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Abstract001

Knowledge graph (KG) embedding models002
have achieved remarkable success in various003
tasks, particularly in node classification. How-004
ever, their decision-making processes remain005
opaque, limiting interpretability and trustwor-006
thiness. To address this challenge, we propose007
the first method for explaining KG embedding-008
based node classification. It integrates large lan-009
guage models (LLMs) to generate both graph-010
structured and textual explanations, offering011
deeper insights into model reasoning. Specif-012
ically, we train a proxy model to approximate013
the behavior of the original KG embedding014
model. Leveraging the distilled knowledge015
from this proxy model, an LLM is finetuned to016
identify and reason about critical relation path017
patterns that significantly influence predictions.018
Guided by the selected patterns and proxy019
model, we design an efficient searching algo-020
rithm to extract the final set of critical triples021
with LLM-generated reasoning. Experiments022
on three representative KG embedding mod-023
els across multiple benchmark datasets demon-024
strates the effectiveness and generalization of025
our method in explaining KG embedding-based026
node classification.027

1 Introduction028

Knowledge graph (KG) embedding (Wang et al.,029

2017; Choudhary et al., 2021), by mapping dis-030

crete entities and relations into continuous vector031

space, has pioneered new pathways for seman-032

tic representation learning of structured knowl-033

edge, establishing itself as a core paradigm in nat-034

ural language processing (NLP). This embedding035

paradigm achieves deep integration of knowledge-036

driven neural networks in scenarios such as seman-037

tic search and intelligent question answering by038

preserving the topological structure and semantic039

relations of KGs. Particularly in node classifica-040

tion tasks, KG embedding significantly enhances041

the accuracy of fine-grained entity type inference042

by fusing graph structural information from en- 043

tity neighborhoods with semantic relations, which 044

holds critical significance for constructing verti- 045

cal applications like precision medical diagnostic 046

systems and financial risk prediction models. 047

Despite the superior predictive performance 048

of KG embedding models, their internal mecha- 049

nisms remain plagued by a “black-box” dilemma: 050

mainstream embedding methods based on geomet- 051

ric transformations (Bordes et al., 2013; Wang 052

et al., 2014), semantic matching (Yang et al., 053

2015; Trouillon et al., 2016), or graph neural net- 054

works (Schlichtkrull et al., 2018; Trouillon et al., 055

2016) often rely on implicit vector operations for 056

decision-making, rendering their reasoning pro- 057

cesses opaque to human interpretation. This lack of 058

explainability severely hinders the trustworthy de- 059

ployment of KG embedding in high-stakes scenar- 060

ios such as judicial decision-making and medical 061

diagnosis. To address this bottleneck, researchers 062

have begun developing post-hoc explanation frame- 063

works for link prediction (Zhang et al., 2023; Ma 064

et al., 2024) and entity alignment (Tian et al., 2024). 065

While these approaches highlight the effectiveness 066

of explanation generation through subgraph pat- 067

terns or path reasoning, their direct application to 068

node classification is hindered by several critical 069

challenges that must be addressed. 070

First, due to the fundamental differences in task 071

objectives compared to link prediction and entity 072

alignment, existing methods have not explored how 073

to define a principled process for identifying the 074

most critical subset of triples for node classifica- 075

tion among numerous candidates. Second, unlike 076

link prediction, which benefits from explicit source- 077

to-target entity paths, or entity alignment, which 078

leverages aligned neighborhood structures, node 079

classification lacks such heuristic anchors. This ab- 080

sence makes it more challenging to discern mean- 081

ingful relation patterns that directly contribute to 082

classification decisions. Last, existing methods 083
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predominantly rely on deep learning techniques084

