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ABSTRACT

Audio is essential for multimodal video understanding. On the one hand, video in-
herently contains audio and audio supplies complementary information to the visual
modality. Besides, video large language models (Video-LLMs) can encounter many
audio-centric settings. However, existing Video-LLMs and Audio-Visual Large
Language Models (AV-LLMs) exhibit deficiencies in exploiting audio information,
leading to weak understanding and hallucination. To solve the issues, we delve
into the model architecture and data aspects. (1) From the architectural perspective,
we propose a fine-grained AV-LLM, namely Dolphin. The concurrent alignment
of audio and visual modalities in both temporal and spatial dimensions ensures a
comprehensive and accurate understanding of videos. Specifically, we devise an
audio-visual multi-scale adapter for multi-scale information aggregation, which
achieves spatial alignment. For temporal alignment, we propose audio-visual
interleaved merging. (2) From the data perspective, we curate an audio-visual
caption & instruction-tuning dataset, called AVU. It comprises 5.2 million di-
verse, open-ended data tuples (video, audio, question, answer) and introduces a
novel data partitioning strategy. Extensive experiments show our model not only
achieves remarkable performance in audio-visual understanding, but also mitigates
hallucinations. Our codes and dataset will be made publicly available.

1 INTRODUCTION

Humans perceive the dynamic world through their eyes and ears, with visual and auditory information
complementing each other, both are indispensable. Similarly, the audio modality proves crucial for
the comprehensive understanding capabilities of Multimodal Large Language Models (MLLMs) (Liu
et al., 2023). On the one hand, audio modality can provide complementary information to the visual
modality, aiding MLLMs in more accurate comprehension. On the other hand, there are many
audio-centric tasks (Tian et al., 2018; Yang et al., 2022; Mo & Morgado, 2022) in audio-visual (AV)
understanding, e.g., AV question answering, AV event localization and AV segmentation. However,
most existing Video-LLMs (Lin et al., 2023; Li et al., 2023b; Zhang et al., 2023a) directly neglect
audio, with only a small portion incorporating both visual and audio modality. A natural question
arises: How proficient are these models in their audio-visual comprehension capabilities?

To answer the question, we design two progressive experiments, as in Figure 1. First, we evaluate the
AV understanding abilities of current AV-LLMs, e.g., Video-LLaMA (Zhang et al., 2023a) and Video-
LLaMA 2 (Cheng et al., 2024). We found they consistently neglect audio and the descriptions solely
come from the visual content. Furthermore, when directly querying the audio content, the responses
are always the speculations and associations derived from the visual input, rather than the audio itself.
For example, when Video-LLaMA is presented with a cooking video, the response is “background
music playing throughout the video.” But actually, the audio features a male commentator’s narration.
Besides, when replacing the background sound with white noise, the model’s responses remained
unchanged, indicating that the model did not extract information from the audio.

Based on the results, it naturally begs the question: Why do AV-LLMs tend to neglect audio modality?
We deduce the following reasons: (1) For alignment, most models lack fine-grained alignment and
interactions between modalities, and simply concat the visual and audio tokens. (2) For datasets
size, large-scale audio-visual instruction-following datasets are scarce, and most works align vision-
language and audio-language separately, resulting in less coordinated audio-video representations,
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Audio Caption: The audio is of a man speaking, in a English, saying, \"And it's also gonna let me show you 

what the other side looks like, so as you can see he got a little bit golden brown, but anyway like I said this is 

very quick, and as they cook and come out of the pan you can just pile them up.\"

Question I: What does this video and its audio describe in detail?

The video showcases the process of making a stack of pancakes. It 

begins with a close-up shot of a pan on a stove. The batter is then cooked 

until it forms a golden-brown pancake, which is then flipped and stacked 

on a plate. This is accompanied by an English-speaking man's voice 

detailing the cooking process, mentioning how quickly the food browns 

and instructing to pile them up as they come out of the pan.

The video shows a person cooking a food item in a pan. The person is seen 

stirring the food item with a spatula. The audio in the video is a constant 

sizzling sound, which is the sound of the food item cooking in the pan.

Dolphin

VideoLLaMA 2

Question II: Please describe the audio.

An English-speaking man introduces the process, describing the golden brown 

appearance of the dish and emphasizing the quickness of the cooking technique.

The audio in the video is of minimalistic background music playing throughout the 

video. The music is a soft melody that plays in the background without distracting 

from the visuals of the crepe being cooked on the stove.

Dolphin

VideoLLaMA

The audio is a continuous sizzling sound, likely coming from the frying pan. The 

audio may also include background music or ambient sounds. 

VideoLLaMA 2

Audio Video

Input

(a) Audio-Visual Understanding Capability

MSR-VTT QA MSVD QA

62.6

58.9
56.4

72.7
70.6

69.3

trained w/ audio + video data

trained w/ only video data

trained w/ audio input as text

(b) Video Understanding with

Different Modality Trainset

Figure 1: (a) Audio visual capability of previous AV-LLMs and our Dolphin. We pose questions
separately for audio-video and audio, discovering that VideoLLaMA and VideoLLaMA 2 exhibit
significant hallucinations for audio understanding, while Dolphin produces accurate responses. (b)
Audio could provide complementary information compared to video. Incorporating audio into
training greatly enhances video understanding.

(3) In current datasets, visual modality has relatively higher information density, where audio
does not provide necessary content for video understanding, AV-LLMs tend to disregard audio.

To solve these problems, we explore from two perspectives, i.e., model architecture and training
dataset. From the model perspective, we propose a novel fine-grained AV-LLM, namely Dolphin,
which aligns audio and visual modalities both spatially and temporally and effectively harnesses both
complementary modalities. For spatial alignment, we propose an audio-visual multi-scale adapter,
which extracts multi-scale features and implements audio-visual interaction and merging at various
scales. For temporal alignment, we propose audio-visual interleaved merging, where both audio and
visual serve for context for each other through interleaved tokens. Finally, the fine-grained tokens
aligned both spatially and temporally are projected into the input space of LLM to achieve remarkable
audio-visual joint understanding.

From the dataset perspective, we propose a large-scale audio-visual understanding caption and
instruction-following dataset, called AVU, which consists of 5.2M AV caption and question-and-
answer (Q&A) tuples. We extract video and audio meta-information and generate high-quality caption
and Q&A pairs. The dataset is divided into several splits according to AV consistency for different
training objectives. Specifically, we incorporate datasets from several AV tasks, e.g., AVE (Tian
et al., 2018), AVL (Mo & Morgado, 2022), AVS (Zhou et al., 2022) and AVVP (Tian et al., 2020),
and convert them to fine-grained instruction-following data. Besides, some negative samples for
rejection are devised to avoid potential hallucinations. To comprehensively evaluate audio-visual
understanding, we further propose a benchmark, called AVU-Bench, for AV-LLMs. We highlight the
importance of interaction from both modalities, as in Fig. 1 (b).

In summary, we contribute in the following aspects:

• We propose Dolphin, a fine-grained AV-LLM for audio-video multimodal and unimodal
understanding. Dolphin could remarkably exploit audio information for understanding.

• The core innovation lies in the architecture of audio-visual multi-scale spatial alignment and
contextual and temporal alignment, which ensures fine-grained extraction of two comple-
mentary modalities and interaction between them.

• We curate the first large-scale audio-visual caption and instruction-following dataset. It
contains 5.2M samples with several splits, which is suitable for training AV-LLMs.

• Extensive experiments show that Dolphin could not only achieve outstanding audio-visual
understanding performance, but also be competent in unimodal tasks, which validates that
Dolphin effectively exploits the information of two complementary modalities.

