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Abstract

Knowledge graph (KG) embedding models
have achieved remarkable success in various
tasks, particularly in node classification. How-
ever, their decision-making processes remain
opaque, limiting interpretability and trustwor-
thiness. To address this challenge, we propose
the first method for explaining KG embedding-
based node classification. It integrates large lan-
guage models (LLMs) to generate both graph-
structured and textual explanations, offering
deeper insights into model reasoning. Specif-
ically, we train a proxy model to approximate
the behavior of the original KG embedding
model. Leveraging the distilled knowledge
from this proxy model, an LLM is finetuned to
identify and reason about critical relation path
patterns that significantly influence predictions.
Guided by the selected patterns and proxy
model, we design an efficient searching algo-
rithm to extract the final set of critical triples
with LLM-generated reasoning. Experiments
on three representative KG embedding mod-
els across multiple benchmark datasets demon-
strates the effectiveness and generalization of
our method in explaining KG embedding-based
node classification.

1 Introduction

Knowledge graph (KG) embedding (Wang et al.,
2017; Choudhary et al., 2021), by mapping dis-
crete entities and relations into continuous vector
space, has pioneered new pathways for seman-
tic representation learning of structured knowl-
edge, establishing itself as a core paradigm in nat-
ural language processing (NLP). This embedding
paradigm achieves deep integration of knowledge-
driven neural networks in scenarios such as seman-
tic search and intelligent question answering by
preserving the topological structure and semantic
relations of KGs. Particularly in node classifica-
tion tasks, KG embedding significantly enhances
the accuracy of fine-grained entity type inference

by fusing graph structural information from en-
tity neighborhoods with semantic relations, which
holds critical significance for constructing verti-
cal applications like precision medical diagnostic
systems and financial risk prediction models.

Despite the superior predictive performance
of KG embedding models, their internal mecha-
nisms remain plagued by a “black-box” dilemma:
mainstream embedding methods based on geomet-
ric transformations (Bordes et al., 2013; Wang
et al., 2014), semantic matching (Yang et al.,
2015; Trouillon et al., 2016), or graph neural net-
works (Schlichtkrull et al., 2018; Trouillon et al.,
2016) often rely on implicit vector operations for
decision-making, rendering their reasoning pro-
cesses opaque to human interpretation. This lack of
explainability severely hinders the trustworthy de-
ployment of KG embedding in high-stakes scenar-
ios such as judicial decision-making and medical
diagnosis. To address this bottleneck, researchers
have begun developing post-hoc explanation frame-
works for link prediction (Zhang et al., 2023; Ma
et al., 2024) and entity alignment (Tian et al., 2024).
While these approaches highlight the effectiveness
of explanation generation through subgraph pat-
terns or path reasoning, their direct application to
node classification is hindered by several critical
challenges that must be addressed.

First, due to the fundamental differences in task
objectives compared to link prediction and entity
alignment, existing methods have not explored how
to define a principled process for identifying the
most critical subset of triples for node classifica-
tion among numerous candidates. Second, unlike
link prediction, which benefits from explicit source-
to-target entity paths, or entity alignment, which
leverages aligned neighborhood structures, node
classification lacks such heuristic anchors. This ab-
sence makes it more challenging to discern mean-
ingful relation patterns that directly contribute to
classification decisions. Last, existing methods



predominantly rely on deep learning techniques
or heuristic search strategies, which often result in
limited interpretability. The generated explanations
may lack practical significance or fail to align with
human comprehension, further restricting their us-
ability in real-world applications.

To tackle these challenges, the emergence of
large language models (LLMs) presents a promis-
ing solution. With their advanced text compre-
hension and reasoning capabilities, LLMs can fil-
ter, refine, and contextualize extracted relation
patterns, ensuring that the generated explanations
are structurally coherent, semantically meaningful,
and easily interpretable by humans. Motivated by
this potential, we propose LLM-ExKG, a novel
method that integrates LL.Ms into the explanation
generation pipeline for KG embedding-based node
classification. To generate human-readable and
model-faithful explanation, we train an LLM that
combines both general world knowledge and dis-
tilled knowledge from the original model. This
enables the LLM to accurately identify and reason
about critical relation patterns. Building upon these
identified patterns, we further design an efficient
searching algorithm that simulates the decision-
making process of the original model, enabling pre-
cise identification of the critical triples with LLM-
generated reasoning as final explanation results.

