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Abstract001

Question Answering (QA) accounts for a sig-002
nificant portion of LLM usage “in the wild”.003
However, LLMs sometimes produce false or004
misleading responses, also known as “halluci-005
nations”. Therefore, grounding the generated006
answers in contextually provided information—007
i.e., providing evidence for the generated text—008
is paramount for LLMs’ trustworthiness. Pro-009
viding this information is the task of context at-010
tribution. In this paper, we systematically study011
LLM-based approaches for this task, namely012
we investigate (i) zero-shot inference, (ii) LLM013
ensembling, and (iii) fine-tuning of small LMs014
on synthetic data generated by larger LLMs.015
Our key contribution is SYNQA: a novel gener-016
ative strategy for synthesizing context attribu-017
tion data. Given selected context sentences, an018
LLM generates QA pairs that are supported by019
these sentences. This leverages LLMs’ natural020
strengths in text generation while ensuring clear021
attribution paths in the synthetic training data.022
We show that the attribution data synthesized023
via SYNQA is highly effective for fine-tuning024
small LMs for context attribution in different025
QA tasks and domains. Finally, with a user026
study, we validate the usefulness of small LMs027
(fine-tuned on synthetic data from SYNQA) in028
context attribution for QA.029

1 Introduction030

Large Language Models (LLMs) have become031

ubiquitous, with Question Answering (QA) as their032

most common use case (Trippas et al., 2024). How-033

ever, LLMs have a tendency to hallucinate: they034

generate content that is factually incorrect w.r.t. a035

previously provided reference text. This poses the036

need for context attribution methods that create037

links between the answer and different relevant038

parts of the (potentially large) reference text; for an039

illustration of the task, see Figure 1.040

For these reasons, reliable and efficient context041

attribution is instrumental in manually verifying042

Question (human): Where
is the team Michael Jordan
used to play in based?

Question Answering (given context) Attribution sentences

Michael Jordan
Michael Jordan is a former professional
basketball player. He played 15 seasons
in the National Basketball Association
(NBA) between 1984 and 2003. He won
6 NBA championships with the Chicago
Bulls.

Chicago Bulls
The Chicago Bulls are an American
professional basketball team based in
Chicago. The team was founded on
January 16, 1966. The Bulls play their
home games at the United Center.

Chicago Bulls
(45) The Chicago Bulls are an
American professional basketball
team based in Chicago.  The team was
founded on January 16, 1966. The Bulls
play their home games at the United
Center.

Michael Jordan
Michael Jordan is a former professional
basketball player. He played 15 seasons
in the National Basketball Association
(NBA) between 1984 and 2003. (3) He
won 6 NBA championships with the
Chicago Bulls.

Post-hoc context
attribution model

Answer (LLM):
In Chicago.

Figure 1: Post-hoc context attribution: Given a question,
an LLM-generated answer, and context (from human
input or retrieval), the model identifies supporting sen-
tences within the context. Our user study (§3.3.5) shows
that presenting these supporting sentences helps users
verify LLM answers more quickly and accurately.

the factuality of LLM-generated content. By con- 043

ducting a user study, Slobodkin et al. (2024) report 044

two important findings in this respect: (1) attribu- 045

tion models reduce the human workload in a fact- 046

checking task by as much as 50%; and (2) sentence 047

level granularity—i.e., grounding the answers in 048

one or more relevant sentences in the reference 049

context—is the most efficient granularity level for 050

manual fact-checking of LLM-generated answers. 051

Given the task importance, recent context- 052

attribution research spans text summarization (Kr- 053

ishna et al., 2023; Ernst et al., 2024), citation attri- 054

bution (Gao et al., 2023b; Huang et al., 2024b), and 055

question answering (Phukan et al., 2024; Cohen- 056

Wang et al., 2024). However, the solutions rely 057

on document- or paragraph-level evidence, which 058

comes with the following limitations: (1) the user 059

still has to read the (potentially long) document(s) 060

to verify the generated text; and (2) the LLM needs 061

to correctly generate the reference output alongside 062

answering the question correctly. In contrast, the 063

post-hoc attribution methods perform the attribu- 064

tion after the LLM generates the answer. These 065
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models, however, either attribute to coarse-grained066

units of text (Nakano et al., 2021; Menick et al.,067

2022; Buchmann et al., 2024), or provide fine-068

grained attributions but their inference is compu-069

tationally expensive (Cohen-Wang et al., 2024),070

hindering their adoption in practice.071

In this paper, we explore how LLMs can gen-072

erate synthetic data for attribution fine-tuning, en-073

abling accurate, sentence-level, and real-time effi-074

cient models. For data generation, we compare two075

approaches: (1) in the fairly straightforward attribu-076

tion synthesis (SYN-ATT), we start with question-077

answer pairs from a reference text and prompt the078

LLM to identify the supporting sentences; (2) in079

our novel question-answer synthesis (SYNQA), we080

use Wikipedia sentences and prompt the LLM to081

generate a question-answer pair that is fully sup-082

ported by these sentences. Given the generated083

data, we fine-tune smaller, more efficient context084

attribution models and compare their performance.085

Through extensive evaluation encompassing six086

datasets and two real-world scenarios (attribution087

for single-turn questions: i.e., a single question and088

single answer, and for dialogue questions: i.e., as089

part of a conversation), we demonstrate that mod-090

els trained on synthetic data generated by SYNQA:091

1 Outperform zero-shot LLMs that are orders of092

magnitude larger, while maintaining real-time infer-093

ence capabilities (§3.3.1); 2 Achieve competitive094

performance on in-domain tasks and superior gen-095

eralization to out-of-domain datasets compared to096

models trained on gold data (§3.3.2); 3 Success-097

fully handle dialogue-based attribution without re-098

quiring in-domain training data (§3.3.3); 4 Show099

consistent performance improvements as synthetic100

training data increases (§3.3.4); 5 Significantly101

improve users’ speed and accuracy in verifying102

LLM-generated answers (§3.3.5). These results103

highlight the viability of scalable, data-efficient104

context attribution techniques, thus paving the way105

for more interpretable and trustworthy AI systems.106

2 Synthesizing Attribution Data107

Context attribution identifies which parts of a108

reference text support a given question-answer109

pair (Rashkin et al., 2023). Formally, given a ques-110

tion q, its answer a, and a context text c consisting111

of sentences s1, ..., sn, the task is to identify the112

subset of sentences S ⊆ c that fully support the113

answer a to question q. To train efficient attribu-114

tion models without requiring expensive human115

annotations, we explore synthetic data generation 116

approaches using LLMs. We implement two meth- 117

ods for synthetic data generation. Our baseline 118

method (SYN-ATT) is discriminative: given ex- 119

isting question-answer pairs and their context, an 120

LLM identifies supporting sentences, which are 121

then used to train a smaller attribution model. Our 122

proposed method (SYNQA) takes a generative ap- 123

proach: given selected context sentences, an LLM 124

generates question-answer pairs that are fully sup- 125

ported by these sentences. This approach better 126

leverages LLMs’ natural strengths in text genera- 127

tion while ensuring clear attribution paths in the 128

synthetic training data. 129

2.1 SYNQA: Generative Synthetic Data 130

Generation Method 131

SYNQA consists of three parts: context selection, 132

QA generation, and distractors mining (for an il- 133

lustration of the method, see Figure 2). In what 134

follows, we describe each part in detail. 135

Context Collection. We use Wikipedia as our 136

data source, as each article consists of sentences 137

about a coherent and connected topic, with two col- 138

lection strategies. In the first, we select individual 139

Wikipedia articles for dialogue-centric generation 140

and use their sentences as context. In the second, 141

for multi-hop reasoning, we identify sentences con- 142

taining Wikipedia links and follow these links to 143

create “hops” between articles, limiting to a maxi- 144

mum of two paths to maintain semantic coherence, 145

while enabling more complex reasoning patterns 146

(for more details, see Appendix B). 147

Question-Answer Generation. Given the set 148

of contexts, an LLM can now generate question- 149

answer pairs. For single articles, we prompt the 150

model to generate multiple question-answer pairs, 151

each grounded in specific sentences. This creates 152

a set of dialogue-centric samples where questions 153

build upon the previous context. For linked arti- 154

cles, we prompt the model to generate questions 155

that necessitate connecting information across the 156

articles, encouraging multi-hop reasoning. This 157

yields multi-hop samples requiring integration of 158

information across documents, as well as samples 159

that mimic a dialogue about a specific topic given 160

the context. We provide the full prompts used for 161

generation in Appendix C. 162

Distractors Mining. To make the attribution 163

task more realistic, we augment each sample with 164

distractor articles. With E5 (Wang et al., 2022), we 165

embed each Wikipedia article in our collection. For 166
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Step 1: Collect
Wikipedia articles

Step 2: Find multihop links &
extract attributions sentences

Step 3: Prompt
LLM for QA pair

Step 4: SynQA
training sample

Michael Jordan
(1) Michael Jordan is a former
professional basketball player. (2) He
played 15 seasons in the National
Basketball Association (NBA) between
1984 and 2003. (3) He won 6 NBA
championships with the Chicago
Bulls.

