
Published as a conference paper at ICLR 2024

HOW MANY PRETRAINING TASKS ARE NEEDED FOR
IN-CONTEXT LEARNING OF LINEAR REGRESSION?

Jingfeng Wu
UC Berkeley
uuujf@berkeley.edu

Difan Zou
The University of Hong Kong
dzou@cs.hku.hk

Zixiang Chen
UCLA
chenzx19@cs.ucla.edu

Vladimir Braverman
Rice University
vb21@rice.edu

Quanquan Gu
UCLA
qgu@cs.ucla.edu

Peter L. Bartlett
Google DeepMind & UC Berkeley
peter@berkeley.edu

ABSTRACT

Transformers pretrained on diverse tasks exhibit remarkable in-context learning
(ICL) capabilities, enabling them to solve unseen tasks solely based on input con-
texts without adjusting model parameters. In this paper, we study ICL in one of
its simplest setups: pretraining a linearly parameterized single-layer linear atten-
tion model for linear regression with a Gaussian prior. We establish a statistical
task complexity bound for the attention model pretraining, showing that effective
pretraining only requires a small number of independent tasks. Furthermore, we
prove that the pretrained model closely matches the Bayes optimal algorithm, i.e.,
optimally tuned ridge regression, by achieving nearly Bayes optimal risk on un-
seen tasks under a fixed context length. These theoretical findings complement
prior experimental research and shed light on the statistical foundations of ICL.

1 INTRODUCTION

Transformer-based large language models (Vaswani et al., 2017) pretrained with diverse tasks have
demonstrated strong ability for in-context learning (ICL), that is, the pretrained models can answer
new queries based on a few in-context demonstrations (see Brown et al., 2020, and references there-
after). ICL is one of the key abilities contributing to the success of large language models, which
allows pretrained models to solve multiple downstream tasks without updating their model parame-
ters. However, the statistical foundation of ICL is still in its infancy.

A recent line of research aims to quantify ICL by studying transformers pretrained on the linear
regression task with a Gaussian prior (Garg et al., 2022; Akyürek et al., 2022; Li et al., 2023b;
Raventos et al., 2023). Specifically, Garg et al. (2022); Akyürek et al. (2022); Li et al. (2023b) study
the setting where transformers are pretrained in an online manner using independent linear regres-
sion tasks with the same Gaussian prior. They find that such a pretrained transformer can perform
ICL on fresh linear regression tasks. More surprisingly, the average regression error achieved by
ICL is nearly Bayes optimal, and closely matches the average regression error achieved by an opti-
mally tuned ridge regression given the same amount of context data. Later, Raventos et al. (2023)
show that the nearly optimal ICL is achievable even if the transformer is pretrained with multiple
passes of a limited number of independent linear regression tasks.

On the other hand, a connection has been drawn between the forward pass of (multi-layer) Trans-
formers and (multi-step) gradient descent (GD) algorithms (Akyürek et al., 2022; Von Oswald et al.,
2023; Bai et al., 2023; Ahn et al., 2023; Zhang et al., 2023a), offering a potential ICL mechanism by
simulating GD (which serves as a meta-algorithm that can realize many machine learning algorithms
such as empirical risk minimization). Specifically, Von Oswald et al. (2023); Akyürek et al. (2022);
Bai et al. (2023) show, by construction, that multi-layer transformers are sufficiently expressive to
implement multi-step GD algorithms. In addition, Ahn et al. (2023); Zhang et al. (2023a) prove that
for the ICL of linear regression by single-layer linear attention models, a global minimizer of the
(population) pretraining loss can be equivalently viewed as one-step GD with a matrix stepsize.

1

Published as a conference paper at ICLR 2024

Our contributions. Motivated by the above two lines of research, in this paper, we consider ICL in
the arguably simplest setting: pretraining a (restricted) single-layer linear attention model for linear
regression with a Gaussian prior. Our first contribution is a statistical task complexity bound for
pretraining the attention model (see Theorem 4.1). Despite that the attention model contains d2 free
parameters, where d is the dimension of the linear regression task and is assumed to be large, our
bound suggests that the attention model can be effectively pretrained with a dimension-independent
number of linear regression tasks. Our theory is consistent with the empirical observations made by
Raventos et al. (2023).

Our second contribution is a thorough theoretical analysis of the ICL performance of the pre-
trained model (see Theorem 5.3). We compute the average linear regression error achieved by an
optimally pretrained single-layer linear attention model and compare it with that achieved by an op-
timally tuned ridge regression. When the context length in inference is close to that in pretraining,
the pretrained attention model is a Bayes optimal predictor, whose error matches that of an optimally
tuned ridge regression. However, when the context length in inference significantly differs from that
in pretraining, the pretrained single-layer linear attention model might be suboptimal.

Besides, this paper contributes novel techniques for analyzing high-order tensors. Our major
tool is an extension of the operator method developed for analyzing 4-th order tensors (i.e., linear
operators on matrices) in linear regression (Bach & Moulines, 2013; Dieuleveut et al., 2017; Jain
et al., 2018; 2017; Zou et al., 2021; Wu et al., 2022) and ReLU regression (Wu et al., 2023) to 8-th
order tensors (which correspond to linear maps on operators). We introduce two powerful new tools,
namely diagonalization and operator polynomials, to this end (see Section 6 for more discussion).
We believe our techniques are of independent interest in analyzing similar problems.

2 RELATED WORK

Empirical results for ICL for linear regression. As mentioned earlier, our paper is motivated
by a set of empirical results on ICL for linear regression (Garg et al., 2022; Akyürek et al., 2022;
Li et al., 2023b; Raventos et al., 2023; Bai et al., 2023). Along this line, the initial work by Garg
et al. (2022) considers ICL for noiseless linear regression, where they find the ICL performance of
pretrained transformers is close to ordinary least squares. Later, Akyürek et al. (2022); Li et al.
(2023b) extend their results by considering ICL for linear regression with additive noise. In this
case, pretrained transformers perform ICL in a Bayes optimal way, matching the performance of
optimally tuned ridge regression. Recently, Bai et al. (2023) consider ICL for linear regression with
mixed noise levels and demonstrate that pretrained transformers can perform algorithm selection.
In all these works, transformers are pretrained by an online algorithm, seeing an independent linear
regression task at each optimization step. In contrast, Raventos et al. (2023) pretrain transformers
using a multi-pass algorithm over a limited number of linear regression tasks. Quite surprisingly,
such pretrained transformers are still able to do ICL nearly Bayes optimally. Our results can be
viewed as theoretical justifications for the empirical findings of Garg et al. (2022); Akyürek et al.
(2022); Li et al. (2023b); Raventos et al. (2023).

Attention models simulating GD. Recent works explain the ICL of transformers by their capa-
bility to simulate GD. This idea is formalized by Akyürek et al. (2022); Von Oswald et al. (2023);
Dai et al. (2023), where they show, by construction, that an attention layer is expressive enough to
compute one GD step. Based on the above observations, Giannou et al. (2023); Bai et al. (2023)
show transformers can approximate programmable computers as well as general machine learning
algorithms. In addition, Li et al. (2023a) show the closeness between single-layer self-attention and
GD on softmax regression under some conditions. Focusing on ICL for linear regression by single-
layer linear attention models, Ahn et al. (2023); Zhang et al. (2023a) prove that one global minimizer
of the population ICL loss can be equivalently viewed as one-step GD with a matrix stepsize. A sim-
ilar result specialized to ICL for isotropic linear regression has also appeared in (Mahankali et al.,
2024). Notably, Zhang et al. (2023a) also consider the optimization of the attention model, but their
results require infinite pretraining tasks; and Bai et al. (2023) also establish task complexity bounds
for pretraining, but their bounds are based on uniform convergence and are therefore crude (see dis-
cussions after Theorem 4.1). In contrast, we conduct a fine-grained analysis of the task complexity
bounds for pretraining a single-layer linear attention model with a simplified linear parameterization
and obtain much sharper bounds.

2

Published as a conference paper at ICLR 2024

Additional ICL theory. In addition to the above works, there are other explanations for ICL.
For an incomplete list, Li et al. (2023b) use algorithm stability to show a generalization bound for
ICL, Xie et al. (2021); Wang et al. (2023) explain ICL via Bayes inference, Li et al. (2023c) show
transformers can learn topic structure, Zhang et al. (2023b) explain ICL as Bayes model averaging,
and Han et al. (2023) connect ICL to kernel regression. These results are not directly comparable to
ours, as we focus on studying the ICL of a single-layer linear attention model for linear regression.

3 PRELIMINARIES

Linear regression with a Gaussian prior. We will use x ∈ Rd and y ∈ R to denote the covariate
and response for the regression problem. We state our results in the finite-dimensional setting but
most of our results are dimension-free and they can be extended to the case when x belongs to a
possibly infinite dimensional Hilbert space.

Assumption 1 (A fixed size dataset). For a fixed number of contexts n ≥ 0, a dataset1 of size n+1,
denoted by (X,y,x, y) ∈ Rn×d × Rn × Rd × R, is generated as follows:

• A task parameter is generated from a Gaussian prior, β ∼ N
(
0, ψ2Id

)
.

• Conditioned on β, (x, y) is generated by x ∼ N (0, H) and y ∼ N
(
β⊤x, σ2

)
.

• Conditioned on β, each row of (X,y) ∈ Rn×(d+1) is an independent copy of (x⊤, y) ∈ Rd+1.

Here, ψ2 > 0, σ2 ≥ 0, and H ⪰ 0 are fixed but unknown quantities that govern the population data
distribution. Without loss of generality, we assume H is strictly positive definite. We will refer to
(X,y), x, and y as contexts, covariate, and response, respectively.

A restricted single-layer linear attention model. We use f to denote a model for ICL, which
takes a sequence of contexts (of an unspecified length) and a covariate as inputs and outputs a
prediction of the response, i.e.,

f :
(
Rd × R

)∗ × Rd → R
(X,y,x) 7→ ŷ := f(X,y,x).

We will consider a (restricted version of a) single-layer linear attention model, which is closely
related to one-step gradient descent (GD) with matrix stepsizes as model parameters. Specifically,
based on the results of Ahn et al. (2023); Zhang et al. (2023a), one can see that the function class
of single-layer linear attention models (when some parameters are fixed to be zero) is equivalent
to the function class of one-step GD with matrix stepsizes as model parameters (see Appendix B
for a proof). Therefore, we will take the latter form for simplicity and consider an ICL model
parameterized as a one-step GD with matrix stepsize, that is,

f(X,y,x;Γ) :=

〈
ΓX⊤y

dim(y)
, x

〉
, Γ ∈ Rd×d, (1)

where Γ is a d2-dimensional matrix parameter to be optimized, and dim(y) is the dimension of y.
That is, we consider two simplifications of the usual soft-max self-attention model: we remove the
nonlinearity and we replace the usual parametrization with a simpler linear one (see Appendix B).

ICL risk. For model (1) with a fixed parameter Γ, we measure its ICL risk by its average regres-
sion risk on an independent dataset. Specifically, for n ≥ 0, the ICL risk evaluated on a dataset of
size n is defined by

Rn(Γ) := E
(
f(X,y,x;Γ)− y

)2
, (2)

where the expectation is taken with respect to the dataset (X,y,x, y) generated according to As-
sumption 1 with n contexts.

1We will set n = N to generate datasets for pretraining and n = M to generate datasets for inference,
where M is allowed to be different from N .

3

Published as a conference paper at ICLR 2024

We have the following theorem characterizing useful facts about the ICL risk (2). Special cases of
Theorem 3.1 when σ2 = 0 have appeared in (Ahn et al., 2023; Zhang et al., 2023a). The proof
is deferred to Appendix C. For two matrices A and B of the same shape, we define ⟨A,B⟩ :=
tr(A⊤B).
Theorem 3.1 (ICL risk). Fix N ≥ 0 as the number of contexts for generating a dataset according
to Assumption 1. The following holds for the ICL risk RN (·) defined in (2):

1. The minimizer of RN (·) is unique and given by

Γ∗
N :=

(
tr(H) + σ2/ψ2

N
I+

N + 1

N
H

)−1

. (3)

2. The minimum ICL risk is given by

min
Γ

RN (Γ) = RN (Γ∗
N) = σ2 + ψ2tr

(
Γ∗
NH

(
tr(H) + σ2/ψ2

N
I+

1

N
H

))
.

3. The excess ICL risk, denoted by ∆N (·), is given by

∆N (Γ) := RN (Γ)−min
Γ

RN (Γ) =
〈
H,

(
Γ− Γ∗

N

)
H̃N

(
Γ− Γ∗

N

)⊤〉
,

where

H̃N := E
(

1

N
X⊤y

)(
1

N
X⊤y

)⊤

= ψ2H

(
tr(H) + σ2/ψ2

N
I+

N + 1

N
H

)
. (4)

For simplicity, we may drop the subscript N in Γ∗
N and H̃N without causing ambiguity.

When the size of the dataset N → ∞, we have Γ∗
N → H−1 according to Theorem 3.1. Then

for a fresh regression problem with task parameter β, the attention model (1), after seeing prompt
(X,y,x) of infinite length, will perform a Newton step on the context (X,y) and then use the
result to make a linear prediction for covariate x. Since the context length is infinite, the output of
a Newton step precisely recovers the task parameter β, which minimizes the prediction error. Thus
the attention model (1), with a fixed parameter Γ∗

∞, achieves consistent in-context learning (Zhang
et al., 2023a). When N is finite, (3) is a regularized Hessian inverse, so (1) performs a regularized
Newton step in-context — the regression risk of this algorithm will be discussed in depth later in
Section 5.

Theorem 3.1 suggests that the ICL risk parameterized by Γ is convex and the optimal parameter is
unique. However, since the population distribution of the dataset is unknown (because ψ2, σ2, and
H are unknown) and the parameter (a d× d matrix) is high-dimensional, it is not immediately clear
how many independent tasks are needed to learn the optimal parameter. We will address this issue
in the next section.

4 THE TASK COMPLEXITY OF PRETRAINING AN ATTENTION MODEL

Pretraining dataset. During the pretraining stage, we are provided with a pretraining dataset that
consists of N + 1 independent data from each of the T independent regression tasks. Specifically,
the pretraining dataset is given by

Xt ∈ RN×d, yt ∈ RN , xt ∈ Rd, yt ∈ R, t = 1, . . . , T, (5)

where each tuple (Xt,yt,xt, yt) is independently generated according to Assumption 1 with N
being the number of contexts. We assume N is fixed during pretraining to simplify the analysis.

Pretraining rule. Based on the pretraining dataset (5), we pretrain the matrix parameter ΓT by
stochastic gradient descent. That is, from an initialization Γ0, e.g., Γ0 = 0, we iteratively generate
(Γt)

T
t=1 by

Γt = Γt−1 −
γt
2
∇
(
f
(
Xt,yt,xt;Γt−1

)
− yt

)2
, t = 1, . . . , T, (6)

4

Published as a conference paper at ICLR 2024

where (Xt,yt,xt, yt)
T
t=1 is the pretraining dataset (5), f is the attention model (1), and (γt)

T
t=1 is a

geometrically decaying stepsize schedule (Ge et al., 2019; Wu et al., 2022), i.e.,

γt =
γ0
2ℓ
, ℓ = ⌊t/ log(T)⌋, t = 1, . . . , T. (7)

Here, γ0 > 0 is an initial stepsize that is a hyperparameter. The output of SGD is the last iterate,
i.e., ΓT .

Our main result in this section is the following ICL risk bound achieved by pretraining with T
independent tasks. The proof is deferred to Appendix D.
Theorem 4.1 (Task complexity for pretraining). Fix N ≥ 0. Let ΓT be generated by (6) with
pretraining dataset (5) and stepsize schedule (7). Suppose that the initialization Γ0 commutes with
H and γ0 ≤ 1/

(
ctr(H)tr(H̃N)

)
, where c > 1 is an absolute constant and H̃N is defined in (4) in

Theorem 3.1. Then we have

E∆N (ΓT) ≲

〈
HH̃N ,

(T∏
t=1

(
I− γtHH̃N

)
(Γ0 − Γ∗

N)

)2〉
+
(
ψ2tr(H) + σ2 +

〈
HH̃N , (Γ0 − Γ∗

N)2
〉)Deff

Teff
,

where the effective number of tasks and effective dimension are given by

Teff :=
T

log(T)
, Deff :=

∑
i

∑
j

min
{
1, T 2

effγ
2
0λ

2
i λ̃

2
j

}
, (8)

respectively, and
(
λi
)
i≥1

and
(
λ̃j
)
j≥1

are the eigenvalues of H and H̃N that satisfy

λ̃j := ψ2λj

(
tr(H) + σ2/ψ2

N
+
N + 1

N
λj

)
, j ≥ 1.

In particular, when Γ0 = 0, we have

E∆N (ΓT) ≲

〈
HH̃N ,

(T∏
t=1

(
I− γtHH̃N

)
Γ∗
N

)2〉
+
(
ψ2tr(H) + σ2

)Deff

Teff
. (9)

Theorem 4.1 provides a statistical ICL risk bound for pretraining with T tasks, which suggests that
the optimal matrix parameter Γ∗

N (see (3)) can be recovered by SGD pretraining if T is large enough.
Focusing on (9) in Theorem 4.1, the first term is the error of directly running gradient descent on the
population ICL risk (see Theorem 3.1), which decreases at an exponential rate. However, seeing only
finite pretraining tasks, the population ICL risk is directly minimizable by the pretraining rule, and
the second term in (9) accounts for the variance caused by pretraining with data from T independent
tasks rather than an infinite number. The second term is small when the effective dimension is small
compared to the effective number of tasks (see their definitions in (8)). We remark that the initial
stepsize γ0 induces a trade-off between the two terms, where a larger initial stepsize reduces the first
term but increases the second term and vice versa.

We highlight that the bounds in Theorem 4.1 do not explicitly depend on the ambient dimensionality
d2, allowing efficient pretraining even with a large number of model parameters. Specifically, our
bounds (e.g., (9)) are functions of the effective dimension (8). In the worst case, for example, when
H = I and T is larger, we have Deff = d2 so that the excess risk bound is Õ(d2/T). However, the
effective dimension Deff is always no larger, and can even be much smaller, than d2 depending on
the spectrum of the data covariance. In contrast, the pretraining bound in (Bai et al., 2023) is based
on uniform convergence analysis (see their Theorem 21) and explicitly depends on the number of
model parameters, hence is worse than ours.

To further demonstrate the power of our pretraining bounds, we present three examples in the fol-
lowing corollary, which illustrate how pretraining with limited tasks minimizes ICL risk. The proof
is deferred to Appendix D.9.
Corollary 4.2 (Large stepsize). Under the setup of Theorem 4.1, additionally assume that Γ0 =
0, σ2 ≂ 1, ψ2 ≂ 1, tr(H) ≂ 1, and choose stepsize γ0 ≂ 1/

(
tr(H)tr(H̃)

)
≂ 1/tr(H̃).

5

Published as a conference paper at ICLR 2024

1. The uniform spectrum. If λi = 1/s for 1 ≤ i ≤ s and λi = 0 for i > s, where s and N satisfy
N ≤ s ≤ d, then

E∆N (ΓT) ≲

N

s
+
Teff
s2

Teff ≤ s2,

s2

Teff
Teff > s2.

2. The polynomial spectrum. If λi = i−a for a > 1 and N3 = o(Teff), then

E∆(ΓT) ≲ T
1
a−1
eff

(
1 +N− 1

a log(Teff) + T
− 1

2a
eff N2− 1

2a

)
.

3. The exponential spectrum. If λi = 2−i and N3 ≤ o(Teff), then

E∆(ΓT) ≲
N2 + log2(Teff)

Teff
.

