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Abstract
Text embeddings from large language models001
(LLMs) have achieved excellent results in tasks002
such as information retrieval, semantic textual003
similarity, etc. In this work, we show an in-004
teresting finding: when feeding a text into the005
embedding LLMs, the obtained text embedding006
will be able to be aligned with the key tokens007
in the input text. We first fully analyze this phe-008
nomenon on eight embedding LLMs and show009
that this phenomenon is universal and is not010
affected by model architecture, training strat-011
egy, and embedding method. With a deeper012
analysis, we then find that the main change013
in embedding space between the embedding014
LLMs and their original generative LLMs is in015
the first principal component. By adjusting the016
first principal component, we can align text em-017
bedding with the key tokens. Finally, we give018
several examples to demonstrate the vast appli-019
cation potential of this finding: (1) we propose020
a simple and practical sparse retrieval method021
based on the aligned tokens, which can achieve022
80% of the dense retrieval effect of the same023
model while reducing the computation signifi-024
cantly; (2) we show that our findings provide025
a fresh perspective to help understand fuzzy026
concepts (e.g., semantic relatedness vs. seman-027
tic similarity) and emerging technologies (e.g.,028
instruction-following embedding) in this field.029

1 Introduction030

Large language models (LLMs) have recently made031

rapid progress on various natural language un-032

derstanding tasks using the generative paradigm033

(Brown et al., 2020). However, not all tasks lend034

themselves to the generative paradigm in practice;035

tasks such as information retrieval, text cluster-036

ing, and semantic text similarity usually rely on037

high-quality text embeddings. Thus, more and038

more attention has been focused on obtaining high-039

quality textual embeddings from large language040

models (Jiang et al., 2023b; Springer et al., 2024;041

BehnamGhader et al., 2024).042
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Figure 1: Existing paradigms on LLMs for text genera-
tion and embedding (left) and the novel findings of this
work (right).

As shown on the left half of Figure 1, the LLM 043

for generation takes the texts as input and output. 044

The input text is tokenized and passed through the 045

module f to obtain its hidden states. Then, a de- 046

coder layer g is required, which maps the high- 047

dimensional hidden states to the vocabulary-length 048

logits and computes the decoded probability for 049

each token. When LLMs are converted for text em- 050

bedding, current methods typically incorporate the 051

following changes: (1) g is discarded because there 052

is no need to map to the vocabulary; (2) f is con- 053

verted into f̂ using prompt-engineering (Jiang et al., 054

2023b; Springer et al., 2024) or contrastive learning 055

(Muennighoff, 2022; BehnamGhader et al., 2024); 056

and (3) a pooling strategy p is used to weighted sum 057

of hidden states and obtain the text embedding. 058

In this paper, we are not proposing a new text em- 059

bedding method for LLMs. Instead, our research 060

surrounds a very interesting finding: when the text 061

embedding obtained by f̂ passes through the de- 062

coder layer g from the same LLM, the tokens with 063

the highest decoding probability are highly related 064

to the input text. In other words, the embedding of 065
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the input text is aligned with some key tokens of066

that text. As shown in the right half of Figure 1,067

when the input text is “What diseases are parrots068

prone to ?”, we can find the literally-related tokens,069

such as “disease” and the semantically-related to-070

kens, such as “birds” and “suscept” have the high-071

est decoding probabilities.072

Considering the unusual nature of this phe-073

nomenon, we first introduce eight LLMs for text074

embedding and prove that the above phenomenon075

is universal and independent of the LLMs’ archi-076

tecture, the training strategy, and the embedding077

method. Subsequently, we performed qualitative078

and quantitative analyses based on these LLMs to079

understand this finding more intuitively and pre-080

cisely. (Section 3). To better explain this phe-081

nomenon, we compare the embedding spaces of f082

and f̂ using spectral analysis (Section 4). We find083

that the dominant change in f̂ is mainly concen-084

trated in the first principal component. By manually085

adjusting the first principal component of the em-086

bedding space, we can replicate the phenomenon087

of aligning text embeddings to key tokens.088

With a deeper understanding of our findings, we089

believe that it has a rich potential for application090

(Section 5). For example, we find that the criticism091

of LLM-generated embedding mainly stems from092

its high dimensionality (1024-4096), resulting in093

significant inference and storage overhead (Muen-094

nighoff et al., 2024). To address this, we propose a095

new sparse retrieval method based on our findings.096

We convert document embeddings into a sparse097

representation consisting only of aligned tokens098

and utilize a few aligned tokens from the query em-099

bedding for expansion. Despite its simplicity, our100

method achieves over 80% of the performance of101

the original LLM’s dense retrieval and outperforms102

strong baselines like BM25 (Robertson et al., 2009)103

and SPLADE v2 (Formal et al., 2021). At the same104

time, we show that our work helps to intuitively un-105

derstand (1) the training-data influence to semantic106

relevance and semantic similarity tasks and (2) the107

working mechanism of the instruction-following108

embedding (Su et al., 2023) in the Appendix.109

The contributions of this paper are summarized110

as follows:111

• We find an interesting and unusual phe-112

nomenon: the text embeddings obtained in the113

embedding LLM align with the key tokens;114

• We explain why this phenomenon occurs from115

the perspective of spectral analysis and find116

that the current method mainly changes the 117

first principal component of the original em- 118

bedding space of the LLMs; 119

• We show a series of example applications, in- 120

cluding improvements to the method and in- 121

terpretability of the model, demonstrating that 122

our findings have large application value. 123

2 Background 124

2.1 Basic Paradigm 125

Given a LLM F , we can divide it into two parts: 126

F = g ◦ f (1) 127

where g is the decoder layer, and f is the rest mod- 128

ules of the LLM. In the existing LLM embedding 129

methods, g is discarded, while f can be used as 130

an encoder. Given a text si, we convert it to a 131

token sequence using LLM’s tokenizer and get 132

si = {ti1, · · · , til}, where l is the sequence length; 133

then we can get the hidden state of the last layer: 134

H = [h
(t)
i1 , · · · ,h

(t)
il ] = f(si) (2) 135

where H ∈ Rd×L and h
(t)
ij ∈ Rd×1 is the i-th d- 136

dimensional column vector of H. Subsequently, 137

the pooling strategy p(.) is used to H for the text 138

embedding hi, which can be expressed as 139

hi = p(f(si)) = p(H) =
∑L

j=1
αjh

(t)
ij (3) 140

where αj is the weight of the hidden states and 141∑L
j=1 αj = 1. Specifically, there are three popu- 142

lar pooling strategies in practice: for last pooling, 143

αj = 1 when j = L else is 0; for mean pooling, 144

αj = 1/L for each i; for weighted mean pooling 145

(Muennighoff, 2022), αj = j/
∑L

j=1 j. 146

However, text embeddings obtained directly 147

from the encoder f show poor performance. It 148

is unsurprising since the pre-training task, i.e., the 149

next token prediction, is not designed for embed- 150

ding, and the unidirectional attention detracts from 151

the expressive power of the hidden states (Springer 152

et al., 2024). In the subsequent subsections, we 153

describe how the existing methods improve the 154

embedding’s quality based on the top of f . For 155

simplicity, we indiscriminately refer to the models 156

proposed by the existing methods as f̂ . 157
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2.2 Embedding via Prompt Engineering158