Question: In which arena did
Michael Jordan win his NBA

championships with the Bulls?
Answer: The United Center

+
Attribution sentences

+
Wikipedia articles

Chicago Bulls
(45) The Chicago Bulls are an American
professional basketball team based in
Chicago. (46) The team was founded on
January 16, 1966. (47) The Bulls play
their home games at the United
Center.

United Center
(93) The United Center is an indoor
arena on the Near West Side of
Chicago, Illinois. (94) It is home to the
Chicago Bulls of the National Basketball
Association (NBA) and the Chicago
Blackhawks of the National Hockey
League (NHL).

United Center
The United Center is an indoor arena on
the Near West Side of Chicago, Illinois. 
It is home to the Chicago Bulls of the
National Basketball Association (NBA)
and the Chicago Blackhawks of the
National Hockey League (NHL).

...

Chicago Bulls
The Chicago Bulls are an American
professional basketball team based in
Chicago. The team was founded on
January 16, 1966. The Bulls play their
home games at the United Center.

Michael Jordan
Michael Jordan is a former professional
basketball player. He played 15 seasons
in the National Basketball Association
(NBA) between 1984 and 2003. He won
6 NBA championships with the Chicago
Bulls.

3
47

93

3
47

93

Step 1: Collect
Wikipedia articles

United Center
The United Center is an indoor arena on
the Near West Side of Chicago, Illinois. 
It is home to the Chicago Bulls of the
National Basketball Association (NBA)
and the Chicago Blackhawks of the
National Hockey League (NHL).

...

Chicago Bulls
The Chicago Bulls are an American
professional basketball team based in
Chicago. The team was founded on
January 16, 1966. The Bulls play their
home games at the United Center.

Michael Jordan
Michael Jordan is a former professional
basketball player. He played 15 seasons
in the National Basketball Association
(NBA) between 1984 and 2003. He won
6 NBA championships with the Chicago
Bulls.

Step 2: Obtain
QA pairs

Question: In which arena did
Michael Jordan win his NBA

championships with the Bulls?
Answer: The United Center

Step 3: Prompt LLM for
attribution sentences

Step 4: Obtain
attribution sentences

He played 15 seasons in the
National Basketball Association
(NBA) between 1984 and 2003.

The Bulls play their home games
at the United Center.

It is home to the Chicago Bulls of
the National Basketball

Association (NBA) and the
Chicago Blackhawks of the

National Hockey League (NHL).

Figure 2: Top: The SYN-ATT baseline method for synthetic attribution data generation. Given context and
question-answer pairs, we prompt an LLM to identify supporting sentences, which are then used to train a smaller
attribution model. However, this discriminative approach may yield noisy training data as LLMs are less suited
for classification tasks (see §3.3.1). Bottom: The SYNQA data generation pipeline leverages LLMs’ generative
strengths through four steps: (1) collection of Wikipedia articles as source data; (2) extraction of context attributions
by creating chains of sentences that form hops between articles; (3) generation of QA pairs by prompting an LLM
with only these context attribution sentences; (4) compilation of the final training samples, each containing the
generated QA pair, its context attributions, and the original articles enriched with related distractors.

each article in the training sample, we randomly se-167

lect up to three distractors with the highest semantic168

similarity to the source articles. These distractors169

share thematic elements with the source articles,170

but lack information to answer the questions.171

2.2 Advantages of SYNQA172

The SYNQA approach has three key advantages:173

(1) it leverages LLMs’ strength in generation rather174

than classification; (2) creates diverse training sam-175

ples requiring both dialogue understanding and176

multi-hop reasoning; and (3) ensures generated177

questions have clear attribution paths since they178

are derived from specific context sentences. By179

generating both entity-centric and dialogue-centric180

samples, SYNQA produces training data that re-181

flects the variety of real-world QA scenarios, help-182

ing models develop robust attribution capabilities,183

which our experiments demonstrate to generalize184

across different contexts and domains.185

3 Experimental Study 186

We conduct a comprehensive evaluation across mul- 187

tiple aspects: zero-shot performance, comparison 188

with training on gold attribution data, and general- 189

ization to dialogue settings, shedding light on the 190

performance and practical utility of our approach. 191

3.1 Experimental Setting 192

We evaluate model performance using precision 193

(P), recall (R), and F1 score. For each sentence in 194

the LLM’s output, the context-attribution models 195

identify the set of context sentences that support 196

that output sentence. Precision measures the pro- 197

portion of predicted attributions that are correct, 198

while recall measures the proportion of ground 199

truth attributions that are successfully identified. 200

For a fair and comprehensive evaluation, we train 201

all models with a single pass over the training data 202

unless stated otherwise, referring to this setup as 1P 203
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when needed. For a more controlled comparison,204

some experiments limit the number of training sam-205

ples each model encounters. Since the synthetic206

dataset contains approximately 1.0M samples, we207

allow models to observe an equivalent number of208

samples from the gold training set, ensuring com-209

parable exposure to models trained on data from210

SYNQA. We refer to this setting as 1M when nec-211

essary. For all models, we fine-tune only the LoRA212

parameters (alpha=64, rank=32) using a fixed learn-213

ing rate of 1e-5 and a weight decay of 1e-3.214

In-domain datasets: We use SQuAD (Ra-215

jpurkar et al., 2016) and HotpotQA (Yang et al.,216

2018) as our primary in-domain benchmarks.1217

SQuAD provides clear sentence-level evidence218

for answering questions, serving as a strong base-219

line for direct attribution. HotpotQA introduces220

multi-hop reasoning, requiring models to link in-221

formation across multiple sentences (sometimes222

from different articles) to identify the correct ev-223

idence chain. Additionally, HotpotQA includes224

distractor documents—closely related yet incorrect225

sources—posing a more challenging but realistic226

setting for evaluating attribution performance.227

Out-of-domain datasets: To assess generaliza-228

tion beyond the training distribution, we evalu-229

ate models on QuAC (Choi et al., 2018), CoQA230

(Reddy et al., 2018), OR-QuAC (Qu et al., 2020),231

and DoQA (Campos et al., 2020). These datasets232

present conversational QA scenarios that differ233

from SQuAD and HotpotQA. Specifically, QuAC234

and CoQA introduce multi-turn dialogue structures235

with coreferences, challenging models to track con-236

text across multiple turns. This conversational237

nature creates a methodological challenge: while238

these datasets are valuable for evaluating dialogue-239

based attribution, their reliance on conversation his-240

tory makes direct comparison with models trained241

on single-turn QA datasets impossible.242

To enable comprehensive evaluation across dia-243

logue QA and single-turn QA, we create two ver-244

sions of each dataset: (i) a rephrased version using245

Llama 70B (Dubey et al., 2024) that converts ques-246

tions into standalone format for fair comparison247

with models trained on single-turn context attri-248

bution (suffixed by “-ST”), and (ii) the original249

version for assessing dialogue-based attribution.250

DoQA extends this challenge further by incorpo-251

rating domain-specific dialogues (cooking, travel252

1For some experiments (e.g., in Table 1), these datasets are
also out-of-domain w.r.t. data generated by SYNQA.