In summary, our main contributions include:

* We provide a definition of explanation for KG
embedding-based node classification and in-
corporate LLMs into the explainability frame-
work for KG embedding models.

* We propose LLM-ExKG, the first method for
explaining KG embedding-based node clas-
sification, offering both interpretable graph-
structured and textual explanations.

* We leverage LLM-ExKG to explain three rep-
resentative KG embedding models and assess
the performance on four datasets. The ex-
perimental results show the effectiveness and
generalization of LLM-ExKG.

2 Related Work

KG embedding aims to map entities and relations
in a KG into continuous vector space, enabling
efficient computation and reasoning. A key ap-
plication of KG embedding is node classification,
which leverages embeddings capture semantic and
structural information to improve categorization.

Existing KG embedding models can be categorized
into three classes: translation-based models (Bor-
des et al., 2013; Wang et al., 2014), which represent
relations as vector translations; semantic matching-
based models (Yang et al., 2015; Trouillon et al.,
2016), which use matrix or tensor factorization to
capture relational patterns; and GCN-based models
(Schlichtkrull et al., 2018; Vashishth et al., 2020),
which leverage graph convolution to incorporate
neighborhood information. These models can be
integrated with classifiers to support node classifi-
cation. Regardless of model types, our method is
able to generate effective explanations.

Explanation generation aims to interpret the be-
havior of pre-trained models without modifying
their architectures. Methods like LIME (Ribeiro
et al., 2016) and SHAP (Lundberg and Lee, 2017)
are widely applied across various machine learning
models. These methods rely on feedback obtained
from perturbing the original model, which can be
difficult to acquire in certain KG embedding mod-
els, such as TransE. Other methods (Zhang et al.,
2023; Ma et al., 2024; Tian et al., 2024) are specifi-
cally designed for KG embedding models, but they
are primarily tailored for link prediction and entity
alignment tasks. The former (Zhang et al., 2023;
Ma et al., 2024) typically searches for paths lead-
ing to the target entity, while the latter (Tian et al.,
2024) relies on heuristic reasoning based on en-
tity alignment. It is challenging to transfer either
method to node classification. Although certain
GNN-based explanation methods (Ying et al., 2019;
Yuan et al., 2021) can be adapted for node classifi-
cation, many KG embedding models do not adhere
to the GNN framework, limiting the applicability
of these methods. More critically, most existing
methods rely heavily on heuristic searching or deep
learning-based models, raising concerns about their
reliability. In contrast, our method is not only ap-
plicable to KG embedding models across various
frameworks but also leverages LL.Ms to guide ex-
planation generation in a more interpretable way,
thereby improving trustworthiness.

3 Preliminaries

We define a KG as G = {€, R, T}, where € is the
set of entities, literals, and concepts, and R is the
set of relations. 7 C & x R x £ is the set of triples.
Given a KG G, node classification aims to learn a
mapping function f : £ — C that assigns a label
from a pre-defined concept set C to each entity.



2 LLM-Guided Selection
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Figure 1: Framework of LLM-ExKG.

In this paper, we study post-hoc explanation gen-
eration for KG embedding-based node classifica-
tion. Given an entity e predicted by the model to
be of concept ¢, where e € £ and ¢ € C, we define
candidate triples 7. for generating explanations as
those within k£ hops around entity e. A smaller k
may lead to insufficient information, while a larger
k can introduce excessive irrelevant triples. The
objective of our studied problem is to identify the
minimal subset 7.* C 7, where 7.* # () such that,
even after removing 7. — 7%, the model can still ac-
curately predict e to be of c. Beyond the traditional
studied graph-structured explanations, our method
also generates corresponding textual explanations,
making the reasoning process more interpretable.