The model f̂ based on prompt engineering fills the159

text into prompt templates to improve the quality160

of text embedding, which can be expressed as161

f̂(si) = f(t(si)) (4)162

where t(.) represents the operation of filling the163

text into a fixed prompt template.164

PromptEOL (Jiang et al., 2023b) introduces165

a prompt template: This sentence:"[text]"166

means in one word:", where [text] is a place-167

holder. In practice, the template where [text] is168

replaced by a specific text is sent into the encoder169

f , and the last pooling strategy is used to obtain170

the text embedding. The following works design171

the better prompt template based on task-oriented172

(Lei et al., 2024) or chain-of-thought (Zhang et al.,173

2024) can lead to better performance. Springer174

et al. (2024) proposes a prompt template: Rewrite175

the sentence: [text], rewritten sentence:176

[text], where both [text] are the placeholder. In177

practice, both placeholders are filled with the same178

text, and the text embedding is obtained by the179

mean pooling strategy, but it is pooled only within180

the range of the second occurrence of the text.181

The methods based on prompt engineering are182

simple and training-free, so they do not poten-183

tially compromise the generative capabilities of the184

LLMs. However, they provide limited performance185

improvement for text embedding tasks.186

2.3 Embedding via Contrastive Learning187

The methods based on contrastive learning inher-188

ited the good experience of the BERT-based en-189

coder era (Gao et al., 2021). In these methods, f̂190

is fine-tuned f with contrastive learning. Due to191

the large parameter count of f itself, parameter-192

efficient fine-tuning methods such as LoRA (Hu193

et al., 2021) are usually used.194

Given a text dataset D, for any text si sampled195

from D, we first obtain its embedding hi from f196

with a specific pooling strategy. Then positive pairs197

(hi,h
+
i ) and negative pairs {(hi,h

−
ij)}Nj=1 are con-198

structed following different settings, where N is199

the negative example number. In the unsupervised200

setting, two data-augmented views of a text are con-201

sidered a positive pair, while the negative samples202

are randomly sampled from the datasets. In the203

supervised setting, the positive pair is a labelled204

text pair, which can be query-document, question-205

answer or hypothesis-entailment (Li et al., 2023),206

etc., while potential hard negative pairs may be in- 207

troduced, such as hypothesis-contradiction. Finally, 208

the contrastive loss can be expressed as 209

Lcl = − log
ed(hi,h

+
i )/τ

ed(hi,h
+
i )/τ +

∑N
j=1 e

d(hi,h
−
ij)/τ

(5) 210

where d(., .) is a distance function, τ is the temper- 211

ature hyper-parameter. During fine-tuning, the con- 212

trastive loss draws positive text pairs close while 213

pushing negative text pairs away. 214

Additional Tricks There are some effective 215

tricks in the existing works, which include: (1) 216

switching casual attention to bi-directional atten- 217

tion (BehnamGhader et al., 2024); (2) using differ- 218

ent instruction prefixes for the datasets from dif- 219

ferent tasks to minimize inter-task interference (Su 220

et al., 2023); (3) co-training contrastive learning 221

and next word prediction to minimize reductions 222

to generative capability (Muennighoff et al., 2024). 223

3 Embedding Aligns with Key Tokens 224

3.1 Motivation 225

To analyze the pre-trained transformer in the em- 226

bedding space, Elhage et al. (2021); Geva et al. 227

(2022); Dar et al. (2022) attempt to multiply the 228

attention or feed-forward layer parameters with the 229

token embedding matrix to explain how these pa- 230

rameters work. For example, Geva et al. (2022) 231

finds that multiplying the feed-forward value vec- 232

tor with the token embedding matrix can obtain 233

a distribution over the vocabulary, and the tokens 234

with high probability can explain what the FFN 235

updates to hidden layer representations. Inspired 236

by these works, we try to interpret the text embed- 237

dings obtained from LLMs by mapping them into 238

the token space. 239

3.2 Method 240

To implement the above idea, we need a text 241

dataset D, and some (f̂ , T,Eg) triplets. f̂ is 242

the LLM output d-dimensional text embeddings, 243

T = {t1, · · · , tL} is the L-sized vocabulary and 244

Eg = [et1 , · · · , etL ]⊤ ∈ RL×d is the token em- 245

bedding matrix from the decoded layer g, where 246

etj ∈ Rd×1 is the token embedding of token tj . 247

Note that T and Eg are determined by the orig- 248

inal LLM F . Eg is also the only parameter in g1, 249

1To the best of our knowledge, all popular LLMs follow
the original design of the decoder layer from GPT (Radford
et al., 2018), i.e., a linear layer without bias, which also can
be regarded as a token embedding matrix.
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Model Architecture Fine-Tuning Embedding
Backbone Attention Task Corpus Pooling Similarity

SGPTnli GPT-Neo casual SCL NLI weighted mean cosine
SGPTmsmarco (1.3B) casual SCL MS MARCO weighted mean cosine

OPTEOL OPT casual PE - last token dot product
OPTEOL+CSE (1.3B) casual PE+SCL NLI last dot product

LLaMAEOL LLaMA casual PE - last token dot product
LLaMAEOL+CSE (7B) casual PE+SCL NLI last dot product

GritLM Mistral bi-directional SCL+NTP Tulu 2+E5+S2ORC mean cosine
LLM2Vec (7B) bi-directional MNTP→SCL E5 weighted mean cosine

Table 1: Detailed information on the model used to study the embedding space. SCL, UCL, PE, NTP, and
MNTP represent supervised contrastive learning, unsupervised contrastive learning, prompt engineering, next token
prediction, and masked next token prediction (BehnamGhader et al., 2024) separately.

therefore, there is no difference between Eghi and250

g(hi) for any text embedding hi ∈ Rd×1.251

Process 1 Embedding-Token Alignment Analysis

Input: A text dataset D and the (f̂ , T,Eg) triplet.
1: Initialization: i← 0, j ← 0
2: while i ≤ |D| do
3: Get the i-th text si in D
4: Deduplicate tokenizer(si) to obtain Tsi

