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ABSTRACT

Sparse Autoencoders (SAEs) have recently been employed as an unsupervised ap-
proach for understanding the inner workings of Large Language Models (LLMs).
They reconstruct the model’s activations with a sparse linear combination of in-
terpretable features. However, training SAEs is computationally intensive, es-
pecially as models grow in size and complexity. To address this challenge, we
propose a novel training strategy that reduces the number of trained SAEs from
one per layer to one for a given group of contiguous layers. Our experimental
results on Pythia 160M highlight a speedup of up to 3x without compromising the
reconstruction quality and performance on downstream tasks. Therefore, layer
clustering presents an efficient approach to train SAEs in modern LLMs.

1 INTRODUCTION

With the significant adoption of Large Language Model (LLM)s in world applications, understand-
ing their inner workings has gained paramount importance. A key challenge in LLMs interpretability
is the polysemanticity of neurons in models’ activations, lacking a clear and unique meaning (Olah
et al., 2020). Recently, SAEs (Huben et al., 2024; Bricken et al., 2023) have shown great promise
to tackle this problem by decomposing the model’s activations into a sparse combination of human-
interpretable features.

The use of SAEs as an interpretability tool is motivated by two key reasons: the first is the substantial
empirical evidence supporting the Linear Representation Hypothesis (LRH), or that LLMs exhibit
interpretable linear directions in their activation space (Mikolov et al., 2013; Nanda et al., 2023; Park
et al., 2023); the second is the Superposition Hypothesis (SH) (Elhage et al., 2022), which supposes
that, by leveraging sparsity, neural networks represent more features than they have neurons. Under
this hypothesis, we can consider a trained neural network as a compressed simulation of a larger
disentangled model, where every neuron corresponds to a single feature. To overcome superposi-
tion, SAEs leverage the LRH to decompose model activations into a sparse linear combination of
interpretable features.

However, training SAEs is computationally expensive and will become even more costly as the
model size and parameter counts grow. Indeed, one Sparse Autoencoder (SAE) is typically learned
for a given component at every layer in a LLM. Moreover, the number of features usually equals
the model activation dimension multiplied by a positive integer, called the expansion factor. For
example, a single SAE trained on the Llama-3.1 8B model activations with an expansion factor of
32 has roughly 40962 × 32 × 2 ≈ 1.073 billion parameters, resulting in a total of more than 32
billions parameters when training one for each of the 32 layers. Additionally, every SAE is trained
on a fixed number of tokens T , typically in the billions, leading to a cumulative training requirement
of L× T tokens, where L is the total number of layers—for the Llama-3.1 8B model, this amounts
to 32 billion tokens. This high computational demand not only increases training time but also
requires substantial hardware resources and energy consumption, making the approach increasingly
impractical as models scale.

In this work, we reduce the computational overhead of training a separate SAE for each layer of
a target LLM by learning a single SAE for groups of related and contiguous layers, thus reducing

*Equal contribution
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Figure 1: The illustration of our method. While standard training of SAEs requires training one per
layer, our method first clusters layers by angular similarity and then trains a single SAE for each
group.

the number of trained SAEs from L to k, where k is the number of groups. Furthermore, to en-
sure computational efficiency remains consistent, we fix the total number of training tokens T per
group and allocate T/l tokens to each layer within the group, where l is the number of layers in
that group. Thus, our approach reduces the total number of training tokens from LT to kT . This
approach, which we term Group-SAE, is inspired by the observation that neural network layers
often group together in learning task-specific representations (Szegedy et al., 2014; Zeiler & Fergus,
2014; Jawahar et al., 2019): shallow layers typically capture low-level features, while deeper layers
learn high-level abstractions. Additionally, adjacent layers in LLMs tend to encode redundant infor-
mation, as evidenced by the similarity in the angular distance of their outputs (Gromov et al., 2024).
To quantify the relatedness between layers, we measure the angular distance of the residual stream
after the MLP’s contribution across neighboring layers.

Denoting with L the number of layers of the target model and k the number of groups we want
to cluster the layers into, our approach obtains at least a (L−1)

k times speedup1 without sacrificing
neither reconstruction quality nor downstream performance.

Our contributions can be summarized as follows:

• We demonstrate that a single Group-SAE can effectively reconstruct the activations of an
entire cluster as a sparse linear combination of interpretable features. This approach re-
duces the number of SAEs required to be trained for a given model by a factor of k.

