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Abstract
Feature learning at the scale of deep neural networks remains poorly understood due to the com-
plexity of deep network dynamics. Independent component analysis (ICA) provides a simple un-
supervised model for feature learning, as it learns filters that are similar to deep networks. ICA
extracts these features from the higher-order correlations of the inputs, which is a computationally
hard task in high dimensions with a sample complexity of at least n ≳ D2 for D-dimensional
inputs. In practice, this difficulty is overcome by running ICA in the d-dimensional subspace
spanned by the leading principal components of the inputs, which is often taken to be d = D/4.
However, there exist no theoretical guarantees for this procedure. Here, we first conduct systematic
experiments on ImageNet to demonstrate that running FastICA in a finite subspace of d ∼ OD(1)
dimensions yields non-Gaussian directions in the D-dimensional image space. We then introduce
a “subspace model” for synthetic data, and prove that FastICA does indeed recover the most non-
Gaussian direction in a sample complexity that is linear in the input dimension. We finally show
experimentally that deep convolutional networks trained on ImageNet exhibit behaviour consistent
with FastICA: during training, they converge to the principal subspace of image patches before
or when they find non-Gaussian directions. By providing quantitative, rigorous insights into the
working of FastICA, our study thus unveils a plausible feature-learning mechanism in deep convo-
lutional neural networks.

1. Introduction

Independent component analysis (ICA) is an unsupervised learning algorithm that separates mixed
signals, like images or sound, into statistically independent components [5, 7, 18]. When applied to
natural images, ICA yields localised, edge-like filters [4, 19, 25], also known as Gabor filters [12].
These filters resemble the early-layer features learnt by deep convolutional neural networks trained
on image classification [14, 22, 24]. This similarity makes ICA a simple, yet insightful model for
understanding feature learning in deep neural networks.

One of the puzzles of feature learning from images is that Gabor filters are learnt from the
higher-order correlations between pixels, which is a computationally hard task. In the case of ICA,
which seeks to identify projections of the inputs s := w · x that have a maximally non-Gaussian
distribution p(s), this hardness can be quantified: On the standard ICA data model, the fundamental
limit for weakly recovering a non-Gaussian direction in D-dimensional inputs is n ≳ D2 [1, 33]
as D → ∞. The situation is even worse if we consider the most popular algorithm, FastICA [18],
which has a sample complexity of n ≳ D4 [30]. While Ricci et al. [30] recently showed performing
ICA by minimising a “smoothed” ([8]) loss using SGD reduces the sample complexity down to the
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optimal n ≳ D2, this is still expensive on large-dimensional inputs like images. It is also a poor
model of the learning dynamics of neural networks, which are able to extract information from the
non-Gaussian part of their inputs early during training, i.e. after having seen not many samples [28].

In practice, the computational difficulty of FastICA is overcome by running the algorithm in
the subspace spanned by the leading principal components of the data, with a common prescription
suggesting to use a subspace of dimension d = D/4 [19]. While this convention by itself does not
alleviate the poor sample complexity, improving only the constants, it raises a couple of intriguing
question: 1. Is it possible to reliably find non-Gaussian directions in high dimensions (D → ∞)
by running FastICA in a subspace of fixed dimension d = OD(1)? If so, can we prove that it does,
and what does it tell us about the structure of images? And finally, do deep neural networks apply a
similar strategy to learn Gabor filters?

Main contributions Here, we answer all three questions in the affirmative. In particular, we . . .

• . . . demonstrate experimentally that running FastICA in a subspace of fixed dimension
d = OD(1) yields non-Gaussian directions in the D-dimensional image space on ImageNet
(Section 3);

• . . . introduce a new “subspace” model for data, for which we prove that strong recovery of
a non-Gaussian direction is possible at linear sample complexity when running ICA in a
subspace (Section 4);

• . . . show experimentally that different deep convolutional neural networks converge to the
principal subspace of image patches before or when they find non-Gaussian directions, mir-
roring the ICA approach to feature learning (Section 5).

2. Background: ICA and the FastICA algorithm

Given a set of n inputs D = {xµ}nµ=1 drawn i.i.d. from a data distribution P with zero mean and
identity covariance, ICA searches for a unit vector w ∈ Sd−1 that yields projections s = w ·x of the
inputs that are maximally non-Gaussian:

w∗ := argmax
∥w∥=1

ED G(w · x), (1)

where G : R → R is a suitable “contrast function” which measures non-Gaussianity, for example
G(s) := −e−s2/2. As a preprocessing step, it is very common to reduce the dimension of the inputs
by projecting them onto a d-dimensional subspace spanned by the leading principal components.
This is an efficient way of exploiting the information contained in the covariance matrix of the
inputs, before that information is removed by the whitening. Usually, the dimension of the original
ambient space D is cut down to d = D/4 [17, 19].