5: Calculate hi ← pooling(f̂(si))
6: while j ≤ |T | do
7: Calculate p(tj |si)← e⊤

tjhi

8: Update j ← j + 1
9: end while

10: Sort T in descending order by p(ti|si) to get T̂si

11: Update i← i+ 1
12: end while
Output: Tsi and T̂si

Given a text si sampled from D, we need to252

obtain its literal token set Tsi and aligned token set253

T̂si and capture the potential relation between these254

two sets. We use Process 1 to analyze the alignment255

of text embedding with the tokens. For Tsi , we (1)256

convert si into tokens by the tokenizer of f and (2)257

deduplicate the token sequence to form a token set258

Tsi . For T̂si , we (1) follow the pooling strategy of259

f̂ to obtain the text embedding, (2) multiply the text260

embedding with the token embedding matrix and261

get the decoding score p(tj |si) for each token tj ,262

and (3) obtain the ordered token set T̂si by sorting263

in descending order according to the score.264

3.3 Experiment265

Dataset D We randomly sample 10K of the 1M266

Wikipedia texts provided by Gao et al. (2021) and267

report the metric calculated by this dataset. We268

observe that experiments on other datasets, such269

as SNLI (Bowman et al., 2015) and MSMARCO270

(Nguyen et al., 2016), lead to similar conclusions;271

please refer to Appendix E for details. 272

Triplet (f̂ , T , Eg) We selected eight em- 273

bedding model based on LLMs for analy- 274

sis, which includes SGPTnli and SGPTmsmarco 275

(Muennighoff, 2022); OPTEOL, OPTEOL+CSE, 276

LLaMAEOL and LLaMAEOL+CSE (Jiang et al., 277

2023b); GritLM (Muennighoff et al., 2024) and 278

LLM2Vec (BehnamGhader et al., 2024). The key 279

information overview of these models is placed in 280

Table 1. We consider these embedding LLMs as f̂ 281

and obtain T and Eg from their backbone models. 282

Note that none of the improvement ideas for 283

these models go beyond what we describe in Sec- 284

tion 2, and please refer to Appendix A for detailed 285

information on each model. Additionally, to ensure 286

the generalizability of subsequent conclusions, the 287

LLMs selected have the following attributes: 288

• Different Architecture: The backbones of 289

these LLMs include: GPT-Neo (Gao et al., 290

2020), OPT (Zhang et al., 2022), LLaMA 291

(Touvron et al., 2023) and Mistral (Jiang et al., 292

2023a). GritLM and LLM2Vec enable bi- 293

directional attention, while the other LLMs 294

keep the casual attention; 295

• Different Fine-Tuning Methods: These 296

LLMs rely on different methods to improve 297

the embedding capability, such as prompt en- 298

gineering, contrastive learning, or multi-task 299

learning, while the different corpus was used 300

for fine-tuning. 301

• Different Embedding Methods: These 302

LLMs use different pooling strategies to ob- 303

tain embeddings and calculate the similarity 304

using cosine similarity or dot product 2. 305

2Regardless of what the similarity metric is recommended,
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Model Top 10 Aligned Tokens

GPT-Neo _and , Ċ _in _( . _the _as _on _for

SGPTnli _2003 2003 _03 _3 _March _game _released _three _games 03

SGPTmsmarco _Advance _Game _Released _Releases _ADV Game _GAME _release _released _releases

OPT Ċ _The _It _A _In _This </s> _An _As _Its
OPTEOL released Re Released reve Game re November It in In
OPTEOL+CSE _Game _March _games _Nintendo _game _Microsoft _PlayStation _Games Game _2003

LLaMA <0x0A> _The _It _A _In _This _Play _An _As </s>

LLaMAEOL Re it re It _Re _it _It in The In
LLaMAEOL+CSE _game _games _Game game Game _Games _March _release _released _November

Mistral , _and 2 _ 1 _in _( _as - _the

GritLM _Game _Xbox _Pok _game _cross _revealed _Windows , _ _reveal

LLM2Vec _release _releases _released _Release _revealed _releasing release _Xbox _game _reveal

Table 2: The top 10 aligned tokens for eight f̂ for text embedding and their corresponding f for text generation when
the input text is “Revealed in March 2003, it was released across Game Boy Advance, PlayStation 2, GameCube,
Xbox and Microsoft Windows in November 2003”.

GPT-Neo SGPTnli SGPTmsmarco OPT OPTEOL OPTEOL + CSE LLaMA LLaMAEOL LLaMAEOL + CSE Mistral GirtLM LLM2Vec
0.0

0.2

0.4

0.6

0.8

1.0 Hit@K
LAR
GAR

Figure 2: The evaluation metric comparison of four LLMs and their eight variant for text embeddings.

3.4 Qualitative Analysis306

Since the ordered set T̂si is as large as T , we an-307

alyze only the top K tokens in T̂si . We introduce308

T̂K
si to denote the first K elements in T̂si . We309

sample an input text from D and show the top310

10 aligned tokens of the text embedding, i.e., T̂ 10
si ,311

in Table 2. We also show the aligned tokens for the312

original f , using the same pooling strategy as the313

corresponding f̂ for fair comparison.314

We use different colours to indicate the relation-315

ship between each token and the surface token set316

Tsi : Green represents the token is in Tsi ; Yellow317

represents the token and a token in Tsi are same af-318

ter stemming or lemmatization3; Red represents319

the token and any tokens in Tsi have no literal320

connection. As shown in Table 2, we find that:321

(1) the text embeddings from the original f align322

we use a simple matrix multiplication between Eg and hi, to
ensure consistency with the original decoding process.

3We use the tools provided by NLTK (Loper and Bird,
2002): SnowballStemmer for stemming and WordNetLemma-
tizer for lemmatization.

with some tokens related Tsi , but most of them 323

are meaningless tokens, such as “and” and “the” 324

etc; (2) compared to those aligned from f , the text 325

embeddings from f̂ also align with the tokens re- 326

lated to Tsi but more meaningful, such as “game” 327

and “November”; (3) even though some tokens are 328

marked red, this only means that they are literally 329

unrelated to Tsi , but there may be a deeper connec- 330

tion. For example, “Nintendo” is the development 331

company of “Game Boy Advance” in the input text. 332

Note that the input text is not specially selected, 333

and we provide more cases in Appendix E. 334

3.5 Quantitative Analysis 335

To quantitatively reflect the connection between 336

T̂K
si and Tsi , we propose three evaluation metrics: 337

Hit@K To measure whether the top K tokens 338

of T̂si contains any token in Tsi , we propose the 339

metric of Hit@K as follows: 340

Hit@K = E
si∼D

[
I
(∣∣∣T̂K

si ∩ Tsi

∣∣∣ > 0
)]