2 RELATED WORKS

Multi-Modal Large Language Models for Video Understanding. A series of studies first de-
compose videos into different representation dimensions and then integrate the inputs to enrich the
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Figure 2: Overview of our Dolphin, which aligns on both spatial and temporal dimensions to fully
exploit the natural consistency of videos and enhance the complementary roles of vision and hearing.
Specifically, for spatial alignment, we introduced an audio-visual multi-scale adapter using a dual-
feature pathway design, which extracts multi-scale features from both visual and auditory inputs and
achieves fine-grained alignment with the respective modality.

prompts for MLLMs. For example, Video-ChatGPT (Maaz et al., 2023) splits videos into spatial and
temporal branches for pooling. VideoChat (Li et al., 2023b) decomposes videos into descriptions
and video embeddings. LLaMA-VID (Li et al., 2023c) represents each frame with context tokens
and content tokens. Video-LaVIT (Jin et al., 2024) performs video tokenization using keyframes and
motion vectors. Other works incorporate images into unified video training to enrich the training
data. Chat-UniVi (Jin et al., 2023) and Video-LLaVA (Lin et al., 2023) employ strategies such as
object-based adaptive cluster-based tokens and aligning before projection to unify image and video
inputs, thereby achieving more powerful visual understanding.
Audio-Visual Large Language Models. An early work VideoChat (Li et al., 2023b) simply
encodes audio inputs using Whisper (Radford et al., 2023b) and directly overlays them to the textual
input. Later works seek to align the output of audio and visual encoders before feeding them into
LLMs. MACAW-LLM (Lyu et al., 2023) aligns the encoder outputs to the textual space through
a learnable alignment module. Audio-Visual LLM (Shu et al., 2023a) activates the embeddings of
different modalities with different tags. Moreover, some works (Sun et al., 2023a; Zhang et al., 2023a)
explore temporal alignment between video and audio using a Q-Former (Li et al., 2023a) structure,
but most of them (Tang et al., 2024) neglect fine-grained spatial modeling. Meerkat (Chowdhury et al.,
2024) explores fine-grained understanding but only focuses on images. To sum up, most existing
AV-LLMs neither struggle to capture fine-grained local information nor handle temporal alignment,
which motivates us to delve into the design and training of AV-LLMs.

3 MODEL ARCHITECTURE

Overview. Dolphin primarily focuses on effectively strengthening the fine-grained alignment
and interaction between visual and auditory modalities. It effectively exploits the complementary
information of two modalities and prevents overlooking any of them. Specifically, Dolphin primarily
comprises three components: (1) Audio-visual (AV) multi-scale adapter (Section 3.1), which aims
to align audio and visual features across various spatial scales in a fine-grained manner. (2) Audio-
visual (AV) interleaved merging (Section 3.2) for temporal alignment and extracting complementary
information of two modalities. (3) Large Language Model (LLM) to handle the interacted audio-visual
tokens and output responses according to the instructions.

Notations. We split each video into T = 8 visual frames and audio clips. Let Hv,Wv denote
the height and width of each frame, while each audio clip is transformed into a spectrogram of
Ha ×Wa. N denotes the number of ViT blocks. In the AV multi-scale adapter, the visual modality
contains dual-pathway input features, i.e., global feature Vi

t and multi-scale local feature vi
t, where i

denotes the i-th block and t denotes the t-th frame. Besides, V̂
i

t and v̂i
t are features after modality

interaction. Similar expressions of Ai
t,a

i
t, Â

i

t, â
i
t are applicable to audio. The joint feature after
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modality interaction could be represented as avi
t. In AV interleaved merging, visual and audio tokens

after contextual interaction could be written as Vtemp
t and Atemp

t , respectively.

3.1 SPATIAL: AUDIO-VISUAL MULTI-SCALE ADAPTER

The AV multi-scale adapter is designed to enhance the fine-grained alignment of spatial features.
Taking the spirit of ViT-Adapter (Chen et al., 2023b), we first independently extract each modality’s
global and pyramid multi-scale features. Then fine-grained alignment is performed across different
scales. In this section, we introduce the data flow with the visual modality as an example, and the
same principle applies to audio as well.

Visual global and initial multi-scale features. For ViT-L (Dosovitskiy et al., 2021), we divide it
into N = 4 blocks, each with 6 layers. To acquire multi-scale spatial features, we feed the images
into the spatial module, i.e., pyramid convolutional network (Lin et al., 2017), to extract various
multi-resolution features, i.e., 1/8, 1/16 and 1/32 of Hv ×Wv, forming the initial D-dimensional
multi-scale features v1

t as an input to the adapter, as shown below:

v1
t ∈ R(

HW
82

+HW
162

+HW
322

)×D, a1
t ∈ R(

HW
82

+HW
162

+HW
322

)×D. (1)

Inter-modality feature interaction. To achieve fine-grained alignment across scales, audio features
are injected into the multi-scale visual features vi

t, where i denotes the i-th block, we incorporate
audio global feature Ai

t into vi
t through cross-attention, and obtain audio-guided multi-scale visual

feature avi
t as follows:

avi
t = CrossAttn(vi

t,A
i
t,A

i
t). (2)

Intra-modality feature fusion. As shown in Figure 2, in the fusion process, the audio-guided
multi-scale visual features avi

t, which contains visual spatial priors and audio information, are
injected into original global features Vi

t through cross-attention and added to Vi
t, as follows:

V̂
i

t = Vi
t + βi CrossAttn(Vi

t,av
i
t,av

i
t). (3)

Here, β is a learnable vector initialized as 0, ensuring the initial outputs are the same as ViT’s global

features Vi
t. Subsequently, the global features V̂

i

t are transmitted to the next block through the i-th
standard ViT block and the fine-grained features v̂i

t are passed to the next block as vi+1
t through

cross-attention and FFN layers:

Vi+1
t = ViT-Blocki(V̂

i

t) (4)

vi+1
t = v̂i

t + FFN
(
v̂i
t

)
, v̂i

t = vi
t +CrossAttn

(
vi
t,V

i+1
t ,Vi+1

t

)
. (5)

Final outputs. The AV multi-scale adapter obtains VN+1
t ∈ RB×T×Lv×D and AN+1

t ∈
RB×T×La×D, where B, T,D denote batch size, number of frames and feature dimension, and
Lv, La are the number of tokens of two modalities. We perform average pooling across the temporal
dimension T and obtain the final spatial tokens. In this way, we gradually incorporate audio informa-
tion into the visual features and enhance the interaction between audio and visual modalities. The
guidance provided by audio to the multi-scale visual features facilitates fine-grained alignment.

3.2 TEMPORAL: AUDIO-VISUAL INTERLEAVED MERGING

In this stage, we merge the final audio and visual features to implement alignment and interaction
at the temporal axis. Specifically, by concatenating visual and audio tokens in the same frame, we
could obtain T pairs of audio-visual interleaved tokens, each referred to as an AV group, as shown
in Figure 2. Within each group, we perform bi-directional contextual attention on visual and audio
tokens, which produce visual-contextualized audio tokens and audio-contextualized visual tokens.

Vtemp
t = CrossAttn(At,Vt,Vt), Atemp

t = CrossAttn(Vt,At,At). (6)

Then each AV token group is mapped into the input space of LLM through a joint audio-visual
projector. Here, we condense each frame of the video into two tokens. In this way, we achieve
integration and merging of audio and visual information, which enhances the audio-visual information
exploitation of AV-LLMs.

4
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(c) Caption Integrating

“playing guitar”

(b) Dataset Splitting

Multiturn conversations (d) AVU-Dataset

(a) Detailed recaption and meta-information

Audio-Visual Caption
Audio Expert

Video Expert

AVU-Pretrain AVU-Specific AVU-Negatives AVU-Tasks

AVU-MultiQA

Figure 3: The integration pipeline of the audio-visual understanding dataset (AVU-dataset).

Table 1: The detailed statistics for our AVU (Audio-Visual Understanding Dataset).

Subsets AVU-Pretrain AVU-MultiQA AVU-Specific AVU-Negetive AVU-Tasks

TotalInstruction
Type

Detailed
Description

Multiturn
Conversation

and Reasoning

Visual-Specific
Info

Audio-Specific
Info

Negative
Samples

Temporal
and Spatial

Audio-Video
Statistics 1.11M 500k (subset as AVU-Pretrain) 554k 186k 283k 2.13M

Instruction
Statistics 1.11M 1M 1.09M 1.11M 370k 559k 5.24M

3.3 TRAINING STRATEGY

We employ Vicuna-v1.5 (Chiang et al., 2023) as the LLM. The video encoder is ViT-L/14 from
CLIP (Radford et al., 2021), and the audio encoder adopts ImageBind (Girdhar et al., 2023b). (1) In
the initial pre-training phase, we freeze the visual encoder, audio encoder, and LLM and only update
all the projectors as well as the AV multi-scale adapter to achieve alignment across visual, auditory,
and LLM modal spaces. We use the AVU-Pretrain dataset. (2) For the instruction tuning phase, only
the visual and audio encoders are frozen, while other modules are updated. We employ AVU-Multi
Q&A, AVU-Specific, AVU-Negatives and AVU-Tasks subsets. See Section 4.3 for more details.