To summarize this section, we show that the single-layer linear attention model can be effectively
pretrained with a small number of independent tasks. We note that our statistical task complexity
results are under the one-step GD parameterization, where we have a convex (but high-dimensional)
learning problem. Under the orginal attention parameterization (see Appendix B), the learning prob-
lem is non-convex, which adds an extra layer of complexity from non-convex optimization. We leave
for future work extending our statistical task complexity results to the original attention parameteri-
zation. Finally, we also empirically verify our theory both numerically and with a three-layer trans-
former in Appendix A. Nevertheless, it is still unclear whether or not the pretrained model achieves
good ICL performance. This will be our focus in the next section.

5 THE IN-CONTEXT LEARNING OF THE PRETRAINED ATTENTION MODEL

In this section, we examine the ICL performance of a pretrained single-layer linear attention model.
We have already shown the model can be efficiently pretrained. So in this part, we will focus on the
model (1) equipped with the optimal parameter (Γ∗

N in (3)), to simplify our discussions. Our results
in this section can be extended to imperfectly pretrained parameters (ΓT) by applying an additional
triangle inequality. All proofs for results in this section can be found in Appendix E.

The attention estimator. According to (1) and (3), the optimally pretrained attention model cor-
responds to the following linear estimator:

f(X,y,x) :=

〈(
N + 1

N
H+

tr(H) + σ2/ψ2

N
I

)−1
X⊤y

dim(y)
, x

〉
. (10)

Average regression risk. Given a task-specific dataset (X,y,x, y) generated by Assumption 1,
let g(X,y,x) be an estimator of y. We measure the average linear regression risk of g by

L
(
g;X

)
:= E

[(
g(X,y,x)− y

)2 ∣∣ X], (11)

where the expectation is taken with respect to y, x, and y, and is conditioned on X.

The Bayes optimal estimator. It is well known that the optimal estimator for linear regression
with a Gaussian prior is an optimally tuned ridge regression estimator (see for example Bishop &
Nasrabadi, 2006, Section 3.3). This is formally justified by the following proposition.

Proposition 5.1 (Optimally tuned ridge regression). Given a task-specific dataset (X,y,x, y) gen-
erated by Assumption 1, the following estimator minimizes the average risk (11):

h(X,y,x) :=
〈(
X⊤X+ σ2/ψ2I

)−1
X⊤y, x

〉
=

〈(
1

dim(y)
X⊤X+

σ2/ψ2

dim(y)
I

)−1
X⊤y

dim(y)
, x

〉
.

(12)

6

Published as a conference paper at ICLR 2024

It is clear that the optimal estimator (12) corresponds to a ridge regression estimator with regular-
ization parameter σ2/ψ2/dim(y).

Based on the analysis of ridge regression in (Tsigler & Bartlett, 2023), we can obtain the following
bound on the average regression risk induced by the optimally tuned ridge regression.
Corollary 5.2 (Average risk of ridge regression, corollary of (Tsigler & Bartlett, 2023)). Con-
sider the average risk defined in (11). Assume that the signal-to-noise ratio is upper bounded, i.e.,
ψ2tr(H) ≲ σ2. Then for the optimally tuned ridge regression estimator (12), with probability at
least 1− e−Ω(M) over the randomness in X, it holds that

L(h;X)− σ2 ≂ ψ2
∑
i

min
{
µM , λi

}
, where µM ≂

σ2/ψ2

M
,

where M = dim(y) refers to the number of independent data in (X,y).

We remark that the attention estimator (10) is not the Bayes optimal estimator (12). However, we
will show that the average risk induced by the attention estimator (10) can be close to that of the
Bayes optimal estimator (12) in suitable regimes. In this way, we can view the attention estimator
(10) as a good “statistical shortcut” to the Bayes optimal estimator (12), thus achiving good ICL
performance.

Based on Theorem 3.1, we have the following bounds on the average risk for the attention model.
Theorem 5.3 (Average risk of the pretrained attention model). Consider the average risk defined
in (11). Assume that the signal-to-noise ratio is upper bounded, i.e., ψ2tr(H) ≲ σ2. Then for the
attention estimator (10), we have

EL(f ;X)− σ2 ≂ ψ2
∑
i

min
{
µM , λi

}
+ ψ2

(
µM − µN

)2∑
i

min

{
λi
µ2
N

,
1

λi

}
min

{
λi
µM

, 1

}
,

where µM ≂ σ2/(ψ2M), and µN ≂ σ2/(ψ2N).

Theorem 5.3 provides an average risk bound for the optimally pretrained attention model. The first
term in the bound in Theorem 5.3 matches the bound in Corollary 5.2. When the context length in
pretraining and inference is close, i.e., when M ≂ N , the second term in the bound is higher-order,
so the average risk bound of the attention model matches that of the optimally tuned ridge regression.
In this case, the pretrained attention model achieves optimal ICL.

When M and N are not close, the attention model induces a larger average risk compared to ridge
regression. We provide the following three examples to illustrate the gap in their performance.
Corollary 5.4 (Examples). Under the setups of Corollary 5.2 and Theorem 5.3, additionally assume
that σ2 ≂ 1, ψ2 ≂ 1, tr(H) ≂ 1, and M < N/c for some constant c > 1.

1. The uniform spectrum. When λi = 1/s for i ≤ s and λi = 0 for i > s, we have

L(h;X)− σ2 ≂ min

{
1,

s

M

}
, with probability at least 1− e−Ω(M);

EL(f ;X)− σ2 ≂ min

{
1,

s

M

}
, if s < M or s > N2/M.

2. The polynomial spectrum. When λi = i−a for a > 1, we have

L(h;X)− σ2 ≂M
1
a−1, with probability at least 1− e−Ω(M);

EL(f ;X)− σ2 ≂ N
1
aM−1.

3. The exponential spectrum. When λi = 2−i, we have

L(h;X)− σ2 ≂
logM

M
, with probability at least 1− e−Ω(M);

EL(f ;X)− σ2 ≂
logN

M
.

To conclude this section, we show that the pretrained model attains Bayes optimal ICL when the
inference context length is close to the pretraining context length. However, when the context length
is very different in pretraining and in inference, the ICL of the pretrained single-layer linear attention
might be suboptimal.

7

Published as a conference paper at ICLR 2024

6 TECHNIQUE OVERVIEW

In this section, we explain the proof of Theorem 4.1. Our techniques are motivated by the operator
method developed for analyzing 4-th order tensors (i.e., linear operators on matrices) arising in linear
regression (Bach & Moulines, 2013; Dieuleveut et al., 2017; Jain et al., 2018; 2017; Zou et al., 2021;
Wu et al., 2022) and ReLU regression (Wu et al., 2023). However, we need to deal with 8-th order
tensors that require two new tools, namely, diagonalization and operator polynomials, which will
be discussed later in this section. For simplicity, we write Γ∗

N and H̃N as Γ∗ and H̃, respectively.

We start with evaluating (6) and get

Γt = Γt−1 − γtxtx
⊤
t

(
Γt−1 − Γ∗)(1

N
X⊤
t yt

)(
1

N
X⊤
t yt

)⊤

− γtΞt, t = 1, . . . , T,

where Ξt is a zero mean random matrix given by

Ξt := xtx
⊤
t Γ

∗
(

1

N
X⊤
t yt

)(
1

N
X⊤
t yt

)⊤

− ytxt

(
1

N
X⊤
t yt

)⊤

.

Define a sequence of (random) linear maps on matrices,

∀A ∈ Rd×d, Pt ◦A := A− γtxtx
⊤
t A

(
1

N
X⊤
t yt

)(
1

N
X⊤
t yt

)⊤

, 1 ≤ t ≤ T.

Then we can re-write the recursion as

Γt − Γ∗ = Pt ◦ (Γt−1 − Γ∗)− γtΞt, t = 1, . . . , T.

The (random) linear recursion allows us to track ΓT , which serves as the basis of the operator
method. From now on, we will heavily use tensor notations. We refer the readers to Appendix D.1
for a brief overview of tensors (especially PSD operators).

Bias-variance decomposition. Solving the recursion of Γt yields

ΓT − Γ∗ =

T∏
t=1

Pt ◦ (Γ0 − Γ∗)−
T∑
t=1

γt

T∏
k=t+1

Pk ◦Ξt.

Taking outer product and expectation, we have

AT := E(ΓT − Γ∗)⊗2 = E
(T∏
t=1

Pt ◦ (Γ0 − Γ∗)−
T∑
t=1

γt

T∏
k=t+1

Pk ◦Ξt
)⊗2

⪯ 2E
(T∏
t=1

Pt ◦ (ΓT − Γ∗)

)⊗2

︸ ︷︷ ︸
=:BT

+2E
(T∑
t=1

γt

T∏
k=t+1

Pk ◦Ξt
)⊗2

︸ ︷︷ ︸
=:CT

,

where AT , BT , and CT are all PSD operators on matrices (i.e., 4-th order tensors). Then we can
decompose the ICL risk (see Theorem 3.1) into a bias error and a variance error:

E∆N (ΓT) :=
〈
H, AT ◦ H̃

〉
≤ 2
〈
H, BT ◦ H̃

〉
+ 2
〈
H, CT ◦ H̃

〉
.

In what follows, we focus on explaining the analysis of the variance error
〈
H, CT ◦ H̃

〉
.

Operator recursion. The variance operator CT can be equivalently defined through the following
operator recursion (see Appendix D.2 for more details):

C0 = 0⊗ 0, Ct = St ◦ Ct−1 + γ2tN , t = 1, . . . , T, (13)

where N := E
[
Ξ⊗2

]
and St is a linear map on operators (i.e., an 8-th order tensor) given by: for

any O ∈
(
Rd×d

)⊗2
,

St ◦ O := O − γt

(
(H⊗ I) ◦ O ◦ (H̃⊗ I) + (I⊗H) ◦ O ◦ (I⊗ H̃)

)
+ γ2tM◦O ◦ L,

8

Published as a conference paper at ICLR 2024

with M, L being given by

M := E
(
xx⊤)⊗2

, L := E

((
1

N
X⊤y

)(
1

N
X⊤y

)⊤
)⊗2

.

Appendix D.3 includes several bounds about these operators; among them the following is crucial:

for any PSD operator O, M◦O ◦ L ⪯ c⟨H, O ◦ H̃⟩S(1), where S(1) := ⟨H̃, ·⟩H,

where c > 1 is an absolute constant.

Key idea 1: diagonalization. The operator recursion (13) involves 8-th order tensors St that are
hard to compute. A critical observation is that the variance bound only depends on the results of
CT applied on diagonal matrices (assuming that H is diagonal, which can be made without loss of
generality). More importantly, when restricting the relevant operators to diagonal matrices (instead
of all matrices), the 8-th order tensors St can be bounded by simpler 8-th order tensors Gt plus
diagonal operators. Specifically, based on (13), we can show that (see Appendix D.4)

C̊t ⪯ Gt ◦ C̊t−1 + cγ2t ⟨H, C̊t−1 ◦ H̃⟩ · S(1) + cγ2t (ψ
2tr(H) + σ2)S(1), (14)

where C̊t refers to Ct restricted to diagonal matrices and Gt is a linear map on operators given by:

Gt ◦ O := O − γt

(
(H⊗ I) ◦ O ◦ (H̃⊗ I) + (I⊗H) ◦ O ◦ (I⊗ H̃)

)
+ γ2tH

⊗2 ◦ O ◦ H̃⊗2.

We remark that Wu et al. (2023) has used the diagonalization idea with matrices for dealing with
non-commutable matrices. In comparison, here we use the diagonalization idea with operators for
dealing with high-order tensors.

Key idea 2: operator polynomials. To solve the operator recursion in (14), we need to know
how the 8-th order tensor Gt interacts with operator S(1). To this end, we introduce a powerful tool
called operator polynomials. Specifically, we define operator monomials and their “multiplication”
as follows:

S(i) := ⟨H̃i, · ⟩Hi, S(i) • S(j) := S(i+j), i, j ∈ N.

One can verify that the multiplication “•” distributes with the usual addition “+”, therefore we
can define polynomials of operators. We prove the following key equations that connect operator
polynomials with how the 8-th order tensor Gt interacts with operator S(1) (see Appendix D.5):

Gt ◦ S(1) =
(
S(0) − γtS(1)

)•2 • S(1),

(t∏
k=1

Gk

)
◦ S(1) =

t∏
k=1

(
S(0) − γkS(1)

)•2 • S(1).

In addition, we note that the operator polynomials are all diagonal operators that contain only d2
degrees of freedom (unlike general operators that contain d4 degrees of freedom), thus we can
compute them via relatively simple algebraic rules (see Appendix D.5).

Variance and bias error. Up to now, we have introduced diagonalization to simplify the operator
recursion and operator polynomials to compute the simplified operator recursion. The remaining
efforts are to analyze the variance error following the methods introduced by Zou et al. (2021); Wu
et al. (2022) (see Appendix D.6). The analysis of the bias error is more involved; it is presented in
Appendix D.7.

7 CONCLUSION

This paper studies the in-context learning of a single-layer linear attention model for linear regres-
sion with a Gaussian prior. We prove a statistical task complexity bound for the pretraining of the
attention model, where we develop new tools for operator methods. In addition, we compare the
average linear regression risk obtained by a pretrained attention model with that obtained by an op-
timally tuned ridge regression, which clarifies the effectiveness of in-context learning. Our theories
complement experimental results in prior works.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

We thank the anonymous reviewers and area chairs for their helpful comments. DZ acknowledges
the support from NSFC 62306252. ZC and QG are supported in part by the NSF grants IIS-1906169,
IIS-2008981, and the Sloan Research Fellowship. VB is partially supported by National Science
Foundation Awards 2244899 and 2333887, the ONR award N000142312737, the Ministry of Trade,
Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through
the International Cooperative R&D program. JW and PB are supported in part by NSF grants DMS-
2023505 and DMS-2031883 and Simons Foundation award 814639. The views and conclusions
contained in this paper are those of the authors and should not be interpreted as representing any
funding agencies.

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2022.

Francis Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation with con-
vergence rate o(1/n). Advances in neural information processing systems, 26:773–781, 2013.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, vol-
ume 4. Springer, 2006.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can
GPT learn in-context? language models secretly perform gradient descent as meta-optimizers. In
Findings of the Association for Computational Linguistics: ACL 2023, 2023.

Aymeric Dieuleveut, Nicolas Flammarion, and Francis Bach. Harder, better, faster, stronger con-
vergence rates for least-squares regression. The Journal of Machine Learning Research, 18(1):
3520–3570, 2017.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule:
A near optimal, geometrically decaying learning rate procedure for least squares. Advances in
neural information processing systems, 32, 2019.

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 11398–11442. PMLR, 23–29 Jul 2023.

Chi Han, Ziqi Wang, Han Zhao, and Heng Ji. In-context learning of large language models explained
as kernel regression. arXiv preprint arXiv:2305.12766, 2023.

Prateek Jain, Praneeth Netrapalli, Sham M Kakade, Rahul Kidambi, and Aaron Sidford. Paralleliz-
ing stochastic gradient descent for least squares regression: Mini-batching, averaging, and model
misspecification. The Journal of Machine Learning Research, 18(1):8258–8299, 2017.

10

Published as a conference paper at ICLR 2024

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, Venkata Krishna Pillutla, and
Aaron Sidford. A markov chain theory approach to characterizing the minimax optimality of
stochastic gradient descent (for least squares). In 37th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning and
weight shifting for softmax regression. arXiv preprint arXiv:2304.13276, 2023a.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023b.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards
a mechanistic understanding. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023c.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is provably
the optimal in-context learner with one layer of linear self-attention. In The Twelfth International
Conference on Learning Representations, 2024.

Allan Raventos, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
emergence of non-Bayesian in-context learning for regression. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

James R Schott. Matrix analysis for statistics. John Wiley & Sons, 2016.

George AF Seber. A matrix handbook for statisticians. John Wiley & Sons, 2008.

Alexander Tsigler and Peter L. Bartlett. Benign overfitting in ridge regression. Journal of Machine
Learning Research, 24(123):1–76, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large lan-
guage models are latent variable models: Explaining and finding good demonstrations for in-
context learning. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham M. Kakade. Last iterate
risk bounds of SGD with decaying stepsize for overparameterized linear regression. The 39th
International Conference on Machine Learning, 2022.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Sham M Kakade.
Finite-sample analysis of learning high-dimensional single ReLU neuron. The 40th International
Conference on Machine Learning, 2023.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit Bayesian inference. In International Conference on Learning Representa-
tions, 2021.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023a.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-context
learning learn? Bayesian model averaging, parameterization, and generalization. arXiv preprint
arXiv:2305.19420, 2023b.

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Benign overfitting
of constant-stepsize SGD for linear regression. In Conference on Learning Theory, pp. 4633–
4635. PMLR, 2021.

11

Published as a conference paper at ICLR 2024

101 102 103 104 105

Number of Pretraining Tasks

1.0

1.2

1.4

1.6

1.8

2.0

M
SE

ICL
Ridge Regression
OLS

(a) Exponential decay spectrum, λi = 2−i

101 102 103 104 105

Number of Pretraining Tasks

1.0

1.2

1.4

1.6

1.8

2.0

M
SE

ICL
Ridge Regression
OLS

(b) Polynomial decay spectrum, λi = i−2

Figure 1: Task complexity of ICL (of the one-step GD model), ridge regression, and OLS. The
context length is M = N = 200. The ambient dimension is d = 100. We observe that as the
number of pretraining tasks increases, one-step GD achieves smaller MSE and becomes closer to
the Bayes algorithm, ridge regression. This is consistent with our theory.

A EXPRIMENTS

In this section, we conduct experiments on the one-step GD model (1) and a three-layer transformer.

A.1 THE ONE-STEP GD MODEL

Data generation. We follow the generation process outlined in Assumption 1. Specifically, we
sample (xn, yn)

N+1
n=1 as independent copies of (x, y), where

x ∼ N (0, H), y ∼ N
(
β⊤x, σ2

)
, β ∼ N (0, ψ2Id).

We treat the first N data points (xn, yn)
N
n=1 as the context examples, xN+1 as the covariate, and

yN+1 as the response.

Base experiment setup. We configure the base experiment with the following parameters:

d = 100, N = 2d, σ = 1, ψ = 1, H = diag(2−1, 2−2, . . . , 2−d).

We sample a fresh sequence (xn, yn)
N+1
n=1 for each task. We train the ICL model using online SGD

(see (6)) with a geometrically decaying stepsize schedule defined in (7). We run online SGD for 105
steps. The default initial learning rate is set as 0.1. For evaluation, we consider in-context sample
size M = N = 200 and compare against benchmark algorithms such as optimally tuned ridge
regression (Theorem 5.1) and Ordinary Least Square (OLS). We conduct a series of experiments by
varying parts of this base experiment setup, that is, the experimental setups are identical to this base
experiment setup unless noted otherwise.

The effect of the number of pretraining tasks. To examine the pretraining task complexity,
we vary the number of pretraining tasks in the base setup in the range [101, 102, 103, 104, 105].
In addition to the exponentially decaying spectrum considered in the base setup, we consider a
polynomially decaying spectrum with λi = i−2. For different spectrums λi = i−2 and λi = 2−i,
the initial learning rates were optimally tuned from the set {0.005, 0.01, 0.05, 0.1, 0.5}, resulting in
an optimal rate of 0.1 for both. Results are presented in Figure 1. We observe that the ICL error
decreases as the number of pretraining tasks increases.

The effect of the ambient dimension. To examine the pretraining task complexity, we vary the
ambient dimension in the base setup in the range of d ∈ {10, 20, 50, 100}. We also consider a
polynomial decay spectrum with λi = i−2. Results are presented in Figure 2. We observe that the
ICL performance is relatively unaffected by the ambient dimension d.