• We demonstrate the practical effectiveness of our method by training SAEs on the Pythia-
160M model for different values of k, and we obtain a L−1

k times speedup at the cost of a
minor deterioration in performance.

• We extensively analyze our method on reconstruction performance, downstream tasks, and
human interpretability for different values of k.

2 RELATED WORK

2.1 THE LINEAR REPRESENTATION AND SUPERPOSITION HYPOTHESES

Supported by substantial evidence, from the seminal Mikolov et al. (2013) vector arithmetic to the
more recent work of Nanda et al. (2023) and Park et al. (2023) on LLMs, the Linear Representation
Hypothesis (LRH) supposes that neural networks have interpretable linear directions in their acti-

1We do not consider the last transformer layer, as different from every other layer w.r.t. the angular distance
defined in Section 3.1.
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vations space. However, neuron polysemanticity remains an essential challenge in neural network
interpretability (Olah et al., 2020).

Recently, Bricken et al. (2023) explored this issue by relating the Superposition Hypothesis (SH)
to the decomposition ideally found by a SAE. According to the SH, neural networks utilize n-
dimensional activations to encode m ≫ n features by leveraging their sparsity and relative impor-
tance. As a result, we can write the activations xj in a model as

xj ≈ b+

m∑
i

fi(x
j)di (1)

where xj ∈ Rn is the activation vector for an example j, f ∈ Rm is a sparse feature vector, fi(x
j)

is the activation of the i-th feature, di ∈ Rn is a unit vector in the activation space and b ∈ Rn is a
bias term.

2.2 SPARSE AUTOENCODERS

Sparse Autoencoders have gained popularity in LLM interpretability due to their ability to counteract
superposition and decompose neuron activations into interpretable features (Bricken et al., 2023;
Huben et al., 2024). Given an input activation x ∈ Rdmodel , a SAE reconstructs it as a sparse linear
combination of dsae ≫ dmodel features, denoted as vi ∈ Rdmodel , where dsae is set as dsae = c · dmodel,
where c ∈ {2n|n ∈ N+}. The reconstruction follows the form:

(x̂ ◦ f)(x) = Wdf(x) + bd (2)

Here, the columns of Wd ∈ Rdmodel×dsae represent the features vi, bd ∈ Rdmodel is the decoder’s
bias term, and f(x) ∈ Rdsae represents the sparse features activations. The feature activations are
computed as

f(x) = σ(We(x− bd) + be) (3)

where We ∈ Rdsae×dmodel and be ∈ Rdsae are the encoder’s matrix and bias term respectively, and
σ is an activation function, typically ReLU(x) = max(0,x)2. The training of a SAE involves
minimizing the following loss function:

Lsae = ∥x− x̂(f(x))∥22 + λS(f(x)) (4)

where the first term in Equation 4 represents the reconstruction error, while the second term S is
the regularization on the activations f(x) to encourage sparsity, which is typically equal to the ℓ1
norm of the features f(x), i.e. S(f(x)) = ∥f(x)∥1 Bricken et al. (2023). Other definitions of spar-
sity are admissible: Rajamanoharan et al. (2024) set S equal to the ℓ0 norm of the features, i.e.
S(f(x)) = ∥f(x)∥0 =

∑dsae
i=0 I[fi(x) ̸= 0], which is the one adopted in this work along with the

JumpReLU activation function, while Gao et al. (2024) imposes sparsity by selecting the Top-K
activating features from f(x).

2.3 SAES EVALUATION

SAE evaluation in the context of LLMs presents a significant challenge. While standard unsuper-
vised metrics such as L2 (reconstruction) loss and L0 sparsity are widely adopted to measure SAE
performance (Gao et al., 2024; Lieberum et al., 2024), they fall short of assessing two key aspects:
causal importance and interpretability.