4 AVU: AUDIO-VISUAL UNDERSTANDING DATASET

Motivation. Currently, there is a shortage of large-scale audio-visual instruction-following and
fine-grained captions, which hinders the model from focusing on modality-specific information
and potentially leads to audio hallucinations. To solve the issues, we propose an audio-visual
understanding (AVU)-dataset, a large-scale AV understanding and instruction-following dataset.
Overview. In this section, we introduce the construction of the AVU-dataset (Figure 3). Specifically,
we first re-caption (Section 4.1) audio and video data and generate meta-information (Section 4.2).
Then the dataset is split (Section 4.3) into several subsets according to the similarity between audio
and visual meta-information, and we feed different prompt templates to generate the corresponding
instruction-following dataset and training stages.
Dataset statistics. As shown in Table 1, AVU-dataset contains 2.13M audio-video pairs, each
has several Q&A pairs, resulting in 5.24M Q&A pairs in total. AVU-dataset has four subsets, i.e.,
AVU-Pretrain (1.11M samples and Q&A), AVU-Multi Q&A (500k samples and 1M Q&A pairs),
AVU-Specific (554K samples and 1.09M Q&A pairs for video and 1.11M for audio), AVU-Negative
(186Ksamples and 370K Q&A pairs) and AVU-Tasks (283K samples and 559K Q&A pairs).
Datasets quality and verification. We design three types of filtering mechanisms, including
CLIP-Score filtering, Self-consistency filtering, and Annotation filtering, to filter noisy samples and
guarantee the , and then human verification is implemented. Details are shown in the Appendix B.

4.1 DETAILED RE-CAPTION GENERATION

Source datasets. We collect widely used audio-visual datasets, including AudioSet-2M (Gem-
meke et al., 2017), VGG-Sound (Chen et al., 2020a) and task-specific datasets, i.e., MUSIC (Li

5
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(a) Video Experts Comparisons (b) Audio Experts Comparisons

Figure 4: Performance comparison of different task-specific experts.

INPUT:

[Audio-video information]

You have to finish the following two tasks. First, carefully compare the information typically included for 

audio versus video. Second, Identify information that is included for audio but not for video, and generate a 

QA pair for each. Similarly, identify information that is included for video but not for audio, and generate a QA 

pair for each.

Each pair should simulate a dialogue that focuses on various aspects of the content without introducing 

information not explicitly mentioned. The purpose of this exercise is to fine-tune a language model so that it 

can generate accurate and relevant responses.

The QA pair should start with "Q:" and contain an instruction related to the audio and video, while the second 

line should start with "A:" and provide a response to the instruction.

Please ensure that your instructions are diverse and of high quality. Avoid making assumptions or adding 

details that are not explicitly given.

[Audio-video information]: 

This is the detailed caption of the video: {...}; and the meta-information: {...}. This is the detailed caption of the 

audio: {...}; and the meta-information: {...}. These above contain important information that needs to be read 

carefully.*

AVU-Specific

Figure 5: Examples of prompt templates for generating AVU-dataset, others are in the appendix.

AVU-Pretrain

Please provide a detailed description of 
the video.

In the video, a person is seen interacting 
with a small frog on a wooden surface. The 
person's finger is seen touching the frog's 
back, and the frog responds by moving 
around. The video captures the interaction 
between the person and the frog, 
showcasing the frog's movements and the 
person's gentle touch.

AVU- Specific

What kitchen tools or utensils are 
prominently featured in the video during 
pancake preparation?

The video showcases basic kitchen tools 
such as a mixing bowl, whisk, spatula, and 
frying pan, demonstrating their use in 
making pancakes.

AVU-Negatives

Can you describe the color of the frog in 
the audio?

The color of the frog is not mentioned in 
the audio. The background audio is funny 
music.

AVU-Tasks

When does the dog bark?

In the video, the dog barks from the fifth to 
the eighth second.

The video showcases basic kitchen tools 
such as a mixing bowl, whisk, spatula, and 
frying pan, demonstrating their use in 
making pancakes.

Discuss the overall tone and style of the 
English audio commentary. How does it 
enhance the tutorial?

What happened in seconds five to eight?

A dog is barking from the fifth to the eighth 
second.The video does not show any children.

Please confirm if this is the correct 
statement of the issue.

What is the child doing in the video?

Figure 6: Some examples of AVU-dataset.

et al., 2022) for AVQA (Yang et al., 2022), Flickr-SoundNet (Arandjelovic & Zisserman, 2017),
VGG-SoundSource for AV source localization (Mo & Morgado, 2022), AVE dataset for AV event
localization (Tian et al., 2018), AVS-dataset for AV segmentation (Zhou et al., 2022), and LLP for
AV video parsing (Tian et al., 2020). Then we utilize expert models to re-caption audio and video to
obtain audio, video and audio-video captions.

Expert models. For MLLM, we employ a fine-tuned version of InternVL-34B (Chen et al., 2024).
For the audio expert captioners, we choose Qwen2-Audio-7B-Instruct (Chu et al., 2024). The
performance of these models is illustrated in Figure 4.

Prompt templates. We prompt expert models with hand-crafted templates to generate detailed
captions, and set some regularizations to mitigate hallucinations. Figure 5 displays a subset: AVU-
Specific prompt templates. See Figure 9 and Figure 10 in the appendix for more details.

4.2 META-INFORMATION GENERATION AND INTEGRATION

Meta-information generation. The function of meta-information is to maintain audio and video
details when integrating unimodal audio and video captions into multimodal audio-video captions.

6
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Meta-information could be utilized to guide subsequent AV caption integration and dataset splitting.
Specifically, we design options of ‘event’, ‘object’, ‘scene’, ‘place’, ‘action’ and ‘emotion’, etc.,
and transform original annotations to ‘keywords’. Then, we employ GPT-4 (Achiam et al., 2023) to
judge consistency based on keywords and meta-information and filter noisy samples, which might be
caused by experts’ bias and hallucinations.
Meta-information integration. We choose LLaMA3-70B-Instruct (Dubey et al., 2024) to integrate
meta-information. First, we employ GPT-4 to generate multiple examples of integrating keywords
and meta-information. After human adjustments, we feed them to LLaMA3. The in-context learning
abilities enable the generation of audio-visual captions.

4.3 DATASET SPLITS

Splitting process. The dataset is split according to the consistency between audio and video meta-
information. Notably, we do not require strict audio-visual consistency, which is the main novelty
of this work. For different types of data, we create various types of instruction-tuning datasets
for corresponding training stages. The whole dataset is divided into three subsets based on the
audio-visual consistency. Specifically, we feed audio and video meta-information to GPT-4 (Achiam
et al., 2023) to obtain the consistency score. Figure 6 shows examples of subsets of AVU-dataset.

AVU-Pretrain comprises samples with high AV consistency. The audio and video information
are nearly the same. These samples are suitable for the pre-training stage to align AV modalities.
We design fixed question templates (Figure 9 (a)) and randomly select one each time, and use the
previously integrated AV captions as the answers. In this way, we obtain AVU-Pretrain subsets.

AVU-Multi Q&A also consists of high consistency samples. Different from AVU-Pretrain, we design
templates (Figure 9 (b)) to transfer AV caption to multi-turn Q&A and reasoning.

AVU-Specific comprises samples with medium AV consistency. Both audio and video carry relatively
additional information compared to each other. Questions are posed regarding this additional
information to generate Q&A pairs. These Q&A pairs construct AVU-Specific subsets and could
only be answered by focusing on a specific modality (Figure 10 (c)).

AVU-Negatives consist of low-consistency samples, e.g., the sounding object is not present in the
frame. Taking the spirit of contrastive learning (Chen et al., 2020b; He et al., 2020), we create the
negative sample dataset, i.e., AVU-Negatives (Figure 10 (d)), whose answers are primarily used as
rejection. This subset could teach LLMs the rejection option, mitigating potential hallucinations.

AVU-Tasks are curated directly from downstream AV tasks. Specifically, we transform the original
annotations to the format of Q&A, including accurate details like time, spatial, and event. Notably,
the AVU-Tasks are derived from the fine-grained annotations, and significantly contribute to the
model’s fine-grained alignment capabilities.

For pre-training, we mainly employ high-consistency samples to enhance modality alignment, while
for instruction-tuning, we make use of samples that audio and visual do not exactly overlap and mix
AVU-Multi Q&A, AVU-Specific, AVU-Negatives and AVU-Tasks for training. In this way, the issue
of neglect of audio and hallucination is mitigated.

5 EXPERIMENTS

We introduce the experimental setup and comparisons among models. In the ablation studies, we
explored and validated that fine-grained alignment significantly aids LLMs in multimodal understand-
ing. Temporal contextual alignment is an effective way to leverage the inherent consistency of videos
and to exploit complementary audio-visual information. Additionally, we also conducted ablations on
the proposed dataset, showcasing its assistance in audio-visual joint perception and its high quality.

