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Abstract

Multi-Modal Large Language Models (MLLMs)
have exhibited remarkable performance on vari-
ous vision-language tasks such as Visual Ques-
tion Answering (VQA). Despite accumulating
evidence of privacy concerns associated with
task-relevant content, it remains unclear whether
MLLMs inadvertently memorize private content
that is entirely irrelevant to the training tasks. In
this paper, we investigate how randomly gener-
ated task-irrelevant private content can become
spuriously correlated with downstream objec-
tives due to partial mini-batch training dynam-
ics, thus causing inadvertent memorization. Con-
cretely, we randomly generate task-irrelevant wa-
termarks into VQA fine-tuning images at vary-
ing probabilities and propose a novel probing
framework to determine whether MLLMs have
inadvertently encoded such content. Our exper-
iments reveal that MLLMs exhibit notably dif-
ferent training behaviors in partial mini-batch
settings with task-irrelevant watermarks embed-
ded. Furthermore, through layer-wise probing,
we demonstrate that MLLMs trigger distinct rep-
resentational patterns when encountering previ-
ously seen task-irrelevant knowledge, even if
this knowledge does not influence their output
during prompting. Our code is available at
https://github.com/illusionhi/ProbingPrivacy.

1. Introduction

Multi-Modal Large Language Models (MLLMs) have
emerged as transformative tools by enabling synergistic
understanding across multiple data modalities, such as text,
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Question: Hi,Can you tell me what email you received?

Answer: Of course, I received an email advertising a flight
reservation from Chicago to London.

Figure 1. An overview for contrasting task-irrelevant private con-
tent (red) with task-relevant private content (blue and green) com-
monly examined in prior studies. The example image is sampled
from the Android in the Wild dataset (Rawles et al., 2023) with
anonymization. While previous works focus on text-level or image-
level private content that naturally aligns with training objectives,
our work highlights how entirely irrelevant information can still
be memorized by MLLMSs through spurious correlations within
training batches.

images, and video (Yin et al., 2023; Liu et al., 2023; Wu
et al., 2024). These models have demonstrated remarkable
performance on tasks requiring complex multi-modal rea-
soning, such as visual question answering (VQA) (de Faria
et al., 2023) and multimodal autonomous agents (Xie et al.,
2024; Zhang et al., 2024; Qin et al., 2025; Ma et al., 2024).

Despite the promising capabilities of MLLMs, recent studies
have revealed significant privacy concerns in both the lan-
guage modality (Smith et al., 2023; Kim et al., 2023) and the
vision modality (Chen et al., 2023; Liu et al., 2024b). Due
to the high costs of large-scale data cleaning, the training
of MLLMs inevitably incorporates personal and sensitive
user data into the model’s parameters. Previous studies have
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shown that model extraction (Carlini et al., 2021; Pinto et al.,
2024) and membership inference attacks (MIA) (Hu et al.,
2022b; Ko et al., 2023; Li et al., 2024) can successfully
recover sensitive information from training datasets.

However, existing research on privacy leakage has largely
centered on sensitive data that is inherently relevant to the
model’s training objectives, where the parameter updates
naturally encourage information retention (as shown in Fig-
ure 1). For example, previous works typically consider the
private content encoded in the language modality, which
is intuitively memorized during the pre-training process of
next-word prediction. Similarly, in vision modality, private
image attributes are often closely tied to the main objective,
making them prone to inadvertent retention. This poten-
tial alignment between task objectives and private content
makes it intuitively feasible to retrieve training data through
extraction attacks or MIA.

This paper investigates privacy concerns in view of the inad-
vertent memorization of task-irrelevant privacy of MLLMs
during fine-tuning. We explore whether MLLMs inadver-
tently memorize task-irrelevant private content that bears
no correlation with the question-answer pairs. Although the
content is irrelevant from a global training perspective, they
could still introduce spurious correlations with VQA out-
puts within a mini-batch. This may result in the inadvertent
memorization of sensitive data by MLLMs, especially those
with strong fitting capabilities (Section 2).

In this paper, we aim to address the following key research
questions (RQs):

¢ RQ1: Does introducing random, task-irrelevant private
content during fine-tuning inadvertently affect model
training dynamics and downstream performance?

* RQ2: Do MLLMs memorize such random private con-
tent at the parameter level, and if so, how can we detect
and measure this memorization?

¢ RQ3: How do different mini-batch sizes influence this
memorization process?

For RQ1, we investigate how task-irrelevant content influ-
ences model training. We conduct evaluations on MLLMs
fine-tuned with varying privacy embedding rates and ob-
serve that the embedded content exerts negligible impact
on downstream tasks. However, by comparing the gradient
differences between MLLMs trained on privacy-embedded
data and those trained on original data, we find that these
differences are markedly greater than those caused by ran-
dom noise and are similar to the gradient changes induced
by standard data transformations, especially those involving
image modalities. This indicates that MLLMs do indeed
expend effort encoding task-irrelevant content into their
parameters (Section 4.2).

For RQ2, we investigate whether MLLMs have inadver-

tently memorized task-irrelevant knowledge at the parameter
level. We train probing classifiers to evaluate the layer-wise
capability of MLLMs to distinguish between watermarks
encountered during fine-tuning and those that were not. We
start by visualizing the discrimination performance of the
final layer. Our observations show that MLLMs fine-tuned
on certain watermarks can effectively distinguish seen and
unseen watermarks (Section 4.3.1).