and movies), thus testing the models’ adaptabil- 253

ity to specialized contexts. OR-QuAC includes 254

context-independent rewrites of the dialogue ques- 255

tions, such that they can be posed in isolation of 256

prior context (i.e., single-turn QA). This enables 257

us to test the models on their capabilities in both 258

single-turn QA and dialogue QA settings. 259

3.2 Methods 260

We compare our method (SYNQA) against several 261

baselines, including sentence-encoder-based mod- 262

els, zero-shot instruction-tuned LLMs, and models 263

trained on synthetic and gold context-attribution 264

data. Specifically, we experiment with the follow- 265

ing methods: 266

Sentence-Encoders: We embed each sentence 267

in the context along with the question-answer pair, 268

and select attribution sentences based on cosine 269

similarity with a fixed threshold, tuned on a small 270

validation set. 271

Zero-shot (L)LMs: We evaluate various 272

instruction-tuned (L)LMs in a zero-shot manner, 273

as such models have been shown to perform well 274

across a range of NLP tasks (Shu et al., 2023; 275

Zhang et al., 2023). During inference, we provide 276

an instruction template describing the task to the 277

LLM (see Appendix C for details). 278

Ensembles of LLMs: We aggregate the predic- 279

tions of multiple LLMs through majority voting, se- 280

lecting attribution sentences that receive consensus 281

from at least 50% of the ensemble. In our experi- 282

ments, we use Llama8B (Dubey et al., 2024), Mis- 283

tral7B, and Mistral-Nemo12B (Jiang et al., 2023) 284

as the ensemble constituents. 285

Models trained on in-domain gold data: Fine- 286

tuning on gold-labeled attribution data provides an 287

upper bound on in-domain performance, helping us 288

assess how well synthetic training data generalizes. 289

SYN-ATT: SYN-ATT generates synthetic train- 290

ing data by prompting multiple LLMs to perform 291

context attribution in a discriminative manner, ag- 292

gregating their outputs via majority voting, and 293

training a smaller model on the resulting dataset. 294

To make it a stronger baseline against SYNQA, we 295

give the training data of SQuAD and HotpotQA 296

(the context, questions, and answers) to the LLMs 297

and ask them to perform context attribution (note 298

that we do not use the gold attribution). Finally, we 299

train a model on the generated synthetic data. 300

SYNQA: We train models using synthetic data 301

generated by our proposed method SYNQA. Note 302

that even though we train models using SYNQA 303
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attribution data, we ensure they are not exposed to304

any parts of the evaluation data.2305

3.3 Results and Discussion306

Evaluating our context attribution models requires307

a multifaceted approach, as performance is influ-308

enced by both the quality of training data and the309

model’s ability to generalize beyond in-domain dis-310

tributions. Therefore, we design our experiments311

to address five core questions: (i) How well do312

zero-shot LLMs perform on context-attribution QA313

tasks (§3.3.1)? (ii) Can models trained on synthetic314

data generated by SYNQA exceed the performance315

of models trained on gold context-attribution data316

(§3.3.2)? (iii) To what extent do models generalize317

to dialogue settings where in-domain training data318

is unavailable (§3.3.3)? (iv) How well do models319

scale in terms of synthetic data quantity generated320

by SYNQA (§3.3.4)? (v) How do improved context321

attributions impact the end users’ speed and ability322

to verify questions answering outputs (§3.3.5)?323

3.3.1 Comparison to Zero-Shot Models324

In Table 1, we present the performance of zero-shot325

models, and models trained without gold context-326

attribution data. State-of-the-art sentence-encoder327

models (e.g., E5) perform relatively poorly, consis-328

tent with prior findings (Cohen-Wang et al., 2024).329

In contrast, LLMs exhibit strong performance, with330

improvements correlating with model size. Ensem-331

bling multiple zero-shot LLMs further enhances332

performance, leveraging complementary strengths333

across models, but making the attribution more ex-334

pensive. We also tested models trained with the dis-335

criminative method SYN-ATT. These models sig-336

nificantly outperform their non-fine-tuned counter-337

parts of the same size. However, as postulated, our338

generative approach SYNQA outperforms SYN-339

ATT significantly in all but one case. Additionally,340

SYNQA surpasses zero-shot LLMs that are orders341

of magnitude larger, showing that we can train a342

model that is both more accurate and efficient.343

3.3.2 Comparison to Models Trained on Gold344

Attribution Data345

In Table 2, we compare models trained on synthetic346

and gold in-domain context-attribution datasets. As347

2We identify data leakage by representing each Wikipedia
article as a MinHash signature. Then, for each training
Wikipedia article, we retrieve candidates from the testing
datasets via Locality Sensitivity Hashing and compute their
Jaccard similarity (Dasgupta et al., 2011). We flag as potential
leaks pairs exceeding a threshold empirically set to 0.8.

expected, fine-tuning on in-domain gold datasets 348

(SQuAD and HotpotQA) yields highly specialized 349

models that perform well on in-domain data. How- 350

ever, models trained on data obtained by SYNQA 351

exhibit competitive performance on in-domain 352

tasks and consistently surpass in-domain-trained 353

models on out-of-domain datasets. This strong out- 354

of-domain generalization is crucial for practical 355

deployments, where models must handle diverse, 356

previously unseen contexts that often differ sub- 357

stantially from their training data. 358

3.3.3 Comparison to Zero-Shot and 359

Fine-Tuned Models in Dialogue Contexts 360

We evaluate dialogue context attribution, for which 361

we do not use any gold in-domain training data 362

(Tab. 3). Here, models must handle follow-up ques- 363

tions that rely on previous turns, often involving 364

coreferences and other dialogue-specific complexi- 365

ties. As expected, zero-shot LLMs exhibit a strong 366

size-performance correlation, with larger models 367

consistently outperforming smaller ones—even 368

those fine-tuned on single-turn question-answer at- 369

tribution (trained on gold SQuAD and HotpotQA 370

data). However, fine-tuning smaller models with 371

our synthetic data generation strategy leads to supe- 372

rior performance, surpassing both their fine-tuned 373

counterparts and much larger zero-shot LMs. This 374

demonstrates the effectiveness of SYNQA in en- 375

hancing context attribution in a dialogue setting 376

and without requiring in-domain supervision. 377

3.3.4 Scaling Trends and Generalization 378

Performance 379

Fig. 3a shows F1 scores averaged across datasets, 380

with model size on the x-axis and performance on 381

the y-axis. Models trained on SYNQA-generated 382

data significantly outperform their baseline zero- 383

shot counterparts, while also achieving superior 384

performance compared to zero-shot LLMs that are 385

orders of magnitude larger. This shows our method 386

is highly data-efficient, enabling small models to 387

close the gap with much larger counterparts. 388

In Figure 3b, we analyze model performance as 389

the quantity of synthetic training data increases, 390

reporting F1 scores separately for in-domain and 391

out-of-domain datasets. As we scale data quantity, 392

performance improves consistently across datasets 393

for isolated context attribution. This trend high- 394

lights the scalability of our approach, indicating 395

that further gains can be achieved by increasing 396

synthetic data availability. 397
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Model Training data
Squad Hotpot Quac-ST CoQA-ST