5.1 EXPERIMENTAL SETUP

Implementation details. For each video, we extract 8 frames of 224× 224 resolution, and audio is
sampled into 8 frames, each turned into a 128× 204 spectrogram. Both pre-training and fine-tuning
are conducted for one epoch, with batch sizes of 256 for pretraining and 128 for finetuning. Projectors

7
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Table 2: Comparison with existing Video-LLMs. We conducted a performance comparison with the
existing Video-LLM and reported the scoring results of GPT on four zero-shot video-QA datasets.

Method LLM MSVD-QA MSRVTT-QA ActivityNet-QA TGIF POPEAcc Score Acc Score Acc Score Acc Score

LLaMA-Adapter (Zhang et al., 2023b) LLaMA-7B 54.9 3.1 43.8 2.7 34.2 2.7 - - -
Video-Chat (Li et al., 2023b) Vicuna-7B 56.3 2.8 45.0 2.5 26.5 2.2 - - -

Video-ChatGPT (Maaz et al., 2023) Vicuna-7B 64.9 3.3 49.3 2.8 35.2 2.7 - - -
BT-Adapter (Liu et al., 2024) Vicuna-7B 67.5 3.7 47.0 3.2 45.7 3.2 - - -

LLaMA-VID (Li et al., 2023c) Vicuna-7B 69.7 3.7 57.7 3.2 47.4 3.3 - - -
LLaMA-VID (Li et al., 2023c) Vicuna-13B 70.0 3.7 58.9 3.3 47.5 3.3 - - -
Video-LLaVA (Lin et al., 2023) Vicuna-7B 70.7 3.9 59.2 3.5 45.3 3.3 70.0 4.0 84.4

PandaGPT (Sun et al., 2024) Vicuna-7B 46.7 - 23.7 - - - - - 78.5
VideoLLaMA (Zhang et al., 2023a) Vicuna-7B 51.6 2.5 29.6 1.8 12.4 1.1 - - 82.9

AV-LLM (Shu et al., 2023a) Vicuna-7B 67.3 - 53.7 - 47.2 - - - -
AVicuna (Tang et al., 2024) Vicuna-7B 70.2 - 59.7 - 53.0 - - - 84.1
OneLLM (Han et al., 2024) LLaMA2 56.5 - 53.8 - - - - - -
FAVOR (Sun et al., 2023b) Vicuna-7B 67.8 - 59.3 - - - - - -

VideoLLaMA 2 (Cheng et al., 2024) Mistral-Instruct 71.7 - 57.4 - 49.9 - - - 85.4
video-SALMONN (Sun et al., 2024) Vicuna-7B 67.9 3.7 59.5 3.4 - - - - -

Dolphin-7B-LoRA (Ours) Vicuna-7B 71.6 3.9 61.3 3.4 47.9 3.4 70.9 3.9 85.1
Dolphin-7B (Ours) Vicuna-7B 72.7 3.9 62.6 3.5 49.1 3.4 71.2 3.9 85.9

Dolphin-13B (Ours) Vicuna-13B 74.8 3.9 63.5 3.5 49.6 3.4 71.3 4.0 86.2

Table 3: Comparison with Audio-LLMs. We conducted closed-ended and open-ended auditory tasks
with LTU and LTU-AS, where ZS denotes zero-shot evaluation.

Audio Audio Speech Emotion Gender Age Music Genre Audio Speech Audio
Classif. Caption Recognition Recognition Classif. Pred. Classif. Question Question Hallucination

ESC-50 AudioCaps Librispeech IEMOCAP Voxceleb2 Voxceleb2 GTZAN RandomMethod

(ACC↑ ) (SPICE↑ ) (WER↓ ) (ACC↑ ) (maro-F1↑ ) (MAE↓) (ACC↑ ) (ACC↑ ) (ACC↑ ) (ACC↑ )

Best specialized models trained supervisedly on each dataset. Not generalizable to unseen label sets and tasks.
TASK-SOTA 97.0 17.7 1.4 70.6 98.3 9.4 - - -

CLIP-like audio-text model.
AudioClip (Guzhov et al., 2022) 69.4 - - - - - - - - -

CLAP (Huang et al., 2013) 82.6 - - - - - 25.2 - - -

LTU-Audio (Gong et al., 2023b) 82.8 17.0 104.2 38.2 77.0 - 29.8 96% 69% -
LTU-Speech (Gong et al., 2023b) 10.9 0.5 12.9 69.8 90.1 7.9 23.5 65% 93% -

LTU-AS (Gong et al., 2023b) 80.8zs 15.0 4.9 65.2 90.8 7.3 50.3zs 96% 94% 50.1

VideoLLaMA (Zhang et al., 2023a) 62.6zs 6.2 128.4zs 23.4zs 43.5zs 8.8 22.2zs 56% 27% 43.2
VideoLLaMA 2 (Cheng et al., 2024) 74.8zs 15.8 9.8zs 63.9zs 89.7zs 7.3 34.9zs 92% 91% 56.8
video-SALMONN (Sun et al., 2024) 77.6zs 16.6 3.9zs 65.5zs 90.6zs 7.4 36.7zs 95% 94% 58.2

Dolphin-LoRA (Ours) 81.6zs 17.2 12.8zs 67.4zs 91.2zs 7.2zs 33.6 96% 93% 58.6
Dolphin (Ours) 83.1zs 17.8 8.3zs 69.2zs 92.5zs 7.0zs 37.8 96% 94% 63.2

for audio, video, and audio-video use two-layer MLPs with a GELU (Hendrycks & Gimpel, 2016)
activation. Training is performed on NVIDIA A100 GPUs. More details are in the appendix.

Dataset. During training, we enhanced our model by mixing inputs from multiple modalities. Apart
from using AVU, we employ LLaVA (Liu et al., 2023), 10% of Valley, and audio clips for pre-
training, LLaVA instruct, Video-ChatGPT (Maaz et al., 2023), and ClothoV2 (Drossos et al., 2020)
for instruction-based finetuning. We assessed our model’s zero-shot capabilities on single-modality
video and audio Q&A benchmarks and compared it against existing audio-visual LLMs using a
tailored downstream task benchmark.

5.2 COMPARISON WITH STATE-OF-THE-ARTS

Zero-Shot Video Understanding. To validate our model’s efficacy, we compared its performance
in video comprehension with existing video-LLMs. Specifically, we showcased Dolphin’s comparison
with various methods on MSRVTT-QA, MSVD-QA, and ActivityNet-QA benchmarks. As indicated
in Table 2, our model demonstrated superior video understanding, proving that auditory information
complemented visual comprehension in the training stage. Moreover, POPE (Li et al., 2023d) results
show our method could mitigate object hallucinations.

Closed and Open-Ended Audio Tasks. To test our model’s audio understanding, we followed LTU
and LTU-AS, evaluating closed-ended and open-ended audio tasks like classification and captioning in
table Table 3. Despite zero-shot settings on many datasets, our model showed effective understanding,
achieving or exceeding SOTA performance. We use the pre-trained ImageBind (Girdhar et al., 2023a)
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Table 4: Results on the proposed audio-visual understanding bench and AVSD.
Task AVU AVSL AVE AVVP AVSD

Dataset MUSIC AVL, AVS AVE LLP AVSD
Metric acc score acc score acc score acc score acc

Video LLaMA (Zhang et al., 2023a) 65.4 3.3 35.6 2.3 40.8 2.8 21.5 2.1 36.7
Video LLaMA 2 (Cheng et al., 2024) 73.2 3.5 47.1 2.3 48.2 2.9 28.4 2.3 57.2
video-SALMONN (Sun et al., 2024) 74.7 3.5 48.3 2.4 51.5 3.0 30.9 2.4 51.6

Dolphin (Ours) 78.2 3.9 51.8 3.0 52.1 3.2 31.4 2.8 59.1

Video Understand

Please provide a detailed 

description of the video.

In the video, a person is seen interacting with a small 

frog on a wooden surface. The person's finger is seen 

touching the frog's back, and the frog responds by 

moving around. The video captures the interaction 

between the person and the frog, showcasing the frog's 
movements and the person's gentle touch.

Audio-Video Understand

Please provide a detailed 

description of the video

and its audio.

The video shows a person working on a circuit board with 

a computer monitor and keyboard in the background, with

some sharp electric sounds. The person is seen adjusting 

the wires on the board while the monitor displays a graph. 