12

Published as a conference paper at ICLR 2024

10 20 50 100
Dimension

1.0

1.2

1.4

1.6

1.8

2.0
M

SE

ICL
Ridge Regression
OLS

(a) Exponential decay spectrum, λi = 2−i

10 20 50 100
Dimension

1.0

1.2

1.4

1.6

1.8

2.0

2.2

M
SE

ICL
Ridge Regression
OLS

(b) Polynomial decay spectrum, λi = i−2

Figure 2: The effect of the ambient dimension for ICL (of one-step GD), ridge regression, and OLS.
The context length is M = N = 200. The number of pretraining tasks is 105 for ICL. We observe
that when the spectrum of the data covariance H decays relatively fast, for example, λi ∼ 2−i

and λi ∼ i−2, the performances of the three considered algorithms are not sensitive to the ambient
dimension. This is consistent with our theory.

1 5 10 20 40 80 160
Inference Incontext Samples

1.0

1.5

2.0

2.5

3.0

3.5

M
SE

ICL
Ridge Regression

(a) Exponential decay spectrum, λi = 2−i

1 5 10 20 40 80 160
Inference Incontext Samples

1

2

3

4

5

6
M

SE
ICL
Ridge Regression

(b) Polynomial decay spectrum, λi = i−2

Figure 3: The effect of the number of context examples during inference for ICL (of one-step GD)
and ridge regression. The number of context examples during pretraining is N = 40. The ambient
dimension is d = 20. The MSE of OLS is significantly worse than ICL and ridge regression when
M ≤ N = 20, so we ignore OLS in this plot for a better visualization. We observe that the ICL
achieves a similar MSE to ridge regression when M is close to N . However, the gap becomes larger
when M is much smaller than N . This is consistent with our theory.

The effect of the number of context examples during inference. We modify the base experiment
setup with d = 20, N = 40. We then examine the effect of the number of context examples during
inference by varying M . Similarly, we also consider a polynomial decay spectrum with λi = i−2.
Results are presented in Figure 3. We observe that when M is close to N , the number of context
examples during pretraining, the ICL risk of one-step GD is close to that of optimally tuned ridge
regression. However, the gap becomes larger when M is much smaller than N . This is consistent
with our theory.

The effect of model misspecification. The base experiment setup assumes well-specified data.
We now investigate three misspecification scenarios:

1. Replacing the label generation process from y ∼ N (β⊤x, σ2) to y ∼ β⊤x + uniform[−c, c],
where we set c =

√
3 to maintain the noise variance.

2. Replacing the label generation process from y ∼ N (β⊤x, σ2) to y ∼ N (sigmoid(β⊤x), σ2).
3. Replacing the label generation process from y ∼ N (β⊤x, σ2) to y ∼ N ((β⊤x)2, σ2).

13

Published as a conference paper at ICLR 2024

1 5 10 25 50 100 200 400 800
Inference Incontext Samples

2

4

6

8

10

M
SE

Base
Sigmoid
Square
Uniform

Figure 4: The effect of data misspecification for the ICL of one-step GD. The base setup, y ∼
N (β⊤x, σ2) with σ2 = 1, is well-specified. We then consider three misspecification scenarios.
Uniform: y ∼ β⊤x + uniform[−

√
3,
√
3]. Sigmoid: y ∼ N (sigmoid(β⊤x), σ2). Square: y ∼

N ((β⊤x)2, σ2). We observe that the type of misspecification affects the ICL performance. In
particular, the ICL performance declines less when the ground-truth model is closer to a linear
model.

Results are shown in Figure 4. We observe that the ICL of one-step GD in the uniform noise
case is close to the Gaussian noise case in the base setup. However, when the mean of y is not
linearly related to x as in the latter two cases, the ICL of one-step GD is significantly worse than
the base setup. The performance deterioration depends on the type of misspecification, with y ∼
N ((β⊤x)2, σ2) showing the most significant decline.

A.2 A THREE-LAYER TRANSFORMER

We conduct experiments on the task complexity for training a transformer. We adopt the code by
Bai et al. (2023)2. We consider a three-layer transformer (GPT model) with 2 heads. We follow the
generation process outlined in Assumption 1. Specifically, we sample (xn, yn)

N+1
n=1 as independent

copies of (x, y), where

x ∼ N (0, H), y ∼ N
(
β⊤x, σ2

)
, β ∼ N (0, ψ2Id).

We treat the first N data points (xn, yn)
N
n=1 as the context examples, xN+1 as the covariate, and

yN+1 as the response. We configure the experiments with

d = 20, N = 2d, σ = 0.5, ψ = 1, H = diag(1, 2−4, . . . , d−4).

For each task, we will sample 64 i.i.d. sequences of (xn, yn)
N+1
n=1 . The model is trained with

Adam with a learning rate of 0.0001. We set the number of context examples during inference to
be M = N . The results are presented in Figure 5. Similarly to the one-step GD model, we also
observe that the ICL error decreases as the number of pretraining tasks increases, approaching the
performance of the Bayes optimal algorithm, ridge regression.

B SINGLE-LAYER LINEAR ATTENTION AND ONE-STEP GD

Results in this part largely follow from (Ahn et al., 2023; Zhang et al., 2023a). We include them
here for completeness.

Denote the prompt by

Z :=

(
X⊤ x
y⊤ 0

)
∈ R(d+1)×(n+1).

2https://github.com/allenbai01/transformers-as-statisticians/tree/main

14

https://github.com/allenbai01/transformers-as-statisticians/tree/main

Published as a conference paper at ICLR 2024

25 26 27 28 29 210 211 212 213 214 215 216

Number of Pretraining Tasks

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
SE

ICL
Ridge Regression
OLS

Figure 5: ICL of a three-layer transformer. The linear regression tasks are generated according
to Assumption 1, with d = 20, N = 2d, standard deviation σ = 0.5, scaling factor ψ = 1, and
a polynomial decay spectrum λi = i−4. We fix the number of context examples during inference
to M = N . We observe that the ICL error decreases as the number of pretraining tasks increases,
approaching the performance of the Bayes optimal algorithm, ridge regression.

Denote the query, key, and value parameters by

Q,K,V ∈ R(d+1)×(d+1).

Then the single-layer attention with residue connection outputs

Z+ (VZ)
(QZ)⊤(KZ)

n
∈ R(d+1)×(n+1).

The prediction is the bottom right entry of the above matrix, that is

ŷ =

[
Z+

1

n
(VZ)(QZ)⊤(KZ)

]
d+1,n+1

= e⊤d+1

(
Z+

1

n
VZZ⊤Q⊤KZ

)
en+1

= 0 +
1

n
e⊤d+1VZZ⊤Q⊤KZen+1

=
1

n
(e⊤d+1V)

(
X⊤X+ xx⊤ X⊤y

y⊤X y⊤y

)
Q⊤K

(
x
0

)
,

Our key assumption is that the bottom left 1 × d block in V is fixed to be zero and the bottom left
1× d block in Q⊤K is fixed to be zero, that is, we assume that

V =

(
∗ ∗
0 v

)
, QK⊤ =

(
W ∗
0 ∗

)
,

where v ∈ R and W ∈ Rd×d are relevant free parameters. Then we have

ŷ =
1

n
(0, v)

(
X⊤X+ xx⊤ X⊤y

y⊤X y⊤y

)(
Wx
0

)
=
v

n
y⊤XWx

=

〈(
vW⊤)X⊤y

n
, x

〉
,

which recovers one-step GD when we replace vW⊤ by Γ, i.e., the update formula in (1).

15

Published as a conference paper at ICLR 2024

C POPULATION ICL RISK

Lemma C.1. Suppose that the rows in X ∈ RN×d are generated independently

X[i] ∼ N (0,H), i = 1, . . . , N.

Then for every PSD matrix A, it holds that

E
[
X⊤XAX⊤X

]
= Ntr(HA)H+N(N + 1)HAH.

Proof of Lemma C.1. This is by direct computing.

E
[
X⊤XAX⊤X

]
= E

(∑
i

xix
⊤
i A

∑
j

xjx
⊤
j

)
= NExx⊤Axx⊤ +N(N − 1)HAH

= N
(
tr(HA)H+ 2HAH

)
+N(N − 1)HAH

= Ntr(HA)H+N(N + 1)HAH.

This completes the proof.

We are ready to present the proof of Theorem 3.1.

Proof of Theorem 3.1. Let β̃ be the task parameter and let

ϵ := y − x⊤β̃, ϵ := y −Xβ̃.

Then from Assumption 1, we have

x ∼ N (0,H), X[i] ∼ N (0,H), β̃ ∼ N (0, ψ2I), ϵ ∼ N (0, σ2), ϵ ∼ N (0, σ2IN).

Bringing this into (2), we have

RN (Γ) = E
(〈

1

N
ΓX⊤y, x

〉
− y

)2

by (1) and (2)

= E
(
x⊤Γ

1

N
X⊤Xβ̃ + x⊤Γ

1

N
X⊤ϵ− x⊤β̃ − ϵ

)2

= E
(
x⊤
(
I− Γ

1

N
X⊤X

)
β̃

)2

+
1

N2
E
(
x⊤ΓX⊤ϵ

)2
+ σ2

=

〈
E[x⊗2], E

(
I− Γ

1

N
X⊤X

)⊗2

◦ E
[
β̃⊗2

]〉
+

1

N2

〈
E[x⊗2], ΓE

[
X⊤ϵϵ⊤X

]
Γ⊤
〉
+ σ2

=

〈
H, E

(
I− Γ

1

N
X⊤X

)⊗2

◦
(
ψ2I
)〉

+
1

N2

〈
H, Nσ2ΓHΓ⊤

〉
+ σ2

=

〈
H, ψ2E

(
I− Γ

1

N
X⊤X

)(
I− Γ

1

N
X⊤X

)⊤

+
σ2

N
ΓHΓ⊤

〉
+ σ2. (15)

Next, we compute the matrix in (15) that involves Γ, that is

ψ2E
(
I− Γ

1

N
X⊤X

)(
I− Γ

1

N
X⊤X

)⊤

+
σ2

N
ΓHΓ⊤

= ψ2I− ψ2
(
ΓH+HΓ⊤)+ Γ

(
ψ2

N2
E
[
X⊤XX⊤X

]
+
σ2

N
H

)
Γ⊤

= ψ2I− ψ2
(
ΓH+HΓ⊤)+ Γ

(
ψ2

N2

(
Ntr(H)H+N(N + 1)H2

)
+
σ2

N
H

)
Γ⊤ by Lemma C.1

= ψ2I− ψ2
(
ΓH+HΓ⊤)+ ΓH̃NΓ⊤ by (4)

16

Published as a conference paper at ICLR 2024

=
(
Γ− Γ∗

N

)
H̃N

(
Γ− Γ∗

N

)⊤
+ ψ2I− Γ∗

NH̃N

(
Γ∗
N

)⊤
,

where the last equality is because Γ∗
N := ψ2HH̃−1

N by (3). Here, we define

H̃N := E
(

1

N
X⊤y

)(
1

N
X⊤y

)⊤

= ψ2H

(
tr(H) + σ2/ψ2

N
I+

N + 1

N
H

)
,

Γ∗
N := ψ2HH̃−1

N .

Bringing this back to (15), we have

RN (Γ) =
〈
H,

(
Γ− Γ∗

N

)
H̃N

(
Γ− Γ∗

N

)⊤〉
+
〈
H, ψ2I− Γ∗

NH̃N

(
Γ∗
N

)⊤〉
+ σ2.

It is clear that
minRN (·) =

〈
H, ψ2I− Γ∗

NH̃N

(
Γ∗
N

)⊤〉
+ σ2,

and
RN (Γ)−minRN (·) =

〈
H,

(
Γ− Γ∗

N

)
H̃N

(
Γ− Γ∗

N

)⊤〉
.

We now compute minRN (·) as follows:

minRN (·)

=
〈
H, ψ2I− Γ∗

NH̃N

(
Γ∗
N

)⊤〉
+ σ2

=
〈
H, ψ2I− ψ4H2H̃−1

N

〉
+ σ2

=
〈
ψ2HH̃−1

N , H̃N − ψ2H2
〉
+ σ2

=

〈(
tr(H) + σ2/ψ2

N
I+

N + 1

N
H

)−1

, ψ2H

(
tr(H) + σ2/ψ2

N
I+

1

N
H

)〉
+ σ2

= ψ2tr

(((
tr(H) + σ2/ψ2

)
I+ (N + 1)H

)−1((
tr(H) + σ2/ψ2

)
H+H2

))
+ σ2,

which completes the proof.

D THE TASK COMPLEXITY FOR PRETRAINING AN ATTENTION MODEL

D.1 PRELIMINARIES OF OPERATOR METHODS

Tensor product. We use ⊗ to denote the tensor product or Kronecker product. For convenience,
we follow the tensor product convention used by Bach & Moulines (2013); Dieuleveut et al. (2017);
Jain et al. (2018; 2017); Zou et al. (2021); Wu et al. (2022) for analyzing SGD.
Definition 1 (Tensor product). For matrices A and B of any shape, B⊤ ⊗ A is an operator on
matrices of an appropriate shape. Specifically, for matrix X of an appropriate shape, define

(B⊤ ⊗A) ◦X := AXB.

It is clear that B⊤ ⊗A is a linear operator. For simplicity, we also write

A⊗2 := A⊗A.

We introduce a few facts about linear operators on matrices.
Fact D.1. For matrices A, B, C, and D of an appropriate shape, it holds that

(D⊤ ⊗C) ◦ (B⊤ ⊗A) =
(
D⊤B⊤)⊗ (CA

)
.

Proof. For matrix X of an appropriate shape, we have

(D⊤ ⊗C) ◦ (B⊤ ⊗A) ◦X = (D⊤ ⊗C) ◦
(
AXB

)
= CAXBD

=
(
D⊤B⊤)⊗ (CA

)
◦X,

which verifies the claim.

17

Published as a conference paper at ICLR 2024

PSD operators. A key notion in our analysis is that of PSD operators, which map a PSD matrix
to another PSD matrix.
Definition 2 (PSD operator). For a linear operator on matrices

O : Rd×d → Rd×d,
we say O is a PSD operator, if

O ◦A ⪰ 0, for every A ⪰ 0.

Definition 3 (Operator order). For two linear operators on matrices

O1,O2 : Rd×d → Rd×d,
we say

O1 ⪯ O2,

if O2 −O1 is a PSD operator.

D.2 BIAS-VARIANCE DECOMPOSITION

SGD iterates. Fix the current iterate index as t ≥ 1. Recall that

∂

∂Γ
R(Γ;Xt,yt,xt, yt) = xtx

⊤
t

(
Γ− Γ∗)(1

N
X⊤
t yt

)(
1

N
X⊤
t yt

)⊤

+Ξt,

where Γ∗ is defined in (3) and

Ξt := xtx
⊤
t Γ

∗
(

1

N
X⊤
t yt

)(
1

N
X⊤
t yt

)⊤

− ytxt

(
1

N
X⊤
t yt

)⊤

. (16)

The next lemma shows that Ξ has zero mean and hence behaves like a “noise”.
Lemma D.2. For random matrix Ξt defined in (16), it holds that E[Ξt] = 0.

Proof. This is because

EΞt = E
[
xx⊤Γ∗

(
1

N
X⊤y

)(
1

N
X⊤y

)⊤

− xy

(
1

N
X⊤y

)⊤]
= HΓ∗E

(
1

N
X⊤y

)(
1

N
X⊤y

)⊤

− Exx⊤β̃

(
1

N
X⊤Xβ̃

)⊤

= HΓ∗H̃− ψ2H2

= 0,

where H̃ is defined in (4) and it holds that

H̃ = (Γ∗)−1ψ2H.

We complete the proof.

We can now write the SGD update as

Γt = Γt−1 − γt
∂

∂Γ
R(Γt−1;Xt,yt,xt, yt)

= Γt−1 − γtxtx
⊤
t

(
Γt−1 − Γ∗)(1

N
X⊤
t yt

)(
1

N
X⊤
t yt

)⊤

− γtΞt, t = 1, . . . , T,

where (γt)
T
t=1 is a stepsize schedule defined by (7).

Define
Λt := Γt − Γ∗,

then we have

Λt = Λt−1 − γtxtx
⊤
t Λt−1

(
1

N
X⊤
t yt

)(
1

N
X⊤
t yt

)⊤

− γtΞt.

18

Published as a conference paper at ICLR 2024

Bias-variance decomposition. Define

Pt : Rd×d → Rd×d

A 7→ A− γtxtx
⊤
t A

(
1

N
X⊤
t yt

)(
1

N
X⊤
t yt

)⊤

.

It is clear that Pt is a linear map on matrices. Then we have

Λt = Pt ◦Λt−1 − γtΞt, t ≥ 1.

Solving the recursion, we have

ΛT =

T∏
t=1

Pt ◦Λ0 −
T∑
t=1

γt

T∏
k=t+1

Pk ◦Ξt.

Taking outer product and expectation, we have

AT := EΛ⊗2
T

= E
(T∏
t=1

Pt ◦Λ0 −
T∑
t=1

γt

T∏
k=t+1

Pk ◦Ξt
)⊗2

⪯ 2E
(T∏
t=1

Pt ◦Λ0

)⊗2

+ 2E
(T∑
t=1

γt

T∏
k=t+1

Pk ◦Ξt
)⊗2

=: 2BT + 2CT ,

where we define

BT := E
(T∏
t=1

Pt ◦Λ0

)⊗2

, (17)

CT := E
(T∑
t=1

γt

T∏
k=t+1

Pk ◦Ξt
)⊗2

. (18)

Therefore, we can bound the average risk by

ERN (ΓT)−minRN (·) = E
〈
H, (ΓT − Γ∗)H̃(ΓT − Γ∗)⊤

〉
by Theorem 3.1

=
〈
H, AT ◦ H̃

〉
≤ 2
〈
H, BT ◦ H̃

〉
+ 2
〈
H, CT ◦ H̃

〉
.

The above gives the bias-variance decomposition of the risk.

Operators and operator maps. Define the following three linear operators on symmetric matri-
ces:

M := E(xx⊤)⊗2, (19)

L := E

((
1

N
X⊤y

)(
1

N
X⊤y

)⊤
)⊗2

, (20)

N := E
[
Ξ⊗2

]
. (21)

It is easy to verify that all three operators are PSD operators, that is, a PSD matrix is mapped to
another PSD matrix.

Define the following SGD map on linear operators:

St :
(
Rd×d

)⊗2 →
(
Rd×d

)⊗2

O 7→ O − γt

(
(H⊗ I) ◦ O ◦ (H̃⊗ I) + (I⊗H) ◦ O ◦ (I⊗ H̃)

)
+ γ2tM◦O ◦ L.

(22)

19

Published as a conference paper at ICLR 2024

Similarly, define a GD map on linear operators:

Gt :
(
Rd×d

)⊗2 →
(
Rd×d

)⊗2

O 7→ O − γt

(
(H⊗ I) ◦ O ◦ (H̃⊗ I) + (I⊗H) ◦ O ◦ (I⊗ H̃)

)
+ γ2tH

⊗2 ◦ O ◦ H̃⊗2.

(23)

When the context is clear, we also use G and S and ignore the subscript in stepsize γt. When the
context is clear, we also write

G (O) = G ◦ O, S (O) = S ◦ O.

The following lemma explains the reason we call these two maps SGD and GD maps, respectively.

Lemma D.3 (GD and SGD maps). We have the following properties of the GD and SGD maps
defined in (23) and (22), respectively.