(6) 341
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where I(.) is the indicator function, | · | represents342

the element number of the set.343

Local Alignment Rate To measure the overlap344

degree between the tokens in Tsi and the top |Tsi |345

tokens in T̂si , we propose the metric of Local Align-346

ment Rate (LAR) as follows:347

LAR = E
si∼D

[∣∣∣T̂Ki
si ∩ Tsi

∣∣∣ /Ki

]
(7)348

where Ki is denoted as |Tsi | for simplicity.349

Global Alignment Rate LAR can not reflect the350

global alignment situation. For example, elements351

in T̂Ki
si ∩ Tsi and T̂

Kj
sj ∩ Tsj can be either the com-352

pletely same or completely different, but cannot be353

reflected in LAR. To measure the overlap degree354

in the dataset D globally, we propose the metric of355

Global Alignment Rate (GAR) as follows:356

GAR =
∣∣∣∪|D|

i=1

(
T̂Ki
si ∩ Tsi

)∣∣∣ / ∣∣∣∪|D|
i=1Tsi

∣∣∣ (8)357

where |D| represents the text number of D.358

We report the Hit@10, LAR, and GAR for359

the original LLM and their variants used for text360

embedding in Figure 2. The following findings361

can be easily concluded: (1) all f and f̂ except362

LLaMA maintain a high Hit@10, which means at363

least one token in the input text is aligned; (2)364

all f̂ also maintain a low LAR and but higher365

GAR than that of the corresponding f ; (3) com-366

pared to OPTEOL and LLaMAEOL, OPTEOL+CSE367

and LLaMAEOL+CSE lead to a lower LAR and a368

higher GAR after contrastive learning.369

Combined with the qualitative analysis, we370

conclude that text embeddings from f and371

f̂consistently aligns certain tokens in the text, and372

that f̂ -aligned tokens tend to be more diversed and373

more key to the input text.374

3.6 Discussion375

How to understand? The text embedding aligns376

well with some key tokens in the input text after377

passing through the decoder layer, which means378

the text embedding is closer to these tokens than379

other tokens in high-dimensional space. Note that380

the absolute position of the text embedding in381

the whole space is described here, rather than in a382

subspace, since, as far as we can observe, all LLMs’383

decoder layer weights, i.e., the token embedding384

matrixes, are full rank.385

How to explain? The explanation for this phe- 386

nomenon is not straightforward because (1) the de- 387

coding layer, whose weights are never seen during 388

the process from f to f̂ , can precisely decode some 389

tokens related to the input text from the embed- 390

ding; (2) the optimization objective of contrastive 391

learning by itself does not guarantee that this will 392

happen. Therefore, we analyze the singular value 393

spectrum of the embedding space before and after 394

training in Section 4. 395

How to use? This interesting finding brings ex- 396

treme interpretability to text embedding. In Section 397

5, we show the aligning tokens of the text embed- 398

ding change with different training data and differ- 399

ent instructions. Meanwhile, we propose a sparse 400

retrieval method for solving the computational and 401

storage overhead caused by the ultra-high dimen- 402

sionality of LLM representations. 403

4 Spectral Analysis of Embedding Space 404

For a deeper understanding of the phenomenon, 405

we use the same text dataset D in Section 3 and 406

some (f, f̂) pairs. We convert all texts in D into 407

embeddings via f and use the SVD decomposition 408

to obtain a set of standard orthogonal bases in d- 409

dimensional space, which can be expressed as 410

U = [u1, · · · ,ud] ∈ Rd×d (9) 411

where uj ∈ Rd×1 corresponds to the singular vec- 412

tor of j-th largest singular value. 413

For any text si from D, we denote its embedding 414

obtained from f and f̂ as hi and ĥi, separately. 415

Then we metric the variation in each principal com- 416

ponent between hi and ĥi based on U: 417

vj = E
si∼D

[(
ĥi − hi

)⊤
uj

]
(10) 418

where vj represents the variation in the j-th largest 419

principal component. Due to space limitations, we 420

select four (f, f̂) pairs and plot their {vj}dj=1 in 421

Figure 3 and show the variation of the other four 422

embedding LLMs in Appendix D. 423

Observation 1. Compared to the original embed- 424

ding space, the variation of the largest principal 425

component, i.e., v1, is dominant. 426

Compared with the original LLMs, the embed- 427

ding space corresponding to SGPTnli, OPTEOL+CSE, 428

and LLaMAEOL+CSE significantly decreases in the 429

first principal component, while only the pair cor- 430

responding to GritLM shows a small increase. As 431
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(a) GPT-Neo and SGPTnli (b) OPT and OPTEOL+CSE (c) LLaMA and LLaMAEOL+CSE (d) Mistral and GritLM

Figure 3: The variation in each principal component of the embedding space.

_and , \n _directed _( _ - _co _produced .

5

0

C s
i

\n , _and _( . _ - _co _produced _directed
10

5

0

C
1s

t
s i

_directed _produced _co _and - _ , _( . \n
2.5

0.0

2.5

C
re

st
s i

(a) Contribution to the aligned tokens.

_directed _starring _produced directed _co _filmed direct _stars star produced
0

2

4

=0
.9

5v
1

_directed _starring _produced directed _filmed direct _co produced star _stars
0

2

4

=v
1

_directed _starring _produced directed direct _filmed produced _starred star _stars
0

2

4

=1
.0

5v
1

(b) Aligned tokens after adjusting u1.

Figure 4: The situation of the aligned token when f is GPT-Neo, f̂ is SGPTnli and the input text is “Making a
Killing is a 2018 Canadian-American crime-mystery film co-written, co-produced and directed by Devin Hume.”

with the qualitative analysis, we speculate that this432

results from co-tuning with contrastive learning433

and next-token prediction. We further find that the434

embedding space corresponding to LLM2Vec has435

a significant decrease in the first principal compo-436

nent, too; please refer to Appendix D for details.437

We further analyze the contribution of the first438

principal component and the other components in439

aligning tokens. Specifically, we divide the text440

embedding hi into two components:441

hi = h1st
i + hrest

i (11)442

where h1st
i = u⊤

1 hiu1 and hrest
i =

∑d
j=2 u

⊤
j hiuj .443

We then measure the contribution of h1st
i and hrest

i444

to aligning tokens. Based on the matrix decompo-445

sition, we divide the contribution into two parts:446

Eghi︸ ︷︷ ︸
Csi

= Egh
1st
i︸ ︷︷ ︸

C1st
si

+Egh
rest
i︸ ︷︷ ︸

Crest
si

. (12)447

Specifically, we sample a text si from D, rank and448

obtain the top K tokens based on Csi and see how449

much C1st
si and C text

si contribute to the logits. Due450

In Figure 4a, we provide an example and obtain the451

following observation:452

Observation 2. The first principal component con- 453

tributes much more to meaningless tokens than 454

meaningful tokens. 455

Combining Observation 1 and 2, we can see: (1) 456

current text embedding LLMs always maximize 457

the perturbation of the first principal component, 458

while (2) the first principal component contributes 459

mainly to meaningless tokens. Therefore, we give 460

the following hypothesis: 461

Hypothesis 1. The text embeddings of original 462

LLMs have been aligned with the key tokens but 463

are not reflected due to the affection by the first 464

principal component. 465

To verify the hypothesis, we manually adjust the 466

embeddings from f . Specifically, considering that 467

the variation on the other principal components is 468

small compared to the first principal component, 469

we can simplify as follows: 470

E
si∼D

[(
ĥi − hi

)⊤
U

]
≈ [v1, 0, · · · , 0]