or heuristic search strategies, which often result in085

limited interpretability. The generated explanations086

may lack practical significance or fail to align with087

human comprehension, further restricting their us-088

ability in real-world applications.089

To tackle these challenges, the emergence of090

large language models (LLMs) presents a promis-091

ing solution. With their advanced text compre-092

hension and reasoning capabilities, LLMs can fil-093

ter, refine, and contextualize extracted relation094

patterns, ensuring that the generated explanations095

are structurally coherent, semantically meaningful,096

and easily interpretable by humans. Motivated by097

this potential, we propose LLM-ExKG, a novel098

method that integrates LLMs into the explanation099

generation pipeline for KG embedding-based node100

classification. To generate human-readable and101

model-faithful explanation, we train an LLM that102

combines both general world knowledge and dis-103

tilled knowledge from the original model. This104

enables the LLM to accurately identify and reason105

about critical relation patterns. Building upon these106

identified patterns, we further design an efficient107

searching algorithm that simulates the decision-108

making process of the original model, enabling pre-109

cise identification of the critical triples with LLM-110

generated reasoning as final explanation results.111

In summary, our main contributions include:112

• We provide a definition of explanation for KG113

embedding-based node classification and in-114

corporate LLMs into the explainability frame-115

work for KG embedding models.116

• We propose LLM-ExKG, the first method for117

explaining KG embedding-based node clas-118

sification, offering both interpretable graph-119

structured and textual explanations.120

• We leverage LLM-ExKG to explain three rep-121

resentative KG embedding models and assess122

the performance on four datasets. The ex-123

perimental results show the effectiveness and124

generalization of LLM-ExKG.125

2 Related Work126

KG embedding aims to map entities and relations127

in a KG into continuous vector space, enabling128

efficient computation and reasoning. A key ap-129

plication of KG embedding is node classification,130

which leverages embeddings capture semantic and131

structural information to improve categorization.132

Existing KG embedding models can be categorized 133

into three classes: translation-based models (Bor- 134

des et al., 2013; Wang et al., 2014), which represent 135

relations as vector translations; semantic matching- 136

based models (Yang et al., 2015; Trouillon et al., 137

2016), which use matrix or tensor factorization to 138

capture relational patterns; and GCN-based models 139

(Schlichtkrull et al., 2018; Vashishth et al., 2020), 140

which leverage graph convolution to incorporate 141

neighborhood information. These models can be 142

integrated with classifiers to support node classifi- 143

cation. Regardless of model types, our method is 144

able to generate effective explanations. 145

Explanation generation aims to interpret the be- 146

havior of pre-trained models without modifying 147

their architectures. Methods like LIME (Ribeiro 148

et al., 2016) and SHAP (Lundberg and Lee, 2017) 149

are widely applied across various machine learning 150

models. These methods rely on feedback obtained 151

from perturbing the original model, which can be 152

difficult to acquire in certain KG embedding mod- 153

els, such as TransE. Other methods (Zhang et al., 154

2023; Ma et al., 2024; Tian et al., 2024) are specifi- 155

cally designed for KG embedding models, but they 156

are primarily tailored for link prediction and entity 157

alignment tasks. The former (Zhang et al., 2023; 158

Ma et al., 2024) typically searches for paths lead- 159

ing to the target entity, while the latter (Tian et al., 160

2024) relies on heuristic reasoning based on en- 161

tity alignment. It is challenging to transfer either 162

method to node classification. Although certain 163

GNN-based explanation methods (Ying et al., 2019; 164

Yuan et al., 2021) can be adapted for node classifi- 165

cation, many KG embedding models do not adhere 166

to the GNN framework, limiting the applicability 167

of these methods. More critically, most existing 168

methods rely heavily on heuristic searching or deep 169

learning-based models, raising concerns about their 170

reliability. In contrast, our method is not only ap- 171

plicable to KG embedding models across various 172

frameworks but also leverages LLMs to guide ex- 173

planation generation in a more interpretable way, 174

thereby improving trustworthiness. 175

3 Preliminaries 176

We define a KG as G = {E ,R, T }, where E is the 177

set of entities, literals, and concepts, and R is the 178

set of relations. T ⊆ E ×R×E is the set of triples. 179

Given a KG G, node classification aims to learn a 180

mapping function f : E → C that assigns a label 181

from a pre-defined concept set C to each entity. 182
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Figure 1: Framework of LLM-ExKG.