1. G and S are both linear maps over the space of matrix operators, i.e., for every pair of
matrix operators O1 and O2 and every scalar a ∈ R,

G (O1 + aO2) = G (O1) + aG (O2), S (O1 + aO2) = S (O1) + aS (O2).

2. For every matrix P of an appropriate shape, it holds that

G (P⊗2) = (P− γHPH̃)⊗2

and that

S (P⊗2) = E(P ◦P)⊗2 = E

(
P− γxx⊤P

(
1

N
X⊤y

)(
1

N
X⊤y

)⊤
)⊗2

,

which corresponds to a single (population) GD and SGD steps on matrix P, respectively.

3. As a consequence of the first two conclusions, it holds that G (O) and S (O) are both PSD
operators if O is given by

O := E
[
P⊗P

]
, where P is of an appropriate shape and is possibly random.

4. It holds that
G (0⊗ 0) = S (0⊗ 0) = 0⊗ 0.

Proof. The first conclusion is clear by the definitions of (23) and (22).

The second conclusion also follows from the definitions of (23) and (22). For example, we can
check that

G
(
P⊗2

)
= P⊗2 − γ

(
(H⊗ I) ◦P⊗2 ◦ (H̃⊗ I) + (I⊗H) ◦P⊗2 ◦ (I⊗ H̃)

)
+ γ2H⊗2 ◦P⊗2 ◦ H̃⊗2

= P⊗2 − γ
(
(HPH̃)⊗P+P⊗ (HPH̃)

)
+ γ2(HPH̃)⊗2

=
(
P− γHPH̃

)⊗2
.

The third conclusion follows from the first two conclusions.

The last conclusion is clear by the definitions of (23) and (22).

Bias iterate. Using the SGD map (22), we can re-write (17) recursively as

B0 = Λ⊗2 =
(
Γ0 − Γ∗)⊗2

,

Bt = St ◦ Bt−1, t = 1, . . . , T.
(24)

20

Published as a conference paper at ICLR 2024

Variance iterates. Let us consider the variance iterate defined in (18). Since Ξt has zero mean
and is independent of Pk for k ≥ t+ 1, we have

CT = E
(T∑
t=1

γt

T∏
k=t+1

Pk ◦Ξt
)⊗2

=

T∑
t=1

γ2t E
(T∏
k=t+1

Pk ◦Ξt
)⊗2

.

Using the SGD map (22) and the noise operator (21), we can re-write the above recursively as

C0 = 0⊗ 0,

Ct = St ◦ Ct−1 + γ2tN , t = 1, . . . , T.
(25)

D.3 SOME OPERATOR BOUNDS

Lemma D.4. Suppose that z ∈ N (0, Id), then

1. For every u,v ∈ Rd,
E⟨z,u⟩2⟨z,v⟩2 ≤ 3∥u∥22 · ∥v∥22.

2. For every u,v,w ∈ Rd,

E⟨z,u⟩2⟨z,v⟩2⟨z,w⟩2 ≤ 15∥u∥22 · ∥v∥22 · ∥w∥22.

3. For every u,v,w,x ∈ Rd,

E⟨z,u⟩2⟨z,v⟩2⟨z,w⟩2⟨z,x⟩2 ≤ 105∥u∥22 · ∥v∥22 · ∥w∥22 · ∥x∥22.

Proof. These inequalities can be proved by using Gaussian moment tensor equations in Section
20.5.2 in (Seber, 2008) and Section 11.6 in (Schott, 2016). Specifically, for the fourth moment, we
have

E⟨z,u⟩2⟨z,v⟩2 = Ez⊤uu⊤z · z⊤vv⊤z

= tr(uu⊤)tr(vv⊤) + 2tr(uu⊤vv⊤)

= ∥u∥22 · ∥v∥22 + 2⟨u,v⟩2

≤ 3∥u∥22 · ∥v∥22.

For the sixth moment, we have

E⟨z,u⟩2⟨z,v⟩2⟨z,w⟩2

= Ez⊤uu⊤z · z⊤vv⊤z · z⊤ww⊤z

= tr(uu⊤)tr(vv⊤)tr(ww⊤) + 2tr(uu⊤)tr(vv⊤ww⊤)

+ 2tr(vv⊤)tr(uu⊤ww⊤) + 2tr(ww⊤)tr(uu⊤vv⊤) + 8tr(uu⊤vv⊤ww⊤)

= ∥u∥22 · ∥v∥22 · ∥w∥22 + 2∥u∥22⟨v,w⟩2 + 2∥v∥22⟨u,w⟩2

+ 2∥w∥22⟨u,v⟩2 + 8⟨u,v⟩⟨v,w⟩⟨u,w⟩
≤ 15∥u∥22 · ∥v∥22 · ∥w∥22.

For the eighth moment, we have

E⟨z,u⟩2⟨z,v⟩2⟨z,w⟩2⟨z,x⟩2

= Ez⊤uu⊤z · z⊤vv⊤z · z⊤ww⊤z · z⊤xx⊤z

= tr(uu⊤)tr(vv⊤)tr(ww⊤)tr(xx⊤)

+ 8
(
tr(uu⊤)tr(vv⊤ww⊤xx⊤) + tr(vv⊤)tr(uu⊤ww⊤xx⊤)

21

Published as a conference paper at ICLR 2024

+ tr(ww⊤)tr(uu⊤vv⊤xx⊤) + tr(xx⊤)tr(uu⊤vv⊤ww⊤)
)

+ 4
(
tr(uu⊤vv⊤)tr(ww⊤xx⊤) + tr(uu⊤ww⊤)tr(vv⊤xx⊤)

+ tr(uu⊤xx⊤)tr(vv⊤ww⊤)
)

+ 2
(
tr(uu⊤)tr(vv⊤)tr(ww⊤xx⊤) + tr(uBu⊤)tr(ww⊤)tr(vv⊤xx⊤)

+ tr(uu⊤)tr(xx⊤)tr(vv⊤ww⊤) + tr(vv⊤)tr(ww⊤)tr(uu⊤xx⊤)

+ tr(vv⊤)tr(xx⊤)tr(uu⊤ww⊤) + tr(ww⊤)tr(xx⊤)tr(uu⊤vv⊤)
)

+ 16
(
tr(uu⊤vv⊤ww⊤xx⊤) + tr(uu⊤vv⊤xx⊤ww⊤) + tr(uu⊤ww⊤vv⊤xx⊤)

)
= ∥u∥22 · ∥v∥22 · ∥w∥22 · ∥x∥22

+ 8
(
∥u∥22⟨v,w⟩⟨w,x⟩⟨v,x⟩+ ∥v∥22⟨u,w⟩⟨w,x⟩⟨u,x⟩

+ ∥w∥22⟨u,v⟩⟨u,x⟩⟨v,x⟩+ ∥x∥22⟨u,v⟩⟨u,w⟩⟨v,w⟩
)

+ 4
(
⟨u,v⟩2⟨w,x⟩2 + ⟨u,w⟩2⟨v,x⟩2 + ⟨u,x⟩2⟨v,w⟩2

)
+ 2
(
∥u∥22 · ∥v∥22⟨w,x⟩2 + ∥u∥22 · ∥w∥22⟨v,x⟩2 + ∥u∥22 · ∥x∥22⟨v,w⟩2

+ ∥v∥22 · ∥w∥22⟨u,x⟩2 + ∥v∥22 · ∥x∥22⟨u,w⟩2 + ∥w∥22 · ∥x∥22⟨u,v⟩2
)

+ 16
(
⟨u,v⟩⟨v,w⟩⟨w,x⟩⟨u,x⟩+ ⟨u,v⟩⟨v,x⟩⟨w,x⟩⟨u,w⟩

+ ⟨u,w⟩⟨v,w⟩⟨v,x⟩⟨u,x⟩
)

≤ 105∥u∥22 · ∥v∥22 · ∥w∥22 · ∥x∥22.

We have completed the proof.

Lemma D.5 (Upper bound on M). Consider M defined in (19). For every PSD matrix A, we have

M◦A = E
[
xx⊤Axx⊤]

⪯ 3⟨H,A⟩H.

Proof. This follows from Lemma D.4.

Lemma D.6. Consider L defined in (20). For every PSD matrix A, we have

⟨A, L ◦A⟩ = E

((
1

N
X⊤y

)⊤

A

(
1

N
X⊤y

))2

≤ 8 · 36
〈
H̃, A

〉2
.

Proof. By definition, we have

⟨A, L ◦A⟩ = E

((
1

N
X⊤y

)⊤

A

(
1

N
X⊤y

))2

= E
∥∥∥∥ 1

N
X⊤y

∥∥∥∥4
A

=
1

N4
E
∥∥X⊤Xβ̃ +X⊤ϵ

∥∥4
A

≤ 8

N4

(
E
∥∥X⊤Xβ̃

∥∥4
A
+ E

∥∥X⊤ϵ
∥∥4
A

)
. (26)

Next, we bound each of the two terms separately.

22

Published as a conference paper at ICLR 2024

Bound on E
∥∥X⊤Xβ̃

∥∥4
A

. We have

E
∥∥X⊤Xβ̃

∥∥4
A

= E
(
β̃X⊤XAX⊤Xβ̃

)2
≤ 3E

〈
ψ2I, X⊤XAX⊤X

〉2
by Lemma D.4

= 3ψ4E
〈
A, X⊤XX⊤X

〉2
= 3ψ4

∑
i,j,k,ℓ

E
〈
A, xix

⊤
i xjx

⊤
j

〉〈
A, xkx

⊤
k xℓx

⊤
ℓ

〉
= 3ψ4

(∑
4-distinct

+
∑

3-distinct

+
∑

2-distinct

+
∑

1-distinct

)
f(i, j, k, ℓ), (27)

where we define

f(i, j, k, ℓ) := E
〈
A, xix

⊤
i xjx

⊤
j

〉〈
A, xkx

⊤
k xℓx

⊤
ℓ

〉
= E

[
x⊤
i Axj · x⊤

i xj · x⊤
kAxℓ · x⊤

k xℓ
]
.

In (27), we group f(i, j, k, ℓ) by their number of distinct indexes (i.e., the number of distinct random
variables). We now bound the sum of the terms in each group separately.

• There are no more than N4 terms that have 4 distinct random variables and each such term
can be bounded by

f(1, 2, 3, 4) = ⟨H2,A⟩⟨H2,A⟩.
So we have ∑

4-distinct

f(i, j, k, ℓ) ≤ N4⟨H2,A⟩2.

• There are no more than 34N3 terms that have 3 distinct random variables. Due to the i.i.d.-
ness, we may assume x1 appears twice and x2 and x3 appear once in such a 3-distinct term
without loss of generality. Due to the symmetry of f(i, j, k, ℓ), there are essentially two
situations.

1. If two x1’s appear in the same inner product, such a 3-distinct term can be bounded
by

f(1, 1, 2, 3) = E
〈
A, x1x

⊤
1 x1x

⊤
1

〉〈
A, x2x

⊤
2 x3x

⊤
3

〉
=
〈
A,H2

〉
E
[
x⊤
1 x1 · x⊤

1 Ax1

]
≤
〈
A,H2

〉
· 3⟨H,A⟩tr(H)

= 3tr(H)⟨H,A⟩
〈
H2,A

〉
.

2. If two x1’s appear in different inner products, such a 3-distinct term can be bounded
by

f(1, 2, 1, 3) = E
[
x⊤
1 Ax2 · x⊤

1 x2 · x⊤
1 Ax3 · x⊤

1 x3

]
= E

(
x⊤
1 AHx1

)2
≤ 3
〈
H2,A⟩2

≤ 3tr(H)⟨H,A⟩
〈
H2,A

〉
.

Therefore, we can upper bound the sum of all 3-distinct terms by∑
3-distinct

f(i, j, k, ℓ) ≤ 34N3 · 3tr(H)⟨H,A⟩
〈
H2,A

〉
.

• There are no more than 24 · N2 terms that have 2 distinct random variables. Due to the
i.i.d.-ness, we may assume x1 appears twice and x2 appears twice in such a 2-distinct term
without loss of generality. Due to the symmetricity of f(i, j, k, ℓ), there are essentially two
situations.

23

Published as a conference paper at ICLR 2024

1. If two x1’s appear in the same inner product, such a 2-distinct term can be bounded
by

f(1, 1, 2, 2) = E
〈
A, x1x

⊤
1 x1x

⊤
1

〉〈
A, x2x

⊤
2 x2x

⊤
2

〉
≤
(
3⟨H,A⟩tr(H)

)2
= 9tr(H)2⟨H,A⟩2.

2. If two x1’s appear in different inner products, such a 2-distinct term can be bounded
by

f(1, 2, 1, 2) = E
[
x⊤
1 Ax2 · x⊤

1 x2 · x⊤
1 Ax2 · x⊤

1 x2

]
= E

[
x⊤
1 x2x

⊤
2 x1 · x⊤

1 Ax2x
⊤
2 Ax1

]
≤ 3E

〈
H,x2x

⊤
2

〉〈
H,Ax2x

⊤
2 A
〉

= 3E
[
x⊤
2 Hx2x

⊤
2 AHAx2

]
≤ 9tr(H2)⟨H,AHA⟩
≤ 9tr(H)2⟨H,A⟩2.

Therefore, we can upper bound the sum of all 2-distinct terms by∑
2-distinct

f(i, j, k, ℓ) ≤ 24N2 · 9tr(H)2⟨H,A⟩2.

• There are N terms that have only 1 distinct random variable and each such term can be
bounded by

f(1, 1, 1, 1) = E
[
∥x∥42

(
x⊤Ax

)2]
≤ 105tr(H)2⟨H,A⟩2.

So we have ∑
1-distinct

f(i, j, k, ℓ) ≤ 105Ntr(H)2⟨H,A⟩2.

Applying these bounds to (27), we get

E
∥∥X⊤Xβ̃

∥∥4
A

≤ 3ψ4
(
N4
〈
H2,A

〉2
+ 34N3 · 3tr(H)⟨H,A⟩

〈
H2,A

〉
+ 24N2 · 9tr(H)2⟨H,A⟩2 + 105Ntr(H)2⟨H,A⟩2

)
≤ 36N4ψ4

(〈
H2,A

〉2
+

tr(H)

N
⟨H,A⟩

〈
H2,A

〉
+

tr(H)2

N2
⟨H,A⟩2

)
≤ 36N4ψ4

(〈
H2,A

〉
+

tr(H)

N
⟨H,A⟩

)2

= 36N4

〈
ψ2H

(
tr(H)

N
I+H

)
, A

〉2

. (28)

Bound on E
∥∥X⊤ϵ

∥∥4
A

. We have

E
∥∥X⊤ϵ

∥∥4
A

= E
(
ϵ⊤XAX⊤ϵ

)2
≤ 3E

〈
σ2I, XAX⊤〉2

= 3σ4E
〈
A, X⊤X

〉2
= 3σ4

∑
i,j

E
〈
A, xix

⊤
i

〉〈
A, xjx

⊤
j

〉

24

Published as a conference paper at ICLR 2024

= 3σ4
(
NE
〈
A,xx⊤〉2 +N(N − 1)E

〈
A,x1x

⊤
1

〉〈
A,x2x

⊤
2

〉)
≤ 3σ4

(
3N
〈
A,H

〉2
+N(N − 1)

〈
A,H

〉2)
≤ 33σ4N2

〈
H,A

〉2
= 33N4

〈
ψ2H

(
σ2/ψ2

N
I

)
, A

〉2

(29)

Putting things together. Bring (28) and (29) to (26), we obtain

⟨A, L ◦A⟩ ≤ 8

N4

(
36N4

〈
ψ2H

(
tr(H)

N
I+H

)
, A

〉2

+ 33N4

〈
ψ2H

(
σ2/ψ2

N
I

)
, A

〉2
)

≤ 8 · 36
〈
ψ2H

(
tr(H) + σ2/ψ2

N
I+H

)
, A

〉2

≤ 8 · 36
〈
H̃, A

〉2
.

We have completed the proof.

Lemma D.7 (Upper bound on L). Consider L defined in (20). For every PSD matrix A, we have

L ◦A = E
(

1

N
X⊤y

)(
1

N
X⊤y

)⊤

A

(
1

N
X⊤y

)(
1

N
X⊤y

)⊤

⪯ 8 · 36
〈
H̃,A

〉
H̃.

Proof. We only need to show that for every PSD matrices A and B, it holds that〈
B, L ◦A

〉
≤ 8 · 36

〈
H̃,A

〉〈
H̃,B

〉
.

This is because:〈
B, L ◦A

〉
= E

〈
B,

(
1

N
X⊤y

)(
1

N
X⊤y

)⊤

A

(
1

N
X⊤y

)(
1

N
X⊤y

)⊤〉
= E

[(
1

N
X⊤y

)⊤

B

(
1

N
X⊤y

)
·
(

1

N
X⊤y

)⊤

A

(
1

N
X⊤y

)]

≤

√√√√E

((
1

N
X⊤y

)⊤

B

(
1

N
X⊤y

)2

·

√√√√E

((
1

N
X⊤y

)⊤

A

(
1

N
X⊤y

)2

=
√〈

B, L ◦B
〉
·
√〈

A, L ◦A
〉

≤ 8 · 36
〈
H̃,A

〉〈
H̃,B

〉
,

where the last inequality is by Lemma D.6.

Lemma D.8. For every PSD matrix A, we have

E

(
yx

(
1

N
X⊤y

)⊤
)⊗2

◦A ⪯ 9
〈
H̃,A

〉
(ψ2tr(H) + σ2)H.

Proof. First, notice that

E

(
yx

(
1

N
X⊤y

)⊤
)⊗2

◦A

= E
(

1

N
X⊤y

)⊤

A

(
1

N
X⊤y

)
y2xx⊤.

25

Published as a conference paper at ICLR 2024

For the first factor, we take expectation with respect to X and ϵ (i.e., conditional on β̃) to get

E
(

1

N
X⊤y

)⊤

A

(
1

N
X⊤y

)
= E

(
1

N
X⊤Xβ̃ +

1

N
X⊤ϵ

)⊤

A

(
1

N
X⊤Xβ̃ +

1

N
X⊤ϵ

)
=

1

N2
β̃⊤EX⊤XAX⊤Xβ̃ +

1

N2
Eϵ⊤X⊤AXϵ

= β̃⊤
(
⟨H,A⟩
N

H+
N + 1

N
HAH

)
β̃ + σ2 ⟨H,A⟩

N
.

Similarly, we compute the expectation of the second factor with respect to x and ϵ (i.e., conditional
on β̃) to get

Ey2xx⊤ = E
(
x⊤β̃ + ϵ

)2
xx⊤

= Exx⊤β̃β̃⊤xx⊤ + Eϵ2xx⊤

= ⟨H, β̃β̃⊤⟩H+ 2Hβ̃β̃⊤H+ σ2H

⪯
(
3β̃⊤Hβ̃ + σ2

)
H.