The most popular algorithm to do the optimisation in Eq. (1) is FastICA [18], which finds
extremal points of the population loss L(w) := EP G(w ·x) via a second-order fixed-point iteration.
Given an initial weight vector drawn at random on the unit sphere, w0 ∼ Unif(Sd−1), we iterate the
FastICA updates for t ≥ 1 until convergence:{

w̃t = ED[xG
′(wt−1 · x)]− ED[G

′′(wt−1 · x)]wt−1,

wt = w̃t/∥w̃t∥.
(2)

See Hyvärinen and Oja [18] for a detailed derivation and discussion.
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(b) (c)(a)

Figure 1: Running ICA in the principal subspace of small dimension d ∼ OD(1) yields non-
Gaussian directions that generalise in large dimension D (a) FastICA can be run in
the ambient dimension D of the inputs or on the d-dimensional subspace spanned by the
principal components ui. (b) Change in loss with respect to initialisation when running
FastICA on ImageNet patches at linear sample complexity n = 2D. As we increase the
patch width, and hence D, the change in the loss tends towards zero. (c) Running FastICA
in the subspace spanned by the leading d = 32 principal components yields a significantly
non-Gaussian direction, as shown by the decay of the loss evaluated in D dimensions.
Error bars indicate the error in the mean over runs. Full details in Appendix A.1.

3. Running FastICA in the principal subspace of ImageNet patches consistently
yields non-Gaussian directions

We first verified experimentally whether running FastICA in a subspace of fixed input dimension
d ∼ OD(1) yields a non-Gaussian direction in the ambient D-dimensional space when D → ∞,
see Fig. 1(a). To this end, we ran FastICA on a set of n = 2D patches that were randomly sampled
from ImageNet [11]. In Fig. 1(b), we show change in the loss L(w), averaged over a held-out test
set, compared to the value of the test loss at initialisation ⟨L(w0)⟩, where the average ⟨·⟩ is over
different random initial conditions. We can see that not only are the changes in the loss small; as
we increase the width of the patches, and hence their dimension D, the curves tend towards zero,
suggesting that FastICA does not recover a non-Gaussian direction at linear sample complexity on
ImageNet in the asymptotic limit of large inputs D → ∞, in agreement with Ricci et al. [30].

The picture changes fundamentally if we run FastICA in the subspace spanned by the leading
d = 32 principal components, keeping the dimension of the subspace fixed as we increase the size
of the inputs, see Fig. 1(c). We now find that the FastICA consistently finds a direction that, after
projecting back up into the D-dimensional space, yields non-Gaussian projections s = w · x.

This experiment therefore suggests that running FastICA in a subspace of constant, rather than
just smaller dimensions, yields non-Gaussian directions in image space even at linear sample com-
plexity, circumventing the fundamental computational limitations of FastICA.

4. FastICA provably recovers a non-Gaussian direction at linear sample complexity
on the “subspace model”

We now seek to confirm the picture that emerged from our experiments in Section 3 by proving re-
covery of a non-Gaussian direction with linear sample complexity by FastICA. In the standard input
model for (noisy) ICA, the computational hardness of the task in D dimensions requires n ≳ D2

which cannot be reduced by projecting down to lower dimensions [1, 33]. The standard ICA data
model therefore cannot account for the experimental results on ImageNet in Fig. 1.
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Definition of the subspace model Here, we therefore introduce the “subspace model”, a new data
model that accounts for the success of PCA + ICA on ImageNet. The key idea is to spike the higher-
order correlations of the inputs with a spike v that is a linear combination of the leading principal
components of the inputs, which we denote by ur ∈ SD−1 and with are orthonormal. We consider
n inputs in D dimensions xµ = (xµi ), µ = 1, . . . , n, that are sampled according to

xµ =
r∑

ρ=1

√
βρ
2g

µ
ρu

ρ + hµv + zµ, v =
r∑
ρ

αρu
ρ, (3)

where the Gaussian latent variables gµρ ∼i.i.d. N (0, 1), while the latent variable hµ is drawn from
a non-Gaussian distribution; for example, we could take hµ = ±1 to be Rademacher. All latent
variables gµρ , hµ are independent of each other. The noise zµ is drawn from a multivariate normal
distribution with mean 0 and covariance 1− vv⊤, which ensures that the non-Gaussian direction v
can not be recovered using principal component analysis (PCA), just like Gabor filters cannot be
found by PCA. The coefficients αρ are normalised as

∑r
ρ α

2
ρ = 1. To prove that FastICA can

recover the non-Gaussian direction, we proceed in two steps.

Step 1: projecting down We first show that when projecting inputs from the subspace model (3)
onto the lower dimensional subspace spanned by the top-r leading principal components, we obtain
a “reduced” input model that follows the ICA model. More precisely, we find that the reduced inputs
yµ = (yµi ), µ = 1, . . . , n, follow a noisy ICA model [30] whose “non-Gaussian” spike is simply,
up to normalisation, the projection of the original spike v:

yµ =
√
γ hµṽ + ẑµ ∈ Rr, (4)

where ṽ = proj(Sv)/∥proj(Sv)∥, for suitable γ and ẑµ. This is proved in Theorem 2. In the proof,
we assume that PCA yielded the exact principal subspace {ur}. However, in practice, as known
from standard results for PCA in high dimensions [2], PCA will return the subspace up to some
small error. However, this only reduces the signal-to-noise ratio of the noisy ICA model. More
precisely, we prove in Lemma 3 that, if n is such that n,D → ∞ and n/D that diverges arbitrarily
slowly, with high probability we still recover the reduced inputs (4), up to vanishing error terms.