4 Methodology

4.1 Overview

We propose LLM-ExKG, a novel method consist-
ing of three key modules. (1) In the KG embed-
ding distillation module, we design a lightweight
proxy model to efficiently capture and inherit the
key classification knowledge from the original
model. (2) In the LLM-guided selection mod-
ule, we train an LLM to identify important relation
path patterns that are both practically meaningful
and highly relevant to the prediction of the KG
embedding model. (3) In the key path searching
module, based on the proxy model, we simulate the
decision-making process of the original KG em-
bedding model to find the most relevant paths for
classification within the relation path types selected
by the LLM. The set of triples within these paths
forms the graph-structured explanations. Addition-
ally, leveraging the reasoning power of the LLM,
we generate human-readable textual explanations,
improving both interpretability and transparency.

4.2 KG Embedding Distillation

In this module, we aim to transfer the essential
classification knowledge from the KG embedding
model into a proxy model. This proxy model is
designed to approximate the prediction logic of the
original model while providing a coarse-grained
estimation of triple contribution to the prediction.
To achieve this, we employ a variant of GCN aug-
mented with adaptive weights for each candidate
triple. This choice leverages the GCN’s ability to
capture complex graph structures while incorpo-
rating adaptive weights to improve interpretability
and more effectively capture contextual relevance.
Additionally, we introduce a counterfactual mecha-
nism to refine the proxy model’s ability to discern
the true causal impact of each triple, thereby en-
hancing its explanatory power.

Specifically, the GCN-based proxy model con-
sists of k£ layers, with each layer aggregating in-
formation from neighboring triples to capture both
structural and semantic features of the k-hop sub-
graph centered on the target entity. Here, k is a
predefined parameter set according to the exper-
imental configuration, as described in Section 3.
Building on the insights from (Tan et al., 2022),
we integrate both factual and counterfactual reason-
ing into each layer’s computation, further strength-
ening the model’s interpretability and robustness.
The computation process at each layer of the proxy
model is formulated as follows:
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where h! and flle represent the embeddings of en-



tity e at the [-th layer, corresponding to the factual
and counterfactual reasoning results, respectively.
h! and flle at layer [ = 0 are initialized using the
original KG embedding model’s entity embeddings
and e, is derived from the KG embedding model’s
relation embeddings. e,, denotes the neighboring
entities of e, and r represents the relation between
e and e,. Wi is the learnable transformation ma-
trix for relation  at layer [, which projects relation
embeddings into a suitable space for interaction
with entity embeddings. f(-) represents the fusion
operation between entity and relation information,
which is implemented as an addition in our method.
W(e,re,) denotes the learnable parameter for triple
(e, r, ey), which is designed to capture the impor-
tance of each triple in the reasoning process.

Our objective is to minimize the distance be-
tween the factual embedding h* and its correspond-
ing entity embedding e, in the KG embedding
model, while simultaneously maximizing the dis-
similarity between the counterfactual embedding
fllé and e.. Inspired by (Sun et al., 2020), we em-
ploy the variant triple loss to optimize the proxy
model. The formulation is as follows:

Loy = | B — e |+ 5[~ B .

|, @

where || - || denotes the Ly-norm of the vector,
[-]+ = max(0, -), and A, 3 are positive-valued hy-
perparameters. The first term encourages h’g to be
close to e., while the second term, governed by A
and (3, imposes a margin-based constraint on fl’g,
ensuring that its distance from e, exceeds A.

By this distillation process, the proxy model can
emulate the decision-making of the original KG
embedding model in factual reasoning and leverage
the learned triple contributions to offer valuable
insights for subsequent explanation generation.