Therefore, we have

E

(
yx

(
1

N
X⊤y

)⊤
)⊗2

◦A

= E
(

1

N
X⊤y

)⊤

A

(
1

N
X⊤y

)
y2xx⊤

= E

(
β̃⊤
(
⟨H,A⟩
N

H+
N + 1

N
HAH

)
β̃ + σ2 ⟨H,A⟩

N

)(
3β̃⊤Hβ̃ + σ2

)
H

⪯

(
3Eβ̃⊤

(
⟨H,A⟩
N

H+
N + 1

N
HAH

)
β̃β̃⊤Hβ̃ + 3σ2 ⟨H,A⟩

N
Eβ̃⊤Hβ̃

+ Eβ̃⊤
(
⟨H,A⟩
N

H+
N + 1

N
HAH

)
β̃ · σ2 + σ2 ⟨H,A⟩

N
· σ2

)
H

⪯

(
9ψ4tr

(
⟨H,A⟩
N

H+
N + 1

N
HAH

)
tr(H) + 3σ2 ⟨H,A⟩

N
ψ2tr(H)

+ ψ2tr

(
⟨H,A⟩
N

H+
N + 1

N
HAH

)
· σ2 + σ2 ⟨H,A⟩

N
· σ2

)
H

⪯

(
9
ψ4tr(H)2

N
⟨H,A⟩+ 9

N + 1

N
ψ4tr(H)⟨H2,A⟩+ 3

σ2ψ2tr(H)

N
⟨H,A⟩

+
σ2ψ2tr(H)

N
⟨H,A⟩+ N + 1

N
σ2ψ2⟨H2,A⟩+ σ4

N
⟨H,A⟩

)
H

⪯ 9

(
(ψ2tr(H) + σ2)2

N
⟨H,A⟩+ N + 1

N
ψ2(ψ2tr(H) + σ2)⟨H2,A⟩

)
H

= 9

〈
ψ2tr(H) + σ2

N
H+

N + 1

N
ψ2H2, A

〉
(ψ2tr(H) + σ2)H

= 9
〈
H̃,A

〉
(ψ2tr(H) + σ2)H.

This completes the proof.

Lemma D.9. For every PSD matrix A, we have

E

(
xx⊤Γ∗

(
1

N
X⊤y

)(
1

N
X⊤y

)⊤
)⊗2

◦A ⪯ 8 · 37
〈
H̃,A

〉
ψ2tr(H)H.

26

Published as a conference paper at ICLR 2024

Proof. By definition, we have

E

(
xx⊤Γ∗

(
1

N
X⊤y

)(
1

N
X⊤y

)⊤
)⊗2

◦A

= Exx⊤Γ∗
(

1

N
X⊤y

)(
1

N
X⊤y

)⊤

A

(
1

N
X⊤y

)(
1

N
X⊤y

)⊤

Γ∗xx⊤

= Exx⊤Γ∗(L ◦A)Γ∗xx⊤

⪯ 3
〈
H, Γ∗(L ◦A)Γ∗〉H

⪯ 8 · 37
〈
H̃, A

〉〈
H, Γ∗H̃Γ∗〉H,

where the last inequality is due to Lemma D.7. Recall from Theorem 3.1 that

H̃ := (Γ∗)−1 · ψ2H

Γ∗ :=

(
tr(H) + σ2/ψ2

N
I+

N + 1

N
H

)−1

⪯ H−1,

which implies that 〈
H, Γ∗H̃Γ∗〉 = ψ2tr(H2Γ∗)

≤ ψ2tr(H).

Bringing this back, we complete the proof.

Lemma D.10 (Upper bound on N). Consider N defined in (21). For every PSD matrix A, we have

N ◦A = EΞAΞ⊤

⪯ (16 · 37 + 18)(ψ2tr(H) + σ2)
〈
H̃,A

〉
H.

Proof. Note that

(A+B)X(A+B)⊤ ⪯ 2
(
AXA⊤ +BXB⊤).

So we have

N ◦A = EΞ⊗2 ◦A

= E
(
xx⊤Γ∗

(
1

M
X⊤y

)(
1

M
X⊤y

)⊤

− xy

(
1

M
X⊤y

)⊤)⊗2

◦A

⪯ 2E

(
xx⊤Γ∗

(
1

N
X⊤y

)(
1

N
X⊤y

)⊤
)⊗2

◦A+ 2E

(
yx

(
1

N
X⊤y

)⊤
)⊗2

◦A

⪯ 16 · 37
〈
H̃,A

〉
ψ2tr(H)H+ 18

〈
H̃,A

〉
(ψ2tr(H) + σ2)H by Lemmas D.8 and D.9

⪯ (16 · 37 + 18)(ψ2tr(H) + σ2)
〈
H̃,A

〉
H,

which completes the proof.

Lemma D.11 (Lower bounds on M and L). For M defined in (19) and L defined in (20), we have

M ⪰ H⊗H,

and
L ⪰ H̃⊗ H̃.

Proof. For every PSD matrix A, we have(
M−H⊗H

)
◦A = Exx⊤Hxx⊤ −HAH

= E
(
xx⊤ −H

)
A
(
xx⊤ −H

)
⪰ 0,

27

Published as a conference paper at ICLR 2024

where the second equality is because
Exx⊤ = H.

Similarly, for every PSD matrix A, we have

(
L − H̃⊗ H̃

)
◦A = E

(
1

N
X⊤y

)(
1

N
X⊤y

)⊤

A

(
1

N
X⊤y

)(
1

N
X⊤y

)⊤

− H̃AH̃

= E

((
1

N
X⊤y

)(
1

N
X⊤y

)⊤

− H̃

)
A

((
1

N
X⊤y

)(
1

N
X⊤y

)⊤

− H̃

)
⪰ 0,

where the second equality is because

E
(

1

N
X⊤y

)(
1

N
X⊤y

)⊤

= H̃.

Lemma D.12 (Composition of PSD operators). For every PSD operator O, it holds that

H⊗2 ◦ O ◦ H̃⊗2 ⪯ M◦O ◦ L ⪯ 8 · 37⟨H, O ◦ H̃⟩S(1),

where S(1) is a PSD operator defined by

S(1) := ⟨H̃, ·⟩H.

As a direct consequence of the lower bound, we have

S ◦ O ⪰ G ◦ O.

Proof. For the upper bound, let us consider an arbitrary PSD matrix A. We have

M◦O ◦ L ◦A ⪯ 8 · 36⟨H̃,A⟩M ◦ O ◦ H̃ by Lemma D.7

⪯ 8 · 37⟨H̃,A⟩⟨H, O ◦ H̃⟩H by Lemma D.5

= 8 · 37⟨H, O ◦ H̃⟩S(1) ◦A, by the definition of S(1)

which verifies the upper bound.

The lower bound is a direct consequence of Lemma D.11.

D.4 DIAGONALIZATION

Without loss of generality, assume that H is diagonal. Let D be the set of PSD diagonal matrices.
For a PSD operator O, define its diagonalization by

O̊ : D → D
D 7→ diag{O ◦D}

(30)

When the context is clear, we also write

diag{O} := O̊.

Lemma D.13 (Diagnoalization of operators). We have the following properties of diagonalization.

1. For every pair of operators O1 and O2 and for every scalar a ∈ R, it holds that

diag{O1 +O2} = diag{O1}+ diag{O2}, diag{aO1} = adiag{O1}.

2. For two operators O1 and O2 such that O1 ⪯ O2, it holds that

diag{O1} ⪯ diag{O2}.

28

Published as a conference paper at ICLR 2024

3. For every operator O, it holds that

diag{G (O)} = G (O̊).

Proof. It should be clear. We only prove the last claim.

Let K be a PSD diagonal matrix. By (23), we have

G (O) ◦K = O ◦K− γ
(
HO ◦ (H̃K) +O ◦ (KH̃)H

)
+ γ2HO ◦ (H̃KH̃)H.

Now taking a diagonal on both sides and using that K is also diagonal, we obtain that

diag{G (O) ◦K} = diag{O ◦K} − γ
(
diag{HO ◦ (H̃K)}+ diag{O ◦ (KH̃)H}

)
+ γ2diag{HO ◦ (H̃KH̃)H}

= O̊ ◦K− γ
(
HO̊ ◦ (H̃K) + O̊ ◦ (KH̃)H

)
+ γ2HO̊ ◦ (H̃KH̃)H

= G (O̊) ◦K,

which implies that
diag{G (O)} = G (O̊).

Bias and variance error under operator diagonalization. Since both H and H̃ are diagonal
matrices, we have

⟨H, BT ◦ H̃⟩ = ⟨H, B̊T ◦ H̃⟩,
⟨H, CT ◦ H̃⟩ = ⟨H, C̊T ◦ H̃⟩,

which motivates us to control only the diagonalized bias and variance iterates. We next establish
recursions about the diagonalized bias and variance iterates, respectively.

Diagonalization of the bias iterates. Consider the bias iterates given by (24). By definition of S
in (22) and G in (23), we have

Bt = St ◦ Bt−1 by (24)

= Gt ◦ Bt−1 + γ2tM◦Bt−1 ◦ L − γ2tH
⊗2 ◦ Bt−1 ◦ H̃⊗2 by (22) and (23)

⪯ Gt ◦ Bt−1 + γ2tM◦Bt−1 ◦ L since Bt−1 is PSD

⪯ Gt ◦ Bt−1 + γ2t 8 · 37⟨H, Bt−1 ◦ H̃⟩S(1) by Lemma D.12

= Gt ◦ Bt−1 + γ2t 8 · 37⟨H, B̊t−1 ◦ H̃⟩S(1),

where the last equality is because both H and H̃ are diagonal. Next, taking diagonal on both sides
and using Lemma D.13, we have

B̊t ⪯ diag
{
Gt ◦ Bt−1

}
+ γ2t · 8 · 37⟨H, B̊t−1 ◦ H̃⟩S(1) by Lemma D.13

= Gt ◦ B̊t−1 + γ2t · 8 · 37⟨H, B̊t−1 ◦ H̃⟩S(1), by Lemma D.13 (31)

where
B̊0 = diag

{
(Γ0 − Γ∗)⊗2

}
.

We have obtained a recursion about the diagonalized bias iterates.

Diagonalization of the variance iterates. Similarly, let us treat the variance iterates given by (25).
By repeating the argument for the bias iterate, we have

Ct = St ◦ Ct−1 + γ2tN
⪯ Gt ◦ Ct−1 + γ2t · 8 · 37⟨H, C̊t−1 ◦ H̃⟩S(1) + γ2tN .

29

Published as a conference paper at ICLR 2024

Using Lemma D.10, we have

N ⪯ (16 · 37 + 18)(ψ2tr(H) + σ2)S(1).

So we have

Ct ⪯ Gt ◦ Ct−1 + γ2t · 8 · 37⟨H, C̊t−1 ◦ H̃⟩S(1) + γ2t (16 · 37 + 18)(ψ2tr(H) + σ2)S(1).

Similar to the treatment to the bias iterate, we take diagonalization on both sides and apply
Lemma D.13, then we have

C̊t ⪯ Gt ◦ C̊t−1 + γ2t · 8 · 37⟨H, C̊t−1 ◦ H̃⟩S(1) + γ2t (16 · 37 + 18)(ψ2tr(H) + σ2)S(1), (32)

where
C̊0 = 0⊗ 0.

We have established the recursion about the diagonalized variance iterates.

Monotonicity and contractivity of G on diagonal PSD operators. Finally, we introduce the
following important lemma, which shows that G is monotone when applied to diagonal operators.
Lemma D.14 (Diagonalization of G). We have the following about the G defined in (23).

1. For every diagonal operator D and every diagonal matrix K, it holds that

G (D) ◦K = D ◦K− 2γHD ◦ (H̃K) + γ2H2D ◦ (H̃2K).

2. Suppose that

0 < γ ≤ 1

2tr(H)tr(H̃)
,

then G is an increasing map on the diagonal operators. That is, for every pair of diagonal
operators such that

D1 ⪯ D2,

we have
G (D1) ⪯ G (D2).

3. Suppose that

0 < γ ≤ 1

2tr(H)tr(H̃)
,

then G is a contractive map on the diagonal operators. That is, for every diagonal PSD
operator

D ⪰ 0,

we have
G (D) ⪯ D.

Proof. The first claim is clear from the definitions:

G (D) ◦K = D ◦K− γ
(
HD ◦ (H̃K) +D ◦ (KH̃)H

)
+ γ2HD ◦ (H̃KH̃)H

= D ◦K− 2γHD ◦ (H̃K) + γ2H2D ◦ (H̃2K).

For showing the second claim, notice that, by the linearity of G , we only need to verify that for every
diagonal PSD operator D, it holds that

G (D) ⪰ 0.

By definition, we only need to show that for every diagonal PSD matrix K, it holds that

G (D) ◦K ⪰ 0.

We lower bound the left-hand side using the first conclusion:

G (D) ◦K = D ◦K− 2γHD ◦ (H̃K) + γ2H2D ◦ (H̃2K)

30

Published as a conference paper at ICLR 2024

⪰ D ◦K− 2γHD ◦ (H̃K)

⪰ D ◦K− 2γtr(H)ID ◦ (tr(H̃)K)

=
(
1− 2γtr(H)tr(H̃)

)
D ◦K

⪰ 0.

Similarly, we can prove the last claim by showing that

G (D) ◦K = D ◦K− 2γHD ◦ (H̃K) + γ2H2D ◦ (H̃2K)

⪯ D ◦K− 2γHD ◦ (H̃K) + γ2tr(H)tr(H̃)HD ◦ (H̃K)

⪯ D ◦K− γHD ◦ (H̃K)

⪯ D ◦K.

We have completed the proof.

D.5 OPERATOR POLYNOMIALS

In this section, we develop several useful new tools for computing the diagonal bias and variance
iterates, (31) and (32).

Operator polynomials. We first introduce operator polynomials.
Definition 4 (Operator monomials). Define a sequence of operator monomials:

S(t) := ⟨H̃t, · ⟩Ht, t ∈ N.

That is, for every t ∈ N and for every symmetric matrix K,

S(t) ◦K := ⟨H̃t, K ⟩Ht.

Denote the set of all operator monomials by

S := {S(i) : i ∈ N}.

Definition 5 (Operator polynomials). Let “•” be a multiplication operation on S, defined by

S(i) • S(j) := S(i+j), i, j ∈ N.

Let “+” be the canonical operator addition operation. Let “•” distribute over “+” in the canonical
manner, i.e.,

S(i) • (S(j) + S(k)) := S(i) • S(j) + S(i) • S(k) = S(i+j) + S(i+k).

It is straightforward to verify that S(0) is the identity element under “•”, 0 ∈ Rd2×d2 is the zero
element under “+”. We define a set of operator polynomials by

(
S(0) − γS(1)

)•t
:=

t∑
k=0

(
t

k

)
(−γ)kS(k), t ∈ N, γ ∈ R+.

When the context is clear, we also use “
∏

” to refer to a sequence of multiplication operations among
the operator polynomials, e.g.,

t∏
k=1

(
S(0) − γkS(1)

)•2
:=
(
S(0) − γtS(1)

)•2 • (S(0) − γt−1S(1)
)•2 • · · · • (S(0) − γ1S(1)

)•2
,

where (γk)
t
k=1 refers a sequence of positive stepsize.

The following lemma allows us to represent the composition of G over operator monomials as
operator polynomials.
Lemma D.15 (Operator polynomials). We have the following results regarding the composition of
operator monomials and other operators.

31

Published as a conference paper at ICLR 2024

1. For t ≥ 0,

(H⊗ I) ◦ S(t) ◦ (H̃⊗ I) = (I⊗H) ◦ S(t) ◦ (I⊗ H̃) = S(t+1).

2. For t ≥ 0,
H⊗2 ◦ S(t) ◦ H̃⊗2 = S(t+2).

3. For t ≥ 0,
G t(S(1)) =

(
S(0) − γS(1)

)•2t • S(1).

4. For t ≥ 0, (t∏
k=1

Gk
)
(S(1)) =

t∏
k=1

(
S(0) − γkS(1)

)•2 • S(1).

Proof. We now prove each claim respectively.

1. We consider a symmetric matrix K and notice that

(H⊗ I) ◦ S(t) ◦ (H̃⊗ I) ◦K
= (H⊗ I) ◦ S(t) ◦ (KH̃)

= ⟨H̃t,KH̃⟩(H⊗ I) ◦Ht

= ⟨H̃t,KH̃⟩Ht+1

= ⟨H̃t+1,K⟩Ht+1

= S(t+1) ◦K.

Similarly, we have

(I⊗H) ◦ S(t) ◦ (I⊗ H̃) ◦K = S(t+1) ◦K.

These verify the first claim.

2. We consider a symmetric matrix K and notice that

(H⊗H) ◦ S(t) ◦ (H̃⊗ H̃) ◦K
= (H⊗H) ◦ S(t) ◦ (H̃KH̃)

= ⟨H̃t, H̃KH̃⟩(H⊗H) ◦Ht

= ⟨H̃t+2,K⟩Ht+2

= S(t+2) ◦K,

which verifies the second claim.

3. Using the firs two claims and (23), we have

G (S(t)) = S(t) − γ
(
(H⊗ I) ◦ S(t) ◦ (H̃⊗ I) + (I⊗H) ◦ S(t) ◦ (I⊗ H̃)

)
+ γ2H⊗2 ◦ S(t) ◦ H̃⊗2

= S(t) − 2γS(t+1) + γ2S(t+2)

=:
(
S(0) − γS(1)

)•2 • S(t).

Recursively applying the above equation and using the operator polynomials notation (see
Definition 5), we get

G 0(S(1)) = S(1),

G (S(1)) =
(
S(0) − γS(1)

)•2 • S(1),

G 2(S(1)) =
(
S(0) − γS(1)

)•4 • S(1),

32

Published as a conference paper at ICLR 2024

...

G t(S(1)) =
(
S(0) − γS(1)

)•2t • S(1).

This verifies the third claim.

4. The fourth claim can be verified similarly to the third claim.

We have completed the proof.

Computing operator polynomials. We now introduce a method to compute operator polynomi-
als.

Notice that we only need to deal with diagonal PSD operators. Since a diagonal PSD matrix has
d degrees of freedom, which can be equivalently represented by a d-dimensional (non-negative)
vector. Similarly, a diagonal operator has d × d degrees of freedom and thus can be equivalently
represented as a linear map on d-dimensional (non-negative) vectors.

Define a matrixization operation as

mat : Rd → Rd×d

k 7→ mat(k) :=

k1

. . .
kd

 .

Then the operator monomial on diagonal PSD matrices can be equivalently written as

S(t) : D → D

mat{v} 7→
〈
H̃t, mat{v}

〉
Ht = mat

{
h⊙t(h̃⊙t)⊤k}, (33)

where “⊙” refers to Hadamard product (i.e., entry-wise product) and h and h̃ are the diagonals of
H and H̃, respectively, that is,

h :=

H11

...
Hdd

 , h̃ :=

H̃11

...
H̃dd

 . (34)

This viewpoint allows us to compute operator polynomials. In particular, we can prove the following
results.
Lemma D.16. When restricted as a diagonal operator, we have the following

1. For every t ≥ 0 and every v ∈ Rd,((
S(0) − γS(1)

)•t • S(1)
)
◦ mat{v} = mat

{((
J− γhh̃⊤)⊙t ⊙ (hh̃⊤)

)
v
}
,

where J refers to the “all-one” matrix, that is,

J = 11⊤.

2. For every t ≥ 0 and every v ∈ Rd,(t∏
k=1

(
S(0)−γkS(1)

)•2 •S(1)

)
◦mat{v} = mat

{(t∏
k=1

(
J−γkhh̃⊤)⊙2⊙ (hh̃⊤)

)
v

}
.

Proof. By Definition 5, we have

(
S(0) − γS(1)

)•t • S(1) :=

t∑
k=0

(
t

k

)
(−γ)kSk+1.

33

Published as a conference paper at ICLR 2024

Now using (33), we have((
S(0) − γS(1)

)•t • S(1)
)
◦ mat{v} =

t∑
k=0

(
t

k

)
(−γ)kSk+1 ◦ mat{v}

=

t∑
k=0

(
t

k

)
(−γ)kmat

{
h⊙k+1

(
h̃⊙k+1

)⊤
k
}

= mat

{(t∑
k=0

(
t

k

)
(−γ)kh⊙k+1

(
h̃⊙k+1

)⊤)
k

}
= mat

{((
J− γhh̃⊤)⊙t ⊙ (hh̃⊤)

)
v
}
,

which verifies the first claim. The second claim can be verified in the same way.

