)

0 otherwise.

6: return M

In our initial theoretical result, we illustrate (using prior
guarantees for standard MU [23]) that if our masking matrix
masks exactly those entries which are corrupted in D, then the
objective function on the uncorrupted data D̃ is non-increasing
under QMU applied to D. We do not include the proof here
due to space constraints.

Proposition 1: Let D̃ be the uncorrupted data (which is
generally unavailable) and D = D̃ + C be the corrupted
input data. Define ΩC = {(i, j) : i ∈ [n1], j ∈ [n2], Cij ̸= 0}



and Ωc
C = ([n1] × [n2]) \ ΩC . Suppose the masking matrix

M learned in line 4 of Algorithm 1 satisfies supp(M) = Ωc
C .

Then the model error on the uncorrupted data,

∥(D̃ −WH)Ωc
C
∥2F ,

is non-increasing under the QMU updates applied to corrupted
input data D, lines 5 and 6 of Algorithm 1.

III. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments that
illustrate the promise of the QMU method and explore its
behavior for various data and hyperparameter scenarios. Code
for all experiments can be found at our Github repository.
In each experiment, we print the average time required for
a single model training trial and report these timings on
the associated figures. The experiments presented here were
performed in Python 3.11.8 with Numpy 1.26.4 on a 2024
MacBook Pro with 16 GB of RAM and Apple M4 processor.

A. Synthetic Data

In the following experiments, we generate synthetic data
matrices by generating an exactly factorizable matrix D̃ =
Ŵ Ĥ ∈ R120×100 where Ŵ ∈ R120×r̂ and Ĥ ∈ Rr̂×100

have integer entries sampled uniformly at random from
{0, · · · , 100}. We set rank(D̃) = r̂ = 40. We then form
the corrupted data D by sampling entries uniformly at ran-
dom from D̃ and adding values sampled independently from
|N (0, 1012)|. In all experiments, unless otherwise specified,
we set the model rank equal to the rank of the uncorrupted
data, r = r̂, and the predicted uncorrupted proportion (quan-
tile) q equal to the true uncorrupted proportion 1−β. In each
experiment that follows, we train each model for 400 iterations
and run 10 trials with different factor matrix initializations. We
plot the mean error as a line and shade in the region between
the minimum and maximum errors over all trials.

1) Comparing standard multiplicative updates and QMU:
In our first experiment, we compare the behavior of standard
MU and QMU applied to the uncorrupted data D̃, and
corrupted data D with corruption rate β = 0.2. We run
standard MU on corrupted data D and uncorrupted data D̃, as
well as QMU on corrupted data D. All errors are measured
against the uncorrupted data D̃. Figure 2 demonstrates that
although standard MU with uncorrupted data reaches the
lowest overall error, in the presence of corrupted entries, QMU
vastly outperforms standard MU.

2) Relative error against corrupted and uncorrupted data:
In our second experiment, we compare the errors of the matrix
factorization produced by QMU on D with model rank r = 40
measured against uncorrupted data D̃ and corrupted data D
with corruption rate β = 0.1. In Figure 3, QMU fits the
uncorrupted data D̃ rather than the corrupted data D, despite
not having access to D̃, indicating that QMU effectively
identifies and ignores corrupted entries.

Fig. 2: Standard multiplicative updates on uncorrupted data
D̃ ∈ R120×100 with rank r̂ = 40 and corrupted data D with
corruption rate β = 0.2 versus QMU on corrupted data D.
All errors are measured against uncorrupted data D̃.

Fig. 3: Relative error of matrix factorization produced by
QMU on D with model rank r = 40 measured against
uncorrupted data D̃ ∈ R120×100 with rank r̂ = 40 and
corrupted data D with β = 0.1.