Recent approaches, including auto-interpretability (Bricken et al., 2023; Huben et al., 2024; Bills
et al., 2023) and ground-truth comparisons (Sharkey et al., 2023), aim to provide a more holistic
evaluation. These methods focus on the causal relevance of features (Marks et al., 2024) and evaluate
SAEs in downstream tasks. Makelov et al. (2024), for instance, proposed a framework for the

2Other activation functions are admissible, e.g. Top-K (Gao et al., 2024) or JumpReLU (Rajamanoharan
et al., 2024), with JumpReLU being the one employed in this work.
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Figure 2: Average angular distance between all layers of the Pythia-160M model, as defined in
Equation 5. The angular distances are computed over 5M tokens from the training dataset. The
angular distances are bounded in [0, 1], where an angular distance equal to 0 means equal activations,
0.5 means activations are perpendicular and an angular distance of 1 means that the activations point
in opposite directions.

Indirect Object Identification (IOI) task, emphasizing three aspects: the sufficiency and necessity of
reconstructions, sparse feature steering (Templeton et al., 2024), and the interpretability of features
in causal terms.

Karvonen et al. (2024) further contributed by developing specialized metrics for board game lan-
guage models. Using structured games like chess and Othello, they introduced supervised metrics,
such as board reconstruction accuracy and coverage of predefined state properties, offering a more
direct assessment of SAEs’ ability to capture semantically meaningful and causally relevant features.

2.4 IMPROVING SAES TRAINING

As SAEs gain popularity for LLMs interpretability and are increasingly applied to state-of-the-art
models (Lieberum et al., 2024), the need for more efficient training techniques has become evident.
To address this, (Gao et al., 2024) explored the scaling laws of Autoencoders to identify the optimal
combination of size and sparsity.

Recent work also explored using transfer learning to improve SAE training. For example, Kissane
et al. (2024) and Lieberum et al. (2024) demonstrated the transferability of SAE weights between
base and instruction-tuned versions of Gemma-1 (Team et al., 2024a) and Gemma-2 (Team et al.,
2024b), respectively. On the other hand, Ghilardi et al. (2024) shows that transfer also occurs among
layers of a single model, both in forward and backward directions.

3 EXPERIMENTAL SETUP

3.1 LAYER GROUPS

For a model with L layers, the number of possible combinations of k groups of adjacent layers that
can be tested is given by

(
L−1
k−1

)
. With this number growing with model depth, we employed an ag-

glomerative grouping strategy based on the angular distances between layers to reduce it drastically.
In particular, we compute the mean angular distances, as specified in Gromov et al. (2024), over 5M
tokens from our training set:
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(5)

for every p, q ∈ {1, ..., L}, where xl
post are the l-th residual stream activations after the MLP’s

contribution3. From Figure8, it can be noted how the last layer is different from every other layer
in terms of angular distance. For this reason, we have decided to exclude it from the grouping
procedure.

We adopted a bottom-up hierarchical clustering strategy with a complete linkage (Nielsen, 2016)
that aggregates layers based on their angular distances. Specifically, at every step of the process,
the two groups with minimal group-distance4 are merged; we repeat the process until the predefined
number of groups k is reached. This approach prevents the formation of groups as long chains of
layers and ensures that the maximum distance within each group remains minimal. In this work, we
create groups considering all layers except the last, and we choose k varying from 1 (a single cluster
with all layers) to 5. Layer groups can be found in Appendix B. To show how our method scales to
larger models, we also compute distances and groups of Gemma-2 2b and 9b Team et al. (2024b).
Detailed results are provided in Appendix B.

3.2 SAES TRAINING AND EVALUATION

We denote SAEi as the baseline SAE trained to reconstruct the activations of layer i. For every
1 ≤ j ≤ k ≤ 5 with j, k ∈ N, we define SAEjkas the SAE trained to reconstruct the activations for
all layers in the j-th group of a partition consisting of k groups. Furthermore, let [jk] represent the
set of layers belonging to the j-th group within this partition. Each SAEjk is specifically trained to
reconstruct the activations of each layer s ∈ [jk] individually, using the formulations described in
equations 3 and 2.

To ensure both computational efficiency and fair comparison with baselines, we allocate a fixed total
of 1 billion tokens for training both every SAEi and SAEjk . In particular, for SAEjk these tokens are
evenly distributed across the layers in [jk], assigning 1B/|[jk]| tokens to each layer, with a randomly
chosen layer’s activation per token. This approach ensures balanced training across layers within the
group while keeping the total token budget consistent with the baseline configurations, thus reducing
the total number of training tokens from LT to kT .