D.6 VARIANCE ERROR ANALYSIS

We first show a crude variance upper bound.

Lemma D.17 (A crude variance bound). Suppose that

γ0 ≤ 1

16 · 37tr(H)tr(H̃)
.

Then for (32), we have
C̊t ⪯ cγ0S(0), t ≥ 0,

where
c := (32 · 37 + 36)

(
ψ2tr(H) + σ2

)
.

Proof. We prove the claim by induction. For t = 0, the claim holds since

C̊0 = 0⊗ 0 ⪯ cγ0S(0).

Now suppose that
C̊t−1 ⪯ cγ0S(0).

Let us compute C̊t by (32):

C̊t ⪯ Gt ◦ C̊t−1 + γ2t · 8 · 37⟨H, C̊t−1 ◦ H̃⟩S(1) + γ2t (16 · 37 + 18)(ψ2tr(H) + σ2)S(1)

= Gt ◦ C̊t−1 + γ2t · 8 · 37⟨H, C̊t−1 ◦ H̃⟩S(1) + γ2t
c

2
S(1) by the definition of c

⪯ Gt(cγ0S(0)) + cγ0γ
2
t · 8 · 37⟨H, S(0) ◦ H̃⟩S(1) + γ2t

c

2
S(1)

by the induction hypothesis

⪯ Gt(cγ0S(0)) + γ2t
c

2
S(1) + γ2t

c

2
S(1)

by the definition of S(0) and the choice of γ0

= cγ0Gt(S(0)) + cγ2t S(1) since Gt is linear

= cγ0
(
S(0) − γtS(1)

)•2
+ cγ2t S(1) by Lemma D.15

= cγ0
(
S(0) − 2γtS(1) + γ2t S(2)

)
+ cγ2t S(1) by Definition 5

⪯ cγ0
(
S(0) − γtS(1)

)
+ cγ2t S(1) since γ0S(2) ⪯ S(1)

⪯ cγ0S(0). since γt ≤ γ0

This completes the induction.

We next show a sharper variance bound.

34

Published as a conference paper at ICLR 2024

Lemma D.18 (A sharp bound on the variance iterate). Suppose that

γ0 ≤ 1

16 · 37tr(H)tr(H̃)
.

For every entry-wise non-negative vector v ∈ Rd, we have

C̊T ◦ mat{v} ⪯ cmat

{(
f
(
γ0hh̃

⊤)⊙ (hh̃⊤)⊙−1
)
v

}
,

where

f(x) :=

L−1∑
ℓ=0

x

2ℓ

(
1−

(
1− x

2ℓ

)K) L−1∏
j=ℓ+1

(
1− x

2j

)K
, 0 < x < 1,

and is applied on matrix γ0hh̃⊤ entry-wise.

Proof. We first use Lemma D.17 to simplify the recursion in (32):

C̊t ⪯ Gt ◦ C̊t−1 + γ2t · 8 · 37⟨H, C̊t−1 ◦ H̃⟩S(1) + γ2t (16 · 37 + 18)(ψ2tr(H) + σ2)S(1)

⪯ Gt ◦ C̊t−1 + cγ0γ
2
t · 8 · 37⟨H, S(0) ◦ H̃⟩S(1) + γ2t

c

2
S(1)

by Lemma D.17 and the definition of c

= Gt ◦ C̊t−1 + γ2t cS(1), t ≥ 1. by the definition of S(0) and the choice of γ0

We can unroll the above recursion using the monotonicity of G on diagonal operators by Lemma
D.3. Then we have

C̊T ⪯
(T∏
t=1

Gt

)
◦ C0 + c

T∑
t=1

γ2t

(T∏
k=t+1

Gk

)
◦ S(1)

= c

T∑
t=1

γ2t

(T∏
k=t+1

Gk

)
◦ S(1) by Lemma D.3 and C0 = 0⊗2

= c

T∑
t=1

γ2t

T∏
k=t+1

(
S(0) − γkS(1)

)•2 • S(1). by Lemma D.15

Consider an arbitrary non-negative vector

v ∈ Rd, v ⪰ 0,

and use Lemma D.16, then we have

C̊T ◦ mat{v} ⪯ c
T∑
t=1

γ2t

(T∏
k=t+1

(
S(0) − γtS(1)

)•2 • S(1)

)
◦ mat{h̃}

= cmat

{ T∑
t=1

γ2t

(T∏
k=t+1

(
J− γkhh̃

⊤)⊙2 ⊙
(
hh̃⊤))v}

⪯ cmat

{ T∑
t=1

γ2t

(T∏
k=t+1

(
J− γkhh̃

⊤)⊙ (hh̃⊤))v},
where the last inequality is because, by our choice of γ0, the following holds in entry-wise:

0 ≤ J− γkhh̃
⊤ ≤ J.

Let
K := T/ log(T), L = log(T),

and recall the stepsize schedule (7), then for the non-negative vector v, we have

C̊T ◦ mat{v}

35

Published as a conference paper at ICLR 2024

⪯ cmat

{ T∑
t=1

γ2t

(T∏
k=t+1

(
J− γkhh̃

⊤)⊙ (hh̃⊤))v} (35)

= cmat

{
L−1∑
ℓ=0

(
γ0
2ℓ

)2
(

K∑
i=1

(
J− γ0

2ℓ
hh̃⊤

)⊙(K−i)

⊙

L−1∏
j=ℓ+1

(
J− γ0

2j
hh̃⊤

)⊙K

⊙
(
hh̃⊤))v}

= cmat

{
L−1∑
ℓ=0

γ0
2ℓ

((
J−

(
J− γ0

2ℓ
hh̃⊤

)⊙K)
⊙

L−1∏
j=ℓ+1

(
J− γ0

2j
hh̃⊤

)⊙K
)
v

}

= cmat

{(
f
(
γ0hh̃

⊤)⊙ (hh̃⊤)⊙−1
)
v

}
,

where

f(x) :=

L−1∑
ℓ=0

x

2ℓ

(
1−

(
1− x

2ℓ

)K) L−1∏
j=ℓ+1

(
1− x

2j

)K
, 0 < x < 1,

and is applied on matrix γ0hh̃⊤ entry-wise.

The following lemma is an adaptation of Lemma C.3 in Wu et al. (2022).
Lemma D.19. Consider a scalar function

f(x) :=

L−1∑
ℓ=0

x

2ℓ

(
1−

(
1− x

2ℓ

)K) L−1∏
j=ℓ+1

(
1− x

2j

)K
, 0 < x < 1.

Then

0 < f(x) ≤ min

{
8

K
, 2Kx2

}
, 0 < x < 1.

We are ready to show our final variance error upper bound.
Theorem D.20 (Variance error bound). Suppose that

γ0 ≤ 1

16 · 37tr(H)tr(H̃)
.

Then we have 〈
H, CT ◦ H̃⟩ ≤ 8c

K

∑
i,j

min
{
1, K2γ20λ

2
i λ̃

2
j

}
,

where
c := (32 · 37 + 36)

(
ψ2tr(H) + σ2

)
, K := T/ log(T),(

λi
)
i≥1

are the eigenvalues of H, and
(
λ̃i
)
i≥1

are the eigenvalues of H̃, that is

λ̃j = ψ2λj

(
tr(H) + σ2/ψ2

N
+
N + 1

N
λj

)
, j ≥ 1.

Proof. Let us compute a variance error bound using Lemma D.18:〈
H, CT ◦ H̃⟩ =

〈
H, C̊T ◦ H̃⟩

=
〈
mat{h}, C̊T ◦ mat{h̃}

〉
≤ c

〈
mat{h}, mat

{(
f
(
γ0hh̃

⊤)⊙ (hh̃⊤)⊙−1
)
h̃

}〉
by Lemma D.18

= ch⊤
(
f
(
γ0hh̃

⊤)⊙ (hh̃⊤)⊙−1
)
h̃.

36

Published as a conference paper at ICLR 2024

By Lemma D.19, we have

0 ≤ f
(
γ0hh̃

⊤)⊙ (hh̃⊤)⊙−1 ≤ min

{
8

K
J, 2K

(
γ0hh̃

⊤)⊙2
}
⊙
(
hh̃⊤)⊙−1

≤ 8

K
min

{(
hh̃⊤)⊙−1

, K2γ20hh̃
⊤
}
,

where “min” and “≤” are taken entrywise. So the variance error can be bounded by〈
H, CT ◦ H̃⟩ ≤ ch⊤

(
f
(
γ0hh̃

⊤)⊙ (hh̃⊤)⊙−1
)
h̃

≤ 8

K
h⊤ min

{(
hh̃⊤)⊙−1

, K2γ20hh̃
⊤
}
h̃

=
8c

K
(λ1 . . . λd)

. . .

...
. . .

. . . min

{
1

λiλ̃j
, K2γ20λiλ̃j

}
. . .

. . .
...

. . .

λ̃1...
λ̃d

=
8c

K
(λ1 . . . λd)

...∑

j min

{
1

λiλ̃j
, K2γ20λiλ̃j

}
λ̃j

...

=

8c

K

∑
i

∑
j

min

{
1

λiλ̃j
, K2γ20λiλ̃j

}
λiλ̃j

=
8c

K

∑
i,j

min
{
1, K2γ20λ

2
i λ̃

2
j

}
,

where

λ̃j = ψ2λj

(
tr(H) + σ2/ψ2

N
+
N + 1

N
λj

)
.

We have completed the proof.

D.7 BIAS ERROR ANALYSIS

Throughout this section, we denote the bias error at the t-th iterate by

bt := ⟨H, Bt ◦ H̃⟩ = ⟨H, B̊t ◦ H̃⟩, (36)

where H (hence also H̃) is assumed to be diagonal and B̊t admits the recursion in (31).

D.7.1 CONSTANT-STEPSIZE CASE

Since the stepsize schedule (7) is epoch-wise constant, we begin our bias error analysis by consid-
ering constant-stepsize cases, where the stepsize is denoted by γ > 0. In this case, (31) reduces
to

B̊t ⪯ G ◦ B̊t−1 + γ2c1bt−1S(1), t ≥ 1, where c1 := 8 · 37. (37)

Unrolling (37), we have

B̊n ⪯ G n ◦ B̊0 + γ2c1

n−1∑
t=0

btG
n−1−t ◦ S(1)

= G n ◦ B0 + γ2c1

n−1∑
t=0

bt
(
S(0) − γS(1)

)•2(n−1−t) • S(1), n ≥ 1. by Lemma D.15 (38)

37

Published as a conference paper at ICLR 2024

Lemma D.21 (Controlled blow-up of bias error). Consider (37). If

γ ≤ 1

2c1tr(H)tr(H̃)
,

then for every n ≥ 0, it holds that

bn ≤
(
1 + 2c1γtr(H)tr(H̃)

)
b0.

Proof. We prove the claim by induction. The claim clearly holds when n = 0. Now suppose that

bt ≤
(
1 + 2c1γtr(H)tr(H̃)

)
b0, t = 0, . . . , n− 1.

For n, we have

B̊n ⪯ G n ◦ B̊0 + γ2c1

n−1∑
t=0

bt
(
S(0) − γS(1)

)•2(n−1−t) • S(1) by (37)

⪯ B̊0 + γ2c1

n−1∑
t=0

bt
(
S(0) − γS(1)

)•2(n−1−t) • S(1) by Lemma D.14

⪯ B̊0 + γ2c12b0

n−1∑
t=0

(
S(0) − γS(1)

)•2(n−1−t) • S(1),

where the last inequality is by the induction hypothesis and γ ≤ 1/2c1tr(H)tr(H̃). Next, consider
an arbitrary non-negative vector v ∈ Rd, by Lemma D.16, we have

B̊n ◦ mat{v}

⪯ B̊0 ◦ mat{v}+ γ2c12b0

(n−1∑
t=0

(
S(0) − γS(1)

)•2(n−1−t) • S(1)

)
◦ mat{v}

= B̊0 ◦ mat{v}+ γ2c12b0mat

{(n−1∑
t=0

(
J− γhh̃⊤)⊙2(n−1−t) ⊙ hh̃⊤

)
v

}
by Lemma D.16

⪯ B̊0 ◦ mat{v}+ γ2c12b0mat

{(n−1∑
t=0

(
J− γhh̃⊤)⊙(n−1−t) ⊙ hh̃⊤

)
v

}
since 0 ≤ J− γhh̃⊤ ≤ J, entrywise

= B̊0 ◦ mat{v}+ γc12b0mat

{(
J−

(
J− γhh̃⊤)⊙n)v}

⪯ B̊0 ◦ mat{v}+ γc12b0mat{v}. since 0 ≤ J−
(
J− γhh̃⊤)⊙n ≤ J, entrywise

Then we have

bn =
〈
H, B̊n ◦ H̃

〉
=
〈
H, B̊n ◦ mat{h̃}

〉
≤
〈
H, B̊0 ◦ mat{h̃}

〉
+ γc12b0

〈
H, mat{h̃}

〉
= b0 + γc12b0

〈
H, H̃

〉
≤ b0 + γc12b0tr(H)tr(H̃)

=
(
1 + 2c1γtr(H)tr(H̃)

)
b0,

which completes the induction.

Lemma D.22 (A bound on the sum of the bias error). Suppose that

γ ≤ 1

2c1tr(H)tr(H̃)
.

38

Published as a conference paper at ICLR 2024

Suppose that
B0 = (Γ0 − Γ∗)⊗2

and that Γ0 commutes with H. Then for every n ≥ 1, we have
n−1∑
t=0

bt ≤
1

γ

〈
I−

(
I− γHH̃

)2n
, (Γ0 − Γ∗)2

〉
.

Proof. By Lemma D.14, we have

G ◦ B̊t−1 ◦ I = B̊t−1 ◦ I− 2γHB̊t−1 ◦ H̃+ γ2H2B̊t−1 ◦ (H̃)2

⪯ B̊t−1 ◦ I− 2γHB̊t−1 ◦ H̃+ γ2tr(H)tr(H̃)HB̊t−1 ◦ H̃.
Using the above and (37), we have

⟨I, B̊t ◦ I⟩ ≤ ⟨I, G ◦ B̊t−1 ◦ I⟩+ γ2c1bt−1⟨I, S(1) ◦ I⟩ by (37)

≤ ⟨I, B̊t−1 ◦ I⟩ − 2γ⟨H, B̊t−1 ◦ H̃⟩+ γ2tr(H)tr(H̃)⟨H, B̊t−1 ◦ H̃⟩
+ γ2c1tr(H)tr(H̃)bt−1

= ⟨I, B̊t−1 ◦ I⟩ − 2γbt−1 + γ2(1 + c1)tr(H)tr(H̃)bt−1

≤ ⟨I, B̊t−1 ◦ I⟩ − γbt−1. since γ ≤ 1/(2c1tr(H)tr(H̃))

Performing a telescope sum, we have
n−1∑
t=0

bt ≤
1

γ

(〈
I, B̊0 ◦ I

〉
−
〈
I, B̊n ◦ I

〉)
.

We now derive a lower bound for B̊n. By Lemma D.12 and (24), we have
Bt = S ◦ Bt−1 by the definition in (24)

⪰ G ◦ Bt−1, t ≥ 1. by Lemma D.12
Performing diagonalization using Lemma D.13, we have

B̊t ⪰ G ◦ B̊t−1, t ≥ 1.

Solving the recursion, we have

B̊n ⪰ G n ◦ B̊0

= G n ◦
(
Γ0 − Γ∗)⊗2

since both Γ0 and Γ∗ commute with H

=
((

I− γHH̃
)n(

Γ0 − Γ∗))⊗2

. by the definition of G in (23)

Putting these together, we have
n−1∑
t=0

bt ≤
1

γ

(〈
I, B̊0 ◦ I

〉
−
〈
I, B̊n ◦ I

〉)
≤ 1

γ

(
tr
(
(Γ0 − Γ∗)2

)
− tr

((
I− γHH̃

)2n
(Γ0 − Γ∗)2

))
=

1

γ

〈
I−

(
I− γHH̃

)2n
, (Γ0 − Γ∗)2

〉
,

which completes the proof.

Lemma D.23 (A decreasing bound on bias error). Suppose that

γ ≤ 1

6c1tr(H)tr(H̃)
.

Suppose that
B0 =

(
Γ0 − Γ∗)⊗2

and that Γ0 commutes with H. Then for every n ≥ 0, we have

bn ≤ 1

max{n, 1}γ
〈
I, (Γ0 − Γ∗)2

〉
.

39

Published as a conference paper at ICLR 2024

Proof. We prove the claim by induction. For n = 0, we have

b0 = ⟨H, (Γ0 − Γ∗)H(Γ0 − Γ∗)⊤⟩
≤ tr(H)tr(H̃)⟨I, (Γ0 − Γ∗)2⟩

≤ 1

γ
⟨I, (Γ0 − Γ∗)2⟩.

Now, suppose that

bt ≤
1

max{t, 1}γ
〈
I, (Γ0 − Γ∗)2

〉
, t = 0, 1, . . . , n− 1.

For bn, considering an arbitrary non-negative vector v ∈ Rd, we have

B̊n ◦ mat{v}

⪯ G n
(
B̊0

)
◦ mat{v}+ γ2c1

n−1∑
t=0

bt

((
S(0) − γS(1)

)•2(n−1−t) • S(1)

)
◦ mat{v}

= G n
(
B̊0

)
◦ mat{v}+ γ2c1

n−1∑
t=0

btmat

{((
J− γhh̃⊤)⊙2(n−1−t) ⊙

(
hh̃⊤))v},

where the inequality is by (38) and the equality is by Lemma D.16. We will bound the second term
in two parts,

∑n/2−1
t=0 and

∑n−1
t=n/2, separately. For the first half of the summation, we have

n/2−1∑
t=0

btmat

{((
J− γhh̃⊤)⊙2(n−1−t) ⊙

(
hh̃⊤))v}

⪯
n/2−1∑
t=0

btmat

{((
J− γhh̃⊤)⊙n ⊙

(
hh̃⊤))v} since J− γhh̃⊤ ≤ J, entrywise

⪯
n/2−1∑
t=0

btmat

{(
1

nγ
J

)
v

}
since (1− x)n ≤ 1/(nx), 0 < x < 1

=

n/2−1∑
t=0

bt
1

nγ
mat{v}

⪯ 1

γ

〈
I−

(
I− γHH̃

)n
, (Γ0 − Γ∗)2

〉 1

nγ
mat{v} by Lemma D.22

⪯ 1

γ

〈
I, (Γ0 − Γ∗)2

〉 1

nγ
mat{v}.