Step 2: Gradient flow We now analyse the performance of ICA on inputs drawn from the reduced
model (4), at a linear sample complexity. Theorem 4, informally stated below, proves that gradient
descent (GD) on the ICA loss L(w) converges to the non-Gaussian spike of the reduced model.

Theorem 1 (Informal) Consider the low dimensional inputs drawn from the reduced model (4).
Since the population loss for ICA L(w) exhibits monotonicity and the dynamics of GD can be
approximated via gradient flow, with high probability GD converges to the non-Gaussian spike ṽ in
the limit n → ∞.

5. Deep convolutional neural networks recover the principal subspace of their inputs
before or when they find non-Gaussian directions

Deep convolutional neural networks (CNNs) learn similar filters as ICA in their first convolutional
layer. Motivated by our results on ICA, we investigated whether deep CNNs also identify the
principal subspace first, and then find non-Gaussian Gabor filters. To this end, we trained three deep
CNNs (AlexNet, Resnet18, and DenseNet121) on ImageNet using standard training recipes, see
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Figure 2: Deep neural networks converge to the principal subspace of image patches before or
when they find non-Gaussian directions. For three deep convolutional neural networks
trained on ImageNet, we plot the overlap with the principal subspace of image patches,
(Eq. (A.1), blue), obtained via PCA, and the excess kurtosis of the first-layer representa-
tions, which measures their non-Gaussianity (Eq. (A.2), green). Details in Appendix A.2.

Appendix A.2 for more details. Throughout training, we monitored whether the CNNs found non-
Gaussian directions, comparable to ICA, by tracking the excess kurtosis, Eq. (A.2), of projections
skµ = wk · xµ of ImageNet patches xµ along the first-layer filters {wk}k=1,...,K of the CNNs. We
show the excess kurtosis, averaged over patches and neurons, in blue in Fig. 2. After an initial phase
of low excess kurtosis close to initialisation, the non-Gaussianity of projections increases sharply
between 103 and 104 steps in all three networks, before plateauing.

Interestingly, this increase in non-Gaussianity, which is when the receptive fields form [20, 30],
is preceded by or coincides with the recovery of the principal subspace of the inputs by the CNNs.
We quantify this overlap by measuring the excess overlap of the filters with the subspace spanned
by the top-k principal components, which measures how much variability in the weights is captured
by the subspace compared to a random basis. An excess overlap of 0 indicates that weights are
not concentrated in the principal subspace beyond what one would expect by chance, where as an
excess overlap of 1 indicates that the weights are in the span of the subspace. In all three networks,
we found that the deep CNNs recover the principal subspace before or precisely when they discover
the non-Gaussian filters, which is consistent with the picture that emerged from our analysis of ICA.

6. Concluding perspectives

We have shown that ICA can provably recover a non-Gaussian direction v in linear sample com-
plexity if 1. v lives in the span of the principal components of the data, and 2. we perform PCA as a
preprocessing step. Intriguingly, we found that deep CNNs likewise recover the principal subspace
of their inputs before or precisely when they learn the non-Gaussian first-layer filters.

Our experimental observation reflects previous work that showed that neural networks learn dis-
tributions of increasing complexity, focusing on pair-wise correlations first before going to higher-
order correlations, both on images [3, 20, 21, 28], in natural language processing [6, 29] and on a
mixture classification task [3].

Our results also echo earlier work showing that gradient descent occurs in a tiny subspace of
input space [13, 23] and that the Hessian of over-parametrised neural networks has a low-rank
structure [26, 31, 32]. How these two perspectives – on the geometry of the loss landscape and on
the data structure – relate to each other is an intriguing avenue for further work.
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Appendix A. Experimental details

A.1. Figure 1

(a) We run FastICA on a set of n = 2D patches randomly sampled from ImageNet of width w,
with D = w2. We use the logcosh activation function, and use the full dataset to compute the
weight update at each step. We preprocess image patches by centering them and whitening
them. We compute the ICA loss averaged over a held-out test set of 10 000 patches, and
subtract the loss computed for a random direction over the same test set, averaged over 20
random directions.

(b) Same as in (a), except that after whitening, we only keep the leading d = 32 principal compo-
nents of each image and run FastICA in this subspace. We plot the loss in the original space
of images of dimension d by projecting the ICA weight vector back into the d-dimensional
space using the eigenvectors of the patch-patch covariance matrix.

Note that while Ricci et al. [30] consider an idealised setting where a fresh set of data is used
to compute the gradient, in these experiments we reused the same batch of inputs at every itera-
tion of FastICA. It is known that this actually simplifies the task of recovering single directions in
certain cases [9, 10]; however, in the case of FastICA the task remains hard: the FastICA loss with
standard activation functions is only sensitive to even cumulants, and due to whitening, the first non-
trivial cumulant is the fourth, yielding a computational lower bound for recovering a non-Gaussian
direction of n ≍ D2 [33].