3) Varying quantile q with fixed corruption rate β: Here,
we vary the quantile q while holding the data corruption
rate β constant. We again generate uncorrupted data D̃ and
corrupted data D with fixed corruption rate β = 0.2, and
use model rank r = 40. Figure 4 illustrates that quantile
q = 0.8 = 1− β performs best, while when too many entries
are masked (1 − q > β) QMU performs slightly worse, and
when we fail to mask the corruptions (1 − q < β) QMU
diverges. This highlights the need to select a conservative
quantile q; however, in real-world use, this may be difficult
to guarantee.

4) Varying corruption rate β and quantile q together: In
this experiment, we vary the quantile q and the corruption rate
β together such that q + β = 1. We choose the model rank
r = 40. Figure 5 displays the training error of the different
learned models for each combination tested of q and β. We
observe that error increases as corruption rate β increases,
however, this error increase is gradual as only slightly less
information is available in each iteration.

5) Varying model rank r: In this experiment, we measure
the effectiveness of QMU on corrupted synthetic data when
varying the model rank r. We again generate uncorrupted data

https://github.com/jamiehadd/Corruption-robust-NMF


Fig. 4: Relative error per iteration for QMU on D with
corruption rate β = 0.2 and model rank r = 40 measured
against uncorrupted data D̃ ∈ R120×100 with rank r̂ = 40.

Fig. 5: Varying β and q together such that q+β = 1. We apply
QMU to D and use model rank r = 40. Error is measured
against uncorrupted data D̃ ∈ R120×100 with rank r̂ = 40.

D̃ and corrupted data D with corruption rate β = 0.1. We run
QMU on D with model ranks r ∈ {10, 20, 40, 60} and mea-
sure error against D̃. Figure 6 illustrates model performance
suffers if underestimating the data rank, but overestimating the
rank does not significantly affect performance.

Fig. 6: Relative error of QMU applied to D with corruption
rate β = 0.1 and model ranks r ∈ {10, 20, 40, 60}. All errors
are measured against D̃ ∈ R120×100 with rank r̂ = 40.

B. Swimmer Data

In this section, we apply the proposed method to a toy image
dataset called the Swimmer dataset [7], which is composed

of 11×20-pixel images such as that of Figure 7a. We let D̃ be
the matrix with columns that are vectorized images from the
Swimmer dataset, and note that this matrix has rank r̂ = 16.

In this experiment, we test QMU on the Swimmer dataset
to better understand its effectiveness on real data. We use a
model rank of r = 17 and set q = 0.95, and train our models
for 400 iterations. We build D by corrupting β = 0.05 of the
entries with values drawn from |N (0, 25)|; Figure 7c presents
one of the Swimmer figures after corruption. In Figure 7, we
reconstruct this image using standard MU and QMU. We see
that while the standard MU algorithm reconstructs uncorrupted
data well (Figure 7b), when applied to corrupted data, the
reconstruction (Figure 7d) is poor. In contrast, QMU masks
these corruptions for a better reconstruction (Figure 7e).

(a) (b)

(c) (d)

(e)

Fig. 7: Comparison of standard multiplicative updates and
QMU in reconstructing Swimmer image 17. (a) Swimmer
17, no corruptions. (b) Reconstruction of Swimmer 17 by
standard MU with rank 17. (c) Swimmer 17 with β = 0.05
of entries corrupted by noise drawn from |N (0, 25)|. (d)
Reconstruction of Swimmer 17 by standard MU with model
rank r = 17 trained on D. (e) Reconstruction of Swimmer
17 by QMU with rank r = 17 and q = 0.95 trained on D.

IV. CONCLUSION

In this paper, we introduce a quantile-based variant of
the popular multiplicative updates method for training the
Frobenius norm-formulation of NMF which avoids the effects
of additive, sparse corruption in the data. Our numerical
experiments illustrate the promise of this method on synthetic
and real data and show that in some scenarios, applying this
method to corrupted data recovers factorizations nearly as
good as those learned on uncorrupted data. We additionally
provide an initial theoretical result which guarantees that,
under a simple assumption on the support of the quantile
masks, QMU applied to corrupted data obeys nearly the same
guarantees as multiplicative updates on uncorrupted data.
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