For evaluation, we train a SAEjk for every combination of k and j and compare its performance
with the corresponding baseline SAEs, where s ∈ [jk]. Section 4 presents the results of these
comparisons based on standard reconstruction and sparsity metrics. Furthermore, in Section 5, we
show how our approach performs on popular downstream tasks (e.g., (Marks et al., 2024; Hanna
et al., 2023; Wang et al., 2023)), while Section 6 reports the human interpretability scores.

3.3 DATASET AND HYPERPARAMETERS

We train SAEs on the residual stream of the Pythia-160M model (Biderman et al., 2023) for 1B
tokens, focusing on the residual stream activations after the MLP contribution. The chosen dataset
is a 2B pre-tokenized version5 of the Pile dataset (Gao et al., 2020) with a context size of 1024.
We set the expansion factor c = 8, λ = 3e-4 in Equation 4, learning rate equal to 7e-4, and a
batch size of 4096 samples. Following Bricken et al. (2023), we constrain the decoder columns to
have unit norm and do not tie the encoder and decoder weights. Additionally, we have normalized
the activations so that they have mean squared ℓ2 norm of one during SAE training, as specified
in Rajamanoharan et al. (2024), estimating the scaling factor over 2M tokens of our train set.

We use the JumpReLU activation function as specified in Rajamanoharan et al. (2024), and defined
as JumpReLUθ(z) = z · H(z − θ), with θ being a threshold learned during training and H is the

3In a Transformer model (Vaswani et al., 2017), the residual stream activations are computed as follows:
given the activations xl−1

pre from layer l − 1, the pre-layer activations for layer l, xl
pre = xl−1

post , are calculated
as xl−1

post = xl−1
mid + MLP(xl−1

mid ), where xl−1
mid = xl−1

pre + Attn(xl−1
pre ). All SAEs are trained specifically on the

residual stream after the MLP contribution, i.e., xl
post, for every layer l.

4The complete linkage clustering strategy defines the group-distance between two groups X and Y as
D(X,Y ) = maxx∈X,y∈Y dangular(x,y)

5https://huggingface.co/datasets/NeelNanda/pile-small-tokenized-2b
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Heaviside function. We fixed the hyperparameters for all the experiments conducted in this work.
All hyperparameters can be found in Table 2.

0 1 2 3 4 5 6 7 8 9 10
Layer

0.00

0.25

0.50

0.75

1.00

1.25

1.50

+26.7%
+15.7%+17.7%

+20.6%
+14.7%+16.2%+20.0%+23.9%

+15.1%
+12.9%+16.2%

 CE

0 1 2 3 4 5 6 7 8 9 10
Layer

0.0

0.2

0.4

0.6

0.8

1.0
-5.5%

-4.6%
-4.3% -7.0% -6.2% -5.2%

-4.3% -4.8% -2.7% -2.1% -1.9%

R2

0 1 2 3 4 5 6 7 8 9 10
Layer

0

20

40

60

80

100

+25.5%
+15.6%

+12.4%

+18.2%+15.5%+14.4%+15.2%

+18.2%+12.7%

+8.9%

+8.4%

L2

0 1 2 3 4 5 6 7 8 9 10
Layer

0

50

100

150

200

250

+23.5%+12.7%
+6.4%

+11.2% +8.2% +6.1%
-2.9%

+0.7%

+0.6%

+4.4%

+4.4%

L0

K3

Group-1 Group-2 Group-3 Baseline

Figure 3: ∆CE, R2, L2 and L0 for k = 3 number of groups. Note that, for ∆CE and L2, the lower
is the score, the better it is, while the contrary is true for R2. For L0 there are no indications on a
preferred value.

4 RECONSTRUCTION EVALUATION

To assess the quality of the reconstruction of SAEs trained with our grouping strategy, we report
three standard reconstruction metrics and one sparsity metric. In particular, the Delta Cross-Entropy,
defined as CE(x̂ ◦ f) − CE(M), measures the difference in Cross-Entropy loss (CE) between the
output with SAE reconstructed activations (x̂ ◦ f ) and the model’s output (M ).

The L2 loss is the first term of Equation 4 and measures the reconstruction error made by the SAE.
The R2 score, defined as 1 − ∥x− x̂∥22/∥x− Ex∼D[x]∥22, measures the fraction of explained vari-
ance of the input recovered by the SAE.