The video provides a glimpse into the world of electronics 
and circuit board design.

Audio Understand

What does the audio in this 

video describe?

The audio is a classical piece. The piece is being played in 

a slow tempo. The audio is of poor quality and it sounds 

like it was recorded with a phone.

Audio Rejection

What is the man saying in 

the background?

The background sound is the engine noise of a vehicle, 

and there is no man speaking.

Audio-Visual Event Localization

What time does the train 

whistle blow?

In the video, the train starts to appear from the third second 

and blows its whistle.

Conclude and Reasoning

What's interesting about 

this video

The video captures a lively scene of a dog running across a 

soccer field, with players and coaches in the background. The 

dog is seen chasing a ball and interacting with a man in a blue 

shirt. The video showcases the playful and energetic nature of 

the dog as it navigates the field, creating a sense of excitement 
and joy.

Figure 7: Qualitative cases of Dolphin.

audio encoder as our audio encoder and freeze it during training, whose structure is AST (also
used in LTU). It is less effective in speech recognition compared with Whisper (used by LTU-AS).
However, our model showed improved speech recognition, benefiting from our dataset mixing audio
and speech. Additionally, the audio-hallucination (Kuan et al., 2024) experiment shows that our
model can effectively reduce audio hallucination.

Audio-Visual Understanding Bench. To assess our model’s competency in audio-visual under-
standing, we developed a minibench tailored for Large Language Models (LLMs) that aligns with
existing audio-visual tasks. We meticulously gathered test datasets from labeled audio-visual tasks,
comprising MUSIC (AVQA), LLP (AVVP), AVE (AVE), AVS-Bench (AVS), Flickr-SoundNet, and
VGG-SoundSource (AVL), to ensure a fair and precise evaluation. Inspired by zero-shot question-
answer evaluations and Video-ChatGPT, we transformed these tasks’ ground truths into open-ended
question-answer formats. We also evaluate our model on AVSD (Alamri et al., 2019) benchmark.

This method evaluates the precision of our model’s predictive output, awarding scores on a 1-5
scale. Comparing the performance of existing methods, like Video-LLaMA (Zhang et al., 2023a),
Video-LLaMA 2 (Cheng et al., 2024), and video-SALMONN (Sun et al., 2024), our results, presented
in Table 4, demonstrate a notable performance gap favoring our model on audio-centric vision tasks,
which highlights our model’s enhanced comprehension of audio and visual modalities.

Qualitative evaluation. The qualitative cases of the proposed Dolphin are illustrated in Figure 7.
Results show that Dolphin could remarkably comprehend both audio and visual modalities, together
with enhanced video understanding.

5.3 ABLATION STUDIES AND ANALYSIS

In this section, through detailed ablation studies, we explored how to enhance an audio-visual LLM’s
integration of video and audio for better video understanding. We also validated the effectiveness of
our proposed methods and datasets through model and dataset ablations.

Fine-grained spatial alignment effectively aids AV-LLMs in understanding multimodal semantic
information. In our prior analysis, we found that without fine-grained interaction between visual
and auditory information, LLMs struggle to learn relevant information between videos and audios,
as the lack of prior knowledge regarding the two modalities leads the model to focus more on the
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information-rich video content while neglecting audio. To investigate this issue, we conducted
ablation studies on our fine-grained alignment module in Table 5a. The results reveal that inter-
modality interaction indeed enhances the LLM’s attention to both modalities. However, in comparison,
when the two modalities undergo fine-grained alignment before projection, the model is not only able
to simultaneously focus on both modalities but also better extract the complementary information
from visual and audio. Table 5a illustrates that fine-grained audio-visual alignment aids LLMs in
cross-modal understanding. Inter-modal interaction boosts attention to both modalities, but fine-
grained alignment before projection further allows simultaneous focus and better extraction of visual
and auditory complementary information. Compared to removing temporal alignment, understanding
of videos significantly improves with the help of temporal alignment and interaction.

Contextual alignment effectively leverages the inherent consistency of videos. We analyzed
our temporal context attention module in Table 5a and found that models without it or with only the
chronological arrangement of tokens underperform. In contrast, employing temporal context attention,
which aligns video and audio features over time, significantly boosts performance by tapping into
their inherent temporal consistency, thus enhancing LLM’s understanding of both modalities together.

Table 5: Ablations on model architecture designs (a) and various dataset subsets (b).

Module Variants AVU AVE
acc score acc score

Original Dolphin (All) 78.2 3.9 52.1 3.2

Spatial w/o inter-modal 77.6 3.8 51.8 3.2
w/o AV adapter 75.4 3.6 51.6 3.2

Temporal w/o bi-dir context attn 76.1 3.6 50.3 3.1
w/o AV inter-merging 32.3 2.5 22.6 2.2

(a) Model architecture designs.

Variants MSR-VTT Q&A AV Understand POPE
acc score acc score

w/o AVU-Pretrain 58.8 3.3 69.8 3.6 81.7
w/o AVU-Specific 59.3 3.4 72.6 3.6 82.1

w/o AVU-Negatives 61.0 3.5 77.8 3.8 84.8
Full AVU 62.6 3.5 78.2 3.9 85.9

(b) AVU-dataset subsets.

Table 6: Detailed ablation on datasets and models. Here ‘V-L’ denotes Video-LLaMA.
Datasets MSRVTT Q&A Audiocaps AV Understand

Metrics acc score SPICE acc score

V-L + V-L dataset 29.6 1.8 11.8 65.4 3.3
V-L + AVU (Ours) 55.3 (+25.7) 3.1 (+1.3) 15.9 (+4.1) 73.2 (+7.8) 3.6 (+0.3)

Dolphin + V-L dataset 42.8 (+13.2) 2.7 (+0.9) 14.4 (+2.6) 69.9 (+4.5) 3.4 (+0.1)
Dolphin + AVU (Ours) 62.6 (+19.8) 3.4 (+1.6) 17.8 (+3.4) 78.2 (+6.3) 3.9 (+0.5)

Effectiveness of model structure and dataset quality. We conducted an ablation study on our
model and dataset in Table 5b. First, training without the audio dataset diminished the model’s
understanding of pure video content, indicating that our model effectively utilizes complementary
information from audio. Moreover, comparing the performance without our dataset and training
Video-LLaMA with our dataset (Table 6) showed a significant performance decline without the AVU
dataset, whereas Video-LLaMA achieved better performance on our dataset. These result, along with
the human validation in Appendix.B, jointly demonstrates the quality and effectiveness of our dataset.

6 CONCLUSION

In this paper, we primarily explored and studied how existing AV-LLMs can effectively overcome
insufficient attention to audio information. We innovatively proposed Dolphin, an Audio-Visual Large
Language Model for video understanding, which features fine-grained interaction and alignment on
both spatial and temporal levels. We designed a multi-scale audio-visual adapter and a temporal
context module to fully leverage the inherent consistency of videos and realize the complementary
function of visual and auditory information. Extensive experiments indicate the effectiveness of
the model. Additionally, we collected and labeled an audio-visual caption and instruction fine-
tuning dataset for video understanding, containing 2.13M pairs of AV samples and 5.24M Q&A
pairs and providing diverse training modalities for audio-visual LLMs. This instruction fine-tuning
dataset suitable for large model learning has been proven to effectively enhance the audio-visual
understanding capabilities of existing models (such as Video-llama), thereby proving the quality
of our dataset. Finally, in the experimental section, we explored and concluded that fine-grained
temporal and spatial alignment can effectively help audio-visual LLMs better acquire visual and
auditory abilities.
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A DIFFERENCES FROM EXISTING METHODS

A.1 COMPARISON WITH EXISTING AV-MLLMS.

Here, we also explain the differences from the methodology perspective. MACAW-LLM: The
training visual and audio signals come from different videos, which results in a lack of fine-grained
representation and alignment of modalities. The proposed dataset includes only images and videos,
without any audio.

ImageBind-LLM (Han et al., 2023): It includes six modalities but only utilizes image-text alignment
for training, without specifically addressing the alignment and representation of audio-video pairs.

PandaGPT (Su et al., 2023): It integrates a shared latent space derived from ImageBind, primarily
facilitating zero-shot transfer across six modalities: text, image/video, audio, depth, thermal, and
IMUs.

Video-LLaMA (Zhang et al., 2023a): It employs audio and visual Q-Former for respective modalities,
but it only trains the vision-language branch and the A-L branch on video/image instruction data,
without incorporating audio training.
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AV-LLM (Shu et al., 2023a): It focuses solely on spatiotemporal modeling of the video modality,
neglecting the fine-grained information from the audio.