A.2. Figure 2

Training We trained three deep convolutional neural networks, AlexNet [22], DenseNet121 [16]
and Resnet18 [15] on the ImageNet 1000 class classification task [11]. We used standard training
recipes for all three networks, training with SGD for 90 epochs. We employ a cosine learning
rate schedule with initial learning rate of 0.1 for Resnet18 and DenseNet, and 0.01 for AlexNet.
We further chose momentum of 0.9, weight decay of 10−4, and mini-batch size of 256. During
training, we randomly cropped images to 224×224 pixels, and randomly flipped them horizontally.
For all three architectures, we made three runs with different random number seeds, and took 50
logarithmically spaced snapshots of the weights during each training run.

Subspace overlap We first verified whether the first-layer convolutional filters at the end of train-
ing were predominantly located in a subspace spanned by the leading principal components. To
this end, we first computed the principal components of patches sampled at random from ImageNet,
which look roughly like Fourier components in two dimensions see the left plot in Fig. A.1. We
then determined the excess overlap of the final weights at the end of training w∗ with the principal
subspace. To this end, we vectorised the convolutional filters w∗d, which have dimension d, and
computed the excess overlap with a matrix of the leading k eigenvectors U ∈ Rk×d as

m = 1−
∥∥w − U⊤Uw

∥∥
2

∥w∥2
− k/d, (A.1)

where the factor of k/d is the overlap of the filters with a random basis of rank k. The excess
overlap m thus captures how much of the vector w is captured by the basis U in excess of what
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Figure A.1: The final filters of deep neural networks are concentrated in the subspace spanned
by the principal components. (Left) The first 64 principal components of patches of
11× 11 pixels (the size of AlexNet filters) sampled randomly from ImageNet images.
Filters are shown here for the red channel and shown in greyscale; filters for the other
channels look the same. (Right) For three deep convolutional neural networks trained
on ImageNet, we plot the excess overlap, Eq. (A.1), of the final first-layer filters with
the principal subspace of increasing rank, normalised by input dimension since filters
in the three architectures have different sizes. The excess overlap captures how much
of the filters is contained by the leading principal components compared to a random
basis of the same rank.

would be captured by a random basis of the same size. We plot the excess overlap m against the
relative rank k/d for the filters of the three networks in Fig. A.1 There is a peak around k = .4d. We
then plotted the excess overlap of the filters with the fixed subspace of the leading k = .4d principal
components for each snapshot of the networks, yielding the green curves in Fig. 2.

Excess kurtosis For each weight snapshot, we extracted the weights for each first-layer convolu-
tion and computed the dot-products skµ = wk · xµ between the weight of the kth convolution for
randomly sampled patches from ImageNet xµ. We normalised the skµ for each neuron (i.e. fixed k)
to have variance 1, and computed the excess kurtosis of the resulting skµ,

κex(s) = Es4 − 3. (A.2)

We then averaged over all the neurons to obtain the curves shown in Fig. 2(b).
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Appendix B. Theoretical analysis

B.1. Notation

We used the standard conventions o,O,Θ,Ω, ω for asymptotics. We recall them here for sequences,
Let {xk}k∈N, {yk}k∈N be real valued sequences. Then:

xk ∈ o(yk) ⇐⇒ lim
k→∞

xk
yk

= 0

xk ∈ O(yk) ⇐⇒ ∃C > 0 ∈ R ∀k > k0 |xk| ≤ C|yk|
xk ∈ Θ(yk) ⇐⇒ ∃C1, C2 > 0 ∀k > k0 C1yk ≤ xk ≤ C2yk

xk ∈ Ω(yk) ⇐⇒ ∃C > 0 ∈ R ∀k > k0 |xk| ≥ C|yk|

xk ∈ ω(yk) ⇐⇒ lim
k→∞

|xk|
|yk|

= ∞

We occasionally used the shorthands xk ≪ yk for xk = o(yk), xk ≲ yk for xk = O(yk) and
xk ≍ yn for xk = Θ(yk). When it is not clear what is the index of the sequence, we write Ok, e.g.
d = OD(1).

B.2. The subspace model turns out to be a spiked cumulant model after preprocessing

Before running ICA, the inputs are usually preprocessed in a canonical way. This standard pro-
cedure includes whitening to ensure that the covariance matrix is the identity, together with PCA,
to reduce the dimensionality of the original data. It means that, if the inputs are in RD, they are
usually projected in the space generated by the first fixed r < D principal components, and then
ICA is performed. We consider the inputs drawn according to the subspace model (3). Note that
we are assuming that the spikes {u1, . . . , ur} are the first r - leading principal components, and
that the spike v is a linear combination of those. In the following theorem, we prove that the pre-
processed inputs follow a spiked cumulant distribution, where the spike which corresponds to the
non-Gaussian signal is simply the normalized projection on the suitable low dimensional subspace
of the rotated (w.r.t. the whitening matrix) original non-Gaussian spike.