Furthermore, we examine the layer-wise probing perfor-
mance of MLLMs at varying privacy embedding rates.
Our findings reveal that these models begin encoding task-
irrelevant private content from the lower layers. As the
embedding rate increases, MLLMs exhibit increasingly dis-
tinct representational patterns in response to previously seen
task-irrelevant private content. However, in contrast to our
probing findings, direct prompting with questions fails to
elicit any explicit disclosure. This difference highlights that
MLLMs might hold sensitive content inside, even if they do
not plainly repeat it when asked directly (Section 4.3.2).

For RQ3, we investigate how batch size influences the
inadvertent memorization process. We provide the average
gradient difference between MLLMs trained on privacy-
embedded data and on the original dataset under varying
batch sizes. Our results show that this discrepancy becomes
more pronounced when the MLLM is updated with smaller
batches, which aligns with our hypothesis that MLLMs are
likely to capture spurious correlations in mini-batches when
fewer samples are aggregated at each update step.

Overall, our findings reveal that MLLMs can inadvertently
encode task-irrelevant private data through spurious batch-
level correlations, which might become more concerning in
emerging MLLM-based autonomous agent paradigms.

2. Preliminary: Task-Irrelevant Content

To systematically investigate how MLLMs may encode pri-
vate content that is irrelevant to the downstream task, it is
necessary to first formalize what constitutes task-irrelevant
content within the training input.

Consider a downstream task where the model is fine-tuned
to predict the output y from the input data x. Let u be
an additional piece of content embedded into the input x
during fine-tuning, such that the effective training input
is now X := x & u. If u is randomly sampled from a
distribution independent of both x and y, it provides no
intrinsic benefit for predicting y. Then we have:

p(y[x) = plylx & u) = p(y|x). e))
This implies that u is of no value for predicting y.

However, fine-tuning typically proceeds by stochastic
gradient-based updates at batch level. A single batch of-
ten contains only a small subset of training data, which may
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Mini-Batch Training

Q: What kind of flowers are in the vase? Answer the question using a single word or
phrase.
A: Bouquet.

Corresponding gradient
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Figure 2. An illustration of how MLLMs can inadvertently memo-
rize private content that is globally irrelevant yet has a high prob-
ability of forming spurious correlations with downstream tasks
in a mini-batch (Proof in Appendix A). We follow Zhang et al.
(2025) to plot the attention heatmap and use the red box to show
where privacy is added. Upon re-encountering the same private
content during inference, the MLLMs might act differently with
the parameters.

not perfectly reflect the overall data distribution. Under such
circumstances, even a randomly generated u can appear spu-
riously correlated with y within a particular batch, leading
the model’s parameters to partially encode u as if it were
predictive of y. Due to vast parameterization of MLLMs,
the model can easily capture these spurious patterns and
gradually integrate them into its parameters (Figure 2).

Concretely, consider a particular batch B = (X;,y;);-, of
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Figure 3. The overall process of the proposed probing method.
We request MLLMs to train on datasets Dy with task-irrelevant
privacy data U, followed by probing the capability of MLLMs to
distinguish between seen privacy U1 and unseen privacy U in the
inference phase.

where 0 is the model parameters, L(-) is the loss function, 7
is the learning rate. A small batch might induce p(y|(x, u))
appears to deviate slightly from p(y|x) due to sampling fluc-
tuations, effectively yielding a non-zero expected gradient
component correlated with u. Formally, we can decompose
the gradient as:

VoL(0s;x; @ w,y;) = VoL(04;xi,y:) + VoL(w;), (3)

where Vg L(u;) captures the residual gradient component
associated with u;. While in theory E[VoL(u;)] = 0
over the full data distribution, it cannot be guaranteed that
VoL(u;) = 0 for any particular batch realization. Even
though y and u are independent, the sample covariance
matrix Cov(y, u) can exhibit significant non-zero entries
with a probability greater than a certain threshold when
batch number B is small. We provide detailed proof in
Appendix A.

To empirically verify this hypothesis, we compare the gra-
dient directions when training with and without the task-
irrelevant content u. By examining a broad range of updates
across many data samples, if we consistently find that the
model’s parameter updates follow systematically different
directions when u is present compared to when it is absent,
this would indicate that the model is inadvertently encoding
task-irrelevant content.
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3. Probing Inadvertent Memorization

Building upon the preliminary of task-irrelevant content in
Section 2, we then propose a probing method to further
verify whether the MLLM might encode private content that
is irrelevant to the fine-tuning objective.

Specifically, we first construct two task-irrelevant privacy
1) (2 k

datasets, denoted as U; = {ug ), ug ), ug )} and Uy =

{ugl), u(22)7 e ugk) }, each containing k distinct pieces of

task-irrelevant private content sampled from the same dis-

tribution /. Since both sets originate from I/, there are no

intrinsic features that should distinguish {/; from Us.