Finally, the L0 sparsity loss, defined as
∑dsae

j=1 I[fj ̸= 0], represents the number of non-zero SAE
features used to compute the reconstruction. For each metric, we compute the average over 1M
examples from the test dataset.

Figure 3 shows the reconstruction and sparsity metrics for each layer of the grouping with k = 3. It
can be noted that training a single SAEs on the activations from multiple close layers doesn’t dra-
matically affect the reconstruction, even when all layers are clustered in a small number of groups.
Metrics for all other values of k can be found in Appendix C.

These results demonstrate that a single SAE can effectively reconstruct activations across multiple
layers. Furthermore, the comparable performance between SAEjkand the individual layer-specific
SAEi indicates that post-residual stream activations from adjacent layers share a common set of un-
derlying features. This hypothesis is further supported by directly comparing the directions learned
by SAEi and SAEjkusing the Mean Maximum Cosine Similarity (MMCS) score, as shown in Ap-
pendix D.
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Figure 4: Average faithfulness (Marks et al., 2024) for every downstream task (IOI, Greater Than,
Subject-Verb Agreement) with IE computed with AtP (Equation 8). The “Baseline” average is com-
puted considering the performance obtained by SAEi, ∀i = 0, ..., 10. The “Average” plot depicts
the average over the three downstream tasks.

5 DOWNSTREAM TASKS EVALUATION

While achieving good reconstruction metrics is crucial for a trained SAE, it is insufficient for a
comprehensive evaluation of its performance. For instance, unsupervised metrics alone cannot de-
termine whether the identified features capture causally influential directions for the model. To
address this, following Marks et al. (2024), we applied SAEs to three well-known tasks: Indirect
Object Identification (IOI), Greater Than, and Subject-Verb Agreement.

Each task can be represented as a set of counterfactual prompts paired with their respective answers,
formally denoted as T : {xclean, xcorrupted, aclean, acorrupted}. Counterfactual prompts are similar to
clean ones but contain slight modifications that result in a different predicted answer.

Ideally, a robust SAE should be able to recover the model’s performance on a task when recon-
structing its activations. Furthermore, we expect the SAE to rely on a small subset of task-relevant
features to complete the task. To assess this, we filtered the features to include only the most impor-
tant ones, where importance is defined as the indirect effect (IE) (Pearl, 2022) of the feature on task
performance, measured by a real-valued metric m : Rdvocab → R. Specifically,

IE(m;fi;xclean, xcorrupted) = m(xclean|do(fi = fi;corrupted))−m(xclean) (6)

In this equation, fi;corrupted represents the value of the i-th feature fi during the computation of
m(xcorrupted), and m(xclean|do(fi = fi;corrupted)) refers to the value of m for xclean under an interven-
tion where the activation of feature fi is set to fi;corrupted. Moreover, m is defined as the difference
in logits between the clean and the corrupted answer.

Calculating these effects is computationally expensive, as it requires a forward pass for each feature.
To mitigate this, we employed two approximate methods: Attribution Patching (AtP)(Nanda, 2023;
Syed et al., 2024) and Integrated Gradients (IG)(Sundararajan et al., 2017). Appendix E provides a
formal definition of both methods.

Following Marks et al. (2024), we used faithfulness and completeness metrics to evaluate the per-
formance of the SAEs on the tasks. These metrics are defined as m(C)−m(Ø)

m(M)−m(Ø) , where m(M) and
m(Ø) represent the metric average over T , achieved by the model alone and with the mean-ablated

7
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Figure 5: Average completeness for every downstream task (IOI, Greater Than, Subject-Verb Agree-
ment) with IE computed with AtP (Equation 8). The “Baseline” average is computed considering
the performance obtained by SAEi, ∀i = 0, ..., 10. The “Average” plot depicts the average perfor-
mance over the three downstream tasks.

SAE reconstructions, respectively. m(C) is computed based on the task and either the faithfulness
or completeness criteria: for faithfulness, it is the metric average when using only the important
SAE features, while mean-ablating the others; on the contrary for completeness, it is calculated by
mean-ablating the important features while keeping the others active.