FAVOR (Sun et al., 2023a): It proposes a causal Q-Former structure with a causal attention module
that aligns only temporally, lacking fine-grained audio-visual modeling.

Video-LLaMA2 (Cheng et al., 2024): It focuses solely on the spatiotemporal representation of video,
neglecting fine-grained audio representation and audio-visual interactions.

Meerkat (Chowdhury et al., 2024): It is a fine-grained audio-visual understanding model; however,
it only models images and lacks video understanding capabilities.

AVicuna (Tang et al., 2024): It focuses solely on temporal modeling, neglecting spatial fine-grained
information. Additionally, it exhibits a significant amount of hallucination.

OneLLM (Han et al., 2024): It achieves effective integration and instruction adherence across
different modalities through progressive multimodal alignment and modality routing, primarily
focusing on global alignment.

In summary, our work introduces innovations in both the framework and dataset pipeline, effectively
addressing the challenges faced by AV-MLLMs. Furthermore, the proposed solutions have the
potential to inspire research on existing AV-MLLM models and datasets, while also contributing to
the broader MLLM community.

A.2 COMPARISON BETWEEN DOLPHIN AND LTU AND LTU-AS.

We summarize the following four differences: (1) Different model types. LTU (Gong et al., 2023b) and
LTU-AS (Gong et al., 2023a) are audio/speech-specific models, trained specifically with audio/speech-
language models for audio or speech tasks. In contrast, our Dolphin model is an AV-LLM that
comprehends both audio and video, encompassing a broader range of modalities. (2) Different
audio backbones. LTU-AS employs Whisper (Radford et al., 2023b), which is pre-trained on a
large-scale speech-language dataset, resulting in stronger speech recognition performance. We use
the ImageBind-aud encoder (used by LTU), which has not been pre-trained on a speech dataset.
Moreover, the primary tasks in Table 3, such as speech recognition, emotion recognition, and gender
classification, are closely related to speech. Therefore, our performance reflects zero-shot results.
(3) Compared to LTU-AS, our audio encoder’s zero-shot recognition performance still achieves
state-of-the-art results in the majority of tasks. This demonstrates our model’s ability to pay attention
to and comprehend audio effectively. (4) Compared to LTU, our performance surpasses theirs by a
considerable margin, which can be attributed to our generated dataset that includes both audio and
speech samples. This highlights the effectiveness of our dataset.

B DETAILS OF DATASET CURATION AND VERIFICATION

For the dataset filtering, we design three types of filtering mechanisms: CLIP-Score filtering, self-
consistency filtering and annotation filtering. Subsequently, human verification is implemented to
quantitatively verify the quality of the generated caption.

• CLIP-score filtering. In this stage, the visual and audio experts first generate captions
based on the input video and audio, then we employ CLIP and CLAP to assess the similarity
score for each caption, respectively. Captions with lower scores might have noise and
hallucinations.

• Self-consistency filtering. We further prompt the visual and audio experts to summarize the
meta-information of the generated captions, and utilize GPT4 to assign the matching score
given the initial caption the its meta-information. Captions with lower scores might have
noise and hallucinations.

• Annotation filtering. The original annotations of the datasets are transformed to ‘keywords’.
Then, we employ GPT-4 to judge consistency based on keywords and meta-information and
filter noisy samples, which might be caused by experts’ bias and hallucinations.

• We synthesized the aforementioned three factors to calculate a weighted confidence score
for each sample and subsequently ranked them. The bottom 25% of samples, based on
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this ranking, will be eliminated. The weights for the screening criteria are as follows:
CLIP-Score filtering: 2, Self-consistency filtering: 1, Annotation Filtering: 5.

Human verification. After the former three filtering steps, 100 human annotators are employed to
give scores (1 to 5) to each of the video-caption and audio-caption pair, considering the completeness
and accuracy (related to hallucinations). We randomly sample 100 video-caption and 100 audio-
caption pairs in the generated dataset. Besides, we also verify the caption after the integration from
two modalities (Integration Effect). The results are shown in Table 7.

Table 7: The mean scoring of human verification on completeness and accuracy of audio (A) and
visual (V) modalities.

Captions V: Completeness V: Accuracy A: Completeness A: Accuracy Integration Effect

Mean scoring 4.27 4.45 4.23 4.40 4.31

The verification results show that the generated dataset is precise and accurate.

C FURTHER IMPLEMENTATION DETAILS

C.1 TRAINING DETAILS.

Stage-1: Multi-modal text alignment pre-training. The model needs to read audio, video and
corresponding textual instructions, which is related to the understanding of audio, video and audio-
video contents. The ground truth annotations are the captions of AVU-dataset. Stage-2: Audio-visual
dynamic instruction-tuning. The model is required to respond accordingly to various types of
instructions. The instructions comprise complex visual, audio and audio-visual understanding tasks.
Both projector and LLM are updated. Dataset prompts, audio or/and video and questions are fed
to the model to generate answers. The generated answers are then supervised by the ground truth
captions of the datasets to update both the projectors and LLMs. For both two stages, the learning
objective is autoregressive next-word-prediction loss.

C.2 THE PROPOSED SPATIAL AND TEMPORAL MODULES ARE MUTUALLY-PROMOTED.

The two modules are utilized to align fine-grained spatial and temporal information for audio-
visual data. The AV multi-scale adapter separately extracts multi-scale features from visual and
auditory modalities and interacts with the other modality for fine-grained alignment. This promotes
fine-grained alignment between audio and video, avoiding the neglect of auditory information and
effectively enhancing the model’s performance in audio-visual dense prediction tasks. The primary
innovation of the temporal interleaved merging lies in simultaneously calculating bidirectional
attention for both audio and video features, enabling the alignment of video and audio features in the
temporal dimension. This effectively leverages the consistency of videos, improving the LLM’s joint
understanding of video and audio.

D FURTHER EXPERIMENTAL RESULTS

D.1 COMPARISON WITH VARIOUS AUDIO AND VISUAL ENCODER VARIANTS.

We compared various variants of audio and visual encoders and reported the performance for
video/audio/audio-video understanding, as shown in Table 8.

Then the following conclusions are drawn: (1) If both audio and visual aspects are aligned with
language (as in CLIP (Radford et al., 2021), CLAP (Elizalde et al., 2023)), the performance on A/V
understanding tasks tends to be good, but the performance on AV tasks is not high. We attribute
this to the fact that the AV encoder, due to lack of alignment, is unable to effectively utilize the
AV adapter. (2) Building upon this, we added stage 0.5 before pretraining and pre-trained for
one epoch on AudioSet-2M (Gemmeke et al., 2017) using the audio-visual contrastive loss. We
observed performance improvement (especially in audio), which validates that fine-grained audio-
visual alignment effectively helps the model pay attention to the audio modality. (3) If both audio
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and video use ImageBind (Girdhar et al., 2023b), which has undergone audio-visual alignment, the
A/V/AV understanding capabilities decline. We believe that in Machine Learning Language Models,
since the output format is language, using a backbone that has not been aligned with language will
affect the final understanding results. (4) If the audio modality is aligned with language (CLAP) and
the visual modality is aligned audio-visually (ImageBind-vid), the results are inferior compared to the
other mode (ImageBind-aud+CLIP). We attribute this to the fact that the semantic density of video is
much higher than audio, and video-language alignment can better enhance the model’s understanding
and instruction-following capabilities.

In summary, we believe that selecting a visual encoder aligned with language and an audio encoder
aligned with visual can effectively balance A/V/AV understanding capabilities. Therefore, we chose
CLIP+ImageBind as our backbone encoder.

Table 8: Comparison with various audio and visual encoder variants.

id Encoders MSRVTT Q&A Audio Caption AV Understand
(a) CLIP+CLAP 62.5 17.3 74.2
(b) ImageBind-vid+ImageBind-aud 58.2 15.8 72.3
(c) CLIP+ImageBind-vid 59.8 17.6 76.5
(d) ImageBind-aud+CLIP (Ours) 62.6 17.8 78.2

D.2 OTHER ENCODERS AND LLM REABLATIONS.

The primary objective of our work is to explore effective learning schemes, demonstrating that
fine-grained audio-visual alignment can enhance the model’s understanding of audio, and mitigate
hallucinations. To ensure fair comparisons, we have selected the most widely used encoders with
better AV alignment and LLMs.

Moreover, we also include the results with other encoders and LLMs, as shown in Table. 9.