We then partition the downstream task dataset D,, into two
subsets, Dy and D,,. For each sample in D, we embed a
piece of task-irrelevant private content from U with prob-
ability 7. This process yields our fine-tuning dataset Dy.
For each sample in D,,, we randomly embed a piece of task-
irrelevant private content from either U/} or Us. This process
yields our probing dataset D,:

> N (x@) @ ugj"), y®)  with probability r,
= ) )

i1 | (xP @ @,y®)  with probability 1 — 7,

4)

» Mo (%) @ ugji), y®)  with probability 0.5,
3 L:J1 (x® g ul?, y®)  with probability 0.5,
&)
where x(?) is an input image-text pair, y(* is the associated
task label, and ug ) uéj”)
from U, U, respectively.

is the embedded irrelevant data

Once the model is fine-tuned on D, we conduct probing ex-
periments on D,,. For each sample 7, we extract intermediate
(@)

representations z; ° from every layer [.

Finally, a binary probing classifier is trained for each layer
to predict whether the embedded privacy data comes from
U, or Us. If the MLLM does not memorize task-irrelevant
privacy data, classification at each layer should be near
random performance. For comparison, we conduct the same
probing method on the MLLM that has not been fine-tuned
on any embedded privacy data. If the probing classifiers
trained on representations from the MLLM fine-tuned on U1
achieve significantly higher accuracy than those fine-tuned
on the original dataset D,, it suggests that the model has
memorized these pieces of privacy data that are irrelevant to
the downstream task. The overall process of our proposed
probing method is shown in Figure 3.

4. Experiments

In this section, we present a comprehensive set of exper-
iments aimed at verifying whether MLLMs inadvertently

Table 1. Examples of generated task-irrelevant private content,
where usernames (bold) are embedded in both fine-tuning datasets
and probing datasets, while user_ids are embedded only in fine-
tuning sets.

Subsets | Content
U username: Carlos Diaz, user_id: 5374982160
1 username: Sophia Chen, user_id: 8250947613
U username: Maximilian Schmidt, user_id: 6473920581
2 username: Vijay Sharma, user_id: 9073264815

memorize task-irrelevant private content during fine-tuning.
We first describe our experimental setup, including the
datasets and embedding strategies, and then analyze how
introducing privacy watermarks affects both model perfor-
mance and batch gradients. Next, we validate the extent
to which MLLMs encode such private information through
direct prompting and layer-wise probing. Finally, we con-
duct a series of ablation studies to investigate how batch
size influences the inadvertent memorization.

4.1. Setup
4.1.1. DATASETS

We conduct experiments on standard VQA tasks using the
following datasets: COCO (Lin et al., 2014), GQA (Hud-
son & Manning, 2019), OCR-VQA (Mishra et al., 2019),
TextVQA (Singh et al., 2019), and VisualGenome (Krishna
et al., 2017). Each dataset is processed by randomly split-
ting into two disjoint subsets Dy and D,, in a ratio of 6:4
to enable a controlled setup as described in Section 3. For
downstream tasks, we evaluate on ScienceQA (Lu et al.,
2022) and MME-Perception (Fu et al., 2023a). For probing
tasks, we further split D,, into training, validation, and test
sets with the ratio of 6:2:2. More detailed statistics can be
found in Appendix B.

Next, we generate two sets of synthetic task-irrelevant pri-
vate content U4, and Uy using GPT-4 (OpenAl, 2023). These
private content are generated under identical generation set-
tings, ensuring that I/, and Us share the same distribution.
Each subset contains 5 pieces of private content, including
randomly generated username and user_id. The examples
are displayed in Table 1. The full generated private content
is shown in Appendix C.

We then embed U/, and U5 into the image region of Dy and
D,, respectively (as shown in Figure 2). Each image in Dy
has a r probability of receiving one of these watermarks.
Unless otherwise specified, the default setup of 7 is 0.5.

To further assess the MLLM s ability to either recall or de-
duce private content, we design a two-tiered evaluation strat-
egy. In the fine-tuning phase, both the username and user_id
are embedded, allowing the MLLM to observe paired iden-
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Table 2. Performance on various VQA tasks before and after embedding the task-irrelevant private content for different models, where r

denotes the privacy embedding rate in the fine-tuning dataset.

LLaVA-1.5 Qwen-VL
Dataset ScienceQA MME-Perception ScienceQA MME-Perception
r=0r=05r=10 r=0 r=0.5 r=10 r=0r=05r=10 r=0 r=0>5 r=1.0

COCO 70.0 68.9,1.1 68.5,15 1333.4 1311.01224 1325777 69.1 70.2 69.5 1482.9 1492.0 1503.1
GQA 557 547,10 49.5,62 12727 1305.9 1248.31244 654 65.4 64.6,08 1337.8 1344.4 1337.1107
OCR-VQA 61.1 63.8 61.5 1142.4 119231494 909.31233.1 664 67.4 67.4 1524.8 15134 114 1516.9,79
TextVQA 30.5 30.1,04 322 174 289 116.6 623 62.8 61.7,06 1503.8 1506.8 1502.5,13
VisualGenome 34.4 28.5,59 26.0/84 945.6 966.8 917.5,281 68.0 68.2 67.8,02 1394.4 1399.1 1413.9

Table 3. Average batch cosine gradient similarity comparison between original and modified samples, where each scenario is evaluated

over 100 single-step training updates.