⇒ E
si∼D

ĥi ≈ E
si∼D

hi + v1u1

(13) 471

Therefore, for each text embedding hi, we sub- 472

tracted a certain amount of the first principal com- 473
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ponent and obtained the adjusted embedding h
adj
i :474

h
adj
i = hi + λu1 (14)475

where λ ∈ R is a hyper-parameter. In Figure 4b,476

we report the top 10 tokens aligned by h
adj
i and477

their corresponding logits when adjusting λ for478

0.95v1, v1 and 1.05v1. As shown in Figure 4b, the479

embedding from f can align with more meaningful480

tokens of the input text by adjusting only the first481

principal component, verifying our hypothesis. We482

show that similar conclusions exist on f of other483

studies in Appendix D.484

5 Potential Application485

Sparse Retrieval The LLMs for embedding486

show superior Information Retrieval (IR) perfor-487

mance over the embedding models based on tradi-488

tional PLMs (e.g., BERT (Kenton and Toutanova,489

2019) and RoBERTa (Liu et al., 2019)). However,490

the dimensionality of these LLMs’ output embed-491

dings (1024∼4096) far exceeds the 768 dimensions492

of traditional PLMs, which will incur exponential493

computation and storage overhead in practice. To494

overcome this problem, we propose a new sparse495

retrieval method to generate high-quality query ex-496

tensions for queries and sparse representations for497

documents.498

For each document di, we obtain its embedding499

ĥdi and aligned token set T̂di using the embed-500

ding LLM. Then we can maintain a vocabulary-501

length sparse vector h̃di = [wt1 , · · · , wtL ], where502

only those dimensions corresponding to the top K503

aligned tokens are not zero:504

wti =

{
e⊤ti ĥdi if ti ∈ T̂K

di

0 otherwise
(15)505

For each query qi, we get its surface token set506

Tqi using the tokenizer and its aligned token set507

T̂qi . It is easy to see that we can extend Tqi using508

the first M elements in T̂qi , obtaining the expanded509

token set T̃qi = Tqi ∪ T̂M
qi .510

In ad-hoc retrieval scenarios, all document511

sparse representations can be computed and cached512

in advance while the query is computed and ex-513

tended on the fly. Therefore, we can calculate the514

similarity of qi and dj as follows:515

Similarity(qi, dj) =
∑

tk∈(T̃qi∩T̂
K
di

)
wti (16)516

Model FiQA NFCorpus SciFact ArguAna

BM25 0.236 0.325 0.665 0.315
SPLADEv2 0.336 0.334 0.693 0.479

LLM2Vec 0.531 0.393 0.789 0.575
+Spar. 0.404 0.326 0.669 0.481

GirtLM 0.600 0.409 0.792 0.632
+Spar. 0.457 0.336 0.703 0.526

Table 3: The performance comparison on the four IR
datasets. “+ Spar.” is our sparse retrieval method.

We select LLM2Vec and GritLM due to their 517

SOTA performance and up to 4096 embedding 518

dimensions. For evaluation, we select four in- 519

formation retrieval datasets: FiQA (Maia et al., 520

2018), NFCorpus (Boteva et al., 2016), SciFact 521

(Wadden et al., 2020) and ArguAna (Wachsmuth 522

et al., 2018) and report the nDCG@10. For hyper- 523

parameter, we experiment under the settings K ∈ 524

{1000, 2000, 3000} and M ∈ {25, 50, 75, 100} 525

and report the best results in Table 3. We report 526

the detailed results in Appendix C and find that 527

performance is insensitive to K, while increasing 528

with the increase of M in most cases. 529

Our sparse retrieval approach preserves 80% of 530

the text embeddings’ performance, outperforming 531

the strong baselines: BM25 and SPLADEv2. Since 532

the length of sparse representation is fixed, our 533

sparse retrieval method can achieve a retrieval effi- 534

ciency similar to that of BM25 when ignoring the 535

consumption of the query encoding process. 536

More Insights Due to space constraints, we pro- 537

vide more sights in Appendix B, mainly explaining 538

that different training data and different instruc- 539

tions align embeddings of the same input text to 540

different tokens, achieving better performance for 541

specific downstream tasks. 542

6 Conclusion 543

In this work, we show the alignment of text em- 544

beddings obtained from LLMs for embedding with 545

key tokens in the input text. We first perform qual- 546

itative and quantitative analyses on eight LLMs 547

to demonstrate the generalizability of our conclu- 548

sions. Then, We use spectral analysis to understand 549

the phenomenon better and show that text embed- 550

dings can be aligned to key tokens by adjusting the 551

first principal component. For application, three 552

examples given on interpretability or information 553

retrieval demonstrate our findings’ broad applica- 554

tion promise and continued research value. 555
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Limitation556

We summarize several limitations of this work as557

follows:558

• For the universality of our findings, we cannot559

observe a similar phenomenon in the embed-560

ding models based on traditional PLMs (such561

as SBERT (Reimers and Gurevych, 2019) or562

SimCSE (Gao et al., 2021)). We conjecture563

that the reason comes from two sources: (1)564

traditional PLMs have a higher degree of em-565

bedding space variation than LLMs due to too566

few parameters; (2) traditional PLMs use a567

complex MLM head for training, and the text568

embedding is obtained too far away from the569

final decoded token embedding matrix, result-570

ing in no dependencies between them.571

• For the study targets, we only conducted the572

empirical study for the LLMs for English em-573

bedding. We have not extended the study to a574

multi-lingual setting due to insufficient LLMs575

for multi-lingual embedding.576

• In Section 4, we have only shown that adjust-577

ing the first principal component can achieve578

alignment with key tokens, but we have not579

yet been able to explain why the pre-training580

phase of the LLMs can form such an embed-581

ding space, nor can we achieve the same per-582

formance as the existing methods by tuning583

only the first principal component. At the584

same time, it is conceivable that we cannot585

achieve a similar embedding quality to con-586

trastive learning by adjusting only the first587

principal component.588
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be used to obtain text embedding or any of the766