In this paper, we study post-hoc explanation gen-183

eration for KG embedding-based node classifica-184

tion. Given an entity e predicted by the model to185

be of concept c, where e ∈ E and c ∈ C, we define186

candidate triples Te for generating explanations as187

those within k hops around entity e. A smaller k188

may lead to insufficient information, while a larger189

k can introduce excessive irrelevant triples. The190

objective of our studied problem is to identify the191

minimal subset T ∗
e ⊆ Te, where T ∗

e ̸= ∅ such that,192

even after removing Te−T ∗
e , the model can still ac-193

curately predict e to be of c. Beyond the traditional194

studied graph-structured explanations, our method195

also generates corresponding textual explanations,196

making the reasoning process more interpretable.197

4 Methodology198

4.1 Overview199

We propose LLM-ExKG, a novel method consist-200

ing of three key modules. (1) In the KG embed-201

ding distillation module, we design a lightweight202

proxy model to efficiently capture and inherit the203

key classification knowledge from the original204

model. (2) In the LLM-guided selection mod-205

ule, we train an LLM to identify important relation206

path patterns that are both practically meaningful207

and highly relevant to the prediction of the KG208

embedding model. (3) In the key path searching209

module, based on the proxy model, we simulate the210

decision-making process of the original KG em-211

bedding model to find the most relevant paths for212

classification within the relation path types selected213

by the LLM. The set of triples within these paths214

forms the graph-structured explanations. Addition-215

ally, leveraging the reasoning power of the LLM,216

we generate human-readable textual explanations,217

improving both interpretability and transparency.218

4.2 KG Embedding Distillation 219

In this module, we aim to transfer the essential 220

classification knowledge from the KG embedding 221

model into a proxy model. This proxy model is 222

designed to approximate the prediction logic of the 223

original model while providing a coarse-grained 224

estimation of triple contribution to the prediction. 225

To achieve this, we employ a variant of GCN aug- 226

mented with adaptive weights for each candidate 227

triple. This choice leverages the GCN’s ability to 228

capture complex graph structures while incorpo- 229

rating adaptive weights to improve interpretability 230

and more effectively capture contextual relevance. 231

Additionally, we introduce a counterfactual mecha- 232

nism to refine the proxy model’s ability to discern 233

the true causal impact of each triple, thereby en- 234

hancing its explanatory power. 235

Specifically, the GCN-based proxy model con- 236

sists of k layers, with each layer aggregating in- 237

formation from neighboring triples to capture both 238

structural and semantic features of the k-hop sub- 239

graph centered on the target entity. Here, k is a 240

predefined parameter set according to the exper- 241

imental configuration, as described in Section 3. 242

Building on the insights from (Tan et al., 2022), 243

we integrate both factual and counterfactual reason- 244

ing into each layer’s computation, further strength- 245

ening the model’s interpretability and robustness. 246

The computation process at each layer of the proxy 247

model is formulated as follows: 248

hl
e =

∑
en

∑
r

α(e,r,en)f
(
h(l−1)
e ,Wl

rer

)
,

h̃l
e =

∑
en

∑
r

(1− α(e,r,en))f
(
h̃(l−1)
e ,Wl

rer

)
,

α(e,r,en) = sigmoid
(
w(e,r,en)

)
,

(1) 249

where hl
e and h̃l

e represent the embeddings of en- 250
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tity e at the l-th layer, corresponding to the factual251