Given a predefined number N of features to compute a circuit, we select the top-N features based on
their indirect effect at each layer. Then, to calculate the Faithfulness and Completeness scores, we
respectively retain or ablate these selected features while mean-ablating or retaining all the others.
As in Marks et al. (2024), the computation of both scores incorporates the SAE error ϵx6 into the
reconstructions, as excluding it compromises the model’s performance on the task. Furthermore,
when using Group-SAEs, the selected features can vary across layers within a group, as each layer
may require a distinct set of features to achieve optimal reconstruction, thus SAEjk is used to inde-
pendently and separately reconstruct the activations of every layer s ∈ [jk] with the inderect effect
that is estimated for every layer separately.

These metrics allow us to evaluate two critical aspects of SAE quality: whether the SAE learned a
set of features that is both sufficient and necessary to perform the task. Figures 4 and 5 display the
faithfulness and completeness scores for all k groups.

All SAEjkperform comparably to, or slightly better than, the baseline SAEi models on the faith-
fulness score (Figure 4) across all three downstream tasks evaluated, demonstrating the sufficiency
of learned features. Remarkably, this performance is achieved using only the top 5% of the most
important active features, which recover 75% of the baseline performance, on average. Even more
remarkable are the performances of the single-group SAEj1 (k = 1), which closely follow the trend
of both the baseline SAEs and the SAEj5 (k = 5). Moreover, we did not observe any substantial
differences in performance for any of the tested values of k. The necessity of the features learned
by both the baseline SAEi and SAEjk is confirmed by the completeness scores depicted in Figure 5,
with a severe drop in performance even with only the top 10 active features mean-ablated.

The results of SAEjkon downstream tasks demonstrate that their learned features are both sufficient
and necessary. Moreover, these findings confirm those in Section 4, i.e., that a single SAE can

6The SAE error ϵ is defined as ϵx = x− x̂(f(x)).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

effectively reconstruct activations across multiple contiguous layers and learn a set of shared, general
features that span adjacent layers.

6 HUMAN INTERPRETABILITY

In addition to achieving excellent reconstruction and downstream performance, SAEs must learn
interpretable features. Following Ghilardi et al. (2024), we engaged human annotators to identify
interpretable patterns in the feature annotations. Specifically, they attempted to provide clear defi-
nitions for each feature by examining its top and bottom logits attribution scores, as well as the top
activating tokens. In total, we randomly sample 96 features for each SAE and store their activa-
tions on 1M tokens from the training dataset. To ensure learned features are not layer-specific, for
Group-SAEs we keep the sampled features constant across the layers within the group. To evaluate
the quality of these features, we defined the Human Interpretability Score as the ratio of features
considered interpretable by the human annotators.

0 1 2 3 4 5 6 7 8 9 10
Layer

0.0

0.2

0.4

0.6

0.8

1.0
-27.7%

-3.9% -10.0%

-4.6% +4.5%
+4.2% +12.9%

-8.6% -1.6%
+5.9% +2.9%

Human Interpretability (K = 3)

Group-1 Group-2 Group-3 Baseline

Figure 6: Human Interpretability Scores for k = 3. The differences in the interpretability scores of
features learned by the SAEjkand the baseline SAEi are not statistically significant different for all
the layers except for the first. Error bars shows one standard deviations of the scores differences,
modeled as a Binomial distribution (Wasserman, 2010).

Figure 6 presents the Human Interpretability Scores for all layers of k = 3. Scores for all other
values of k can be found in Appendix F. According to human annotators, the interpretability of the
features learned by SAEjk is comparable to that of the baseline SAEi. Moreover, we found that when
many layers are grouped together, e.g., when k = 1, SAEjk features are more polysemantic overall,
probably due to increased interference. Nevertheless, some of them remain perfectly interpretable
across all model layers, capturing critical directions in model computations.

7 CONCLUSION

This work introduces a novel approach to efficiently train Sparse Autoencoders (SAEs) for Large
Language Models (LLMs) by clustering layers based on their angular distance and training a single
SAE for each group. Through this method, we achieved up to a 3x speedup in training without com-
promising reconstruction quality or performance on downstream tasks. The results demonstrate that
activations from adjacent layers in LLMs share common features, enabling effective reconstruction
with fewer SAEs.

Our findings also show that the SAEs trained on grouped layers perform comparably to layer-specific
SAEs in terms of reconstruction metrics, faithfulness, and completeness on various downstream
tasks. Furthermore, human evaluations confirmed the interpretability of the features learned by our
SAEs, underscoring their utility in disentangling neural activations.