4.3 LLM-Guided Selection

Due to the vast number of candidate triples, directly
leveraging the proxy model for searching incurs
substantial computational overhead. Moreover, the
learned contributions of individual triples are of-
ten independent, making it challenging to identify
the combinations of triples with practical signif-
icance. To this end, we strive to introduce com-
monsense knowledge from LLMs to ensure that
the final explanation generation is not only faithful
to the original model’s prediction but also holds
meaningful practical value. Since entity names
in triples are typically encoded and lack inherent

meaning, whereas relations contain semantic infor-
mation relevant for classification, as illustrated in
Figure 1, we aim to leverage the LLM to select the
critical relation path patterns rather than specific
relation paths. This approach not only enhances
interpretability but also substantially reduces the
candidate set, making the selection process more ef-
ficient. Building on the above consideration, in this
module, we aim to integrate the knowledge from
the original KG embedding model with the exten-
sive commonsense reasoning capabilities of the
LLM (e.g., ChatGPT) to construct a high-quality
dataset. This dataset is used to train another LLM
(e.g., LLaMA (Touvron et al., 2023)) capable of
identifying relation path patterns that remain faith-
ful to the original model’s predictions while carry-
ing real-world significance.

4.3.1 Data Construction

Relation path pattern extraction. We extract
k-hop relation paths around the target entity and
replace specific entities with variable names, re-
taining only relation information to construct gen-
eralized relation path patterns. For example, the
path (proxy-2840, type, proxy) (proxy-69550, type,
proxy) is transformed to (X, type, Y) (Z, type, Y).

Model-aware filter. Since we aim to ensure that
the explanations remain faithful to the original KG
embedding model, the selected relation path pat-
terns should significantly contribute to the model’s
classification prediction. Fortunately, the proxy
model trained in Section 4.2 is capable of estimat-
ing the contribution of triples. Building on this,
we design a scoring mechanism for relation path
patterns to derive the preference ranking of the orig-
inal KG embedding model. Specifically, the score
computation is formulated as follows:

score(p) = max, 1, es, (aggregate (we, , wy,)) ,
3)
where p is a relation path pattern and S, is the set
of relation paths that conform to p. t1,t2 are two
triples from relation path conforming to p, with
wy, , W, denoting their respective contribution val-
ues. Based on the computed scores, we rank the
relation path patterns in descending order and se-
lect the top m ones as the filtered results, where
m is a hyperparameter. In this way, we not only
ensure that the selection results of the LLM align
with the prediction preference of the original model
but also narrow the candidate range, alleviating the
challenge of LLMs in processing long text.



Practical relation path pattern selection. Given
a set of filtered relation path patterns surrounding
an entity, we first use an LLM (e.g., ChatGPT) to
rewrite them into natural language expressions, en-
hancing human comprehension and enabling more
effective subsequent processing by the LLM. For
instance, the pattern (X, type, Y) (Z, type, Y') can
be rewritten as “X and Z share the same type, Y.
Next, we prompt the LLM to select key relation
path patterns as evidence supporting the KG embed-
ding model’s classification and provide its reason-
ing. Through this approach, the LLM can provide
reasonable relation path patterns along with cor-
responding rationale. Since its selection is based
on the criterion of providing a valid rationale, the
chosen patterns are more likely to align with the
ground-truth decision-making logic, thereby en-
hancing the interpretability of the results. Nev-
ertheless, the LLM may still produce occasional
inaccurate results. Inspired by (He et al., 2024), to
ensure the quality of the training data, we manually
check and prompt the LLM to reselect the relation
path patterns until the results are logically correct.

4.3.2 LLM Finetuning

We finetune a smaller open source LLM to inte-
grate the collected knowledge, enabling efficient
and precise reasoning for relation path pattern se-
lection. Given an entity e, we construct the prompt
‘P, which includes the rewritten candidate relation
path patterns surrounding e along with the query
for selection and reasoning. The optimization is
guided by the following loss function:

N
Lim = — ZlogPr [yily<i, Ple)], 4

i=1

where N denotes the number of tokens in the se-
lected relation path patterns and corresponding ra-
tionale. y; (i = 1,2,..., N) denotes the i-th to-
ken. Pr[y; | y<i, P(e) ] indicates the probability of
generating y; using the LLLM, conditioned on the
prompt P(e) and the previously generated tokens.