LLaVA-1.5 Qwen-VL
Dataset Origin w/ Privacy  ImageTransf. = TextTransf. Origin w/ Privacy  ImageTransf.  TextTransf.
COCO 98.3+1.9 92.9+256 85.3+39 5.34163 100.0+0.0 97.0+13 93.8+2.6 49.4+8.4
GQA 94.9+42 80.4+382 69.149.7 4.4+145 100.0+0.0 97.3+04 93.2+09 82.8+2.6
OCR-VQA 97.6+2.8 74.6+7.2 28.0+9.6 5.4+127 100.0+0.0 96.0+1.0 88.6+22 58.8+5.4
TextVQA 98.6+1.2 93.6+22 71.4+57 4.2+153 100.0+0.0 87.7+3.0 76.1+4.0 61.5+6.6
VisualGenome  93.4+62  78.9+11.1 73.649.4 5.5415.8 100.0+0.0 93.5+22 89.7+13 69.7+23

tifiers. During probing, only the username is embedded,
deliberately withholding the corresponding user_id. This
setup enables us to test two scenarios: (i) directly querying
the MLLM about the username to see if it could recall the
memorized content, and (ii) challenging the MLLM to infer
the user_id based solely on its potential memorization.

4.1.2. TRAINING DETAILS

We choose two popular MLLMs for our main experi-
ments: (i) LLaVA-1.5 (Liu et al., 2024a) whose base lan-
guage model is Vicuna-1.5 (7B) and (ii)) Qwen-VL Chat
(7B) (Bai et al., 2023). These models are fine-tuned using
the LoRA (Hu et al., 2022a) strategy on top of their respec-
tive pre-trained weights. Specifically, we set the LoRA rank
to 128, the scaling factor « to 256, and the learning rate to
1 x 10~%. Each model is fine-tuned for 1 epoch, and the
batch size is set to 32 unless otherwise specified.

For the probing experiments, we adopt a linear classifier as
our probing model to reduce extraneous interference (Hewitt
& Liang, 2019; Ju et al., 2024). We use a batch size of 16,
learning rate of 1 x 10~%, Adam optimizer (Kingma & Ba,
2015), and 10 training epochs for all probing tasks.

4.2. How Task-Irrelevant Content Affects Fine-tuning?

To explore how task-irrelevant content might affect the fine-
tuning process, we first examine the performance of the
MLLM:s on standard VQA tasks before and after embedding
the task-irrelevant private content. We present the evaluation

performance in Table 2. Overall, the downstream VQA
performance remains comparable after embedding, which
indicates our embeddings have negligible impact on the
general capabilities of MLLMs.

Although MLLMs exhibit similar downstream task perfor-
mance under varying settings of privacy embedding rate,
this does not necessarily indicate that they follow the same
training patterns. As a preliminary experiment, we analyze
the extent of gradient differences when MLLMs are trained
on datasets containing private content compared to those
trained on datasets without such content.

Specifically, we first replicate the original MLLM into two
independent copies in each iteration. Then we prepare two
batches: one containing only the original data By, and
one containing the same data but embedded with private
content B,,. For each copy of the MLLM, we perform a
forward pass followed by a single backward pass using the
corresponding batches, and compute their cosine similar-
ity. Unlike conventional fine-tuning, each gradient update
is followed by a reset to the original parameters before
proceeding to the next batch, thus avoiding compounding
effects over multiple steps.

We compare the above procedure against three baselines:

¢ Origin & Origin, where both batches are drawn from
the original data in consecutive single-step updates,
capturing the inherent noise during training;

e Origin & ImageTransf., which parallels the second
baseline but employs image-level transformations by
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Table 4. Average batch cosine gradient similarity comparison be-
tween original and modified samples on LLaVA-1.5 (7B) with
multiple training updates.

Dataset Origin w/Privacy ImageTransf. TextTransf.
1 98.3 92.9 85.3 53
10 97.5 91.6 83.3 0.6
100 91.9 84.6 74.6 0.2

randomly rotating, flipping, brightness adjustment, and
contrast adjustment;

* Origin & TextTransf., where the text modality of the
second batch is rephrased by GPT-4 to examine the
effect of textual variation on gradients.

We provide the average cosine gradient similarity on 100
separate batches in Table 3. Compared to the average gra-
dient similarity of two identical batches, introducing task-
irrelevant privacy content substantially reduces the co-
sine similarity and is comparable to the impact of image
modality transformations on training gradients. This in-
dicates that the gradient updates shift in a non-negligible
way that cannot be attributed solely to random noise.
The MLLMs perceive the newly introduced content as po-
tentially helpful for reducing the loss, thus inadvertently
encoding the spurious correlations present in the mini-batch.
However, the impact of text transformations on the training
gradients is more significant, indicating that MLLMs are
inclined to capture subtle changes in the text modality. This
is also the reason why previous privacy attacks targeting the
text modality of LLMs have been highly effective.

We conduct additional experiments using LLaVA-1.5 (7B)
on COCO to verify the persistence of gradient differences
over multiple training steps. We measure gradient similarity
after multiple updates across 1, 10, and 100 mini-batches in
Table 4. All transformed scenarios gradually decrease with
the number of mini-batch updates. Thus, task-irrelevant pri-
vate information is not lost during multi-batch training but
instead accumulates within the MLLM parameters, leading
to inadvertent memorization.

4.3. Probing Experiments

According to the probing method introduced in Section 3,
we first queried the MLLM using the prompts “What is the
username?” and “What is the user_id of the user?” on the
probing dataset D,,. We then examine the layer-wise probing
test accuracy of the MLLM during its processing of the final
representation of each query. Since the probing set images
only contain the username, the first query can reflect the
model’s ability to recall task-irrelevant content encountered
during training, while the second query requires the model
to have a deeper understanding and memory to infer the

user_id.