Table 9: Other backbone for comparison.

Audio caption MSR-VTT QA AV Understand

w/ SigLIP (Zhai et al., 2023) 16.5 63.5 77.9
w/ Whisper (Radford et al., 2023a) 16.9 61.9 77.5

w/ Llama3-8B-Instruct (Dubey et al., 2024) 18.6 64.0 80.3
Ours 17.8 62.6 78.2

When choosing SigLIP, the visual abilities are enhanced while the audio-related abilities are degraded,
because SigLIP has weaker alignment compared with CLIP. When choosing Llama3-8B-Instruct, our
method obtains better overall results. We attribute it to the superiority of Llama3 and more parameters
(LLaMA3: 8B >Vicuna: 7B).

After replacing the aforementioned backbone, there is an improvement in some results, such as
SigLIP’s understanding of video and the performance of Llama3-8B-Instruct. This further demon-
strates the effectiveness of our framework and dataset. It effectively helps the model focus on both
audio and video modalities while also mitigating hallucinations. This also demonstrates the strong
generalization capability of our model, allowing it to be applicable to a wider range of backbones.

D.3 IMPACT OF USING IMAGE AND VIDEO ENCODER

We explore the impact of whether our model uses a video encoder.

Firstly, we observed that preceding video caption models predominantly utilize image en-
coders (CLIP)m, e.g., LLaMA-VID(Li et al., 2025) and LLaVA-NeXTVideo (Li et al., 2024),
ShareGPT4V (Chen et al., 2023a), Valley (Luo et al., 2023), AV-LLM (Shu et al., 2023b), AVi-
cuna (Tang et al., 2024) and video-SALMONN (Sun et al., 2024), the reason is that CLIP could align
better with language and are pre-trained on larger numbers of data with stronger visual abilities.
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Table 10: Ablation study of using video encoder and image encoder.

Audio Caption MSR-VTT QA AV Understand

w/ languagebind video encoder 16.4 60.8 76.4
w/ imagebind video encoder 15.8 58.2 72.3

w/ CLIP image encoder (ours) 17.8 62.6 78.2

Table 11: Ablation study of freezing or unfreezing encoder.

freeze Audio Caption MSR-VTT QA AV Understand

unfreeze av 15.3 58.7 75.9
freeze av (Ours) 17.8 62.6 78.2

Additionally, using an image encoder to process video allows for the selection of any frame rate,
providing flexibility that aids in modeling temporal information. This is also a similar rationale
behind the approach used in VideoLLaMA2.

We also added the results using video encoders in LanguageBind and ImageBind, as shown in
Table. 10.

The results indicate that replacing the CLIP with other video encoders leads to a decline in perfor-
mance. This is attributed to CLIP’s superior semantic representation capabilities and its alignment
with text. Besides, CLIP is pre-trained with a large number of images and have stronger vision
abilities.

D.4 IMPACT OF FREEZE OR NO-FREEZE

Moreover, we explored whether freezing has an impact on model performance, and conducted
experiments with unfrozen AV encoders, as shown in Table. 11.

From the result, we can see that in the case of unfrozen encoders, the overall results degraded.
The increased number of training modules made training more challenging and increased training
consumption. The training time was approximately 2.8 times longer than before.

D.5 IMPACT OF Q-FORMER

For audio, video, and audio-visual connectors, we follow LLaVA and use a 2x MLP with GELU
activation. Regarding the selection of connectors, existing Multimodal Language Learning Models
(MLLMs) predominantly opt for relatively simple structures. For instance, LLaVA [R1] and Vide-
oLLaVA [R5] utilize MLPs, Cambrian [R2] employs a Spatial Vision Aggregator, and MM1.5 [R3]
selects an abstractor. An empirical study [R4] also indicates that the choice of simple connectors
(such as C-Abstractor, average pooling, and attention pooling) has a marginal impact on the results.
Consequently, we followed LLaVA [R1] and opted for the simplest configuration of MLP 2× with
gelu activation. We found that video-Salmonn, and VideoLLaMA use Q-Former as a connector.
Therefore, we chose Q-Former and a one-layer MLP to conduct the connector ablation experiments.

From the Table. 12, we can observe that the performance of our model declined slightly after
adding the Q-Former, which might be due to the complexity of training the Q-Former, making it

Table 12: Ablation study of freezing or unfreezing encoder.

w/ MLP*2+GELU (Ours) w/ MLP w/ Q-Former

MSR-VTT QA 62.6 60.8 58.6
AV Understand 78.2 77.1 75.3
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difficult to train well. video-Salmonn, and VideoLLaMA mainly explore speech and audio with
variable resolution and length, while our main concern is the fine-grained audio-visual alignment and
mitigation of hallucination. Therefore, we decided not to adopt the Q-Former.

D.6 SPEECH COMPREHENSION CAPABILITY.

We have conducted an exploration into the speech capabilities of Dolphin. Firstly, we discovered that
Dolphin has a certain level of speech recognition ability. From the perspective of performance, the
speech capabilities are not bad. In Table 3, Dolphin outperforms other audio-centric models by a
large margin. We attribute the result to the fact that the generated AVU dataset contains a significant
amount of speech data.

Specifically, when we use Qwen2-Audio to generate captions, it will perform real-time transcription
for speech. We specifically calculated that samples containing speech transcription, the results
account for 39.6% of all audio captions. These speech-related data help enhance speech abilities.
As shown in Figure. 8 They contain a lot of speech information in the captions and are generally
categorized into the AVU-Specific subset.

Similar findings that speech-centric training datasets could help enhance the speech recognition of
audio encoders have been concluded by some prior works. For example, in LTU (Gong et al., 2023b),
LTU-Speech and LTU-audio utilize freeze audio encoders (AST encoder using CAV-MAE (Gong
et al., 2022) objectives) trained with audio and speech data, respectively. Considering the performance,
LTU-Speech outperforms LTU-Audio by a large margin on Speech Question datasets (93% >69%).

D.7 COMPARISON WITH TASK-SPECIFIC EXPERT MODELS.

Dolphin is a general-purpose AV-LLM, which could handle various audio-visual downstream
tasks. Here, we compare Dolphin with task-specific expert models. Specifically, we compare
with FNAC (Sun et al., 2023c) on audio-visual localization (AVL) on the Flickr dataset, the metric is
CIoU. For audio-visual event localization (AVE), we compare with CMRAN (Xu et al., 2020) and
report accuracy metric. For audio-visual question answering (AVQA), we compare with AVQA (Li
et al., 2022) on MUSIC dataset using accuracy metric. Results are shown in Table 13.

Audio caption

Describe the overall audio and its significant elements.

The audio contains a man speaking in a foreign language. 
There is a knock on a door and a woman's voice saying 
\"Who is it?\" The man responds in the same language and 
the woman repeats the question. The man then continues 
speaking in the same language. There is a knock on the door 
again and the woman's voice is heard saying \"Open the 
door.\" The man responds again in the same language.

Audio caption

Explain the audio and key elements.

The audio is of a woman speaking. She is describing the 
process of applying makeup to the face. She starts by saying 
\"so, I'm going to show you how to apply your makeup\" and 
then proceeds to demonstrate the steps involved in applying 
makeup. She talks about how to use a foundation brush to 
apply the foundation, how to use a concealer to cover up any 
blemishes, and how to use a powder to set the foundation. 
She also talks about how to use a blush to add color to the 
cheeks and how to use a mascara to lengthen and thicken 
the lashes. She ends by saying \"and that's it, you're done!\

AVU-Specific

What happens after the woman hears a knock on the door?

After the woman hears a knock on the door, she asks \"Who 
is it?\" The man responds in a foreign language, and the 
woman repeats the question. The man continues speaking 
in the same language. There is another knock on the door, 
and the woman says \"Open the door.\" The man responds 
again in the same language.

AVU-Specific

What is the woman in the video describing?

The woman in the video is describing the process of applying 
makeup to the face. She explains the steps involved, 
including using a foundation brush to apply foundation, using 
a concealer to cover blemishes, using a powder to set the 
foundation, using a blush to add color to the cheeks, and 
using a mascara to lengthen and thicken the lashes. She 
concludes by saying "and that's it, you're done!"

Figure 8: Some cases of dataset samples containing speech information. On the left is the audio
caption generated by Qwen2-Audio. Notably, these samples of audio carrying speech information are
split into the AVU-Specific subset in our dataset generation pipeline.
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Table 13: Comparison with task-specific models on AVL, AVE and AVQA.