and counterfactual reasoning results, respectively.252

hl
e and h̃l

e at layer l = 0 are initialized using the253

original KG embedding model’s entity embeddings254

and er is derived from the KG embedding model’s255

relation embeddings. en denotes the neighboring256

entities of e, and r represents the relation between257

e and en. Wl
r is the learnable transformation ma-258

trix for relation r at layer l, which projects relation259

embeddings into a suitable space for interaction260

with entity embeddings. f(·) represents the fusion261

operation between entity and relation information,262

which is implemented as an addition in our method.263

w(e,r,en) denotes the learnable parameter for triple264

(e, r, en), which is designed to capture the impor-265

tance of each triple in the reasoning process.266

Our objective is to minimize the distance be-267

tween the factual embedding hk
e and its correspond-268

ing entity embedding ee in the KG embedding269

model, while simultaneously maximizing the dis-270

similarity between the counterfactual embedding271

h̃k
e and ee. Inspired by (Sun et al., 2020), we em-272

ploy the variant triple loss to optimize the proxy273

model. The formulation is as follows:274

Lproxy =
∥∥hk

e − ee
∥∥+ β

[
λ−

∥∥∥ h̃k
e − ee

∥∥∥]
+
, (2)275

where ∥ · ∥ denotes the L2-norm of the vector,276

[·]+ = max(0, ·), and λ, β are positive-valued hy-277

perparameters. The first term encourages hk
e to be278

close to ee, while the second term, governed by λ279

and β, imposes a margin-based constraint on h̃k
e ,280

ensuring that its distance from ee exceeds λ.281

By this distillation process, the proxy model can282

emulate the decision-making of the original KG283

embedding model in factual reasoning and leverage284

the learned triple contributions to offer valuable285

insights for subsequent explanation generation.286

4.3 LLM-Guided Selection287

Due to the vast number of candidate triples, directly288

leveraging the proxy model for searching incurs289

substantial computational overhead. Moreover, the290

learned contributions of individual triples are of-291

ten independent, making it challenging to identify292

the combinations of triples with practical signif-293

icance. To this end, we strive to introduce com-294

monsense knowledge from LLMs to ensure that295

the final explanation generation is not only faithful296

to the original model’s prediction but also holds297

meaningful practical value. Since entity names298

in triples are typically encoded and lack inherent299

meaning, whereas relations contain semantic infor- 300

mation relevant for classification, as illustrated in 301

Figure 1, we aim to leverage the LLM to select the 302

critical relation path patterns rather than specific 303

relation paths. This approach not only enhances 304

interpretability but also substantially reduces the 305

candidate set, making the selection process more ef- 306

ficient. Building on the above consideration, in this 307

module, we aim to integrate the knowledge from 308

the original KG embedding model with the exten- 309

sive commonsense reasoning capabilities of the 310

LLM (e.g., ChatGPT) to construct a high-quality 311

dataset. This dataset is used to train another LLM 312

(e.g., LLaMA (Touvron et al., 2023)) capable of 313

identifying relation path patterns that remain faith- 314

ful to the original model’s predictions while carry- 315

ing real-world significance. 316

4.3.1 Data Construction 317

Relation path pattern extraction. We extract 318

k-hop relation paths around the target entity and 319

replace specific entities with variable names, re- 320

taining only relation information to construct gen- 321

eralized relation path patterns. For example, the 322

path (proxy-2840, type, proxy) (proxy-69550, type, 323

proxy) is transformed to (X , type, Y ) (Z, type, Y ). 324

Model-aware filter. Since we aim to ensure that 325

the explanations remain faithful to the original KG 326

embedding model, the selected relation path pat- 327

terns should significantly contribute to the model’s 328

classification prediction. Fortunately, the proxy 329

model trained in Section 4.2 is capable of estimat- 330

ing the contribution of triples. Building on this, 331

we design a scoring mechanism for relation path 332

patterns to derive the preference ranking of the orig- 333

inal KG embedding model. Specifically, the score 334

computation is formulated as follows: 335

score(p) = max(t1,t2)∈Sp
(aggregate (wt1 , wt2)) ,

(3)
336

where p is a relation path pattern and Sp is the set 337

of relation paths that conform to p. t1, t2 are two 338

triples from relation path conforming to p, with 339

wt1 , wt2 denoting their respective contribution val- 340

ues. Based on the computed scores, we rank the 341

relation path patterns in descending order and se- 342

lect the top m ones as the filtered results, where 343

m is a hyperparameter. In this way, we not only 344

ensure that the selection results of the LLM align 345

with the prediction preference of the original model 346

but also narrow the candidate range, alleviating the 347

challenge of LLMs in processing long text. 348
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Practical relation path pattern selection. Given349

a set of filtered relation path patterns surrounding350

an entity, we first use an LLM (e.g., ChatGPT) to351

rewrite them into natural language expressions, en-352

hancing human comprehension and enabling more353

effective subsequent processing by the LLM. For354

instance, the pattern (X , type, Y ) (Z, type, Y ) can355

be rewritten as “X and Z share the same type, Y”.356

Next, we prompt the LLM to select key relation357

path patterns as evidence supporting the KG embed-358

ding model’s classification and provide its reason-359

ing. Through this approach, the LLM can provide360

reasonable relation path patterns along with cor-361

responding rationale. Since its selection is based362

on the criterion of providing a valid rationale, the363

chosen patterns are more likely to align with the364

ground-truth decision-making logic, thereby en-365

hancing the interpretability of the results. Nev-366

ertheless, the LLM may still produce occasional367

inaccurate results. Inspired by (He et al., 2024), to368

ensure the quality of the training data, we manually369

check and prompt the LLM to reselect the relation370

path patterns until the results are logically correct.371

4.3.2 LLM Finetuning372

We finetune a smaller open source LLM to inte-373

grate the collected knowledge, enabling efficient374

and precise reasoning for relation path pattern se-375

lection. Given an entity e, we construct the prompt376

P , which includes the rewritten candidate relation377

path patterns surrounding e along with the query378

for selection and reasoning. The optimization is379

guided by the following loss function:380

LLLM = −
N∑
i=1

log Pr [ yi | y<i,P(e) ] , (4)381

where N denotes the number of tokens in the se-382

lected relation path patterns and corresponding ra-383

tionale. yi (i = 1, 2, . . . , N) denotes the i-th to-384

ken. Pr[ yi | y<i,P(e) ] indicates the probability of385

generating yi using the LLM, conditioned on the386

prompt P(e) and the previously generated tokens.387

4.4 Key Path Searching388

After obtaining the relation path patterns selected389

by the LLM, we design an efficient searching algo-390

rithm based on the trained proxy model to identify391

key relation paths, ultimately constructing the final392

explanations. Given a target entity, the searching393

process is presented in Algorithm 1. The process394

begins by initializing the result set K as empty395

Algorithm 1: Greedy search for key paths
Input: Target label c; Proxy modelMp; Set of

relation path patterns Spattern; Dictionary of
relation path patterns to relation path set Dp.