Theorem 2 (Reduced ICA model) Consider the subspace model (3). If the common preprocess-
ing steps are performed, i.e. the data are whitened and projected onto the low dimensional subspace
spanned by the leading principal components {u1, . . . , ur}, the transformed inputs are drawn ac-
cording to the following model:

yµ =
√
γ hµṽ + ẑµ ∈ Rr,

where ṽ = proj(Sv)/∥proj(Sv)∥ is the normalised projection on the low dimensional subspace of
the whitened original spike v. More precisely, γ is a suitable signal to noise ratio, S ∈ RD×D is the
whitening matrix for our original inputs and ẑµ is a zero-mean noise vector with covariance matrix∑r

ρ=1(1− (Sv)2ρ) eρ e
⊤
ρ , with {e1, . . . , er} vectors of the canonical basis for Rr.

Proof The subspace model (3) is build in such a way that the first r leading components are the
spikes {u1, . . . , ur}, being the covariance matrix of the inputs C =

∑r
ρ=1 β

ρ
2 uρ(uρ)⊤ + 1d. Im-

portantly, the non-Gaussian spike to be recovered from (3) is a linear combination of the already
mentioned spikes, which implies that all the signal is contained in the subspace generated by them.

We are going to show that when we whiten the data and project them onto the subspace gener-
ated by {u1, . . . , ur}, we still recover a spiked cumulant model in a fixed finite dimension r.

11
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Whitening To whiten the data, if is sufficient to multiply them by the whitening matrix S :=
√
C−1,

which in the case of the subspace model (3) is simply

S = U



1/
√

1 + β1
2

. . .
1/
√
1 + βr

2

1
. . .

1


U⊤,

where U := [u1, . . . , ur, er+1, . . . , eD] ∈ RD×D is an orthogonal matrix, being {er+1, . . . , eD}
part of the canonical basis for RD. Moreover, we can from now on set Sii = 0 for i = r + 1, . . . , D,
since in the next step we will only retain the first r principal components.

The new - whitened - inputs are now defined as x̃µ := Sxµ = Uyµ, for any µ = 1, . . . , n.
Note that the entries of yµ ∈ RD are just the components of the original input xµ with respect to
the basis {u1, . . . , ur, er+1, . . . , eD}, after the rotation due to the whitening. More precisely, for
ρ = 1, . . . , r, the entries of yµ read

yµρ :=
1√

1 + βρ
2

(xµ · uρ) = 1√
1 + βρ

2

[√
βρ
2g

µ
ρ + hµαρ + (uρ · zµ)

]
, (B.1)

where we have used the fact that the non-Gaussian spike v is a linear combination of the pairwise
orthogonal spikes {u1, . . . , ur} and that αρ are the corresponding coefficients. Since the noise
vector zµ has mean zero and covariance matrix 1 − vv⊤, it holds that (uρ · zµ) ∼ N (0, 1 − α2

ρ).
Hence,

z̃µρ :=
1√

1 + βρ
2

[√
β
ρ

2g
µ
ρ + (uρ · zµ)

]
∼ N

(
0, 1−

α2
ρ

1 + βρ
2

)
.

We conclude that the non trivial entries of each yµ are given by

yµρ =
αρ√
1 + βρ

2

hµ + z̃µρ . (B.2)

On the other hand, recall that we have yµi = 0 for i = r + 1, . . . , D.

Projection on the subspace spanned by the principal components We now project each whitened
input x̃µ onto the subspace generated by the first r principal components {u1, . . . , ur}, which sim-
ply means that we take track only of the r non trivial components given by (B.2), i.e. the ones for
ρ = 1, . . . , r. More formally, but with a slight abuse of notation, we keep calling the projected
vectors yµ, so that each projected input is now yµ = [u1, . . . , ur]⊤ x̃µ ∈ Rr.

It is left to show that, after whitening and PCA, our data are still spiked and, more precisely, we
have recovered nothing but a spiked cumulant model in Rr. Indeed,

yµ =

r∑
ρ=1

yµρ eρ =
( r∑

ρ=1

αρ√
1 + βρ

2

eρ

)√
β4h

µ +

r∑
ρ=1

z̃µρ eρ

= hµ proj(Sv) + ẑµ = ∥proj(Sv)∥hµ proj(Sv)/∥proj(Sv)∥︸ ︷︷ ︸
new spike ṽ

+ẑµ

= ∥proj(Sv)∥hµ ṽ + ẑµ,

12
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where proj(Sv) is the projection of Sv onto the subspace generated by the spikes {u1, . . . , ur},
ṽ := proj(Sv)/∥proj(Sv)∥, and ẑµ is a Gaussian random vector of zero mean and covariance
matrix

∑r
ρ=1(1− (Sv)2ρ) eρ e

⊤
ρ .

In conclusion, the new (projected and whitened) inputs are nothing but

yµ = ∥proj(Sv)∥hµṽ + ẑµ ∈ Rr,

hence we found that the inputs are drawn according to a spiked cumulant model, where proj(Sv)
is the spike corresponding to the original non-Gaussian signal hµ. If we set γ = ∥proj(Sv)∥2, the
thesis follows.