P R F1 P R F1 P R F1 P R F1

Baselines
Random – 19.8 15.4 17.3 4.8 15.2 7.3 5.2 15.1 7.7 7.3 15.1 9.9
E5 | 561M Zero-shot 38.1 76.5 50.9 12.4 41.4 19.1 65.0 73.8 69.1 61.1 15.2 24.4
HF-SmolLM2 | 365M Zero-shot 28.1 46.4 35.0 5.1 7.3 6.0 10.6 22.6 14.4 10.6 21.5 14.2
Llama | 1B Zero-shot 37.5 62.0 46.7 5.3 28.1 8.9 8.8 65.4 15.4 11.9 52.8 19.4
Mistral | 7B Zero-shot 71.5 94.4 81.4 42.9 42.7 42.8 63.2 88.6 73.8 59.0 72.2 64.9
Llama | 8B Zero-shot 71.9 96.9 82.6 49.2 52.9 51.0 64.1 92.1 75.6 55.7 76.4 64.4
Mistral-NeMo | 12B Zero-shot 89.5 94.5 91.8 46.4 47.3 46.8 81.8 85.3 83.5 79.0 67.2 72.6
Ensemble | 27B Zero-shot 83.1 96.3 89.2 48.1 59.6 53.2 74.8 90.3 81.8 69.5 73.6 71.5
Llama | 70B Zero-shot 95.3 95.6 95.5 87.6 37.5 52.5 89.7 87.8 88.7 87.5 73.3 79.8

Baselines
Llama | 1B SYN-ATT (1P) 89.8 96.5 93.0 50.6 58.6 54.3 64.9 91.5 75.9 53.1 75.5 62.3
Llama | 1B SYN-ATT (1M) 84.3 96.9 90.2 54.4 58.0 56.1 63.4 92.4 75.2 52.5 77.5 62.6

Ours
Llama | 1B SYNQA 96.0 96.2 96.1 89.6 69.4 78.2 93.3 89.1 91.1 82.3 68.5 74.8

Table 1: Comparison of zero-shot models and those trained with synthetic data. Larger zero-shot LMs excel, but our
SYNQA model outperforms all but one for one dataset while being smaller. Bold denotes best method, underline if
our method is second best. 1P: models trained with a single pass over the training data. 1M: models trained with
1M samples to match the size of the SYNQA data.

Model Training data
In-Domain Out-of-Domain

SQuAD HotpotQA QuAC-ST CoQA-ST

P R F1 P R F1 P R F1 P R F1

Baselines
Llama | 1B Zero-shot 37.5 62.0 46.7 5.3 28.1 8.9 8.8 65.4 15.4 11.9 52.8 19.4
Llama | 1B SQuAD (1P) 98.4 98.4 98.4 48.7 20.0 28.4 92.6 85.8 89.0 79.9 64.3 71.2
Llama | 1B HotpotQA (1P) 41.3 87.3 56.0 87.5 79.9 83.5 45.2 89.9 60.1 41.0 70.9 52.0
Llama | 1B SQuAD & HotpotQA (1P) 98.3 98.3 98.3 89.7 78.9 84.0 90.4 90.0 90.2 83.1 68.0 74.8
Llama | 1B SQuAD & HotpotQA (1M) 98.3 98.4 98.3 87.0 85.2 86.1 84.0 89.2 86.6 79.2 66.4 72.2

Ours
Llama | 1B SYNQA 96.0 96.2 96.1 89.6 69.4 78.2 93.3 89.1 91.1 82.3 68.5 74.8
Llama | 1B SYNQA & SQuAD & HotpotQA 98.2 98.3 98.2 89.3 82.4 85.8 94.5 92.7 93.6 85.5 71.0 77.6

Table 2: Comparison of models fine-tuned on synthetic vs. gold in-domain data. Our SYNQA approach generalizes
better while remaining competitive in-domain. Bold denotes best method, underline our method when second best.
1P: models trained with a single pass over the training data. 1M: models trained with 1M samples to match the size
of the SYNQA data.

3.3.5 User Study: SYNQA increases efficiency398

and accuracy assessment399

We conducted a user study to evaluate the effi-400

ciency and accuracy of verifying the correctness401

of LLM-generated answers using context attribu-402

tion. Our hypothesis is that higher-quality context403

attributions, visualized to guide users, facilitate404

faster and more accurate verification of LLM out-405

puts. Specifically, in each trial, we presented users406

with a question, a generated answer, and relevant407

context, along with attributions visualized as high-408

lights. Their task was to leverage these attributions409

to judge if the answer was correct w.r.t. a provided410

context. See Figure 5 in Appendix E.411

The study compares three scenarios: (i) No 412

Alignment: a baseline condition without con- 413

text attributions, requiring users to manually read 414

and verify the answer against the entire context; 415

(ii) Llama 1B (Zero-shot): context attributions 416

generated by the Llama 1B model were visualized; 417

(iii) SYNQA: context attributions generated by our 418

approach were visualized. 419

We employed a within-subjects experimental de- 420

sign for our human evaluation (with 12 partici- 421

pants), ensuring that the same participants eval- 422

uate all the aforementioned alignment scenarios, 423

thus requiring fewer participants for reliable results 424

(Greenwald, 1976). However, this can be suscepti- 425

ble to learning effects where participants perform 426
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Model Training data
Out-of-Domain

QuAC CoQA OR-QuAC DoQA

P R F1 P R F1 P R F1 P R F1

Baselines
Llama | 1B Zero-shot 30.8 45.5 36.8 39.4 37.9 38.6 33.0 46.6 38.6 12.2 22.6 15.9
Mistral | 7B Zero-shot 76.6 81.8 79.1 67.6 61.3 64.3 82.5 85.1 83.8 74.9 77.9 76.4
Llama | 8B Zero-shot 84.7 88.8 86.7 79.3 72.0 75.5 88.0 91.3 89.6 77.9 91.4 84.1
Mistral-NeMo | 12B Zero-shot 85.7 85.4 85.5 81.9 68.4 74.5 88.9 88.8 88.8 86.0 84.2 85.1
Llama | 70B Zero-shot 88.5 87.7 88.1 88.3 74.9 81.1 81.7 86.3 83.9 85.2 82.0 83.5

Baselines
Llama | 1B SQuAD & HotpotQA (1P) 71.3 66.8 69.0 79.0 64.2 70.8 61.6 57.5 59.5 67.4 57.8 62.2
Llama | 1B SQuAD & HotpotQA (1M) 52.6 49.3 50.9 61.2 50.2 55.2 48.5 44.6 46.5 53.2 49.1 51.1

Ours
Llama | 1B SYNQA 91.3 91.4 91.3 81.7 71.4 76.2 92.6 95.3 94.0 86.3 94.5 90.2
Llama | 1B SYNQA & SQuAD & HotpotQA 91.1 92.2 91.7 82.3 73.2 77.5 90.3 96.4 93.2 85.1 96.0 90.2

Table 3: Context attribution on QuAC, CoQA, OR-Quac, and DoQA (dialogue data); all datasets are out-of-domain.
Despite the size advantage of zero-shot LLMs, our SYNQA models outperform fine-tuned and larger zero-shot
models. Bold denotes best method, underline our method when second best. 1P: models trained with a single pass
over the training data. 1M: models trained with 1M samples to match the size of the SYNQA data.
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Figure 3: Comparison of model performance and scalability. (a) Larger zero-shot models achieve good F1 scores,
but our method SYNQA (based on Llama 1B) outperforms them while being orders of magnitude smaller. (b)
Performance improves consistently with more SYNQA training data, highlighting its scalability.

better in later scenarios, because they learned the427

task from previous examples. To mitigate this,428

we counterbalanced the scenario order using a429

Latin Square design (Belz and Kow, 2010; Bradley,430

1958), where each alignment scenario appears in431

each position an equal number of times across all432

participants. Finally, we randomized the example433

order within each scenario per participant. For each434

example, we measured: verification time (seconds435

from display to judgment submission) and verifica-436

tion accuracy (binary correct/incorrect judgment).437

Results. We observed a clear trend in verifica-438

tion performance across the different attribution439

settings, with SYNQA demonstrating superior ef-440

fectiveness (Fig. 5). SYNQA has the lowest av-441

erage verification time per example (148.6 sec-442

onds), significantly faster than No Alignment (171.8443

seconds) and attributions from Llama 1B (163.4 444

seconds). Concurrently, in terms of verification 445

accuracy, SYNQA achieved the highest average 446

accuracy (86.4%). While No Alignment (84.1%) 447

and Llama 1B (77.3%) also yielded reasonable ac- 448

curacy, attributions from SYNQA are clearly of 449

higher quality helping users be more accurate. 450

4 Related Work 451

We split the related work on context attribution for 452

QA into two categories: (1) in-line citation gen- 453

eration: LLMs are instructed to generate citations 454

along with the generated answer; (2) post-hoc con- 455

text attribution: perform the attribution after the 456

LLM generates the answer. In this section, we 457

outline these works and their differences from our 458

work (for more detailed discussion, see App. A). 459
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4.1 In-line Citation Generation460