4.4 Key Path Searching

After obtaining the relation path patterns selected
by the LLM, we design an efficient searching algo-
rithm based on the trained proxy model to identify
key relation paths, ultimately constructing the final
explanations. Given a target entity, the searching
process is presented in Algorithm 1. The process
begins by initializing the result set X as empty

Algorithm 1: Greedy search for key paths

Input: Target label c; Proxy model M,; Set of
relation path patterns Spaiern; Dictionary of
relation path patterns to relation path set D,,.
Output: Set of key paths K.
1 K« set();
2 foreach DPpattern € Spartem do
Lpath — Dp [ppattern] ‘SOIT();
Gou < set();
foreach pyun € Lpun do
add path ppam in Geuw and KC;
h «~ Mp(gsub);
get prediction score s of label ¢ with h;
if s >  then
10 L break;

e’ N e W

11 return C;

(Line 1). For each relation path pattern ppagermn
from LLM selection, we retrieve its associated
paths from D,, (Lines 2-3). These paths are sorted
based on the values computed by the function
aggregate(-) mentioned in Eq. (3) (Line 3). Next,
we initialize an empty set Gy, designed to col-
lect the most essential paths under current pattern
(Line 4). We then iterate the path of the pattern in
descending order (Line 5). In Lines 6-7, we add
the path into Gy, and feed to the proxy model to
generate an approximate representation h for Ggyp.
Subsequently, we can input h to the classifier of
the original model to obtain the prediction score
s of target label c (Line 8). If s meets or exceeds
a pre-defined threshold ~, the search terminates
early for the current pattern, ensuring that the al-
gorithm efficiently selects the most relevant paths
while avoiding redundancy (Lines 9-10). Finally,
we obtain /C, which collects all key paths under the
path patterns selected by the LLM. The triples in
these paths serves as the final graph-structured ex-
planations. To improve clarity, we map entities to
variables in the rewritten relation path patterns and
LLM-generated reasoning for generating textual
explanations, as illustrated in Figure 1.

Computation complexity. Since the number of
selected relation path patterns P is constrained to
a constant, the complexity primarily depends on
the number of relation paths per pattern, /V,,. The
algorithm first sorts the relation paths, which takes
O(Nplog N,) time per pattern. Then, it iterates
through the sorted paths, updating the key path set
and computing representations, with early termina-
tion if a confidence threshold is met. In the worst
case, the inner loop runs O(N,,) times. Therefore,
the overall complexity is O(N, log Np).



5 Experiments and Results

In this section, we conduct a detailed evaluation
of LLM-ExKG. The source code is attached as
supplementary materials.

5.1 Experiment Setup

Dataset. We evaluate LLM-ExKG on four widely
used KG node classification datasets (Schlichtkrull
etal., 2018): AIFB, MUTAG, BGS, and AM. These
datasets span multiple domains and present diverse
structural and semantic challenges, enabling a thor-
ough assessment of LLM-ExKG’s effectiveness.
We follow the experimental setup of (Schlichtkrull
et al., 2018), including the removal of label-leaking
relations. Table 1 lists the dataset statistics.

KG embedding models. LLM-ExKG is capable
of generating explanations for any KG embedding-
based node classification models. To validate its
generality, we conduct experiments on three well-
known models: TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2015), and R-GCN (Schlichtkrull
et al., 2018), each belonging to a representative cat-
egory, as outlined in Section 2.

Explanation methods. As far as we know, no
research has specifically investigated explanation
generation for KG embedding-based node classifi-
cation. Thus, we adapt existing methods from other
tasks to establish three baselines for comparison.
Appendix A describes the implementation details.

e LIME-NC is a method built upon LIME
(Ribeiro et al., 2016). In LIME-NC, we design
a feedback generator M, based on a GCN
with £ layers to efficiently obtain perturbed
feedback results. We perturb the triples within
k hops and feed them into M, to obtain the
feedback results. Subsequently, the perturbed
dataset is input into the LIME framework to
produce the final explanation results.