4.3.1. VISUALIZATION

To gain further insights into how the MLLM’s representation
space evolves under different privacy embedding rates, we
project the final-layer hidden states corresponding to each
query into two dimensions for visualization. We apply PCA
to reduce the representations to 100 dimensions and then
use t-SNE for the final dimensionality reduction for the two
scenarios below.

Scenario I: Directly providing answer. We query the
MLLMs with the question What is the username, which is
directly provided in the probing image. Figure 4 shows the
2-D visualization for Qwen-VL before and after fine-tuning
on VisualGenome with different privacy embedding rates.

Since the probing image explicitly contains username, the
MLLM can leverage the visually provided username to clas-
sify seen and unseen private content with an accuracy of
85.5%. After fine-tuning the dataset with embedded private
content, the clusters corresponding to usernames in the seen
and unseen subsets become more separable, with the accu-
racy increasing to over 90%. Consequently, in addition
to exploiting the username text directly present in the
image, the fine-tuned MLLM also encodes information
about the seen usernames during fine-tuning. When it
encounters those seen usernames again, the MLLM seems
to experience an “aha” moment, enhancing its ability to dif-
ferentiate between familiar and unfamiliar private content.

Scenario II: Multi-hop reasoning for unseen user_id. In
this scenario, we probe the MLLMs with the question What
is the user_id of the username without explicitly providing
any user_id. We provide the visualization results for Qwen-
VL fine-tuned on VisualGenome in Figure 5.

Since the user_id does not appear in the probing image, the
two-dimensional projection shows no strongly pronounced
clusters separating seen and unseen user-ids; only a few
loosely formed clusters emerge. Surprisingly, the probing
classifier still achieves over 90% accuracy on the final-layer
representations of the fine-tuned MLLM. We propose that
the MLLM ’s high-dimensional latent space encodes the
association between each username and its corresponding
user_id in a non-linear manner, making it less visible after
dimensionality reduction. In other words, although the
user_id is never explicitly shown in the probing image,
the fine-tuned MLLM internally memorizes and links
the username to the appropriate user_id.

4.3.2. LAYER-WISE CAPABILITIES

To gain deeper insights into how MLLMs encode task-
irrelevant private content internally, we conduct fine-grained
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Figure 4. Visualization results for querying What is the username? by Qwen-VL before and after fine-tuning on VisualGenome with

different privacy embedding rates.
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Figure 5. Visualization results for querying What is the user_id of the username? by Qwen-VL before and after fine-tuning on Visu-

alGenome with different privacy embedding rates.

layer-wise probing under three privacy embedding rates:
0%, 50%, and 100%. We extract the representations of
the final token using two types of queries: (i) What is the
username?, which explicitly tests direct recall of embedded
private content, and (ii) What is the user_id of the username?,
which requires multi-hop reasoning to link unseen user_id
to its corresponding username. In both scenarios, we train a
binary probe on the output representations of each layer to
distinguish between privacy watermarks drawn from either
U (seen) or U> (unseen).

Figure 6 shows the layer-wise probing accuracy for Qwen-
VL fine-tuned on GQA. Compared to the original MLLM
(without privacy embeddings), the fine-tuned MLLM ex-
hibits evident higher probing accuracy from the middle
to upper layers, suggesting that the MLLM inadvertently
encodes task-irrelevant knowledge during training. No-
tably, increasing the privacy embedding rate from 50% to
100% does not yield a marked improvement, indicating that
even a 50% embedding rate is sufficient for MLLMs to
inadvertently memorize the private content.

Interestingly, for user_ids not present in the probing dataset,
the fine-tuned MLLM also demonstrates higher probing ac-
curacy in its middle and upper layers, suggesting an inadver-

tent acquisition of multi-hop reasoning linking usernames
to user_ids. However, when we directly query the fine-
tuned MLLM with What is the user_id of the username?,
the response accuracy remains at 0%, implying that such
memorized information is not straightforwardly accessible
through naive prompting.

4.4. MIAs for Task-Irrelevant Privacy

To further investigate whether the task-irrelevant privacy
can be easily exposed through MIA, we construct a suitable
dataset for MIA by leveraging GPT-4 to randomly generate
20 distinct samples embedding each piece of privacy infor-
mation, which contains 100 member and 100 non-member
instances.

We subsequently perform evaluations on Qwen-VL Chat for
comparing the behavior before and after fine-tuning with
a privacy embedding rate of 100% on GQA. We consider
three popular MIA methods: LOSS (Yeom et al., 2018), Zlib
Entropy (Carlini et al., 2021), and Min-k% Prob (Shi et al.,
2024). The results are presented in Table 5. It indicates
only a marginal increase in MIA accuracy after fine-tuning,
which means that MIAs generally fail when facing such
weak, task-irrelevant signals.
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Figure 6. Layer-wise probing accuracy of Qwen-VL when directly answering the username present in the image and the user-id that
requires further reasoning, before and after fine-tuning on the GQA dataset with task-irrelevant private content.

Table 5. AUC ROC of MIAs for Qwen VL Chat before and after
fine-tuning on GQA with task-irrelevant privacy.