In this setup, researchers use LLMs to produce in-461

line citations along with the generated text (Bohnet462

et al., 2022; Gao et al., 2023b; Huang et al., 2024b).463

This typically works on paragraph or document464

level. One line of work focuses on fine-tuning meth-465

ods for tackling the problem (Gao et al., 2023b;466

Schimanski et al., 2024; Berchansky et al., 2024;467

Patel et al., 2024), while another line of work pro-468

poses synthetic data generation methods for fine-469

tuning such models (Huang et al., 2024a,b). Slo-470

bodkin et al. (2024) propose a fine-grained task,471

where the attributions are on sentence level, be-472

cause such granularity is more useful to human end473

users. Since generating such in-line citations can474

result in producing completely made up citations,475

Yue et al. (2023) propose a task that checks whether476

in-line generated citations from LLMs are actually477

attributable or not. Unlike such approaches, we478

focus on post-hoc context attributions, because this479

directly predicts a link to a factual source, and there-480

fore avoiding the risk of making up the source.481

4.2 Post-hoc Context Attribution482

In post-hoc context attribution, the aim is to deter-483

mine which parts of the context are attributable to484

an already answered question (Yang et al., 2018).485

There has been a significant amount of work on486

training models for the context attribution problem487

on sentence level for multi-hop QA (Zhang et al.,488

2024; Ho et al., 2023; Yin et al., 2023; Fu et al.,489

2021; Tu et al., 2020; Fang et al., 2020). How-490

Figure 4: Relationship between Evaluation Time (sec-
onds) and Accuracy (%) for three answer verification set-
tings: Llama 1B (Zero-shot), No Alignment and SYNQA.
SYNQA demonstrates the lowest evaluation time and
highest accuracy, indicating its superior performance in
facilitating efficient and accurate answer verification.

ever, they do not investigate this problem in the 491

context of LLMs. Moreover, the methods are con- 492

strained only to multi-hop QA, and are not tested 493

on broader QA context, such as on dialogue QA. 494

In our work, we propose methods that use LLMs 495

as data generators. This allows us to better general- 496

ize and cover multiple QA settings simultaneously, 497

therefore better matching real-world needs. 498

Another line of work focuses on coarse-level 499

granularity and provide attributions either on para- 500

graph level (Rashkin et al., 2023; Menick et al., 501

2022) or document level (Nakano et al., 2021; 502

Gao et al., 2023a; Buchmann et al., 2024). How- 503

ever, in a user study Slobodkin et al. (2024) ob- 504

serve that such granularity level is not optimal 505

for humans when manually fact-checking LLM- 506

generated content. Their experiments suggest that 507

sentence-level granularity is ideal for humans. This 508

is why we adopt sentence-level granularity in our 509

work, despite this being a harder task. On the 510

other hand, there has been work that focuses on 511

the other extreme: assigning context attributions 512

on sub-sentence level (Cohen-Wang et al., 2024; 513

Phukan et al., 2024). Such methods are computa- 514

tionally expensive and this hinders their practical 515

usability. Our work ensures that models can be run 516

in real-time to make them practical for end users. 517

5 Conclusion 518

We investigated the task of context attribution in 519

QA. We focused on approaches that enhance attri- 520

bution performance without relying on prohibitive 521

human annotations. Our proposed data synthesis 522

strategy, SYNQA, enables the generation of high- 523

quality synthetic attribution data, leading to sub- 524

stantial improvements in fine-tuned small models. 525

Through extensive experiments on six datasets 526

across single turn QA and dialogue QA attribu- 527

tion, we demonstrated that small models fine-tuned 528

with SYNQA data (i) significantly outperform mod- 529

els trained on alternative synthetic attributions, (ii) 530

exceed the performance of zero-shot LLMs that 531

are orders of magnitude larger, and (iii) general- 532

ize better to out-of-domain distributions compared 533

to models trained on gold in-domain data. These 534

findings suggest that SYNQA reduces reliance on 535

large-scale human-labeled datasets, while improv- 536

ing attribution robustness across diverse scenarios. 537

Finally, our user study validates the practical 538

utility of fine-tuned small models in real-world 539

question-answering applications. 540
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Limitations541

While our work demonstrates the effectiveness of542

SYNQA for context attribution in question answer-543

ing, we leave some important directions for future544

research. First, all models we train operate ex-545

clusively at the sentence level. Even though Slo-546

bodkin et al. (2024) found through a user study547

that sentence-level granularity of context attribu-548

tion QA is probably the best suited granularity for549

manual verification of LLM output, this might not550

always be the optimal granularity for attribution551

in other tasks or scenarios. Namely, some context552

elements might be better captured at different lev-553

els: e.g., from individual phrases to multi-sentence554

passages—depending on the semantic structure of555

the text.556

Second, while we evaluated our approach on557

OR-QuAC, we have not fully explored context at-558

tribution in retrieval-augmented generation (RAG)559

settings with dialogue. This represents a particu-560

larly challenging scenario where both the conver-561

sational nature of questions and dynamic context562

updating must be handled simultaneously. Future563

work should investigate how context attribution564

models can adapt to streaming contexts when the565

relevant context continuously evolves throughout a566

conversation.567

Third, we focused primarily on question answer-568

ing, but context attribution is valuable for many569

other natural language processing tasks: e.g., in570

text summarization, attributing summary sentences571

to source document segments could enhance trans-572

parency and fact-checking capabilities. Future re-573

search should examine how SYNQA’s synthetic574

data generation approach can be adapted for differ-575

ent tasks, potentially revealing task-specific chal-576

lenges and opportunities for improving attribution577

mechanisms.578

Fourth, our user study (§3.3.5), while providing579

valuable initial insights into the effectiveness of580

context attribution to help users verify the LLM581

model outputs in QA settings, was conducted with582

a limited sample of 12 participants. A larger-scale583

study with more participants would strengthen the584

statistical validity of our findings and potentially585

reveal more nuanced patterns. Future work should586

extend this evaluation to a more diverse and larger587

participant pool, ideally, including users with vary-588

ing levels of domain expertise and familiarity with589

language model outputs.590
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Georgiev, and Aleksander Mądry. 2024. ContextCite:651
Attributing Model Generation to Context. ArXiv,652
abs/2409.00729.653

Preetam Prabhu Srikar Dammu, Himanshu Naidu,654
Mouly Dewan, YoungMin Kim, Tanya Roosta, Aman655
Chadha, and Chirag Shah. 2024. ClaimVer: Explain-656
able Claim-Level Verification and Evidence Attri-657
bution of Text Through Knowledge Graphs. ArXiv,658
abs/2403.09724.659

Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós.660
2011. Fast Locality-Sensitive Hashing. In Proceed-661
ings of the ACM SIGKDD International Conference662
on Knowledge Discovery and Data Mining (KDD),663
pages 1073–1081.664

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,665
Noah A. Smith, and Matt Gardner. 2021. A Dataset666
of Information-Seeking Questions and Answers An-667
chored in Research Papers. In North American Chap-668
ter of the Association for Computational Linguis-669
tics: Human Language Technologies (NAACL-HLT),670
pages 4599–4610.671

Emily Dinan, Stephen Roller, Kurt Shuster, Angela672
Fan, Michael Auli, and Jason Weston. 2019. Wizard673
of Wikipedia: Knowledge-Powered Conversational674
agents. In Conference on Learning Representations675
(ICLR).676