* SHAP-NC is based on SHAP (Lundberg and
Lee, 2017). It follows the same approach as
LIME-NC to generate the perturbed dataset.
To efficiently obtain the explanation results, it
employs the KernelSHAP (Lundberg and Lee,
2017) to process the perturbed dataset.

* KGExplainer-NC is an adaptation of KGEx-
plainer (Ma et al., 2024), the current state-of-
the-art method for explaining KG embedding-
based link prediction. Since there are no tar-
get entities to reach in node classification, we

Datasets Entities Relations Edges Classes
AIFB 8,285 45 29,043 4
MUTAG 23,644 23 74,227 2
BGS 333,843 103 916,199 2
AM 1,666,764 133 5,988,321 11

Table 1: Statistics of the datasets

modify the termination condition of the origi-
nal method’s greedy search to be based on the
number of triples that meet the specified limit.

Evaluation metrics. Since our goal is to identify
the most essential triples for the predicted clas-
sification, as defined in Section 3, we assess the
explanation results using two key metrics: fidelity
and sparsity (Tian et al., 2024). To compute them,
we extract the entities &£, that are correctly classi-
fied by the original model, ensuring a prediction
accuracy of 100%. Let 7 denote the candidate
triples for these entities and 7 be the explanation
results. We remove 7 — 7 from the dataset and
retrain the model on the modified dataset. Fidelity
is defined as the ratio of entities in &, that regain

correctly classified. Sparsity is computed as .

5.2 Main Results

The main results are presented in Table 2. Our
LLM-ExKG consistently outperforms all baselines
across different datasets and models on both fi-
delity and sparsity, demonstrating its robustness,
generality, and effectiveness. KGExplainer-NC
achieves the second-best performance, as it also uti-
lizes transfer learning to approximate the decision-
making behavior of the original model. However,
its effectiveness is constrained by reliance on a lo-
cal perspective during the searching process, lack-
ing guidance from higher-level relation semantics.
In contrast, LLM-ExKG overcomes this limita-
tion by integrating an LLLM, which enriches the
explanation process with deeper semantic under-
standing and broader contextual awareness. More-
over, LLM-ExKG also demonstrates higher effi-
ciency compared to KGExplainer-NC, as reported
in Appendix B. LIME-NC and SHAP-NC perform
poorly due to the difficulty of sampling from nu-
merous candidate triples, as well as their inability
to capture the intricate relation structure of the KG,
further limiting their explanatory power.

Beyond these overall trends, the experimental
results reveal several additional insights. (1) The
performance of explanation methods is influenced



Embedding Explanation AIFB MUTAGG BGS

models  methods Fidelity} Sparsity| Fidelityl Sparsity) Fidelity? Sparsity) Fidelity? Sparsityl
LIME-NC 0546 705 0638 1849 0563 062 0100  0.80

T SHAPNC 0682 707 0702 1849 0625 024 0150  0.85
KGExplainerNC 0818 580 0723 1967 0750 073 0375 1.01
LLM-ExKG 1.000 480 0872 1756 0813 017 0925  0.73
LIME-NC 0500 765 0667 1745 0643 055 0046 073

i SHAP-NC 0375 758 0711 1607 0623 027 0136 077
KGExplainerNC 0792 688 0778 1516 078 018 0227  0.69
LLM-ExKG 0917 590 0956 1434 078 0.2 0591  0.61
LIME-NC 0.571 660 078 1270 0750 114 039 0.9

rGey | SHAP-NC 0600 7.6 0800 1162 0750 091 039 073
KGExplaine-NC ~ 0.886 415 0780 1257 0792 089 0475 0.80
LLM-ExKG 0971 401 0900 1047 0875  0.62 0729  0.63

Table 2: Explanation comparison on KG embedding-based node classification.