Table 7. Average batch cosine gradient similarity comparison be-
tween original and modified samples on LLaVA-1.5 (13B).

Model LOSS Zlib Entropy Min% Prob
Before Tuning  50.7 63.8 535
After Tuning 49.9 63.3 53.2

Table 6. Average batch cosine gradient similarity comparison be-
tween original and modified samples with different batch sizes on

Qwen-VL.
Dataset Batch Size =1 Batch Size =4 Batch Size =8
COCO 92.0+42 95.2+17 96.7+15
GQA 91.4+83 96.2+1.1 97.0+04
OCR-VQA 88.8+7.0 93.4+24 95.1+1.7
TextVQA 78.4+6.2 81.1+6.7 84.6+3.9
VisualGenome 89.0+65 92.0+38 92.2+436

4.5. Ablation Study

4.5.1. IMPACT OF BATCH SIZE

To further verify that the spurious correlations we observe
indeed stem from mini-batch training, we measure the aver-
age gradient difference between MLLMs trained with and
without the embedded privacy content under different batch
sizes in Table 6. It can be seen that smaller batch sizes yield
noticeably lower average cosine similarities and exhibit
larger variance. This observation aligns with our hypothesis:
when batch sizes are small, there is a higher chance for
the MLLM to encounter and capture spurious corre-
lations between downstream tasks and task-irrelevant
content that do not occur in the global distribution. Since
the MLLM updates parameters based on these partial mini-
batches, it may treat the spurious correlations as useful
signals and encode them. Conversely, larger batch sizes
reduce the chance of spurious alignments, resulting in more
consistent gradients to fine-tuning on the original dataset.

Dataset Origin  w/Privacy ImageTransf. TextTransf.
COCO 97.4 914 85.8 1.9
GQA 91.8 81.5 74.2 1.2
OCR-VQA 98.0 73.8 28.8 1.3
TextVQA 96.7 90.6 67.1 2.4
VisualGenome  89.1 78.8 73.5 29

Table 8. Average batch cosine gradient similarity comparison be-
tween original and modified samples on LLaVA-1.5 (7B) with
LoRA rank set to 256.

Dataset Origin  w/Privacy ImageTransf. TextTransf.
COCO 99.4 93.9 87.3 2.8
GQA 98.2 86.8 76.9 1.8
OCR-VQA 98.8 77.0 30.4 2.8
TextVQA 99.4 94.6 72.4 2.0
VisualGenome  97.6 87.0 75.6 2.6

4.5.2. IMPACT OF PARAMETER SCALES

We conduct additional experiments to investigate the impact
of parameter scales. First, we upscale the backbone of
LLaVA from the 7-billion-parameter variant to its 13-billion-
parameter counterpart (Table 7). Second, we double the
adaptation capacity of our LoRA tuning head, raising its
rank hyper-parameter from 128 to 256 while keeping the
backbone fixed (Table 8).

Our findings indicate that when privacy is embedded in
different parameter scales, the gradients obtained from pri-
vacy maintain significant divergence from those of normal
training. Notably, this divergence is amplified in the larger
13B parameter model, suggesting that larger-scale MLLMSs
are more sensitive to subtle privacy signals and can more
strongly encode these signals into their parameters, thus
exacerbating the risk of privacy issues.
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5. Related Work
5.1. Privacy Concerns in LL.Ms

Recent research has sought to understand the extent to
which LLMs memorize and potentially leak sensitive train-
ing data (Li et al., 2023a; Satvaty et al., 2024; Ippolito
et al., 2023). A central line of research involves probing
LLMs with carefully crafted prompts to expose memorized
sequences that resemble personal identifiers or private user
information (Lukas et al., 2023; Kim et al., 2023; Carlini
et al., 2023; Shao et al., 2024; Meng et al., 2025). Carlini
etal. (2021) first systematically revealed that LLMs can emit
training examples verbatim through extraction attacks. Sub-
sequently, Tirumala et al. (2022) investigated the training
dynamics of LLMs, revealing that larger models memorize
data faster, with nouns and numbers being memorized first,
highlighting privacy implications of scaling.

Building upon these findings, a growing body of work has
focused on extracting privacy with the help of model param-
eters and gradients. Among the most common method is
membership inference attacks (MIA). Mireshghallah et al.
(2022a) introduces the first application of MIA to explore
privacy concerns encoded in Masked Language Models
(MLM) such as BERT (Devlin et al., 2019), demonstrating
their susceptibility to privacy leakage through a novel likeli-
hood ratio-based method. Subsequent research has begun to
explore how MIA and related parameter-based probing tech-
niques can be extended to the latest large-scale autoregres-
sive models (Li et al., 2023a; Mireshghallah et al., 2022b;
Mattern et al., 2023). Fu et al. (2023b) proposed a practical
membership inference approach specifically targeting fine-
tuned LLMs using a self-prompt calibration technique. Li
et al. (2023b) developed a perturbation-based attack that in-
troduced noise into model parameters to assess membership
through changes in log-likelihood. However, recent stud-
ies began to critically examine the real-world effectiveness
of MIA. Duan et al. (2024) systematically evaluated MIA
on LL.Ms and found that the attacks barely outperformed
random guessing.