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,677
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,678
Akhil Mathur, Alan Schelten, Amy Yang, Angela679
Fan, et al. 2024. The Llama 3 Herd of Models. arXiv680
preprint arXiv:2407.21783.681
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A Comprehensive Discussion on Related1002

Work1003

We split the related work papers into several cate-1004

gories: tasks, datasets, methods and metrics.1005

A.1 Context Attribution Tasks1006

Attributable to Identified Sources (AIS): given1007

a generative text tg and a context text tc, is tg at-1008

tributable to tc? Rashkin et al. (2023) propose a1009

manual framework that defines the AIS task and1010

evaluates the AIS scores across several NLP tasks,1011

namely conversational QA (Anantha et al., 2020;1012

Dinan et al., 2019), text summarization (Nallapati1013

et al., 2016) and table-to-text (Parikh et al., 2020).1014

Our work differentiates in three important aspects:1015

(1) we focus on a broader QA setup (i.e., single-1016

question QA and conversational QA), which makes1017

our work a subset of the broader AIS task; (2) we1018

focus on more fine-grained level: our attributions1019

are not on the entire text level, but rather on a sen-1020

tence level, which has been shown in user studies1021

to be more useful to end-users (Slobodkin et al.,1022

2024); (3) the AIS task entails a manual evalua-1023

tion framework, while our work provides automatic1024

evaluation with golden data.1025

In-line Citation Generation: uses LLMs to pro-1026

duce in-line citations along with the generated text1027

(Bohnet et al., 2022; Gao et al., 2023b; Huang et al.,1028

2024b). This typically works on paragraph or doc-1029

ument level. Slobodkin et al. (2024) propose a fine-1030

grained task, where the attributions are on sentence1031

level, because such granularity is more useful to1032

human end users. Because generating such in-line1033

citations can result in producing completely made1034

up citations, Yue et al. (2023) propose a task that1035

checks whether the in-line generated citations from1036

LLMs are actually attributable or not. Instead of us-1037

ing binary attributable/non-attributable labels (like1038

with AIS), they propose more fine-grained labels1039

for this problem: attributable, extrapolatory, con-1040

tradictory and non-attributable. Contrary to such1041

approaches, our work focuses on post-hoc context1042

attributions: given an answer to a question, find the1043

sentences in the context that support the factuality1044

of the answer.1045

Post-hoc Attribution: determines which parts of1046

the context are attributable to an already answered1047

question (Yang et al., 2018). Within the post-hoc1048

context, there are two other subcategorizations of1049

the task: contributive and corroborative post-hoc1050

attribution (Cohen-Wang et al., 2024). 1051

Post-hoc Attribution (Contributive): Con- 1052

textCite (Cohen-Wang et al., 2024) and Mirage 1053

(Qi et al., 2024) define a post-hoc task that aims 1054

at discovering which parts of the context caused 1055

the LLM to generate the particular response. Their 1056

evaluation methods, however, are based on proxy 1057

metrics that do not rely on golden annotations, 1058

while in our work we rely on automatic annotations 1059

that rely on golden data. 1060

Post-hoc Attribution (Corroborative): this task 1061

is similar to contributive post-hoc attribution. The 1062

difference is that the constraint for causality is not 1063

necessarily enforced, but should support the factu- 1064

ality of the statement (Cohen-Wang et al., 2024). 1065

Many works are based on coarse-grained level 1066

and provide attributions on either paragraph level 1067

(Menick et al., 2022), document level (Nakano 1068

et al., 2021) or on multi-document level, where 1069

they have a RAG component that retrieves the doc- 1070

uments that are potentially attributable (Gao et al., 1071

2023a; Buchmann et al., 2024). 1072

Context Attributions to other Modalities. 1073

Other line of work maps the attributions to other 1074

modalities, such as knowledge graphs Dammu et al. 1075

(2024). Similarly, Maheshwari et al. (2024) take 1076

multi document collection as input, construct a 1077

graph of narratives, and then generate a presenta- 1078

tion (i.e., slides) for the topic, along with attribu- 1079

tions from the generated content of the slides with 1080

the original documents. We do not investigate such 1081

cases, and focus on attributing answers to sentences 1082

within the user-provided context. 1083

Post-hoc Attribution for Text Summarization. 1084

Ernst et al. (2021) proposed a task, dataset and 1085

baseline model (dubbed SuperPAL) for detecting 1086

attributions for text summarization. In a followup 1087

work, Ernst et al. (2022) an extension of the task, 1088

this time for clustering propositions for text summa- 1089

rization and Ernst et al. (2024) extend this to multi- 1090

document summarization. Krishna et al. (2023) 1091

investigate whether such text summarization align- 1092

ments are helpful for humans. In our work, we 1093

focus on the question answering (QA) task. 1094

A.2 Datasets 1095

AIS. Rashkin et al. (2023) proposed the AIS 1096

dataset, which contains three tasks: question 1097

answering, table-to-text and text summarization. 1098

Here, for each data point, there is a query and an 1099
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LLM-generated response, along with label by hu-1100