AIFB

MUTAGG

BGS

Explanation methods

Fidelityt Sparsity] Fidelity? Sparsity] Fidelity! Sparsity] Fidelity? Sparsity)

LLM-ExKG 0.971 4.01 0.900 10.47 0.875 0.62 0.729 0.63
LLM-ExKG w/o KGED 0.714 4.07 0.780 11.20 0.750 0.76 0.390 0.88
LLM-ExKG w/o LGS 0.857 4.24 0.800 12.40 0.792 0.68 0.650 0.69
LLM-ExKG w/o KPS 0.742 4.14 0.800 11.94 0.750 0.70 0.418 0.83
Table 3: Ablation study of LLM-ExKG based on R-GCN.
by dataset size. Larger datasets introduce more O 0 = LLMLEAKG BKGErpainer NG BSHAP NG BLIMENC

candidate triples, increasing search complexity and
making it more challenging to extract meaningful
explanations. (2) Models with stronger classifica-
tion capability tend to yield less sparse explana-
tions, as they can more effectively capture useful
features, reducing dependence on excessive input
information. (3) Models that rely on topological
structures are generally easier to explain, as their
decision-making process is more aligned with the
inherent graph connectivity patterns, facilitating ex-
planation methods to extract meaningful evidence.

5.3 Ablation Study

To further analyze the contributions of different
components in LLM-ExKG, we conduct an abla-
tion study by removing KG embedding distillation
(KGED), LLM-guided selection (LGS), and key
path searching (KPS). Table 3 shows that all mod-
ules play a role in improving performance. Notably,
KGED has the most significant impact, as it trans-
fers the original model’s classification knowledge
to subsequent modules, ensuring the fidelity of gen-
erated explanations. LGS highlights the value of
incorporating LL.Ms into the explanation process.
By leveraging its broad knowledge and contextual
understanding, the LLM helps refine the selection

fidelity

0.000

High-Dense

Class-Ambiguous Long-Tailed

Figure 2: Comparison of explanation quality (fidelity)
w.r.t. different entity types.

of relation path patterns, ensuring that the most rele-
vant ones are prioritized for classification. This not
only improves interpretability but also enhances
the overall reliability of explanations. KPS further
improves the explanation process by capturing the
decision-making preferences of the original model.
It effectively identifies paths most closely aligned
with the correct classification, reinforcing the co-
herence between the generated explanations and
the model’s reasoning process.

5.4 Explanation Quality w.r.t. Entity Types

To further analyze and compare the explanation
quality of different methods, we evaluate the fi-
delity of node classification on three particularly
challenging types of entities: high-density candi-
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Figure 3: Case study of explaining R-GCN on entity “id13instance”.

date entities, class-ambiguous entities, and long-
tail entities. High-density candidate entities are
those with an exceptionally large number of candi-
date triples, which we set to exceed 2,000. Class-
ambiguous entities have neighboring entities that
predominantly belong to other categories rather
than the predicted one, increasing classification
difficulty. Long-tail entities come from underrep-
resented categories with sparse training samples,
often leading to lower predictive confidence and
reduced explanation quality. We compute the aver-
age results across different datasets for each entity
type when explaining R-GCN.

The findings are presented in Figure 2. LLM-
ExKG consistently achieves the best performance
across all three challenging entity types, demon-
strating its robustness and adaptability in handling
different complexities of node classification. It ef-
fectively reduces noise in high-density candidate
entities, distinguishes subtle differences in class-
ambiguous entities, and enhances generalization
for long-tail entities. These results highlight the
advantage of integrating model-specific knowledge
distillation with LLM-driven guidance, ensuring
both faithful and semantically rich explanations.

5.5 Case Study

We conduct a case study on the classification of
entity “id13instance” to compare the explanations
generated by LLM-ExKG, KGExplainer-NC and
SHAP-NC. The results are shown in Figure 3. No-
tably, we observe that the LLM-guided selection
effectively identifies path patterns strongly associ-
ated with the predicted entity’s organization. For in-
stance, (Y, author, X) (Z, publishes, Y') highlights
the organization where the entity’s work is pub-
lished, while (Y, author, X) (Y, author, Z) and
(X, publication, Y') (Z, publication, Y') connects
entities closely linked to the organization through
co-publication relation. Additionally, by extracting
key paths, we identify entities that either belong
to the same organization or have maintained close
associations with it. In contrast, the identified sub-
graph patterns by KGExplainer-NC exhibit little
relevance to the predicted organization. Moreover,