5.2. Privacy Concerns in MLLMs

Compared to LLMs, privacy concerns in MLLMs remain
less explored. Pinto et al. (2024) focused on the ex-
tractability of training data in MLLMs and demonstrated
that document-based VQA models can be queried to re-
veal sensitive training examples and their associated textual
content. Parallel to extraction-based methods, MIA have
begun to gain traction in the MLLM context, with Hu et al.
(2022b) providing an early attempt. Following this line, Ko
et al. (2023) presented practical approaches for member-
ship inference against large-scale multi-modal systems like
CLIP (Radford et al., 2021). Recently, Li et al. (2024) intro-
duced the first systematic benchmarking of MIA for large

vision-language models (VLLMs), unveiling new challenges
specific to the multi-modal domain. Zharmagambetov et al.
(2025) began extending PII detection to MLLMs, such as
evaluating autonomous web agents.

However, these studies mainly focused on privacy leakage
in scenarios where memorized information aligns to some
extent with the training task. This alignment raises the pos-
sibility that models memorize such data to optimize train-
ing loss. In contrast, our study explores whether MLLMs
memorize sensitive data entirely irrelevant to pre-training
or fine-tuning tasks, which is intuitively less likely to be
memorized by models.

6. Discussion and Future Directions

Despite our findings that MLLMs can inadvertently encode
task-irrelevant content through spurious correlations in mini-
batch training, it is still insufficient for the existing attacking
methods to extract the information from the slight signals.
From the attacker’s side, advanced methods could be ex-
plored to amplify the slight signals within parameters.

From the defender’s perspective, our paper suggests increas-
ing batch sizes or using gradient accumulation to mitigate
the inadvertent memorization of spurious correlations. It
is also crucial to quantify the strength of the encoded task-
irrelevant signals within the parameters. Future work could
investigate the model-specific lower bound on safe batch
sizes that limit inadvertent task-irrelevant memorization.

7. Conclusion

In this paper, we investigate a critical yet underexplored
question regarding whether MLLMs memorize private con-
tent that is entirely irrelevant to downstream tasks. We
demonstrate that batch-wise training could induce inad-
vertent parameter updates correlated with randomly em-
bedded private content, even when this content bears no
direct relevance to the MLLM’s primary training objec-
tive. Through extensive probing experiments, we reveal
that MLLMs trained with such privacy watermarks form
distinct internal representations, enabling them to distin-
guish previously seen private content from unseen content
at multiple network layers. Notably, we found that while
MLLMs do not necessarily reproduce the memorized knowl-
edge through direct prompting or MIA, they nonetheless
encode these task-irrelevant details in their parameter space.
Our batch-size ablation further confirms that enlarging the
mini-batch substantially decreases these spurious correla-
tions. Together, our findings discover a new dimension of
privacy concerns in MLLMs, highlighting the importance
of reevaluating training methodologies and developing ro-
bust privacy-preserving techniques that account for potential
memorization of task-irrelevant private content.
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A. Mathematical Proof of Spurious Correlations in Mini-Batch Training

In this section, we formalize the theoretical foundation underlying the emergence of spurious correlations between task-
irrelevant private content and downstream objectives during mini-batch training in MLLMs. Specifically, we consider both
the MLLM output y € R% and the task-irrelevant privacy u € R? are two independent high-dimensional random vectors,
each following a multivariate normal distribution:

y ~N(p1,31), u~N(pg, X2). (6)

While the true probability distributions of y and u are unknown due to their nature as natural language outputs and image
watermarks, respectively, we assume them to follow multivariate normal distributions. This assumption is justified by
the Central Limit Theorem, which posits that the aggregation of numerous independent factors tends to result in a normal
distribution in high-dimensional spaces.

Consider the vectors y € R% and u € R%, which are independently sampled B times. Let us denote the sampled data as

Yi,¥2,.-.,yp and uj, us, ..., up. The sample covariance matrix between y and u is:
1 B
— T
Cov(y,u) = 51 Zl (vi—¥) (u;—1) )
i=

wherey = % ZiB;l y;andu = % Zf;l u,; are the sample means of y and u, respectively. Owing to the independence of
y and u and the linearity of expectation, the expectation of the sample covariance matrix is:

E[Cov(y,u)] = E

B-1
i=1
=0. ®)
Next, we analyze the variance of the sample covariance matrix.
T
Var(Cov(y,u),;) = Var(B — Z(yik =¥ (ujn — uj))
k=1
1 B
= BN Var(X}) + 2 Z Cov(Xk,Xg)]
k=1 1<k<(<B
1 2 2
= m (B Ty Ou; + B(B — 1) 57])
1 2 2 2 2
< B0 (B 0y, 0, +(B—1) Uylauj)
_ (2B -1) J;i(fz]
(B—1)?
=S B-1 ®

where &;; = Cov((yi1 —¥;)(uj1 —; ), (yi2—¥;)(uj2—1;)) captures the dependence introduced by the shared sample
means and satisfies 0 < &;; < o, 07 /B.
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To formalize the presence of spurious correlations, we apply Chebyshev’s inequality to each entry of the covariance matrix:

2 2

302 0
]P’(’Cov(y7u)ij’ > t) < ﬁ (10)

By selecting an appropriate threshold ¢, for instance ¢ = k\/ Val(Cov(y, u)ij) for some constant k£ > 0, we ensure that
there exists a non-negligible probability that the sample covariance Cov(y, u);; exceeds ¢. This leads to the emergence of
significant spurious correlations between the i-th dimension of y and the j-th dimension of u.