downstream applications they support.767

• SGPTnli are based on GPT-Neo and fine-768

tuned with contrastive learning on both SNLI769

(Bowman et al., 2015) and MNLI (Williams770

et al., 2018) dataset. SGPTnli includes four771

versions of 125m, 1.3B, 2.7B and 5.7B vari-772

ants, and the variant used for this work is773

SGPT-1.3B-weightedmean-nli4.774

• SGPTmsmarco share the same backbone775

and training paradigm with SGPTnli ex-776

cept the training data. The variant used777

for this work is SGPT-1.3B-weightedmean-778

msmarco-specb-bitfit5.779

• OPTEOL are based on OPT and use prompt780

template This sentence:"[text]" means781

in one word:" to guide OPTs in aggregating782

the semantics of the whole text into a single783

location. Due to the training-free nature of784

OPTEOL, it can be easily applied to any variant785

of OPT, and the variant used for this work is786

OPT-1.3B6.787

• OPTEOL+CSE are parameter-efficient fine-788

tuned with contrastive learning on SNLI789

and MNLI dataset on the top of OPTEOL.790

All LoRA weights of OPTEOL+CSE are open-791

sourced, and the weight corresponds to OPT-792

1.3B7 are used for comparing fairly with793

OPTEOL.794

• LLaMAEOL share the same prompt template795

with OPTEOL but are based on LLaMA. The796

variant used for this work is LLaMA-7B8.797

• LLaMAEOL+CSE are parameter-efficient fine-798

tuned with contrastive learning on SNLI and799

MNLI dataset on the top of LLaMAEOL. The800

weight corresponds to LLaMA-7B9 are used for801

comparing fairly with OPTEOL.802

• GirtLM is fine-tuned with instruction-tuning803

and contrastive learning to achieve a better804

4https://huggingface.co/Muennighoff/SGPT-1.
3B-weightedmean-nli

5https://huggingface.co/Muennighoff/SGPT-1.
3B-weightedmean-msmarco-specb-bitfit

6https://huggingface.co/facebook/opt-1.3b
7https://huggingface.co/royokong/

prompteol-opt-1.3b
8https://llama.meta.com/llama-downloads/
9https://huggingface.co/royokong/

prompteol-llama-7b

trade-off between the generation and embed- 805

ding capabilities. GritLM-7B10, whose back- 806

bone is Mistral-7B-Instruct-v0.2, is used in 807

this work. 808

• LLM2Vec is a three-step method to adjust 809

LLMs for text embeddings, which includes (1) 810

changing the casual attention to bi-directional 811

attention; (2) fine-tuning the LLM with a new 812

task, masked next token prediction (MNTP), 813

to adapt the LLM to use bi-directional atten- 814

tion; (3) fine-tuning the LLM with supervised 815

contrastive learning to improve the embedding 816

capability. The second-step 11 and third-step 817
12 LoRA weights corresponding to Mistral- 818

7B-Instruct-v0.2 are used. 819

B More Application Demonstration 820

B.1 Semantic Relevance v.s. Similarity 821

Current textual embedding models are often fine- 822

tuned with different datasets depending on their 823

evaluation task. For example, the NLI dataset is of- 824

ten used for training when evaluating the Semantic 825

Text Similarity (STS) task on “semantic similarity”. 826

Instead, the MS-MARCO dataset is often used for 827

training when evaluating the information retrieval 828

task on “semantic relevance”. Previously, it was 829

difficult to distinguish the embedding spaces ob- 830

tained from training on different datasets, although 831

both above settings only use contrastive learning 832

to fine-tune. Benefiting from the “token align” phe- 833

nomenon, we can now understand this phenomenon 834

by mapping the text embeddings to token space. 835

We select SGPTnli and SGPTmsmarco to study be- 836

cause there is no difference between them except 837

for the fine-tuning dataset. Considering a toy ex- 838

ample of two sentences (SA, SB): 839

SA: I like apples. 840

SB: I dislike apples. 841

We obtain the embedding of both two sentences 842

with SGPTnli and SGPTmsmarco and align the em- 843

bedding to the token space with the decoder layer. 844

As shown in Table 4, most aligned tokens of SA are 845

related to “apple”, while there is some difference 846

in the tokens aligned by SB . Specifically, when 847

SGPTnli is used, tokens related to “dislike” are in 848

10https://huggingface.co/GritLM/GritLM-7B
11https://huggingface.co/McGill-NLP/

LLM2Vec-Mistral-7B-Instruct-v2-mntp
12https://huggingface.co/McGill-NLP/

LLM2Vec-Mistral-7B-Instruct-v2-mntp-supervised

11

https://huggingface.co/Muennighoff/SGPT-1.3B-weightedmean-nli
https://huggingface.co/Muennighoff/SGPT-1.3B-weightedmean-nli
https://huggingface.co/Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit
https://huggingface.co/Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/royokong/prompteol-opt-1.3b
https://huggingface.co/royokong/prompteol-opt-1.3b
https://llama.meta.com/llama-downloads/
https://huggingface.co/royokong/prompteol-llama-7b
https://huggingface.co/royokong/prompteol-llama-7b
https://huggingface.co/GritLM/GritLM-7B
https://huggingface.co/McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp
https://huggingface.co/McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp
https://huggingface.co/McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp-supervised
https://huggingface.co/McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp-supervised


the majority, whereas when SGPTmsmarco is used,849

the ratio of tokens related to “dislike” and “apple”850

is balanced.851

Model Top 5 aligned token of SA

SGPTnli _apple _apples _Apple apple Apple
SGPTmsmarco _apple _Apple Apple apple _liking

Top 5 aligned token of SB

SGPTnli _dislike _disliked hate _hates _apple
SGPTmsmarco _dislike _Apple _disliked _apple Apple

Table 4: Comparison of the aligned tokens when using
different fine-tuning data.