The methodology proposed in this paper opens avenues for more scalable interpretability tools, fa-
cilitating deeper analysis of LLMs as they grow in size. Future work will focus on further optimizing
the number of layer groups and scaling the approach to even larger models.

9
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8 LIMITATIONS AND FUTURE WORKS

One limitation of our approach is the absence of a precise method for selecting the optimal number
of layer groups (k). This choice is due to the lack of a clear elbow rule for identifying the correct
number of groups.

Based on our results on Pythia-160m, Appendix B provides the Maximum Average Angular Dis-
tance (MAAD) within groups for Pythia-160m and larger models (Gemma-2 2b and 9b). This
heuristic can guide the selection of the number of groups k for clustering layers in larger models,
relying on the assumption that angular distance between activations from different layers is an im-
portant indicator of how the Group SAE will perform on them. While further investigation is needed
to refine group configurations and assess scalability, these heuristics offer a practical reference for
training Group-SAEs in larger models.

Additionally, we tested our method primarily on the Pythia-160M model, a relatively small LLM.
While our findings demonstrate significant improvements in efficiency without sacrificing perfor-
mance, the scalability of our approach to much larger models remains an open question. Future
work could explore how the grouping strategy and training techniques generalize to models with
billions of parameters, where the computational benefits would be even more pronounced.

Another important direction for future research involves understanding how Sparse Autoencoders
(SAEs) handle the superposition hypothesis when encoding information from multiple layers. While
our method effectively grouped layers and maintained high performance, how SAEs manage the po-
tential overlap in feature representation across layers remains unclear. Investigating this aspect could
lead to a more clear understanding of the trade-offs between sparsity and feature disentanglement in
SAEs, and inform strategies for improving interpretability without compromising task performance.

In summary, while our work represents an efficient step forward in training SAEs for interpretability,
extending this approach to larger models and exploring the handling of superposition will provide
valuable insights for both practical applications and the theoretical understanding of sparse neural
representations.

9 REPRODUCIBILITY STATEMENT

To support the replication of our empirical findings on training SAEs via layer groups and to enable
further research on understanding their inner works, we plan to release all the code and SAEs used
in this study upon acceptance.
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A HYPERPARAMETERS

Table 1: Pythia-160M model specifics

Config Value

Layers (L) 12
Model dimension (dmodel) 768
Heads (H) 12
Non-Embedding params 85,056,000

Equivalent models GPT-Neo
OPT-125M

Table 2: Training and fine-tuning hyperparameters

Hyperparameter Value

c 8
λ 3e-4
Hook name resid-post
Batch size 4096
Adam (β1, β2) (0, 0.999)
Context size 1024
lr 7e-4
lr scheduler constant
lr deacy steps last 20% of the training steps
l1 warm-up steps 5% of the training steps
# tokens (Train) 1B
Checkpoint freq 200M
Decoder weights initialization Zeroes
Activation function JumpReLU
Decoder column normalization Yes
Activation normalization Mean squared ℓ2 norm of one during SAE training
FP precision 32
Prepend BOS token No
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B ADDITIONAL ANGULAR DISTANCES AND LAYERS GROUPS
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Figure 7: Average angular distance between all layers of Gemma-2 2b, as defined in Section 3.1. The
angular distances are bounded in [0, 1], where an angular distance equal to 0 means equal activations,
0.5 means activations are perpendicular and an angular distance of 1 means that the activations point
in opposite directions.
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Average Angular Distance Between Layers

Figure 8: Average angular distance between all layers of Gemma-2 9b, as defined in Section 3.1. The
angular distances are bounded in [0, 1], where an angular distance equal to 0 means equal activations,
0.5 means activations are perpendicular and an angular distance of 1 means that the activations point
in opposite directions.
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k Groups MAAD
2 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 0.389
3 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2 0.332
4 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3 0.311
5 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 0.252

Table 3: Layer groups for every k up to L/2 for Pythia-160m

k Groups MAAD
2 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 0.476
3 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2 0.384
4 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3 0.384
5 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4 0.384
6 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5 0.279
7 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6 0.279
8 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7 0.279
9 0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8 0.238