Output: Set of key paths K.
1 K ← set();
2 foreach ppattern ∈ Spattern do
3 Lpath ← Dp[ppattern].sort();
4 Gsub ← set();
5 foreach ppath ∈ Lpath do
6 add path ppath in Gsub and K;
7 h←Mp(Gsub);
8 get prediction score s of label c with h;
9 if s ≥ γ then

10 break;

11 return K;

(Line 1). For each relation path pattern ppattern 396

from LLM selection, we retrieve its associated 397

paths from Dp (Lines 2–3). These paths are sorted 398

based on the values computed by the function 399

aggregate(·) mentioned in Eq. (3) (Line 3). Next, 400

we initialize an empty set Gsub, designed to col- 401

lect the most essential paths under current pattern 402

(Line 4). We then iterate the path of the pattern in 403

descending order (Line 5). In Lines 6–7, we add 404

the path into Gsub and feed to the proxy model to 405

generate an approximate representation h for Gsub. 406

Subsequently, we can input h to the classifier of 407

the original model to obtain the prediction score 408

s of target label c (Line 8). If s meets or exceeds 409

a pre-defined threshold γ, the search terminates 410

early for the current pattern, ensuring that the al- 411

gorithm efficiently selects the most relevant paths 412

while avoiding redundancy (Lines 9–10). Finally, 413

we obtain K, which collects all key paths under the 414

path patterns selected by the LLM. The triples in 415

these paths serves as the final graph-structured ex- 416

planations. To improve clarity, we map entities to 417

variables in the rewritten relation path patterns and 418

LLM-generated reasoning for generating textual 419

explanations, as illustrated in Figure 1. 420

Computation complexity. Since the number of 421

selected relation path patterns P is constrained to 422

a constant, the complexity primarily depends on 423

the number of relation paths per pattern, Np. The 424

algorithm first sorts the relation paths, which takes 425

O(Np logNp) time per pattern. Then, it iterates 426

through the sorted paths, updating the key path set 427

and computing representations, with early termina- 428

tion if a confidence threshold is met. In the worst 429

case, the inner loop runs O(Np) times. Therefore, 430

the overall complexity is O(Np logNp). 431
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5 Experiments and Results432