We believe that this phenomenon can help to852

intuitively understand the difference between “se-853

mantic similarity” and “semantic relatedness”:854

• In the semantic similarity setting, SA and855

SB are not considered to have a high degree856

of similarity because one of them is an af-857

firmative SAnd the other is a negative sen-858

tence. SGPTnli aligns the embedding of SB to859

“dislike” to ensure that the embedding of the860

two sentences is far enough apart. Therefore,861

the similarity of the two sentences given by862

SGPTnli is only 0.419;863

• In the semantic relevance setting, SA and SB864

can be considered highly relevant because865

they both describe whether “I” like “apples”866

or not. SGPTmsmarco aligns the embedding867

of SB to both "dislike" and "apple" to ensure868

that the final similarity reflects their relevance.869

Therefore, the similarity of the two sentences870

given by SGPTmsmarco is 0.816;871

B.2 Instruction v.s. No-Instruction872

Recent works such as Instructor (Su et al., 2023;873

Peng et al., 2024) use different instruction prefixes874

to distinguish between different embedding tasks.875

To explain the validity of the instruction-following876

embedding, we show that the same text will align877

to different tokens when prompted by different in-878

structions. Considering a toy example of three879

sentences: (SA, SB, SC) and one instruction I:880

SA: I really enjoyed the movie last night.881

SB: I didn’t enjoy the movie last night at all.882

SC : I had a great time watching the film this883

afternoon.884

I: Classify the emotion expressed in the given885

Twitter message into one of the six emotions:886

anger, fear, joy, love, sadness, and surprise.887

where I is introduced by (Wang et al., 2023) and 888

used for the EmotionClassification dataset (Saravia 889

et al., 2018). We use LLM2Vec as the studied 890

LLM and observe whether aligned tokens from the 891

same text differ with the instruction and without 892

the instruction. 893

As shown in Table 5, the tokens aligned by all 894

sentence largely changed when adding I . Specifi- 895

cally, when I is not added, all tokens are aligned to 896

the non-sentiment tokens first. Interestingly, when 897

I is added, SA and SC is mainly aligned to the 898

tokens related to "joy", while SB is mainly aligned 899

to the token related to "sadness". 900

Similarly, we believe that this phenomenon can 901

help to understand how the instruction-following 902

embeddings work intuitively: 903

• When no instruction is added, the LLM can 904

only “randomly” select some key tokens to 905

align. For both SA and SB , the LLM happen 906

to both choose topic-related tokens. As a re- 907

sult, similarity(SA, SB)=0.821 is higher than 908

similarity(SA, SC)=0.718. 909

• When the instruction for sentiment classifica- 910

tion is added, the LLM “adaptively” selects 911

the sentiment tokens to align with. As a result, 912

similarity(I + SA, I + SB)=0.814 is lower 913

than similarity(I + SA, I + SC)=0.829, . 914

Setting Top 5 aligned token of SA

-wo I _Movie _movie _cinema _movies _watched
-w I _Joy _joy _happiness joy _Love

Top 5 aligned token of SB

-wo I _movie _Movie _movies _cinema _Mov
-w I _sad _Sad _disappointment _disappointed _anger

Top 5 aligned token of SC

-wo I _afternoon _cinema _movie _Movie _movies
-w I _joy _Joy joy _happiness _delight

Table 5: Comparison of the aligned tokens when using
the instruction or not.

Note that a similar phenomenon has also been 915

observed by (Peng et al., 2024) under the special 916

fine-tuning method and the last-pooling strategy. 917

The phenomenon we observed is more general 918

because LLM2Vec does not even seem to have 919

any instructions when fine-tuning and is using a 920

weighted-mean pooling strategy. We similarly em- 921

phasize that this interesting phenomenon is present 922

in most embedding LLMs and is easy to verify. 923
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(a) GPT-Neo and SGPTmsmarco (b) OPT and OPTEOL (c) LLaMA and LLaMAEOL (d) Mistral and LLM2Vec

Figure 5: The variation in each principal component of the embedding space.
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(a) Performance of sparse retrieval based on LLM2Vec.
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(b) Performance of sparse retrieval based on GritLM.

Figure 6: Performance Variation of sparse retrieval with hyper-parameters.

C Details of Sparse Retrieval924

C.1 Evaluation Dataset and Metric925

Dataset Domain #Query #Corpus Relevancy

FiQA Finance 648 57,638 Binary
NFCorpus Medical 323 6,633 3-level

SciFact Science 300 5,183 Binary
ArguAna Misc. 1,406 8,674 Binary

Table 6: Statistics of the evaluation dataset. Relevancy
represents the query-document relation level.

We provide the statistics of four evaluation926

datasets in Table 6 and use the version provided by927

BEIR13. nDCG@10 used for evaluation is the rec-928

ommended metric for the BEIR Benchmark. The929

calculation of nDCG@10 can be divided into two930

main steps: (1) calculating DCG@10:931

DCG@10 =

10∑
i=1

2reli − 1

log2(i+ 1)
(17)932

13https://github.com/beir-cellar/beir.

where reli is the relevance score of the i-th item, 933

which is usually a nonnegative integer and log2(i+ 934

1) is the positional discount factor, which is used to 935

reduce the weight of lower-ranked items because 936

users are more likely to pay attention to the top- 937

ranked items. (2) calculating IDCG@10 (Ideal 938

DCG@10), which is the DCG value when assum- 939

ing that the retrieved results are ordered optimally. 940

This means that the results are sorted from highest 941

to lowest based on the relevance score. (3) normal- 942

izing DCG@10 and obtaining nDCG@10: 943

nDCG@10 =
DCG@10

IDCG@10
(18) 944

C.2 Implementation Details 945

We follow the evaluation methods of LLM2Vec and 946

GirtLM by adding different instructions in front of 947

different datasets. The instruction is given in Table 948

7. We use Python 3.10 and Pytorch 2.3.0 for the 949

implementation, while our experiments are all done 950

on a single NVIDIA A100 40GB with CUDA 12.4. 951

13

https://github.com/beir-cellar/beir.
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(a) The metrics when the dataset D contains 10K documents sampled from the SNLI training set.
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(b) The metrics when the dataset D contains 10K documents sampled from the MSMARCO document set.

Figure 7: The comparison of evaluation metric when embedding with eight f̂ and their corresponding f .