For the second half of the summation, we have
n−1∑
t=n/2

btmat

{((
J− γhh̃⊤)⊙2(n−1−t) ⊙

(
hh̃⊤))v}

⪯ 2

nγ

〈
I, (Γ0 − Γ∗)2

〉 n−1∑
t=n/2

mat

{((
J− γhh̃⊤)⊙2(n−1−t) ⊙

(
hh̃⊤))v}

by the induction hypothesis

⪯ 2

nγ

〈
I, (Γ0 − Γ∗)2

〉 n−1∑
t=n/2

mat

{((
J− γhh̃⊤)⊙(n−1−t) ⊙

(
hh̃⊤))v}

since 0 ≤ J− γhh̃⊤ ≤ J, entrywise

=
2

nγ

〈
I, (Γ0 − Γ∗)2

〉 1
γ
mat

{(
J−

(
J− γhh̃⊤)⊙(n/2)

)
v

}

40

Published as a conference paper at ICLR 2024

⪯ 2

nγ

〈
I, (Γ0 − Γ∗)2

〉 1
γ
mat{v}. since J−

(
J− γhh̃⊤)⊙(n/2) ≤ J, entrywise

Bringing these two bounds back, we have

B̊n ◦ mat{v}

⪯ G n
(
B̊0

)
◦ mat{v}+ γ2c1

(
1

γ

〈
I, (Γ0 − Γ∗)2

〉 1

nγ
mat{v}+ 2

nγ

〈
I, (Γ0 − Γ∗)2

〉 1
γ
mat{v}

)
= G n

(
B̊0

)
◦ mat{v}+ 3γc1mat{v}

1

nγ

〈
I, (Γ0 − Γ∗)2

〉
=

((
I− γHH̃

)n
(Γ0 − Γ∗)

)⊗2

◦ mat{v}+ 3γc1mat{v}
1

nγ

〈
I, (Γ0 − Γ∗)2

〉
,

where the last equality is by the definition of G in (23). Based on the above, we have

bn = ⟨H, B̊n ◦ H̃⟩
=
〈
H, B̊n ◦ mat{h̃}

〉
≤
〈
H,

((
I− γHH̃

)n
(Γ0 − Γ∗)

)⊗2

◦ mat{h̃}
〉
+ 3γc1

〈
H, mat{h̃}

〉 1

nγ

〈
I, (Γ0 − Γ∗)2

〉
=

〈(
I− γHH̃

)2n
HH̃, (Γ0 − Γ∗)2

〉
+ 3γc1

〈
H, H̃

〉 1

nγ

〈
I, (Γ0 − Γ∗)2

〉
since Γ0 and Γ∗ both commute with H

≤
〈

1

2nγ
I, (Γ0 − Γ∗)

〉
+ 3γc1tr(H)tr(H̃)

〉 1

nγ

〈
I, (Γ0 − Γ∗)2

〉
≤ 1

nγ

〈
I, (Γ0 − Γ∗)2

〉
, since γ ≤ 1/(6c1tr(H)tr(H̃))

which completes our induction.

D.7.2 DECAYING-STEPSIZE CASE

We first show a crude bound on the bias iterate.

Lemma D.24 (A crude bound). Consider the bias iterate (24). Suppose that

γ ≤ 1

6c1tr(H)tr(H̃)
.

Suppose that
B0 =

(
Γ0 − Γ∗)⊗2

and that Γ0 commutes with H. Then for every t ≥ K, we have

bt ≤ 4

〈
1

Kγ0
I0:k +Hk:∞H̃k:∞, (Γ0 − Γ∗)2

〉
.

Proof. Let
K = T/ log(T), L = log(T).

According to (7), in the first epoch, i.e., t = 1, 2, . . . ,K, the stepsize is constant, i.e., γ0. Therefore,
we can apply Lemmas D.21 and D.23 and obtain

bK ≤ min

{(
1 + 2c1γ0tr(H)tr(H̃)

)
b0,

1

Kγ0

〈
I, (Γ0 − Γ∗)2

〉}
≤ 2min

{〈
H, (Γ0 − Γ∗)H̃(Γ0 − Γ∗)⊤

〉
,

1

Kγ0

〈
I, (Γ0 − Γ∗)2

〉}

41

Published as a conference paper at ICLR 2024

= 2min

{〈
HH̃, (Γ0 − Γ∗)2

〉
,

1

Kγ0

〈
I, (Γ0 − Γ∗)2

〉}
≤ 2

〈
min

{
HH̃,

1

Kγ0
I

}
, (Γ0 − Γ∗)2

〉
≤ 2

〈
1

Kγ0
I0:k +Hk:∞H̃k:∞, (Γ0 − Γ∗)2

〉
.

Next, recall that the stepsize schedule (7) is epoch-wise constant, therefore we can recursively apply
Lemma D.21 for epoch 2, 3, . . . , L. Suppose t ≥ K belongs to the L∗-th epoch, then we have

bt ≤
L∗∏
ℓ=1

(
1 + 2c1

γ0
2ℓ
tr(H)tr(H̃)

)
bK

≤
(
1 + 2c1γ0tr(H)tr(H̃)

)
bK

≤ 2bK .

We complete the proof by bringing the upper bound on bK .

Theorem D.25 (Sharp bias bound). Consider the bias iterate (24). Suppose that

γ ≤ 1

6 · 8 · 37tr(H)tr(H̃)
.

Suppose that
B0 =

(
Γ0 − Γ∗)⊗2

and that Γ0 commutes with H. We have

bT ≤
〈
HH̃,

(T∏
t=1

(
I− γtHH̃

)
(Γ0 − Γ∗)

)2〉
+ 8 · 37 · 40

〈
1

Kγ0
I0:k +Hk:∞H̃k:∞, (Γ0 − Γ∗)2

〉
1

K

∑
i,j

min
{
1, K2γ20λ

2
i λ̃

2
j

}
.

Proof. From (31), we have
B̊t ⪯ Gt ◦ B̊t−1 + c1γ

2
t bt−1S(1).

Unrolling the recursion, we have

B̊T ⪯
(T∏
t=1

Gt

)
◦ B̊0 + c1

T−1∑
t=0

γ2t bt

(T∏
k=t+1

Gk

)
◦ S(1)

=

(T∏
t=1

Gt

)
◦ B̊0 + c1

T−1∑
t=0

γ2t bt

T∏
k=t+1

(
S(0) − γkS(1)

)•2 • S(1), by Lemma D.15

which implies that

bT =
〈
H, B̊T ◦ H̃

〉
≤
〈
H,

(T∏
t=1

Gt

)
◦ B̊0 ◦ H̃

〉
+ c1

T−1∑
t=0

γ2t bt

〈
H,

(T∏
k=t+1

(
S(0) − γkS(1)

)•2 • S(1)

)
◦ H̃

〉

=

〈
H,

(T∏
t=1

Gt

)
◦ B̊0 ◦ H̃

〉

+ c1

T−1∑
t=0

γ2t bt

〈
H, mat

{(T∏
k=t+1

(
J− γkhh̃

⊤)⊙2 ⊙
(
hh̃⊤))h̃}〉 by Lemma D.16

42

Published as a conference paper at ICLR 2024

=

〈
H,

(T∏
t=1

Gt

)
◦ B̊0 ◦ H̃

〉

+ c1

T−1∑
t=0

γ2t bth
⊤
(T∏
k=t+1

(
J− γkhh̃

⊤)⊙2 ⊙
(
hh̃⊤))h̃. (39)

For the first term in (39), using the assumption that Γ0 commutes with H and the definition of G in
(23), we have〈

H,

(T∏
t=1

Gt

)
◦ B̊0 ◦ H̃

〉
=

〈
H,

(T∏
t=1

(
I− γtHH̃

)
(Γ0 − Γ∗)

)⊗2

◦ H̃
〉

=

〈
HH̃,

(T∏
t=1

(
I− γtHH̃

)
(Γ0 − Γ∗)

)2〉
. (40)

For the second term, we will bound
∑K−1
t=0 and

∑T
t=K separately. For the first part of the sum, we

have
K−1∑
t=0

γ2t bth
⊤
(T∏
k=t+1

(
J− γkhh̃

⊤)⊙2 ⊙
(
hh̃⊤))h̃

≤
K−1∑
t=0

γ2t bth
⊤
(2K−1∏

k=K

(
J− γkhh̃

⊤)⊙2 ⊙
(
hh̃⊤))h̃ since J− γkhh̃

⊤ ≤ J, entrywise

= γ20

(K−1∑
t=0

bt

)
h⊤
((

J− γ0
2
hh̃⊤

)⊙2K

⊙
(
hh̃⊤))h̃. stepsize is epoch-wise constant

Next, notice that

for 0 < x < 1, (1− x)2K
{
= (1− x)K(1− x)K ≤ 1

Kx
1
Kx = 1

K2x2 ;

≤ 1.

So we have (
J− γ0

2
hh̃⊤

)⊙2K

⊙
(
hh̃⊤) ≤ min

{
4

K2γ0

(
hh̃⊤)⊙(−2)

, J

}
⊙
(
hh̃⊤)

= min

{
4

K2γ0

(
hh̃⊤)⊙(−1)

, hh̃⊤
}
,

where “min” and “≤” are entrywise. Then we have

h⊤
((

J− γ0
2
hh̃⊤

)⊙2K

⊙
(
hh̃⊤))h̃ ≤ h⊤ min

{
4

K2γ0

(
hh̃⊤)⊙(−1)

, hh̃⊤
}
h̃

≤ 4

K2γ20

∑
i,j

min
{
1, K2γ20λ

2
i λ̃

2
j

}
,

where the last inequality is by the same argument as in the proof of Theorem D.20. Bringing this
back, we have

K−1∑
t=0

γ2t bth
⊤
(T∏
k=t+1

(
J− γkhh̃

⊤)⊙2 ⊙
(
hh̃⊤))h̃

≤ γ20

(K−1∑
t=0

bt

)
h⊤
((

J− γ0
2
hh̃⊤

)⊙2K

⊙
(
hh̃⊤))h̃

≤
(K−1∑

t=0

bt

)
4

K2

∑
i,j

min
{
1, K2γ20λ

2
i λ̃

2
j

}

43

Published as a conference paper at ICLR 2024

≤ 1

γ0

〈
I−

(
I− γ0HH̃

)2K
, (Γ0 − Γ∗)2

〉 4

K2

∑
i,j

min
{
1, K2γ20λ

2
i λ̃

2
j

}
by Lemma D.22

≤ 1

γ0

〈
I0:k + 2Kγ0Hk:∞H̃k:∞, (Γ0 − Γ∗)2

〉 4

K2

∑
i,j

min
{
1, K2γ20λ

2
i λ̃

2
j

}
≤ 8

〈
1

Kγ0
I0:k +Hk:∞H̃k:∞, (Γ0 − Γ∗)2

〉
1

K

∑
i,j

min
{
1, K2γ20λ

2
i λ̃

2
j

}
. (41)

For the second part of the sum in (39), we have
T∑
t=K

γ2t bth
⊤
(T∏
k=t+1

(
J− γkhh̃

⊤)⊙2 ⊙
(
hh̃⊤))h̃

≤
T∑
t=K

γ2t bth
⊤
(T∏
k=t+1

(
J− γkhh̃

⊤)⊙ (hh̃⊤))h̃ since J− γkhh̃
⊤ ≤ J entrywise

≤ 4

〈
1

Kγ0
I0:k +Hk:∞H̃k:∞, (Γ0 − Γ∗)2

〉 T∑
t=K

γ2t h
⊤
(T∏
k=t+1

(
J− γkhh̃

⊤)⊙ (hh̃⊤))h̃,
where the last inequality is by Lemma D.24. Notice that the sum in the above display is equivalent
to the sum we encountered when analyzing the variance error (see (35) in Lemma D.18), with the
only difference being that, here, the sum starts from the second epoch. Therefore, by repeating the
arguments made in Lemma D.17 and Theorem D.20 (replacing γ0 with γ0/2), we have

T∑
t=K

γ2t h
⊤
(T∏
k=t+1

(
J− γkhh̃

⊤)⊙2 ⊙
(
hh̃⊤))h̃ ≤ 8

K

∑
i,j

min
{
1, K2γ20λ

2
i λ̃

2
j

}
.

Bringing this back, we have
T∑
t=K

γ2t bth
⊤
(T∏
k=t+1

(
J− γkhh̃

⊤)⊙2 ⊙
(
hh̃⊤))h̃

≤ 4

〈
1

Kγ0
I0:k +Hk:∞H̃k:∞, (Γ0 − Γ∗)2

〉
8

K

∑
i,j

min
{
1, K2γ20λ

2
i λ̃

2
j

}
. (42)

Finally, putting (40), (41), and (42) in (39), we have

bT ≤
〈
HH̃,

(T∏
t=1

(
I− γtHH̃

)
(Γ0 − Γ∗)

)2〉
+ 8 · 37 · 40

〈
1

Kγ0
I0:k +Hk:∞H̃k:∞, (Γ0 − Γ∗)2

〉
1

K

∑
i,j

min
{
1, K2γ20λ

2
i λ̃

2
j

}
,

which completes the proof.

D.8 PROOF OF THEOREM 4.1

Proof of Theorem 4.1. It follows from Theorems D.20 and D.25.

D.9 PROOF OF COROLLARY 4.2

Proof of Corollary 4.2. Under the assumptions, we have

tr(H) + σ2/ψ2

N
≂

1

N
.

So we have

Γ∗
N :=

(
tr(H) + σ2/ψ2

N
I+

N + 1

N
H

)−1

≂
(

1

N
I+H

)−1

,

44

Published as a conference paper at ICLR 2024

and

λ̃j = ψ2λj

(
tr(H) + σ2/ψ2

N
+
N + 1

N
λj

)
≂ λj max

{
1

N
, λj

}
≂
{
λ2j , j ≤ ℓ∗;

λj
1
N , j > ℓ∗,

where we define

ℓ∗ := min

{
i ≥ 0 : λi ≥

1

N

}
.

The excess risk (9) contains two terms. The first term can be bounded by

Error1 :=

〈
HH̃N ,

(T∏
t=1

(
I− γtHH̃N

)
Γ∗
N

)2〉
≤ tr

(
e−2Teffγ0HH̃NHH̃N

(
Γ∗
N

)2)
≂
∑
i

e−2Teffγ0λiλ̃iλiλ̃i

(
1

N
+ λi

)−2

≂
∑
i≤ℓ∗

e−2Teffγ0λ
3
iλ3iλ

−2
i +

∑
i>ℓ∗

e−2Teffγ0λ
2
i

1
N λ2i

1

N
·N2

≂
∑
i≤ℓ∗

e−2Teffγ0λ
3
iλi +

∑
i>ℓ∗

e−2Teffγ0λ
2
i

1
N λ2iN. (43)

The second term is

Error2 =
(
ψ2tr(H) + σ2

)Deff

Teff
≂
Deff

Teff
. (44)

Define

K :=

{
(i, j) : λiλ̃j ≥

1

Teffγ0

}
=

{
(i, j) : j ≤ ℓ∗, λiλ

2
j ≥

1

Teffγ0

}⋃{
(i, j) : j > ℓ∗, λiλj ≥

N

Teffγ0

}
,

then

Deff =
∑
i,j

min
{
1,
(
Teffγ0λiλ̃j

)2}
= |K|+ (Teffγ0)

2
∑

(i,j)/∈K

(λiλ̃j)
2. (45)

The uniform spectrum. Here, we assume that λi = 1/s for i ≤ s and λi = 0 for i > s, and

N ≤ s ≤ d.

So we have that λ̃j = 0 for j > s and

for j ≤ s, λ̃j ≂ λj max

{
1

N
, λj

}
≂

1

sN
.

Therefore

tr(H̃) =
1

N
,

45

Published as a conference paper at ICLR 2024

and

γ0 ≂
1

tr(H̃)
= N.

By (43) we have

Error1 ≲ se−2Teffγ0
1

s2N
N

s2

= e−2Teff
1
s2
N

s

≲

N

s
, Teff ≤ s2

Ns

Teff
, Teff > s2.

By (45), we have

Deff :=
∑
i,j

min
{
1,
(
Teffγ0λiλ̃j

)2}
= s2 min

{
1,

(
Teffγ0

1

s2N

)2}
= s2 min

{
1,

(
Teff

1

s2

)2}

=

T 2
eff

s2
, Teff ≤ s2;

s2, Teff > s2.

So by (44), we have

Error2 ≂
Deff

Teff
≂

Teff
s2

, Teff ≤ s2;

s2

Teff
, Teff > s2.

In sum, we have

E∆(ΓT) = Error1 + Error2

≲

Teff
s2

+
N

s
, Teff ≤ s2;

s2

Teff
+

Ns

Teff
≂

s2

Teff
, Teff > s2.

The polynomial spectrum. Here, we assume λi = i−a for a > 1. Then

ℓ∗ = N
1
a ,

and

λ̃j ≂

{
j−2a, j ≤ N

1
a ;

j−aN−1, j > N
1
a .

Therefore

tr(H̃) =
∑
j

λ̃j ≂ 1,

and
γ0 ≂

1

tr(H̃)
≂ 1.

46

Published as a conference paper at ICLR 2024

By (43), we have

Error1 ≲
∑
i≤ℓ∗

e−2Teffγ0λ
3
iλi +

∑
i>ℓ∗

e−2Teffγ0λ
2
i

1
N λ2iN

≂
∑
i≤N

1
a

e−2Teffγ0i
−3a

i−a +
∑
i>N

1
a

e−2Teffγ0i
−2a 1

N i−2aN

≂
∑
i≤N

1
a

e−2Teffγ0i
−3a

i−a +
∑

N
1
a<i≤(Teffγ0/N)

1
2a

e−2Teffγ0i
−2a 1

N i−2aN

+
∑

i>(Teffγ0/N)
1
2a

e−2Teffγ0i
−2a 1

N i−2aN

≲
∑
i≤N

1
a

e−2Teffγ0N
−3

i−a +
∑

N
1
a<i≤(Teffγ0/N)

1
2a

e−
2Teffγ0i−2a

N
2Teffγ0i

−2a

N

N2

2Teffγ0

+
∑

i>(Teffγ0/N)
1
2a

i−2aN

≲ e−2Teffγ0N
−3

+
N2

Teffγ0

∫ ∞

1

(
e−tt

)
dt+

(
Teffγ0
N

) 1−2a
2a

N

≂ e−2Teffγ0N
−3

+
N2

Teffγ0
+

(
N

Teffγ0

)1− 1
2a

N

≂
(
N

Teff

)1− 1
2a

N,

where the last inequality is because
γ0 ≂ 1

and the assumption
N3 = o(Teff).

The first part in (45) is

|K| =
∣∣∣∣{(i, j) : j ≤ ℓ∗, λiλ

2
j ≥

1

Teffγ0

}∣∣∣∣+ ∣∣∣∣{(i, j) : j > ℓ∗, λiλj ≥
N

Teffγ0

}∣∣∣∣
=

∣∣∣∣{(i, j) : j ≤ N
1
a , ij2 ≤ (Teffγ0)

1
a

}∣∣∣∣+ ∣∣∣∣{(i, j) : j > N
1
a , ij ≤

(
Teffγ0
N

) 1
a
}∣∣∣∣

≂
∑

1≤j≤N
1
a

(Teffγ0)
1
a

j2
+

∑
N

1
a<j≤(Teffγ0/N)

1
a

(Teffγ0/N)
1
a

j

≂ (Teffγ0)
1
a +

(
Teffγ0
N

) 1
a

log

(
Teffγ0
N

)
.

The sum in the second part in (45) is∑
(i,j)/∈K

(λiλ̃j)
2 =

∑
j≤N

1
a ,ij2>(Teffγ0)

1
a

(λiλ̃j)
2 +

∑
j>N

1
a ,ij>(Teffγ0/N)

1
a

(λiλ̃j)
2

=
∑

j≤N
1
a ,ij2>(Teffγ0)

1
a

(λiλ
2
j)

2 +
∑

j>N
1
a ,ij>(Teffγ0/N)

1
a

(λiλj/N)2

=
∑

j≤N
1
a ,ij2>(Teffγ0)

1
a

i−2aj−4a +
∑

j>N
1
a ,ij>(Teffγ0/N)

1
a

i−2aj−2aN−2

=
∑
j≤N

1
a

j−4a
∑

i>(Teffγ0)
1
a /j2

i−2a +
∑
j>N

1
a

j−2aN−2
∑

i≥1,i>(Teffγ0/N)
1
a /j

i−2a

47

Published as a conference paper at ICLR 2024

≂
∑
j≤N

1
a

j−4a
(
(Teffγ0)

1
a /j2

)1−2a

+
∑
j>N

1
a

j−2aN−2 max

{
1,
(
(Teffγ0/N)

1
a /j
)1−2a

}

≂
∑
j≤N

1
a

j−2(Teffγ0)
1−2a

a +
∑

j>(Teffγ0/N)
1
a

j−2aN−2

+
∑

N
1
a<j≤(Teffγ0/N)

1
a

j−2aN−2
(
(Teffγ0/N)

1
a /j
)1−2a

≂ (Teffγ0)
1−2a

a +

(
Teffγ0
N

) 1−2a
a

N−2

+
∑

N
1
a<j≤(Teffγ0/N)

1
a

j−1N−2

(
Teffγ0
N

) 1−2a
a

≂ (Teffγ0)
1−2a

a + (Teffγ0)
1−2a

a N− 1
a + (Teffγ0)

1−2a
a N− 1

a log

(
Teffγ0
N

)
≂ (Teffγ0)

1−2a
a + (Teffγ0)

1−2a
a N− 1

a log

(
Teffγ0
N

)
.