In this section, we conduct a detailed evaluation433

of LLM-ExKG. The source code is attached as434

supplementary materials.435

5.1 Experiment Setup436

Dataset. We evaluate LLM-ExKG on four widely437

used KG node classification datasets (Schlichtkrull438

et al., 2018): AIFB, MUTAG, BGS, and AM. These439

datasets span multiple domains and present diverse440

structural and semantic challenges, enabling a thor-441

ough assessment of LLM-ExKG’s effectiveness.442

We follow the experimental setup of (Schlichtkrull443

et al., 2018), including the removal of label-leaking444

relations. Table 1 lists the dataset statistics.445

KG embedding models. LLM-ExKG is capable446

of generating explanations for any KG embedding-447

based node classification models. To validate its448

generality, we conduct experiments on three well-449

known models: TransE (Bordes et al., 2013), Dist-450

Mult (Yang et al., 2015), and R-GCN (Schlichtkrull451

et al., 2018), each belonging to a representative cat-452

egory, as outlined in Section 2.453

Explanation methods. As far as we know, no454

research has specifically investigated explanation455

generation for KG embedding-based node classifi-456

cation. Thus, we adapt existing methods from other457

tasks to establish three baselines for comparison.458

Appendix A describes the implementation details.459

• LIME-NC is a method built upon LIME460

(Ribeiro et al., 2016). In LIME-NC, we design461

a feedback generator Mg based on a GCN462

with k layers to efficiently obtain perturbed463

feedback results. We perturb the triples within464

k hops and feed them into Mg to obtain the465

feedback results. Subsequently, the perturbed466

dataset is input into the LIME framework to467

produce the final explanation results.468

• SHAP-NC is based on SHAP (Lundberg and469

Lee, 2017). It follows the same approach as470

LIME-NC to generate the perturbed dataset.471

To efficiently obtain the explanation results, it472

employs the KernelSHAP (Lundberg and Lee,473

2017) to process the perturbed dataset.474

• KGExplainer-NC is an adaptation of KGEx-475

plainer (Ma et al., 2024), the current state-of-476

the-art method for explaining KG embedding-477

based link prediction. Since there are no tar-478

get entities to reach in node classification, we479

Datasets Entities Relations Edges Classes

AIFB 8,285 45 29,043 4
MUTAG 23,644 23 74,227 2
BGS 333,843 103 916,199 2
AM 1,666,764 133 5,988,321 11

Table 1: Statistics of the datasets

modify the termination condition of the origi- 480

nal method’s greedy search to be based on the 481

number of triples that meet the specified limit. 482

Evaluation metrics. Since our goal is to identify 483

the most essential triples for the predicted clas- 484

sification, as defined in Section 3, we assess the 485

explanation results using two key metrics: fidelity 486

and sparsity (Tian et al., 2024). To compute them, 487

we extract the entities Er that are correctly classi- 488

fied by the original model, ensuring a prediction 489

accuracy of 100%. Let T denote the candidate 490

triples for these entities and T ∗ be the explanation 491

results. We remove T − T ∗ from the dataset and 492

retrain the model on the modified dataset. Fidelity 493

is defined as the ratio of entities in Er that remain 494

correctly classified. Sparsity is computed as T ∗

T . 495

5.2 Main Results 496

The main results are presented in Table 2. Our 497

LLM-ExKG consistently outperforms all baselines 498

across different datasets and models on both fi- 499

delity and sparsity, demonstrating its robustness, 500

generality, and effectiveness. KGExplainer-NC 501

achieves the second-best performance, as it also uti- 502

lizes transfer learning to approximate the decision- 503

making behavior of the original model. However, 504

its effectiveness is constrained by reliance on a lo- 505

cal perspective during the searching process, lack- 506

ing guidance from higher-level relation semantics. 507

In contrast, LLM-ExKG overcomes this limita- 508

tion by integrating an LLM, which enriches the 509

explanation process with deeper semantic under- 510

standing and broader contextual awareness. More- 511

over, LLM-ExKG also demonstrates higher effi- 512

ciency compared to KGExplainer-NC, as reported 513

in Appendix B. LIME-NC and SHAP-NC perform 514

poorly due to the difficulty of sampling from nu- 515

merous candidate triples, as well as their inability 516

to capture the intricate relation structure of the KG, 517

further limiting their explanatory power. 518

Beyond these overall trends, the experimental 519

results reveal several additional insights. (1) The 520

performance of explanation methods is influenced 521
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Embedding
models

Explanation
methods

AIFB MUTAGG BGS AM

Fidelity↑ Sparsity↓ Fidelity↑ Sparsity↓ Fidelity↑ Sparsity↓ Fidelity↑ Sparsity↓

TransE

LIME-NC 0.546 7.05 0.638 18.49 0.563 0.62 0.100 0.80
SHAP-NC 0.682 7.07 0.702 18.49 0.625 0.24 0.150 0.85
KGExplainer-NC 0.818 5.80 0.723 19.67 0.750 0.73 0.375 1.01
LLM-ExKG 1.000 4.80 0.872 17.56 0.813 0.17 0.925 0.73

DistMult

LIME-NC 0.500 7.65 0.667 17.45 0.643 0.55 0.046 0.73
SHAP-NC 0.375 7.58 0.711 16.07 0.623 0.27 0.136 0.77
KGExplainer-NC 0.792 6.88 0.778 15.16 0.786 0.18 0.227 0.69
LLM-ExKG 0.917 5.90 0.956 14.34 0.786 0.12 0.591 0.61

R-GCN

LIME-NC 0.571 6.60 0.780 12.70 0.750 1.14 0.390 0.69
SHAP-NC 0.600 7.16 0.800 11.62 0.750 0.91 0.396 0.73
KGExplainer-NC 0.886 4.15 0.780 12.57 0.792 0.89 0.475 0.80
LLM-ExKG 0.971 4.01 0.900 10.47 0.875 0.62 0.729 0.63

Table 2: Explanation comparison on KG embedding-based node classification.