due to the locality of the search, it overly explores a
single entity belonging to a different category, lead-
ing to an incorrect prediction. In SHAP-NC, the
inability to effectively model complex graph struc-
tures causes the generation of even disconnected
subgraphs, compromising explanation quality.
Additionally, with the integration of the LLM,
LLM-ExKG generates textual explanations, pro-
viding a more comprehensive and interpretable
rationale for classification. For instance, given
the path (id373instance, author, id13instance)
(id3instance, publishes, id373instance), LLM-
ExKG reformulates it as follows: “id373instance
is authored by id3instance and published by
id13instance.” It further provides the reasoning:
“the authorship by id13instance and publication by
id13instance indicate a collaborative connection
between id13instance and id3instance, suggesting
they are associated through entity id373instance
within the same organizational context.” By trans-
lating structured paths into natural language with
clear justifications, LLM-ExKG significantly en-
hances interpretability. This not only improves
the readability of explanations but also helps users
intuitively grasp the key factors influencing classi-
fication, effectively bridging the gap between struc-
tured graph reasoning and human understanding.

6 Conclusion

In this paper, we propose LLM-ExKG, the first
method for explaining KG embedding-based node
classification, leveraging LLMs to generate both
graph-structured and textual explanations. LLM-
ExKG first trains a proxy model to distill knowl-
edge from the original KG embedding models.
Then, an LLM is finetuned to identify and reason
about critical relation path patterns. Finally, an ef-
ficient searching algorithm is employed to extract
the final set of critical triples. These triples, along-
side with the LLM-generated reasoning, form the
final explanation results. Our experimental results
demonstrate the effectiveness and generalization
of LLM-ExXKG in generating model-faithful and
human-readable explanations.



Limitations

One limitation of the current method is that it is
specifically designed for node classification tasks
and does not yet extend to other KG embedding-
based tasks, such as link prediction or entity align-
ment. However, we plan to extend LLM-ExKG
to address these tasks in future work, exploring
ways to generalize the method for broader appli-
cations in KG-related tasks. Another limitation of
our method is its dependence on the current capa-
bilities of LLMs. As LLMs continue to improve
in reasoning, efficiency, and cost, future iterations
of our method may generate even more accurate
and interpretable explanations. This advancement
could potentially eliminate the need for training a
smaller LLM, allowing direct utilization of LLMs
for explanation generation, thus simplifying the
overall framework while enhancing performance.
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A Implementation Details

We run experiments on a workstation with two In-
tel Xeon Gold CPUs, an NVIDIA A800 GPU, and
Ubuntu 18.04 LTS. The parameter &, which con-
trols the range of candidate triples, is set to 2. The
parameter J and A are both set to 1. The parame-
ter m for the model-aware filter is set to 50. The
parameter P, representing the maximum number
of relation path patterns selected by the LLM, is
set between 10 and 20. The parameter - is set be-
tween 0.9 and 1. We select LLaMA-2-7B! as the
smaller LLM and employ LoRA (Hu et al., 2022)
for parameter-efficient finetuning. The hyperpa-
rameters of LoRA are set to r = 64, alpha = 32,
and dropout = 0.1.

B Comparison of Efficiency

We further conduct an efficiency comparison
against the second-best method, KGExplainer-NC.
The results shown in Figure 4 reveal that, despite
utilizing an LLM for reasoning, LLM-ExKG con-
sistently outperforms the second-best method in
average running time across most datasets. No-
tably, this advantage becomes more pronounced
as the dataset size increases, demonstrating the ef-
fectiveness of our method in selecting key relation
path patterns and optimizing the search process.
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Figure 4: Comparison of average running time (s) be-
tween KGExplainer and LLM-ExKG in explaining R-
GCN.

1https: //huggingface.co/meta-1lama/

Llama-2-7b-hf
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