Thanks to Theorem 2, in case of inputs drawn from the subspace model and subjected to stan-
dard preprocessing steps, ICA is supposed to recover one single low dimensional spike belonging
to the subspace spanned by the leading principal components {u1, . . . , ur} ⊂ Rr. If the signal-to-
noise ratios {β1

2 , . . . , β
r
2} of the principal components are equal, up to normalisation and rescaling,

the said spike is nothing but the vector α := (α1, . . . , αr)
⊤, whose components are the ones of

the original spike v corresponding to the non-Gaussian latent variable hµ in the subspace model.
In Section B.3 we discuss what happens to the reduced model when we do not have access to the
exact value of the leading principal components, but we estimate it through PCA. Relying on the
fact that the population loss for ICA on the reduced model exhibits convenient monotonicity prop-
erties, in Section B.4 we prove the convergence, in a linear sample complexity, of gradient descent
(GD), therefore concluding that this kind of finite optimisation is indeed effective the context of the
subspace model.

B.3. Errors in estimation of PCs at linear sample complexity in high dimensions

Recall that we are interested in analysing the performance of ICA at a linear sample complexity,
namely when the number of samples scales as the dimension of the ambient space D, up to loga-
rithmic factors. So, we start by using an infinite amount of samples to estimate the first principal
components of our D-dimensional inputs. Then, we project down in low dimensions. This means
that, in practice, the principal components have to be estimated through PCA, and this may have
an impact on the distribution of the reduced model. Indeed, PCA at linear sample complexity only
yields an estimate ûρ of the leading principal components, whose overlap with uρ can be computed
exactly: in case of a finite signal-to-noise ratio and n = Θ(D) it is strictly smaller than 1, see for
example Eq. 3.37 of Bandeira et al. [2] for the rank-1 case. However, a number of samples n such
that n/D → ∞, even if the divergence is arbitrary slow, is sufficient to perfectly recover with high
probability the eigenvectors of the covariance matrix of the inputs. Hence, in practice, one considers
the change of basis provided by the matrix U is made by Û := [û1, . . . , ûr, er+1, . . . , eD] ∈ RD×D,
where {û1, . . . , ûr} is the set of the estimators provided by PCA at a linear sample complexity of the
first r-leading components. Fix φ ∈ [0, 1], which is the overlap between the estimator for each prin-
cipal component and the principal component itself, and define ε =

√
1− φ2. When n/D → ∞

arbitrarily slow, e.g. it is sufficient that n = Θ(D logD), we have that ε = ε(D) → 0, and then
clearly φ = φ(D) → 1. For the derivation of the (perturbed) reduced model, we assume that the
estimated PCs are

ûρ = φuρ + εũρ, (B.3)

for ρ = 1, . . . , r and ũρ ⊥ uρ, ∥ũρ∥ = 1. The following lemma shows that we can obtain the
reduced model even if the eigenvectors of the covariance matrix of the inputs are approximated

13
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by PCA. The model is simply the one found in Theorem 2, up to some errors introduced with the
perturbed eigenvectors, which however vanish for D → ∞.

Lemma 3 Consider the subspace model (3) and assume we perform the usual preprocessing steps
for ICA without having access to the exact value of the covariance spikes, but only to ûρ de-
fined in Eq. B.3. Consider a number of samples n such that n/D diverges arbitrary slow, e.g.
n = Θ(D logD). Then, with high probability, the transformed inputs are nothing but the reduced
model introduced in Theorem 2, up to vanishing errors.

Proof We need to compute, for µ = 1, . . . , D, the whitened inputs x̃µ = Sxµ = Ûyµ, where S is
the whitening matrix. After that, we will project the inputs onto the principal subspace. Note that
for any ρ, ρ′ = 1, . . . , r, we obtain

uρ · ûρ′ = (φuρ + εũρ) · uρ′ = φ δρρ′ + ε (ũρ · uρ′).

Hence, with respect to the usual pairwise orthonormality of the spike generating the principal sub-
space, there is an extra “error term” provided by the fact that we cannot precisely estimate the
principal components with a linear number of samples. Taking into account these perturbations, we
compute for µ = 1, . . . , n, ρ = 1, . . . , r the components of yµ, i.e.

yµρ =
1√

1 + βρ
2

[ r∑
ρ′=1

√
βρ′

2 gµρ′(û
ρ · uρ′

) +
√
β4h

µ
r∑
ρ′

αρ′(ûρ · uρ′
) + zµ · ûρ

]
=

1√
1 + βρ

2

[√
βρ
2g

µ
ρφ+

r∑
ρ′=1

ε

√
βρ′

2 gµρ′(ũ
ρ · uρ′

) + hµαρφ+

r∑
ρ′

αρ′εhµ(ũρ · uρ′
)︸ ︷︷ ︸

non-Gaussian signal

+zµ · ûρ
]

=

√
1

1 + βρ
2

hµ
(
αρφ+

r∑
ρ′=1

αρ′(ũρ · uρ′
)ε
)
+ z̃µρ ,

where the Gaussian noise is

z̃µρ =
1√

1 + βρ
2

[√
βρ
2g

µ
ρφ+

r∑
ρ′=1

√
βρ′

2 gµρ′(ũ
ρ · uρ′)ε+ φ(zµ · uρ) + ε(zµ · ũρ)

]
.