Explanation methods
AIFB MUTAGG BGS AM

Fidelity↑ Sparsity↓ Fidelity↑ Sparsity↓ Fidelity↑ Sparsity↓ Fidelity↑ Sparsity↓

LLM-ExKG 0.971 4.01 0.900 10.47 0.875 0.62 0.729 0.63
LLM-ExKG w/o KGED 0.714 4.07 0.780 11.20 0.750 0.76 0.390 0.88
LLM-ExKG w/o LGS 0.857 4.24 0.800 12.40 0.792 0.68 0.650 0.69
LLM-ExKG w/o KPS 0.742 4.14 0.800 11.94 0.750 0.70 0.418 0.83

Table 3: Ablation study of LLM-ExKG based on R-GCN.

by dataset size. Larger datasets introduce more522

candidate triples, increasing search complexity and523

making it more challenging to extract meaningful524

explanations. (2) Models with stronger classifica-525

tion capability tend to yield less sparse explana-526

tions, as they can more effectively capture useful527

features, reducing dependence on excessive input528

information. (3) Models that rely on topological529

structures are generally easier to explain, as their530

decision-making process is more aligned with the531

inherent graph connectivity patterns, facilitating ex-532

planation methods to extract meaningful evidence.533

5.3 Ablation Study534

To further analyze the contributions of different535

components in LLM-ExKG, we conduct an abla-536

tion study by removing KG embedding distillation537

(KGED), LLM-guided selection (LGS), and key538

path searching (KPS). Table 3 shows that all mod-539

ules play a role in improving performance. Notably,540

KGED has the most significant impact, as it trans-541

fers the original model’s classification knowledge542

to subsequent modules, ensuring the fidelity of gen-543

erated explanations. LGS highlights the value of544

incorporating LLMs into the explanation process.545

By leveraging its broad knowledge and contextual546

understanding, the LLM helps refine the selection547

0.860 
0.760 

0.580 

0.760 

0.326 0.292 

0.539 

0.233 

0.091 

0.613 

0.168 

0.023 
0.000

1.000

High-Dense Class-Ambiguous  Long-Tailed

 LLM-ExKG KGExplainer-NC SHAP-NC LIME-NC

fidelity

Figure 2: Comparison of explanation quality (fidelity)
w.r.t. different entity types.

of relation path patterns, ensuring that the most rele- 548

vant ones are prioritized for classification. This not 549

only improves interpretability but also enhances 550

the overall reliability of explanations. KPS further 551

improves the explanation process by capturing the 552

decision-making preferences of the original model. 553

It effectively identifies paths most closely aligned 554

with the correct classification, reinforcing the co- 555

herence between the generated explanations and 556

the model’s reasoning process. 557

5.4 Explanation Quality w.r.t. Entity Types 558

To further analyze and compare the explanation 559

quality of different methods, we evaluate the fi- 560

delity of node classification on three particularly 561

challenging types of entities: high-density candi- 562

7



id13instance

id79instance

id111instance

isWorkedOnBy isAbout

id699instance isAbout

id70instance

id747instance

isAbout

id1106instance
isAbout

(c) Explanation from SHAP-NC

deleted
selected
other label
target label

id13instance

id3instance id373instance

id6instance

id50instance

author

publication publication

id176instance

author

id432instance

author

(a) Explanation from LLM-ExKG 

publishes

id13instance id1instance

id2instance

isAbout

id608instanceid31instance

id376instance

id81instance

isAbout author

(b) Explanation from KGExplainer-NC 

isAboutisAbout

isWorkedOnBy

Figure 3: Case study of explaining R-GCN on entity “id13instance”.