10 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9 0.222

Table 4: Layer groups for every k up to L/2 for Gemma-2 2b

k Groups MAAD
2 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0.524
3 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 0.467
4 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3 0.467
5 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4 0.333
6 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5 0.333
7 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6 0.305
8 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7 0.305
9 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8 0.305

10 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 8, 8, 9 0.251
11 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 8, 8, 9, 10, 10 0.227
12 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11 0.216
13 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12, 12 0.206
14 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13 0.202
15 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 14, 14 0.202
16 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15 0.202
17 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16 0.202
18 0, 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17 0.202
19 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18 0.175
20 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19 0.175

Table 5: Layer groups for every k up to L/2 for Gemma-2 9b
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C DETAILED PER-LAYER RECONSTRUCTION AND SPARSITY PLOTS
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Figure 9: Per-layer ∆CE, R2, L2 and L0 with k = 1.
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Figure 10: Per-layer ∆CE, R2, L2 and L0 with k = 2.
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Figure 11: Per-layer ∆CE, R2, L2 and L0 with k = 3.
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Figure 12: Per-layer ∆CE, R2, L2 and L0 with k = 4.
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Figure 13: Per-layer ∆CE, R2, L2 and L0 with k = 5.
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Figure 14: Per-layer ∆CE, R2, L2 and L0 with k = 5.

D DETAILED PER-LAYER MMCS PLOTS

The Maximum Mean Cosine Similarity (MMCS) Score is defined as:

MMCS =
1

dsae

∑
u

max
v

CosSim(u,v) (7)

where u and v are the columns of the SAEjkand SAEi decoder matrices, respectively. Figure 14
shows the average MMCS, where the average is computed for a given k by calculating the MMCS
between SAEjkand SAEs for every 1 ≤ j ≤ k and s ∈ [jk], then dividing by L− 1.

Figure 15 shows the per-layer MMCS of every SAEjk for every k.
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(a) Per-layer MMCS with k = 1.
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(c) Per-layer MMCS with k = 3.
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(d) Per-layer MMCS with k = 4.
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Figure 15: Per-layer MMCS for every k.
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E APPROXIMATE INDIRECT EFFECTS

In Equation 6 we reported the Indirect Effect (IE) (Pearl, 2022), which measures the importance
of a feature with respect to a generic downstream task T . To reduce the computational burden of
estimating the IE with a single forward pass per feature, we employed two approximate methods:
Attribution Patching (AtP) (Nanda, 2023; Syed et al., 2024) and Integrated Gradients (IG) (Sun-
dararajan et al., 2017).

AtP (Nanda, 2023; Syed et al., 2024) employs a first-order Taylor expansion

ÎEAtP(m;fi;xclean, xcorrupted) = ∇m
∣∣
fi=fi;clean

(fi;corrupted − fi;clean) (8)

which estimates Equation 6 for every fi in two forward passes and a single backward pass.

Integrated Gradients (Sundararajan et al., 2017) is a more expensive but more accurate approxima-
tion of Equation 6

ÎEIG(m;fi;xclean, xcorrupted) =

(∑
α∈Γ

∇m
∣∣
αfi;clean+(1−α)fi;corrupted

)
(fi;corrupted − fi;clean) (9)

where α ranges in an equally spaced set Γ = {0, 1
N , ..., N−1

N }. In our experiments we have set
N = 10.
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Figure 16: Average faithfulness (Marks et al., 2024) for every downstream task (IOI, Greater Than,
Subject-Verb Agreement). The “Baseline” average is computed considering the performance ob-
tained by SAEi, ∀i = 0, ..., 10. The “Average” plot depicts the average over the three downstream
tasks.
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Figure 17: Average completeness for every downstream task (IOI, Greater Than, Subject-Verb
Agreement). The “Baseline” average is computed considering the performance obtained by SAEi,
∀i = 0, ..., 10. The “Average” plot depicts the average performance over the three downstream tasks.
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F HUMAN INTERPRETABILITY SCORES
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Figure 18: Human Interpretability Scores for k ∈ {1, 2, 4, 5}. The differences in the interpretabil-
ity scores of features learned by the SAEjkand the baseline SAEi are not statistically significant
different from zero for most of the layers. Error bars shows one standard deviations of the scores
differences, modeled as a Binomial distribution (Wasserman, 2010)
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G SCALING GROUP SAES

Results on Gemma-2 2b will be added here.
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