Clearly, for any ρ = 1, . . . , r, z̃µρ is a centred Gaussian random variable with variance

c =
1

1 + βρ
2

(
φ2βρ

2 + ε2
r∑

ρ′=1

βρ′

2 (ũρ · uρ′)2 + 1− α2
ρ

)
∈ R.

The other components yµρ for ρ = r + 1, . . . , D vanish. In the previous formulas, it has been
emphasised the dependence of several terms on the overlap φ between any exact spike and its
estimation provided by PCA. Indeed, we can assume now that all the other terms, depending on ε,
vanish with high probability when D → ∞, since e.g. n = Θ(D logD). Hence, we get

yµρ = φ

(√
1

1 + βρ
2

hµαρ +

√
βρ
2

1 + βρ
2

gµρ + (zµ · uρ)

)
+ oD(1), (B.4)

where φ → 1 with high probability. We can see that the components of the inputs in (B.4) are the
ones previously obtained in Theorem 2 multiplied by the overlap φ. Now, the last preprocessing
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step consists in projecting yµ ∈ RD in the right low dimensional subspace. As in Theorem 2,
with a slight abuse of notation, we adopt the notation yµ to refer simply to the vector in Rr whose
components are yµρ , for ρ = 1, . . . , r. Hence, the reduced inputs turn out to be yµ + Ryµ, where R
is an “error” matrix whose entries are rij = ûi · ûj if i ̸= j and zero otherwise. Since ûi · ûj =
φε(ui · ũj) + φε(ũi · uj) + ε2(ũi · ũj), these last error terms vanish with high probability when
D → ∞.

B.4. Optimization on the subspace

In this section we prove that it is possible to efficiently solve ICA on the subspace model (3) with
n = Θ(D log(D)) (or even slower, it is sufficient that n/D → ∞ to be sure that the errors intro-
duced with the estimation of the principal components by PCA vanish for D → ∞) samples after
the projection on the principal r-dimensional subspace, with r = O(1). The data model we refer to
in this section is the reduced model (4), which is a simple spikes cumulant model (see e.g. [33]). In
our case, the spike corresponding to the non-Gaussian latent variable, namely the one to be recov-
ered, is ṽ in (4). We choose to directly state and prove Theorem 4 for inputs distributed according
to the reduced model because, when the number of samples is sufficiently large, the errors due to
the estimation of the principal components have a limited impact on the distribution of the inputs,
in the sense of Lemma 3.

On the algorithmic side, we consider a projected gradient method that uses the n samples in
K batches of B samples each, with KB = n and both diverging in the high dimensional limit,
K,B = ω(1) (for example K ≈ B ≈

√
n). So we denote with Bk = (xµ)kµ∈[B] the k-th batch of

i.i.d. samples from P, the distribution of the already mentioned inputs in Rr. The algorithm is:
w0 ∼ Unif

(
Sr−1

)
,

w̃k+1 = wk + η∇sph
1
B

∑
x∈Bk

G(w · x) k > 1,

wk+1 =
w̃k+1

||w̃k+1|| ,

(B.5)

where ∇sph := (1− wkw
⊤
k )∇.

Theorem 4 (Convergence of gradient ascent) Assume that the population loss L(w) = EPG(w · x)
depends on w only through the the overlap α = w · ṽ, and let G be such that:

• L ∈ C2[−1, 1],

• L(α)α > 0 for all α ̸= 0 in [−1, 1].

We update wk for k ∈ {0, . . . ,K} following the dynamic dictated by Eq. (B.5), where Bk = (xµ)kµ∈[B]
is the k-th batch of i.i.d. samples from P, the spiked cumulant distribution with spike ṽ ∈ Rr of (4).
Then, wK converges to the spike ṽ with high probability in the limit n → ∞. More precisely, for
any ε there exists nε, such that if n > nε, it is large enough so that we can choose B and K so that
BK ≤ n and the event |αK | = |wK · ṽ| ≥ 1− ε happens with probability larger than 1− ε.

Proof The first part of the proof is devoted to estimate the error of replacing ∇sph
1
B

∑
x∈Bk

G(w ·x)
with ∇sphL(α). First note that G and P (G ∈ C1 and ℓ ∈ L2) are regular enough so that we can
differentiate under the integral sign and write: ∇E[G(w ·x)] = E[∇G(w ·x)] = L′(α)v, where the
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last equality can be shown with the orthogonality property of Hermite polynomials (see property 1
in [8]). We can now use the law of large numbers; if B is large enough, we can find an event with
probability larger than 1− ε such that for all k:∣∣∣∣∣∣E[∇G(w · x)]− 1

B

∑
x∈Bk

∇sphG(w · x)

∣∣∣∣∣∣ ≤ η2.