mans whether it is fully attributable or not. This1101

data is on paragraph and document level, and lacks1102

the granularity of a sentence level. Therefore, we1103

do not use it in our work.1104

HotpotQA. With HotpotQA (Yang et al., 2018),1105

the authors propose an explainable multi-hop QA1106

dataset. The dataset also contains attribution links1107

(i.e., explanations) for the answers: spans of text1108

that belong to the input context, which are support-1109

ing the statement in the answer. The authors set up1110

baselines for measuring the ability of attributions1111

of models on sentence level, which is in line with1112

what we do. In our work, we integrated HotpotQA1113

as part of our setup for both training and testing.1114

AttributionBench. This is a benchmark for at-1115

tribution evaluation of LLM generated content (Li1116

et al., 2024). In particular, the benchmark assesses1117

whether the assigned attribution on a generated text1118

is actually attributable. In particular, given a query,1119

response set R (containing claims) and evidence1120

set E, the task is to label as "attributable" or "not1121

attributable" every claim against E. This work1122

operates on a coarse-grained level (paragraphs or1123

whole documents). Similarly, Yue et al. (2023) pro-1124

posed another dataset for evaluating attribution of1125

LLM-generated text, same on paragraph level. In1126

our work, we focus on sentence-level context attri-1127

bution. Therefore, we did not include this dataset1128

in our work.1129

Conversational QA. CoQA (Reddy et al., 2018)1130

is a conversational QA dataset, which contains a1131

context, questions-answer pairs between two peo-1132

ple (teacher and student) and sentence-level sup-1133

porting evidence for the context. We use this1134

dataset in our evaluation to test the out-of-domain1135

capabilities of LLMs for context attribution. We1136

also use QuAC (Choi et al., 2018) and ORCon-1137

vQA (Qu et al., 2020), which are conversational1138

QA datasets similar to CoQA.1139

QASPER. This dataset is from the scientific do-1140

main (Dasigi et al., 2021). The dataset contains1141

title and an abstract of a paper, question and an-1142

swer about the content. This data has information1143

on paragraph level, not on sentence level. There-1144

fore, we do not use it in our experiments.1145

WikiQA. Dammu et al. (2024) use WikiQA1146

(Yang et al., 2015), because it’s Wikipedia-based1147

dataset, which can be linked to Wikipedia-derived1148

KG like Wikidata (Vrandečić and Krötzsch, 2014). 1149

In our work, we focus only on text modality, which 1150

is why we do not include this dataset into our eval- 1151

uation. 1152

WikiNLP. The WikiNLP dataset (Gashteovski 1153

et al., 2019) is a dataset that contains the entire En- 1154

glish Wikipedia, along with linguistic annotations 1155

(e.g., POS tags, dependency parse trees, etc.) and 1156

semantic annotations (e.g., NER tags and entity 1157

links). We use this dataset for the synthetic data 1158

generation, because it keeps the linked information 1159

from the Wikipedia articles, which are annotated by 1160

humans. For this reason, the dataset has been used 1161

in wide range of tasks in research, mostly for infor- 1162

mation extraction (Dukić et al., 2024; Kotnis et al., 1163

2023, 2022b; Gashteovski et al., 2020), but also for 1164

other tasks such as clustering (Viswanathan et al., 1165

2024), open link prediction (Broscheit et al., 2020) 1166

and entity linking (Nanni et al., 2019; Radevski 1167

et al., 2023) 1168

A.3 Metrics and Evaluation 1169

AIS. The AIS framework (Rashkin et al., 2023) 1170

is human annotation framework. Given a gener- 1171

ated text chunk and a context chunk (this can be 1172

sentence, paragraph or document), a human eval- 1173

uated whether the generated text chunk is fully 1174

attributible or not. It is basically a binary classifi- 1175

cation problem. In their data, the authors focus on 1176

document level granularity, which is not useful for 1177

humans. In our setup, we check for each sentence 1178

in the context if it supports the answer. 1179

AutoAIS. To evaluate the attributed information, 1180

Slobodkin et al. (2024) use AutoAIS metric: an 1181

NLI-based scoring. Prior studies have shown that 1182

this metric highly correlated with human annota- 1183

tions (Bohnet et al., 2022; Gao et al., 2023b). This 1184

is an extension to the AIS metric. We do not use 1185

proxy metrics, but rely on golden annotations by 1186

humans. 1187

AttrScore. With AttrScore, Yue et al. (2023) 1188

consider LLM generated content on the one hand 1189

and citation documents on the other hand. Then, 1190

the score evaluates whether a provided citation is 1191

attributable, extrapolatory, contradictory or non- 1192

attributable. Essentially, it is an extension of AIS, 1193

such that it provides more fine grained labels for 1194

the provided citations. The AttrScore is basically a 1195

fine-tuned LLM that provides these scores. 1196
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Unsupervised Metrics. ContextCite proposed1197

the Top-k-drop and LDS metric to evaluate the1198

causal post-hoc attribution. These metrics do not1199

require labeled data. Berchansky et al. (2024) uses1200

ROUGE and BERTScore to evaluate their results.1201

We do not use unsupervised metrics and rely on1202

automated evaluation with golden annotations by1203

humans.1204

A.4 Methods1205

Multihop QA. There has been significant1206

amount of work on tackling the context attribu-1207

tion problem on sentence level for multi-hop QA1208

(Zhang et al., 2024; Ho et al., 2023; Yin et al.,1209

2023; Fu et al., 2021; Tu et al., 2020; Fang et al.,1210

2020). While we also investigate this problem, in1211

contrast to our work, these works focus only on the1212

multihop QA task. In our work, we also explore1213

other QA setups, including conversational QA with1214

different domains. Moreover, these papers do not1215

investigate the capabilities of LLMs about the con-1216

text attribution problem, but rather are proposing1217

specific methods that are tailor made for the multi-1218

hop QA problem, which involves both answering1219

the questions and providing supporting sentences1220

to the answers.1221

In-line Citation Generation. Another line of1222

work focuses on guiding LLMs to generate in-line1223

citations along with the generated text (Li et al.,1224

2023). Slobodkin et al. (2024) tackle this problem1225

on a sentence level, but do not investigate the post-1226

hoc context attribution case. Moreover, they rely on1227

proxy metrics such as AutoAIS (Gao et al., 2023a)1228

and BERTScore (Zhang et al., 2020). Similarly,1229

Bohnet et al. (2022) proposes methods for in-line1230

citation generation, but this work is more coarce1231

grained and focuses on paragraph and document1232

level. They also report their findings on proxy met-1233

rics. Their method is based on retrieval and they do1234

not investigate the LLMs capabilities thoroughly.1235

Gao et al. (2023b) assign citations to LLM gener-1236

ated content, where they retrieve the information1237

from a large collection of documents (also, it’s1238

on paragraph and document level, not on sentence1239

level). START (Huang et al., 2024b) propose a1240

data synthetic generation method for in-line cita-1241

tion generation on document level, where each cita-1242

tion refers to an entire document. FRONT (Huang1243

et al., 2024a) also investigates synthetic data gen-1244

eration of in-line citation generation, where the1245

citations assigned to the sentences in the output1246

are entire documents. Similarly, Schimanski et al. 1247

(2024) propose a synthetic data generation pipeline 1248

for fine tuning models that solve the same problem. 1249

Berchansky et al. (2024) use Chain-of-Thought ap- 1250

proaches and fine-tuning smaller LLMs in order to 1251

solve this problem. Patel et al. (2024) also fine-tune 1252

a model specifically for this task, and the attribu- 1253

tions are on paragraph level. 1254

Post-hoc Context Attribution. Ramu et al. 1255

(2024) propose template-based in-context learn- 1256

ing method for post-hoc context attribution. In 1257

particular, they use standard retrievers as a first 1258

step to pre-rank the text (e.g., BM25 and dual en- 1259

coders (Ni et al., 2022)) and then they use LLMs to 1260

calssify (i.e., rerank) the relevant sentences. Con- 1261

textCite (Cohen-Wang et al., 2024) uses ablation- 1262

based methods to infer the attributions of post-hoc 1263

generated text. 1264

User Study. Recent work has called for a more 1265

human-centric research in NLP (Kotnis et al., 1266

2022a). In such work, the idea is to involve the 1267

user (i.e., the final stakeholder) in the process of 1268

research, which is typically done with some forms 1269

of user studies (Rim et al., 2024; Xu et al., 2024; 1270

Ilievski et al., 2024). In this spirit, we want To ver- 1271

ify whether our models are useful for end users. To 1272

this end, we performed a user study, whereas users 1273

were asked to solve a fact checking task with the 1274

use of our context attribution model. We found that 1275

our approach does indeed make human end-users 1276

faster in performing the manual fact-checking task 1277

(for details of our user study, see Section 3.3.5). 1278

B Method for Synthetic Data Generation 1279

B.1 Multi-hop Generation of Attribution Data 1280

To generate synthetic data with the use of 1281

Wikipedia, we use the WikiNLP dataset (Gash- 1282

teovski et al., 2019). It contains the text from all 1283

Wikipedia articles along with annotations for links 1284

within the text that link to other Wikipedia articles. 1285

The main idea is to use the links in order to imitate 1286

reasoning hops across different (related) articles. 1287

Therefore, we filter out all articles that either do 1288

not contain links or that contain links to articles 1289

that do not contain links. Finally, for each article, 1290

we use only the first paragraph, because this is con- 1291

sidered to be the paragraph that contains the most 1292

“definitional information” (Bovi et al., 2015); i.e., 1293

information that precisely describes the target con- 1294

cept of the article and contains the most important 1295
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information about it.1296

Then, for each article, we randomly select a1297

sentence that contains at least one link to another1298

Wikipedia article.3 Each of the sentences that we1299

sample serve as ground truths for the context attri-1300

bution. With these sentences, we then prompt an1301

LLM to generate a question-answer pair.1302

B.2 Question-Answer Pairs Generation1303

Using the multi-hop chain of sentences, we prompt1304

an LLM (see §C) by providing it only the formed1305

chain as evidence. The LLM generates a question-1306

answer pair that must be answered using the infor-1307

mation in these supporting sentences, ensuring the1308

pairs are grounded in the provided evidence.1309

B.3 Distractors Mining1310

In realistic scenarios, whether the context is user-1311

provided or retrieved through RAG, the system1312

typically encounters multiple context documents1313

that are highly similar to those containing the ev-1314

idence sentences. To bridge this gap between our1315

synthetically generated training data using SYNQA1316

and the data models encounter “in the wild”, we1317

augment each training sample with hard negative1318

distractor articles. We obtain embeddings using E51319

(Wang et al., 2022) for each Wikipedia article in1320

our collection. Then, for each article containing a1321

supporting sentence for the question-answer pair,1322

we randomly sample up to three distractor articles1323

that share semantic similarity with the ground truth1324

article. This process increases the difficulty of the1325

training data, producing models better equipped to1326

handle diverse testing scenarios.1327

B.4 Comparison to HotpotQA1328

Although our method is inspired by HotpotQA1329

(Yang et al., 2018), note that we do not aim to1330

recreate the HotpotQA dataset. Our method has1331

significant differences, which result in both much1332

higher amount of data and in higher domain vari-1333

ability.1334

Particularly, their method is more curated and1335

involves humans in multiple steps. First, the au-1336

thors manually select the target entities (and, with1337

that, the target articles from which the annotators1338

create the question and answer pairs). The rea-1339

son for this is because many highly specialized1340

articles—e.g., the article for IPv4 protocol—will1341

3To make sure we have multi-hop scenario, we also check
if the other Wikipedia article also contains at least one valid
link to another Wikipedia article.