So the effective dimension (45) is

Deff = |K|+ (Teffγ0)
2
∑

(i,j)/∈K

(λiλ̃j)
2

≂ (Teffγ0)
1
a +

(
Teffγ0
N

) 1
a

log

(
Teffγ0
N

)
+ (Teffγ0)

2

(
(Teffγ0)

1−2a
a + (Teffγ0)

1−2a
a N− 1

a log

(
Teffγ0
N

))
≂ (Teffγ0)

1
a +

(
Teffγ0
N

) 1
a

log

(
Teffγ0
N

)
.

Therefore (44) is

Error2 ≂
Deff

Teff

≲ T−1
eff

(
(Teffγ0)

1
a +

(
Teffγ0
N

) 1
a

log

(
Teffγ0
N

))
≂ T

1
a−1
eff

(
1 +N− 1

a log(Teff)
)
,

where the last inequality is because
γ0 ≂ 1

and the assumption
N3 = o(Teff).

Putting the two error terms together, we have

E∆(ΓT) ≲ Error1 + Error2

≲

(
N

Teff

)1− 1
2a

N + T
1
a−1
eff

(
1 +N− 1

a log(Teff)
)

≂ T
1
a−1
eff

(
1 +N− 1

a log(Teff) + T
− 1

2a
eff N2− 1

2a

)
.

48

Published as a conference paper at ICLR 2024

The exponential spectrum. Here, we assume λi = 2−i. Then

ℓ∗ = log(N),

and

λ̃j ≂

{
2−2j , j ≤ log(N);

2−jN−1, j > log(N).

Therefore
tr(H̃) =

∑
j

λ̃j = 1,

and
γ0 ≂

1

tr(H̃)
≂ 1.

By (43), we have

Error1 ≲
∑
i≤ℓ∗

e−2Teffγ0λ
3
iλi +

∑
i>ℓ∗

e−2Teffγ0λ
2
i

1
N λ2iN

≂
∑

i≤log(N)

e−2Teffγ02
−3i

2−i +
∑

i>log(N)

e−2Teffγ02
−2iN−1

2−2iN

≂
∑

i≤log(N)

e−2Teffγ02
−3i

2−i

+
∑

log(N)<i≤log(2Teffγ0/N)/2

e−
2Teffγ02−2i

N
2Teffγ02

−2i

N

N2

2Teffγ0

+
∑

i>log(2Teffγ0/N)/2

e−2Teffγ02
−2iN−1

2−2iN

≲
∑

i≤log(N)

e−2Teffγ0N
−3

2−i +
N2

2Teffγ0

∫ ∞

1

(
e−tt

)
dt

+
∑

i>log(2Teffγ0/N)/2

2−2iN

≲ e−2Teffγ0N
−3

+
N2

2Teffγ0
+

N

2Teffγ0
N

≂
N2

Teff
,

where the last inequality is because
γ0 ≂ 1

and the assumption
N3 = o(Teff).

The first part in (45) is

|K| =
∣∣∣∣{(i, j) : j ≤ ℓ∗, λiλ

2
j ≥

1

Teffγ0

}∣∣∣∣+ ∣∣∣∣{(i, j) : j > ℓ∗, λiλj ≥
N

Teffγ0

}∣∣∣∣
=

∣∣∣∣{(i, j) : j ≤ log(N), i+ 2j ≤ log(Teffγ0)

}∣∣∣∣
+

∣∣∣∣{(i, j) : j > log(N), i+ j ≤ log

(
Teffγ0
N

)}∣∣∣∣
≂

∑
1≤j≤log(N)

(
log(Teffγ0)− 2j

)
+

∑
log(N)<j≤log(Teffγ0/N)

(
log(Teffγ0/N)− j

)
≂ log(Teffγ0) log(N) + log2(Teffγ0/N).

49

Published as a conference paper at ICLR 2024

The sum in the second part in (45) is∑
(i,j)/∈K

(λiλ̃j)
2

=
∑

j≤log(N),i+2j>log(Teffγ0)

(λiλ̃j)
2 +

∑
j>log(N),i+j>log(Teffγ0/N)

(λiλ̃j)
2

=
∑

j≤log(N),i+2j>log(Teffγ0)

2−2(i+2j) +
∑

j>log(N),i+j>log(Teffγ0/N)

2−2(i+j)N−2

=
∑

j≤log(N)

2−4j
∑

i>log(Teffγ0)−2j

2−2i +
∑

j>log(N)

2−2jN−2
∑

i≥1,i>log(Teffγ0/N)−j

2−2i

≂
∑

j≤log(N)

2−4j(Teffγ0)
−224j

+
∑

log(N)≤j<log(Teffγ0/N)

2−2jN−2
∑

i≥log(Teffγ0/N)−j

2−2j

+
∑

j≥log(Teffγ0/N)

2−2jN−2
∑
i≥1

2−2j

≂ (Teffγ0)
−2 log(N) +

∑
log(N)≤j<log(Teffγ0/N)

2−2jN−2(Teffγ0/N)−222j

+
∑

j≥log(Teffγ0/N)

2−2jN−2

≂ (Teffγ0)
−2 log(N) +N−2(Teffγ0/N)−2 log(Teffγ0/N) +N−2(Teffγ0/N)−2

≂ (Teffγ0)
−2
(
log(N) + log(Teffγ0/N)

)
.

So the effective dimension (45) is

Deff = |K|+ (Teffγ0)
2
∑

(i,j)/∈K

(λiλ̃j)
2

≂ log(Teffγ0) log(N) + log2(Teffγ0/N) +
(
log(N) + log(Teffγ0/N)

)
≂ log(Teffγ0) log(N) + log2(Teffγ0/N).

Therefore (44) is

Error2 ≂
Deff

Teff

≲ T−1
eff

(
log(Teffγ0) log(N) + log2(Teffγ0/N)

)
≂ T−1

eff log
2(Teff),

where the last inequality is because
γ0 ≂ 1

and the assumption
N3 = o(Teff).

Putting the two error terms together, we have

E∆(ΓT) ≲ Error1 + Error2

≲
N2

Teff
+ T−1

eff log
2(Teff)

≂
N2 + log2(Teff)

Teff
.

We have completed the proof.

50

Published as a conference paper at ICLR 2024

E A COMPARISON BETWEEN THE PRETRAINED ATTENTION MODEL AND
OPTIMAL RIDGE REGRESSION

E.1 PROOF OF PROPOSITION 5.1

Proof of Proposition 5.1. We start with (11). We have

L
(
h;X

)
= E

[(
h(X,y,x)− y

)2 ∣∣ X]
= E[

(
h(X,y,x)− E[y|X,y,x]

)2 ∣∣ X]+ E[
(
E[y|X,y,x]− y

)2 ∣∣ X],
where the second term is independent of h. Therefore, the minimizer of L must be

h(X,y,x) = E[y|X,y,x].
Recall from Assumption 1 that

y ∼ N (x⊤β, σ2),

so we have

h(X,y,x) = E[x⊤β|X,y,x]
=
〈
E[β|X,y], x

〉
.

By Bayes’ theorem, we have

P(β|X,y) = P(y|X,β)P(β)∫
P(y|X,β)P(β) dβ

.

Recall from Assumption 1 that

y ∼ N (Xβ, σ2I), β ∼ N (0, ψ2I),

so we know P(β|X,y) must be a Gaussian distribution and that

P(β|X,y) ∝ P(y|X,β)P(β)

∝ exp

(
− ∥y −Xβ∥22

2σ2

)
exp

(
− ∥β∥22

2ψ2

)
,

which implies that (because the mean of a Gaussian random variable maximizes its density)

E[β|X,y] = argmin
µ

∥y −Xµ∥22
2σ2

+
∥µ∥22
2ψ2

=
(
X⊤X+ σ2/ψ2I

)−1
X⊤y.

Putting everything together, we obtain that

h(X,y,x) =
〈
E[β|X,y], x

〉
=
〈(
X⊤X+ σ2/ψ2I

)−1
X⊤y, x

〉
,

which concludes the proof.

E.2 PROOF OF COROLLARY 5.2

Proof of Corollary 5.2. Let β be the sampled task parameter and β̂ be the ridge estimator in (12),
that is,

β̂ :=
(
X⊤X+ σ2/ψ2I

)−1
X⊤y.

By Assumption 1, we have

yi ∼ N (β⊤xi, σ
2), xi ∼ N (0,H), β ∼ N (0, ψ2I),

which allows us to apply the upper and lower bound for ridge regression in Tsigler & Bartlett (2023),
then we have that, with probability at least 1− e−Ω(M) over the randomness of X, it holds that

Esign∥β̂ − β∥2H ≂
(
σ2/ψ2 +

∑
i>k∗ λi

M

)2∥∥β∥∥2
H−1

0:k∗
+
∥∥β∥∥2

Hk∗:∞

51

Published as a conference paper at ICLR 2024

+
σ2

M

(
k∗ +

(
M

σ2/ψ2 +
∑
i>k λi

)2 ∑
i>k∗

λ2i

)
,

where Esign refers to taking expectation over the sign flipping randomness of β and

k∗ := min

{
k : λk ≥ c

σ2/ψ2 +
∑
i>k λi

M

}
,

where c > 1 is an absolute constant. Now, taking the expectation over the Gaussian prior of β, we
have

L(h;X)− σ2 = Eβ∼N (0,ψ2I)∥β̂ − β∥2H

≂
(
σ2/ψ2 +

∑
i>k∗ λi

M

)2

ψ2
∑
i≤k∗

1

λi
+ ψ2

∑
i>k∗

λ2i

+
σ2

M

(
k∗ +

(
M

σ2/ψ2 +
∑
i>k λi

)2 ∑
i>k∗

λ2i

)
.

Denote

λ̃ := c
σ2/ψ2 +

∑
i>k λi

M
≂
σ2/ψ2

M
,

then we have
k∗ := min{k : λk ≥ λ̃},

so we have

L(h;X)− σ2 ≂ ψ2λ̃2
∑
i≤k∗

1

λi
+ ψ2

∑
i>k∗

λ2i +
σ2

M

(
k∗ +

1

λ̃2

∑
i>k∗

λ2i

)

≂ ψ2
∑
i

min

{
λ̃2

λi
, λi

}
+
σ2

M

∑
i

min

{
1,

λ2i
λ̃2

}

≂ ψ2
∑
i

min

{
λ̃2

λi
, λi

}
+ ψ2λ̃

∑
i

min

{
1,

λ2i
λ̃2

}

≂ ψ2
∑
i

(
min

{
λ̃2

λi
, λi

}
+min

{
λ̃,

λ2i
λ̃

})
≂ ψ2

∑
i

min{λ̃, λi
}
.

This completes the proof.

E.3 PROOF OF THEOREM 5.3

Proof of Theorem 5.3. Consider the attention estimator (10) and its induced average risk (11), we
have

EL(f ;X) = E
(〈

x, Γ∗
N

1

M
X⊤y

〉
− y

)2

= RM (Γ∗
N).

Therefore, we can apply Theorem 3.1 and obtain

EL(β̂N ;X) = RM (Γ∗
N)

=
〈
H,

(
Γ∗
N − Γ∗

M

)
H̃M

(
Γ∗
N − Γ∗

M

)⊤〉
+minRM (·)

=
〈
HH̃M ,

(
Γ∗
N − Γ∗

M

)2〉
+minRM (·).

For the second term, we have

minRM (·)− σ2

52

Published as a conference paper at ICLR 2024

= ψ2tr
(((

tr(H) + σ2/ψ2
)
H−1 + (M + 1)I

)−1((
tr(H) + σ2/ψ2

)
I+H

))
≂ ψ2tr

(((
tr(H) + σ2/ψ2

)
H−1 + (M + 1)I

)−1(
2
(
tr(H) + σ2/ψ2

)
I
))

≂ 2
(
ψ2tr(H) + σ2

)
tr

(((
tr(H) + σ2/ψ2

)
H−1 +MI

)−1
)

= 2ψ2λ̃M
∑
i

1

λ̃M/λi + 1

≂ 2ψ2
∑
i

min
{
λ̃M , λi

}
,

where we define

λ̃M :=
tr(H) + σ2/ψ2

M
≂
σ2/ψ2

M
.

For the first term, note that

Γ∗
N − Γ∗

M

=

(
tr(H) + σ2/ψ2

N
I+

N + 1

N
H

)−1

−
(
tr(H) + σ2/ψ2

M
I+

M + 1

M
H

)−1

=

(
1

M
− 1

N

)(
tr(H) + σ2/ψ2

)
(
tr(H) + σ2/ψ2

N
I+

N + 1

N
H

)−1(
tr(H) + σ2/ψ2

M
I+

M + 1

M
H

)−1

=
(
λ̃M − λ̃N

)(
λ̃NI+

N + 1

N
H

)−1(
λ̃MI+

M + 1

M
H

)−1

.

So the first term can be bounded by〈
HH̃M ,

(
Γ∗
N − Γ∗

M

)2〉
= ψ2

〈
H2

(
tr(H) + σ2/ψ2

M
I+

M + 1

M
H

)
,
(
Γ∗
N − Γ∗

M

)2〉
= ψ2

(
λ̃M − λ̃N

)2〈
H2

(
λ̃MI+

M + 1

M
H

)
,

(
λ̃NI+

N + 1

N
H

)−2(
λ̃MI+

M + 1

M
H

)−2〉
≂ ψ2

(
λ̃M − λ̃N

)2
tr

(
H2
(
λ̃NI+H

)−2(
λ̃MI+H

)−1
)

≂ ψ2
(
λ̃M − λ̃N

)2∑
i

λ2i min

{
1

λ̃2N
,

1

λ2i

}
min

{
1

λ̃M
,

1

λi

}
≂ ψ2

(
λ̃M − λ̃N

)2∑
i

min

{
λi

λ̃2N
,

1

λi

}
min

{
λi

λ̃M
, 1

}
.

Putting these two bounds together completes the proof.

E.4 PROOF OF COROLLARY 5.4

Proof of Corollary 5.4. Under the assumptions we have

µM ≂
1

M
.

We first compute ridge regression based on Corollary 5.2.

53

Published as a conference paper at ICLR 2024

The uniform case. When λi = 1/s for i ≤ s and λi = 0 for i > s, we have

L(h;X)− σ2 ≂ ψ2
∑
i

min
{
µM , λi

}
≂

s∑
i=1

min

{
1

M
,
1

s

}
≂ min

{
1,

s

M

}
.

The polynomial case. When λi = i−a for a > 1, we have

L(h;X)− σ2 ≂ ψ2
∑
i

min
{
µM , λi

}
≂
∑
i

min

{
1

M
, i−a

}
≂M

1
a−1.

The exponential case. When λi = 2−i, we have

L(h;X)− σ2 ≂ ψ2
∑
i

min
{
µM , λi

}
≂
∑
i

min

{
1

M
, 2−i

}
≂

log(M)

M
.

We next compute the average risk of the attention model based on Theorem 5.3. Notice that

(µM − µN)2 ≂
(

1

M
− 1

N

)2

≂
1

M2
, if M < N/c for some constant c > 1.

The uniform case. When λi = 1/s for i ≤ s and λi = 0 for i > s, we have

EL(f ;X)− σ2 ≂ ψ2
∑
i

min
{
µM , λi

}
+ ψ2

(
µM − µN

)2∑
i

min

{
λi
µ2
N

,
1

λi

}
min

{
λi
µM

, 1

}

≂ min

{
1,

s

M

}
+

1

M2

s∑
i=1

min

{
1

s
N2, s

}
min

{1
s
M, 1

}
≂ min

{
1,

s

M

}
+

s∑
i=1

min

{
1

s

N2

M
, s

1

M

}
min

{
1

s
,

1

M

}

≂ min

{
1,

s

M

}
+

s2

M2
, s ≤M < N/c;

s

M
, M < s ≤ N/c;

N2

sM
, M < N/c < s

≂

s

M
, s ≤M < N/c;

s

M
, M < s ≤ N/c;

1 +
N2

sM
, M < N/c < s.

54

Published as a conference paper at ICLR 2024

So when s < M , or s > N2/M, we have

EL(f ;X)− σ2 ≂ min

{
s

M
, 1

}
.

The polynomial case. When λi = i−a for a > 1, we have

EL(f ;X)− σ2 ≂ ψ2
∑
i

min
{
µM , λi

}
+ ψ2

(
µM − µN

)2∑
i

min

{
λi
µ2
N

,
1

λi

}
min

{
λi
µM

, 1

}
≂M

1
a−1 +

1

M2

∑
i

min
{
i−aN2, ia

}
min

{
i−aM, 1

}
≂M

1
a−1 +

∑
i

min

{
i−a

N2

M
, ia

1

M

}
min

{
i−a,

1

M

}
≂M

1
a−1 +

∑
i≤M

1
a

ia
1

M

1

M
+

∑
M

1
a<i≤N

1
a

ia
1

M
i−a +

∑
i>N

1
a

i−a
N2

M
i−a

≂M
1
a−1 +M

1
a−1 +N

1
aM−1 +N

1
aM−1

≂ N
1
aM−1.

The exponential case. When λi = 2−i, we have

EL(f ;X)− σ2 ≂ ψ2
∑
i

min
{
µM , λi

}
+ ψ2

(
µM − µN

)2∑
i

min

{
λi
µ2
N

,
1

λi

}
min

{
λi
µM

, 1

}
≂

log(M)

M
+

1

M2

∑
i

min
{
2−iN2, 2i

}
min

{
2−iM, 1

}
≂

log(M)

M
+
∑
i

min

{
2−i

N2

M
, 2i

1

M

}
min

{
2−i,

1

M

}
≂

log(M)

M
+

∑
i≤log(M)

2i
1

M

1

M
+

∑
log(M)<i≤log(N)

2i
1

M
2−i

+
∑

i>log(N)

2−i
N2

M
2−i

≂
log(M)

M
+

1

M
+

log(N)

M
+

1

M

≂
log(N)

M
.

We have completed our calculation.

55

	Introduction
	Related Work
	Preliminaries
	The Task Complexity of Pretraining an Attention Model
	The In-Context Learning of the Pretrained Attention Model
	Technique Overview
	Conclusion
	Expriments
	The One-Step GD Model
	A Three-layer Transformer

	Single-Layer Linear Attention and One-Step GD
	Population ICL Risk
	The Task Complexity for Pretraining an Attention Model
	Preliminaries of Operator Methods
	Bias-Variance Decomposition
	Some Operator Bounds
	Diagonalization
	Operator Polynomials
	Variance Error Analysis
	Bias Error Analysis
	Constant-Stepsize Case
	Decaying-Stepsize Case

	Proof of Theorem 4.1
	Proof of Corollary 4.2

	A Comparison between the Pretrained Attention Model and Optimal Ridge Regression
	Proof of Proposition 5.1
	Proof of Corollary 5.2
	Proof of Theorem 5.3
	Proof of Corollary 5.4