So we can study the following dynamics{
w̃k+1 = wk + η∇sphL(αk) +O(η2),

wk+1 =
w̃k+1

||w̃k+1|| ,

where ∇sph := (1−wkw
⊤
k )∇ is the spherical gradient, that ensures that η∇sphL(αk) is orthogonal

to wk, hence ||w̃k+1|| =
√

1 + η2||∇sphL(αk)||2. Since the step size η → 0, we can apply the
Taylor expansion 1√

1+x2
= 1− x2/2 + o(x2) . Since ∇L is bounded thanks to our assumptions on

G, this leads to
wk+1 = wk + η∇sphL(αk) +O(η2),

where the O(η2) is uniform in k. We take now the scalar product with the target vector ṽ to get the
evolution of the overlap:

αk+1 = αk + ηṽ · (1− wkw
⊤
k )L′(αk)ṽ +O(η2)

= αk + ηL′(αk)(1− α2
k) +O(η2). (B.6)

Now it is helpful to consider the continuous time gradient flow α(t) that satisfies the equation:{
α̇(t) = L′(α(t))(1− α2(t)),

α(0) = α0 > 0.

Note that we assumed α0 > 0 which happens exactly with probability 1/2, the case α0 < 0 is exactly
analogous, we will only use that L′(α) < 0 for all α < 0 to prove convergence to −1 instead of +1
(if the initialization is negative the algorithm will converge to −ṽ instead of ṽ, identifying the same
one dimensional subspace). Let ε > 0 and denote 0 < Cε := inf [α0,1−ε] L′(α0). We have that for
all t > 0, such that α(t) ≤ 1− ε, then α(t) > f(t) where f is the solution of the auxiliary Cauchy
problem {

ḟ(t) = C(1− f2(t)),

f(0) = α0 > 0,

which is solved by

f(t) =
(α0 + 1)e2Ct + α0 − 1

(α0 + 1)e2Ct − α0 + 1
,

that converges monotonically to 1 as t → ∞. This proves that limt→∞ α(t) = 1. We can now
transfer this information to the discrete dynamics using convergence of Euler’s method (Theorem
10.2 in [27]). For any η ∈ (0, η0) and k ∈ N:

|αk − α(ηk)| ≤ kηeΛkηO(η) +

k∑
i=1

O(η2)

≤ kηeΛkηO(η) + kO(η2),
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where the first term comes from the convergence error and the second from the error in (B.6). It
is possible to perform the second step since the O(η2) depends only on global property of L, so
it is uniform in k. Hence, the discrete dynamics approximate the gradient flow for all k such that
kη = O(1). To conclude the proof, we just need to pick η small enough and K large enough so that
tK = Kη is such that α(t) > 1− ε/2 and |αK − α(tK)| ≤ ε/2.

The hypotheses required on G are verified for the most commonly used in practice contrast func-
tions. For example, we can trivially deal with the case of the 4th Hermite polynomial G(s) = s4 − 3
by using the Hermite orthogonality property (property 1 in [8]) and the likelihood ratio trick on the
loss for ICA [30] whereas to justify the use of G(s) = −e−s2/2 we can explicitly compute the
population loss.

Lemma 5 (Monotonicity of the population loss) Consider G(s) = − exp
{
−s2/2

}
and the re-

duced model (4). Then, the population loss for ICA, i.e. L(w) = Ex[G(w · x)], can be explicitly
computed and depends only on the overlap α := w · ṽ in the following way:

L(α) = −
√

2

4− α2
exp

{
− α4 + 2α2

(2 + α2)(4− α2)

}
.

Proof The proof consists in the direct computation of the expectation of G(x ·w) with respect to the
distribution of the inputs. Precisely, for any w ∈ Rr, we integrate with respect to the non Gaussian
spike h and the noise vector z as follows:

L(w) = 1

2
√
(2π)r

[(∫
G(w · x) e−z2/2dz

)
δ{h=1} +

(∫
G(w · x) e−z2/2dz

)
δ{h=−1}

]
,

where each integrand, for h = ±1, is simply e−
1
2
[(w·x)2+∥z∥2]. Therefore, we need to compute

explicitly (w · x)2, which turns out to be

(w · x)2 = 1√
2
hα+

α√
2
+ (w⊥ṽ · z),

where α := w · ṽ and w⊥ṽ is the portion of the weight vector orthogonal to the spike ṽ. Now, we
can decompose the noise in the component parallel to the spike, i.e. z//ṽ, the component paraller to
w⊥ṽ, i.e. z//w⊥ṽ

, and everything else z⊥, and integrate with respect these three contributions.

To summarize, we started from the high dimensional problem Eq. (3) in RD with D large and a num-
ber of samples n = Θ(D log(D)) which would be too small to have recovery of v through a direct
application of FastICA. However, the projection on the principal component subspace ⟨u1, . . . , ur⟩,
which is possible to perform with arbitrarily small error (Lemma 3) leads to a spiked cumulant
model in Rr (Theorem 2). Thanks to suitable properties of the population loss, verified in Lemma
5, we are able to recover the spiked direction ṽ with a linear sample complexity, as shown in Theo-
rem 4.
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