AVL (CIoU) AVE (acc) AVQA (acc)

FNAC: 85.14 CMRAN: 78.3 AVQA: 69.51
Dolphin: 86.22 Dolphin: 79.5 Dolphin: 76.56

E DATASET DETAILS

E.1 THE MOTIVATION OF THE DATASET.

We list the purpose of the proposed AVU-dataset as follows: (1) There is a lack of relevant datasets.
Currently, there are no large-scale audio visual captioning and instruction tuning datasets available.
Existing methods have only been trained on vision-language and audio-language datasets, resulting
in a deficiency of audio-visual alignment, which consequently leads to suboptimal performance in
audio visual tasks. (2) We analyze that one of the primary reasons existing models overlook the audio
modality is that, in most cases, audio does not provide more information than video. Therefore, one of
our significant innovations lies in our dataset, which specifically selects samples where audio conveys
more information than video. We have transformed this audio-specific information into question-and-
answer pairs, effectively addressing the issue of AV-LLM’s neglect of audio. (3) Existing audio-visual
datasets exhibit diverse annotation formats (bounding boxes, timestamps, masks). Consequently, we
have standardized the input and output formats for audiovisual tasks such as AVE, AVL, AVQA, and
AVVP, facilitating the training of AV-LLM. Additionally, we have provided a dataset with fine-grained
temporal and spatial granularity (AVU-tasks).

E.2 THE CONTRIBUTION OF THE DATASET.

The contribution of our AVU-dataset is summarized as follows: (1) The AVU dataset addresses the
current lack of large-scale, high-quality audiovisual instruction tuning datasets within the community.
(2) The AVU dataset features a rich variety of subsets, effectively addressing the issue of AV-LLM
neglecting the audio modality and significantly reducing the occurrence of hallucinations. (3) The
introduction of meta-information in the AVU dataset, which is categorized based on AV consistency,
allows for the extraction of modality-specific information (AVU-specific) and the generation of
negative samples (AVU-negative). This approach can be widely applied in the process of creating
other datasets.

E.3 PROMPT TEMPLATES.

The prompt templates are shown in Figure 10, Figure 9 and Figure 11.
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I . AVU-Pretrain

INPUT:

[Audio-video information]

Your task is to generate a detailed caption for an audio-video segment based on provided meta-information and 

detailed descriptions. Ensure the caption is comprehensive and accurate, using only the provided information 

without adding any fictional content.

EXAMPLE:

➢ The video starts with a woman standing in the kitchen, holding a knife and a potato. She begins slicing the 

potato thinly, showcasing her skill and precision. The camera captures her movements as she continues 

slicing, demonstrating the food preparation process. Soft ambient sounds fill the kitchen, including faint 

simmering from a nearby stove and occasional utensil clinks.

II. AVU-MultiQA

INPUT:

[Audio-video information]

Your task is to generate ten pairs of instructions and responses based on the provided meta-information and 

detailed captions of the audio and video content. Each pair should simulate a dialogue that focuses on various 

aspects of the content without introducing information not explicitly mentioned. The purpose of this exercise is 

to fine-tune a language model so that it can generate accurate and relevant responses.

The QA pair should start with "Q:" and contain an instruction related to the audio and video, while the second 

line should start with "A:" and provide a response to the instruction.

Please ensure that your instructions are diverse and of high quality. Avoid making assumptions or adding 

details that are not explicitly given.

EXAMPLE:

➢ Q: Describe how the video integrates visual steps and audio tips to guide viewers in making pancakes.

     A: The video combines close-up visuals of pancake preparation with descriptive audio commentary, 

emphasizing quick cooking and stacking instructions.

➢ Q: Provide a summary of the video's approach to combining visual demonstrations and audio explanations.

     A: The video seamlessly integrates detailed visual demonstrations of pancake preparation with insightful 

audio explanations, offering viewers a comprehensive guide to achieving perfect pancakes.

[Audio-video information]: 

This is the detailed caption of the video: {...}; and the meta-information: {...}. This is the detailed caption of the 

audio: {...}; and the meta-information: {...}. These above contain important information that needs to be read 

carefully.*

Figure 9: Prompt templates for generation of AVU-dataset subsets.
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INPUT:

[Audio-video information]

You have to finish the following two tasks. First, carefully compare the information typically included for 

audio versus video. Second, Identify information that is included for audio but not for video, and generate a 

QA pair for each. Similarly, identify information that is included for video but not for audio, and generate a QA 

pair for each.

Each pair should simulate a dialogue that focuses on various aspects of the content without introducing 

information not explicitly mentioned. The purpose of this exercise is to fine-tune a language model so that it 

can generate accurate and relevant responses.

The QA pair should start with "Q:" and contain an instruction related to the audio and video, while the second 

line should start with "A:" and provide a response to the instruction.

Please ensure that your instructions are diverse and of high quality. Avoid making assumptions or adding 

details that are not explicitly given.

EXAMPLE:

➢ Q: What kitchen tools or utensils are prominently featured in the video during pancake preparation?

     A: The video showcases basic kitchen tools such as a mixing bowl, whisk, spatula, and frying pan, 

demonstrating their use in making pancakes.

➢ Q: Discuss the overall tone and style of the English audio commentary. How does it enhance the tutorial?

     A: The commentary's friendly and instructive tone makes pancake-making feel approachable and enjoyable, 

encouraging viewers to try the recipe themselves.

IV. AVU-Negatives

INPUT:

[Audio-video information]

The information provided for audio and video does not fully match. Find out what the audio and video 

information does not match. Create negative question-answer pairs where the question asks for information not 

included in the provided data. Provide negative responses or rejections indicating the information is 

unavailable. Don't design questions that can be answered with yes or no.
 

The QA pair should start with "Q:" and contain an instruction related to the audio and video, while the second 

line should start with "A:" and provide a response to the instruction.

EXAMPLE:

➢ Q: Can you describe the sound of the frog in the audio?

     A: The color of the frog is not mentioned in the audio. The background audio is funny music.

[Audio-video information]: 

This is the detailed caption of the video: {...}; and the meta-information: {...}. This is the detailed caption of the 

audio: {...}; and the meta-information: {...}. These above contain important information that needs to be read 

carefully.*

II. AVU-Specific

Figure 10: Prompt templates for generation of AVU-dataset subsets.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

INPUT:

[Video caption information]

You are an AI assistant for video information integration. I will provide you with a caption about a video, and 
please extract some meta information from it, including "subject"(the main character in the picture), 
"scene"(the scene and the events in the video), "location" (the exact location of the video. Not geographical 
location), "action" (the movements of the main character in the video), and "emotion" (the emotion of the 
subject or the video). If the information is not available or not explicitly mentioned, please output the words 
"None". Avoid making assumptions or adding details that are not explicitly given.

EXAMPLE:

Ø Original video caption: The video shows a large crowd of people gathered in a stadium, with some 
individuals holding flags and cheering. The flags are positioned in the foreground, while the crowd is in the 
background. The people in the crowd are standing and cheering, with some individuals holding up their 
hands. The stadium is filled with people, and the atmosphere is lively and energetic.

     Meta-information: 
     Subject: Large crowd of people, individuals with flags
     Scene: Stadium
     Location: Stadium with a large crowd
     Action: Individuals holding flags and cheering, crowd standing and cheering, some individuals holding up 
their hands
     Emotion: Lively and energetic atmosphere

[Video caption information]: 
This is the detailed caption of the video: {...}.These above contain important information that needs to be read carefully.*

Meta-Information

INPUT:

[Video caption information]

You are an AI assistant for audio information integration. I will provide you with a caption about an audio, and 
please extract some meta information from it, including "subject"(the main character in the audio), "scene"(the 
scene and the events in the audio), "location" (the exact location of the audio. Not geographical location), 
"action" (the movements of the main character in the audio), and "emotion" (the emotion of the subject or the 
audio). If the information is not available or not explicitly mentioned, please output the words "None". Avoid 
making assumptions or adding details that are not explicitly given.

EXAMPLE:

Ø Original video caption: A woman is speaking in a clear and confident tone. She is describing a car 
dealership and the various cars that are available. She mentions the different features of each car and the 
benefits of purchasing from the dealership. The music is playing in the background.

     Meta-information: 
     Subject: A woman
     Scene: A car dealership description
     Location: None
     Action: Speaking in a clear and confident tone, describing cars and their features
     Emotion: Confident
     Background: Music playing

[Audio caption information]: 
This is the detailed caption of the audio: {...}.These above contain important information that needs to be read carefully.*

Meta-Information

Figure 11: Prompt templates for generation of meta-information.
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