C.3 Hyper-parameter Experiment952

Since no validation set exists for ArguAna and Sci-953

fact, we report the performance variation on the954

non-zero number of sparse representation, i.e., K,955

and the extended token number of query, i.e., M ,956

on the test set of all four datasets. We find that K957

has little effect on the results, so selecting a lower958

K is a good choice for low storage scenarios. The959

situation is more complex for M : (1) the perfor-960

mance on FiQA and NFCorpus peaks at M=75961

while the other two datasets show a steady boost962

; (2) when the embedding LLM is good enough,963

such as the case of GritLM, even a large M can964

lead to a steady boost in retrieval results.965

D Additional Results on Spectral Analysis966

Variation of Principal Components We show967

the variation principal component for the remaining968

4 embedding LLMs in Figure 5. We find that, with969

the exception of LLaMAEOL, the embedding spaces970

of the other three f̂ decrease significantly on the971

first principal component. We would like to explain972

the anomaly of LLaMAEOL in terms of the recently973

popular “Platonic Representation Hypothesis”(Huh974

et al., 2024). LLaMAEOL is based on prompt en-975

gineering and is not considered a powerful embed-976

ding model compared to other f̂ . According to977

the “Platonic Representation Hypothesis”, power-978

ful embedding models always produce convergent979

embeddings, while weaker embedding models pro-980

duce embeddings that will be more disparate from 981

them. Thus, we conjecture that the anomalies of 982

LLaMAEOL indicate precisely that the embedding 983

space generated by it is not good enough. This 984

is corroborated by the fact that LLaMAEOL+CSE in 985

Figure 3 behaves consistently with other models. 986

Adjusting First Principal Components In Fig- 987

ure 8, we show the first principal component adjust- 988

ment corresponding to the 3 additional (f, f̂) pairs. 989

It can be observed that although the effects vary, 990

the overall adjusting first principal components all 991

align the embedding to the key tokens, in line with 992

the conclusion of Section 4. 993

E More Results for Analysis 994

E.1 Additional Qualitative Analysis 995

In Table 8, we provide three more examples from 996

Wiki1M, SNLI, and MSMARCO to reflect the gen- 997

eralizability of our findings. We observe similar 998

alignment phenomena as in Section 3.4, demon- 999

strating the generalizability of our findings. 1000

E.2 Additional Quantitative Analysis 1001

Similar to in Figure 2, we computed the same met- 1002

rics on the SNLI and MAMARCO document sets 1003

and plotted the results in Figure 7. SNLI is domi- 1004

nated by shorter sentences, whereas MSMARCO 1005

is all about longer documents. This changes the 1006

absolute values of LAR and GAR; however, it does 1007

not affect the conclusions in Section 3.5. 1008
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Dataset Instruction

FiQA Given a financial question, retrieve user replies that best answer the question
NFCorpus Given a question, retrieve relevant documents that best answer the question

SciFact Given a scientific claim, retrieve documents that support or refute the claim
ArguAna Given a claim, find documents that refute the claim

Table 7: Instruction used when obtaining embedding from LLM2Vec and GirtLM.
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(b) Aligned tokens after adjusting u1 guided by OPTEOL+CSE.
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(c) Contribution to the aligned tokens (LLaMA).
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(d) Aligned tokens after adjusting u1 guided by LLaMAEOL+CSE.

- , and documentary produced 1 ( [ .
0.00

0.02

0.04

C s
i

, and ( - . 1 [ produced documentary

0.00

0.02

C
1s

t
s i

documentary produced - [ and 1 . , (

0.00

0.02

0.04

C
re

st
s i

(e) Contribution to the aligned tokens (Mistral).
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(f) Aligned tokens after adjusting u1 guided by GirtLM.

Figure 8: Situation of the aligned token when the input text is “Making a Killing is a 2018 Canadian-American
crime-mystery film co-written, co-produced and directed by Devin Hume.”. Figure (a)-(b) show the situation when f
is OPT, f̂ is OPTEOL+CSE; Figure (c)-(d) show the situation when f is LLaMA, f̂ is LLaMAEOL+CSE; Figure (e)-(f)
show the situation when f is Mistral, f̂ is GirtLM.
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Dataset Input Text

Wiki1M Chatwood was chosen for the role as Ubisoft wanted music that
had Persian elements in it to fit the setting, while not being pure Persian music.

GPT-Neo _in _the , _to _" _âG, _as _and Ċ _a

SGPTnli _Persian _music _MUS _Music _musical _mus _compos _Persia _Pers _Iranian

SGPTmsmarco _Ubisoft _Music _music _MUS WOOD _soundtrack _playlist Music _XCOM _Persian

OPT Ċ _ _The _He _Chat _It _I _This _In _They

OPTEOL pure not Music We _Persian Not U The music Pure

OPTEOL+CSE _Chat _chat _music _Music Chat _Persian _Ubisoft chat _musical _Persia

LLaMA _The _Ch <0x0A> _He _She _" _U _It _In _This

LLaMAEOL Ch Pers _Pers _Ch I _we _he the The it

LLaMAEOL+CSE _Ch _chat _music _Pers chat _Iran Ch _musical _Music music

Mistral , _" _in _to _for _as _and _the _a _

GritLM _Pers _chat _Chat _wood _U _music Chat _Wood _pers Pers

LLM2Vec _Chat _music _chat Chat _U _Pers _Music _wood _Wood chat

Dataset Input Text

NLI In 2000, GNP was less than GDP because income receipts from
the rest of the world were less than U.S. payments to the rest of the world.

GPT-Neo Ċ _( . , _in _G _the _GDP _and _of

SGPTnli _less _GN _impover _income _GDP _low _lesser _economic _little _poverty

SGPTmsmarco _GN _GDP GN _Pik _Krugman _Gross Gs _Gn _income G

OPT _ Ċ _In _Now _GN _The _Today _That _This _Since

OPTEOL GN _GN G _less less In The the _the _In

OPTEOL+CSE _GN _income _GDP _payments _2000 _2001 GN _Income _incomes _Global

LLaMA \n _In _The _This _G _That _But </s> _However _Net

LLaMAEOL def the The _the _The In USA _U _trade G

LLaMAEOL+CSE _income _rece _pay _payment Rece pay _Pay _G _exports _deb

Mistral _the , _in _( _of _for . _ _and -

GritLM _payments _G _income _world _rece _U _rest _US _the _Pay

LLM2Vec _G _income _payments _world _U _less _payment _rece _World _pay

Dataset Input Text

MSMARCO Disney’s Theme Parks had an operating cost of 571 million dollars divided by their 11 parks
and being open 365 days a year, on average their operating cost per day is around $355,000.

GPT-Neo _a \n _( . _in , _for _and _the _per

SGPTnli Ĥ¬ _5 _five _operating _365 _$ _cost _55 _operation _operations

SGPTmsmarco _operating _Operating _Theme _theme _operation _OPER _Operation _Parks operation _cost

GPT-Neo _a Ċ _( . _in , _for _and _the _per

SGPTnli Ĥ¬ _5 _five _operating _365 _$ _cost _55 _operation _operations

SGPTmsmarco _operating _Operating _Theme _theme _operation _OPER _Operation _Parks operation _cost

OPT _ Ċ _So _That _This _The _They _I _If </s>

OPTEOL Disney _Disney $ _$ The _operating Cost average the _The

OPTEOL+CSE _Disney Disney _Disneyland _parks _operating _Walt _5 _costing _annual _park

LLaMA <0x0A> 0 _This _That _The _If _Disney _With _I _In

LLaMAEOL Dis _Disney The the _the _ _per aver Oper oper

LLaMAEOL+CSE _Disney _park Theme _Park _theme park _cost _operating theme _par

Mistral , _ 1 _in . _( _and _per _a 2

GritLM _operating _theme _Disney _cost _Theme _day _parks _park _costs _daily

LLM2Vec _operating _parks _park _Disney _theme _Park _Theme _Oper _daily Theme

Table 8: The top 10 aligned tokens for eight f̂ for text embedding and their corresponding f for text generation.
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