not be suitable for crowd-workers to both iden- 1342

tify meaningful questions and provide answers for 1343

those questions. Our approach does not have this 1344

constraint and, therefore, produces data that has 1345

much higher domain variability. 1346

Second, their method uses mechanical Turk 1347

workers to annotate the questions, answers and 1348

attribution sentences. In our case, we automatically 1349

select the hopped sentences (which serve as gold 1350

context attribution data), and then we use these sen- 1351

tences to generate question-answer pairs with an 1352

LLM. 1353

Third, while HotpotQA always enforces multi- 1354

hop QA pairs, we do not instruct the LLM to do 1355

that. Rather, we first allow the LLM to decide 1356

whether generating such multihop QA pair is actu- 1357

ally possible for the incoming context attribution 1358

sentences. If so, then the LLM generates multihop 1359

QA pairs. Otherwise, it generates direct QA pairs 1360

that do not need hops; i.e., QA pairs like in SQuAD 1361

(Rajpurkar et al., 2016). 1362

Fourth, the HotpotQA annotation method does 1363

not allow for dialogue QA. In our method, we also 1364

create dialogue multi-hop data. 1365

With these differences in mind, we showed 1366

that, compared to HotpotQA, our data generation 1367

method exhibits the following advantages: (1) our 1368

method generates data with higher domain vari- 1369

ability; (2) our method goes beyond multi-hop QA 1370

and also generates direct QA pairs (like SQuAD) 1371

as well as dialogue QA data; (3) we generate the 1372

data in completely automatic manner without the 1373

involvement of humans. 1374

C Prompts to generate SYNQA synthetic 1375

training data 1376

In order to generate the question-answer pairs, we 1377

provide Llama 70B with the following prompts: 1378

SYSTEM PROMPT
You are tasked with generating a concise and
focused question-answer pair using informa-
tion from provided Wikipedia sentences. Fol-
low these instructions carefully:
1. You will be provided with multiple
Wikipedia articles, each containing:
- The title of the article.
- One specific sentence from the article.
2. Your goal is to generate a short, factual
question and a concise answer, ensuring:

1379

17



- The question-answer pair is grounded in the
provided sentences.
- The reasoning is logical, clear, and refer-
ences all sentences used.
3. Key Constraints:
- Questions must address a single coherent
topic or concept that can be logically inferred
from the provided sentences.
- Avoid combining unrelated pieces of infor-
mation into a single question.
- The "reasoning" must explain how each
sentence in the "ids" field contributes to an-
swering the question but should remain brief
and to the point.
4. Aim for brevity:
- Questions should be concise and avoid un-
necessary details.
- Answers should be short, typically no more
than one sentence.
- Keep the reasoning concise, focusing only
on the necessary logical connections.
5. Multi-hop reasoning is encouraged but
must be natural and focused:
- Combine information only when it is logical
and directly relevant to the question.
- Do not create overly complex questions that
combine weakly related information.
6. Provide your response in raw JSON for-
mat with the following keys:
- "question": A concise and clear question
string.
- "answer": A short and factual answer string.
- "ids": A list of JSON-compatible arrays
(e.g., [[0, 0], [1, 0]]) representing the
indices of all sentences used to generate the
question-answer pair.
- "reasoning": A brief explanation of how
each sentence in "ids" was used to generate
the question-answer pair.
Important Notes:
- Ensure the question-answer pair is entirely
self-contained and logically consistent.
- Do not include unnecessary or weakly related
information in the question or answer.
- Avoid introducing information not present in
the provided sentences.
- Do not include additional formatting, expla-
nations, or markdown in your response.

1380

USER PROMPT
Here are the titles and sentences:
Title: [First Article Title]
[0, 0] [First sentence from the article]
Title: [Second Article Title]
[1, 0] [Second sentence from the article]
Title: [Third Article Title]
[2, 0] [Third sentence from the article]
Use the provided sentences to generate a
question-answer pair following the specified
guidelines. Respond only in raw JSON with
no additional formatting or markdown.

1381

Given the SYSTEM and the USER prompt, the 1382

LLM is generating the question-answer pair, which 1383

when combined with the full articles, yields a single 1384

SYNQA training data sample. 1385

Should we want to generate a SYNQA dialog 1386

training data sample, we make the prompts a bit 1387

simpler: 1388

SYSTEM PROMPT
You are an AI assistant that generates struc-
tured question-answer pairs based on a pas-
sage. Your goal is to create meaningful, fac-
tual, and reasoning-based questions that re-
quire connecting multiple sentences.
Follow these strict guidelines:
- Format the output as a valid JSON array,
where each item has:
- "question": A clear, concise question.
- "answer": A short, factual response.
- "sentence_numbers": A list of integers
pointing to all relevant supporting sentences.
- Ensure questions are generated in a ran-
dom sentence order (not sequential).
- Some questions must reference multiple
sentences for reasoning.
- Some sentences should be reused across mul-
tiple questions.
- Later questions should rely on earlier in-
formation and use pronouns or indirect refer-
ences to maintain logical flow.
- Introduce a mix of fact-based, causal, and
inference questions.
- Avoid introducing information not present
in the passage.
- Ensure all relevant sentences are cited for
each answer.

1389
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Your response must be valid JSON contain-
ing 5 to 10 question-answer pairs.

1390

and the user prompt:1391

USER PROMPT
Here is a passage:
Title: [Title of the passage]
0. [First sentence of the passage]
1. [Second sentence of the passage]
2. [Third sentence of the passage]
3. [Fourth sentence of the passage]
...
Generate structured question-answer pairs fol-
lowing these constraints:
- Return output in JSON format only:
["question": "...", "answer": "...",
"sentence_numbers": [..], ...]
- Use random sentence order, not sequential.
- Some questions should require multiple sen-
tences.
- Some sentences should be reused across dif-
ferent Q&A pairs.
- Later questions must reference earlier
ones using pronouns or indirect mentions.
- Include a mix of question types:
- Factual questions that can be answered di-
rectly from the passage.
- Causal questions that require understanding
relationships between sentences.
- Inference-based questions that require im-
plicit reasoning.
- Ensure sentence numbers fully cover the
reasoning required.
Return only JSON, with no extra text.

1392

D Zero-shot models1393

In order to obtain context attributions with the in-1394

struction tuned LLM (Jiang et al., 2023; Dubey1395

et al., 2024), we use the following prompts:1396

SYSTEM PROMPT
You are an AI assistant that identifies the sen-
tence(s) in a provided context document most
relevant for answering a specific question.
Your task is to select only the sentence(s) con-
taining the explicit information needed to an-
swer the question accurately, without adding

1397

extra context.
1398

USER PROMPT
Context Document:
[numbered sentences from the context]
Question: [query text]
Answer: [answer text]
Based on the context document, identify
the sentence number(s) from the following
choices: [list of numbers]. Select only the
sentence(s) that contain explicit information
needed to answer the question directly.
Answer only with the corresponding num-
ber(s) in parentheses, without additional ex-
planation.

1399

E User Study 1400

An example of the attribution scenario evaluated in 1401

our user study. See Figure 5 for details. 1402
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Figure 5: An example of the attribution scenario evaluated in our user study. Both the answer and the context
attributions are highlighted to help the user verify the correctness of the answer. In the absence of highlights, the
user is instructed to read the entire context. This example showcases a practical application of context attribution in
real world interactions with LLM generated content.
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