date entities, class-ambiguous entities, and long-563

tail entities. High-density candidate entities are564

those with an exceptionally large number of candi-565

date triples, which we set to exceed 2,000. Class-566

ambiguous entities have neighboring entities that567

predominantly belong to other categories rather568

than the predicted one, increasing classification569

difficulty. Long-tail entities come from underrep-570

resented categories with sparse training samples,571

often leading to lower predictive confidence and572

reduced explanation quality. We compute the aver-573

age results across different datasets for each entity574

type when explaining R-GCN.575

The findings are presented in Figure 2. LLM-576

ExKG consistently achieves the best performance577

across all three challenging entity types, demon-578

strating its robustness and adaptability in handling579

different complexities of node classification. It ef-580

fectively reduces noise in high-density candidate581

entities, distinguishes subtle differences in class-582

ambiguous entities, and enhances generalization583

for long-tail entities. These results highlight the584

advantage of integrating model-specific knowledge585

distillation with LLM-driven guidance, ensuring586

both faithful and semantically rich explanations.587

5.5 Case Study588

We conduct a case study on the classification of589

entity “id13instance” to compare the explanations590

generated by LLM-ExKG, KGExplainer-NC and591

SHAP-NC. The results are shown in Figure 3. No-592

tably, we observe that the LLM-guided selection593

effectively identifies path patterns strongly associ-594

ated with the predicted entity’s organization. For in-595

stance, (Y , author, X) (Z, publishes, Y ) highlights596

the organization where the entity’s work is pub-597

lished, while (Y , author, X) (Y , author, Z) and598

(X , publication, Y ) (Z, publication, Y ) connects599

entities closely linked to the organization through600

co-publication relation. Additionally, by extracting601

key paths, we identify entities that either belong602

to the same organization or have maintained close603

associations with it. In contrast, the identified sub-604

graph patterns by KGExplainer-NC exhibit little605

relevance to the predicted organization. Moreover,606

due to the locality of the search, it overly explores a 607

single entity belonging to a different category, lead- 608

ing to an incorrect prediction. In SHAP-NC, the 609

inability to effectively model complex graph struc- 610

tures causes the generation of even disconnected 611

subgraphs, compromising explanation quality. 612

Additionally, with the integration of the LLM, 613

LLM-ExKG generates textual explanations, pro- 614

viding a more comprehensive and interpretable 615

rationale for classification. For instance, given 616

the path (id373instance, author, id13instance) 617

(id3instance, publishes, id373instance), LLM- 618

ExKG reformulates it as follows: “id373instance 619

is authored by id3instance and published by 620

id13instance.” It further provides the reasoning: 621

“the authorship by id13instance and publication by 622

id13instance indicate a collaborative connection 623

between id13instance and id3instance, suggesting 624

they are associated through entity id373instance 625

within the same organizational context.” By trans- 626

lating structured paths into natural language with 627

clear justifications, LLM-ExKG significantly en- 628

hances interpretability. This not only improves 629

the readability of explanations but also helps users 630

intuitively grasp the key factors influencing classi- 631

fication, effectively bridging the gap between struc- 632

tured graph reasoning and human understanding. 633

6 Conclusion 634

In this paper, we propose LLM-ExKG, the first 635

method for explaining KG embedding-based node 636

classification, leveraging LLMs to generate both 637

graph-structured and textual explanations. LLM- 638

ExKG first trains a proxy model to distill knowl- 639

edge from the original KG embedding models. 640

Then, an LLM is finetuned to identify and reason 641

about critical relation path patterns. Finally, an ef- 642

ficient searching algorithm is employed to extract 643

the final set of critical triples. These triples, along- 644

side with the LLM-generated reasoning, form the 645

final explanation results. Our experimental results 646

demonstrate the effectiveness and generalization 647

of LLM-ExKG in generating model-faithful and 648

human-readable explanations. 649
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Limitations650

One limitation of the current method is that it is651

specifically designed for node classification tasks652

and does not yet extend to other KG embedding-653

based tasks, such as link prediction or entity align-654

ment. However, we plan to extend LLM-ExKG655

to address these tasks in future work, exploring656

ways to generalize the method for broader appli-657

cations in KG-related tasks. Another limitation of658

our method is its dependence on the current capa-659

bilities of LLMs. As LLMs continue to improve660

in reasoning, efficiency, and cost, future iterations661

of our method may generate even more accurate662

and interpretable explanations. This advancement663

could potentially eliminate the need for training a664

smaller LLM, allowing direct utilization of LLMs665

for explanation generation, thus simplifying the666

overall framework while enhancing performance.667
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A Implementation Details 765

We run experiments on a workstation with two In- 766

tel Xeon Gold CPUs, an NVIDIA A800 GPU, and 767

Ubuntu 18.04 LTS. The parameter k, which con- 768

trols the range of candidate triples, is set to 2. The 769

parameter β and λ are both set to 1. The parame- 770

ter m for the model-aware filter is set to 50. The 771

parameter P , representing the maximum number 772

of relation path patterns selected by the LLM, is 773

set between 10 and 20. The parameter γ is set be- 774

tween 0.9 and 1. We select LLaMA-2-7B1 as the 775

smaller LLM and employ LoRA (Hu et al., 2022) 776

for parameter-efficient finetuning. The hyperpa- 777

rameters of LoRA are set to r = 64, alpha = 32, 778

and dropout = 0.1. 779

B Comparison of Efficiency 780

We further conduct an efficiency comparison 781

against the second-best method, KGExplainer-NC. 782

The results shown in Figure 4 reveal that, despite 783

utilizing an LLM for reasoning, LLM-ExKG con- 784

sistently outperforms the second-best method in 785

average running time across most datasets. No- 786

tably, this advantage becomes more pronounced 787

as the dataset size increases, demonstrating the ef- 788

fectiveness of our method in selecting key relation 789

path patterns and optimizing the search process. 790
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Figure 4: Comparison of average running time (s) be-
tween KGExplainer and LLM-ExKG in explaining R-
GCN.

1https://huggingface.co/meta-llama/
Llama-2-7b-hf
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