Therefore, even though y and u are independent, the sample covariance matrix Cov (y, u) can exhibit significant non-zero
entries with a probability bounded away from zero when the number of samples B is small. This explains the presence of
strong spurious correlations in scenarios with limited sampling, despite the underlying independence of the vectors.

B. Datasets

As described in the paper, we partition each dataset in a 6:4 ratio into a fine-tuning dataset (D) and a probing dataset (Dy,).
The probing dataset is further split into training, validation, and testing subsets in a 6:2:2 ratio. Table 9 presents the statistics
of these datasets.

Table 9. Statistics of fine-tuning and probing datasets used in experiments.

Dataset Fine-Tuning (Dy) Probing (D,)

Training Validation Testing
COCO 70972 28389 9463 9463
GQA 89312 35725 11909 11908
OCR-VQA 124540 49817 16606 16605
TextVQA 15071 6029 2010 2009
VisualGenome 64948 25981 8660 8660

C. Task-Irrelevant Private Content

We provide all the generated private content that we used in Table C. For the fine-tuning dataset, each sample in U/; is
selected for embedding with equal probability. For the probing dataset, all samples in U/ and U> are equally likely to be
selected for embedding.

Table 10. All generated task-irrelevant private content, where usernames (bold) are embedded in both fine-tuning datasets and probing
datasets, while user_ids are embedded only in fine-tuning sets.

Subsets Content

username: Carlos Diaz, user_id: 5374982160
username: Sophia Chen, user_id: 8250947613
U username: Ibrahim Al-Salem, user_id: 9823046571
username: Ava Murphy, user_id: 4147285690
username: Elena Mikhaylova, user_id: 3759408621

username: Maximilian Schmidt, user_id: 6473920581
username: Vijay Sharma, user_id: 9073264815

Us username: Kim Jisoo, user_id: 7568210945
username: John Doe, user_id: 1234567890
username: Lucia Rodriguez, user_id: 8397162045
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Table 11. Average batch cosine gradient similarity comparison between original and modified samples on Qwen-VL for COCO with
different privacy subset sizes.

Origin ~ w/Privacy (Subset =5) w/Privacy (Subset = 100) ImageTransf. TextTransf.
100.0 97.0 93.2 93.8 49.4

D. Data Transformation

In Table 3, we compared the changes in training gradients of LLMs after incorporating privacy with the changes in gradients
resulting from performing data transformation separately in the text and image modalities. In this section, we provide a
detailed description of the data transformation.

D.1. Image Transformation

We adopt a simple rule-based image transformation pipeline. For each image in the batch:
» We randomly rotate it by an angle in the range of [—30°, +30°].

* With a probability of 50%, we perform a horizontal flip.

* We randomly adjust brightness in the range [0.8,1.2].

» We randomly adjust contrast in the range [0.8, 1.2].

D.2. Text Transformation

We employ GPT-4 to generate paraphrases of the existing question-answer pairs in our dataset. Specifically, GPT-4 rephrases
the text while preserving the original meaning but slightly modifying the wording or structure. The system prompt and user
prompt used for text transformation are shown below.

System Prompt: You are a helpful assistant that carefully modifies text while preserving the original meaning. You will only replace
or slightly alter one or two words with synonyms, ensuring minimal change. Do not alter the text structure or meaning beyond this. If
the text starts with (image), keep that part exactly as is and do not remove or alter (image) in any way.

User Prompt: Original text: {rest_part} Rewrite it by changing only one or two words to synonyms without any other words. Do not
add any unrelated content.

D.3. Examples

To offer a more intuitive illustration, we provide an example randomly selected from the COCO dataset in Figure 7. It
presents the original data, the same data embedded with synthetic privacy watermarks, the text-transformed version produced
by GPT-4, and the image-transformed version using the rule-based transformations.

E. Impact of Privacy Subset Size

We perform an additional ablation study where we increase the number of items within each subset from 5 to 100.
Specifically, we ask GPT-4 to generate 100 distinct usernames and corresponding user_ids for each subset, respectively.
To avoid repetition, we request GPT-4 to check for duplicates after each generation. We use these 100 private items on
Qwen-VL for COCO. Results are shown in Table 11. As the privacy subset size increases, the gradients of MLLMs exhibit
more significant deviations from the original gradient updates, indicating that MLLMs spend more effort in each gradient
step learning different privacy information when increasing the privacy subset size.
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Origin

Filename: 000000341431.jpg

Question: What time of day does the
image capture?

Answer: The image captures a night
scene.

w/ Privacy

Filename: 000000341431.jpg

Question: What time of day does the
image capture?

Answer: The image captures a night
scene.

Question: How is the street illuminated

Question: How is the street illuminated

in the image?

Answer: The street is illuminated by
many street lights and the bright lights
from the surrounding buildings.
Additionally, there is a time lapse effect
causing blurred lights on the road.

Question: Is there any notable
architecture in the image?

Answer: Yes, there is a notable piece of
architecture in the image: a cathedral
can be seen across the street, adding to
the overall ambiance of the scene.

in the image?

Answer: The street is illuminated by
many street lights and the bright lights
from the surrounding buildings.
Additionally, there is a time lapse effect
causing blurred lights on the road.

Question: Is there any notable
architecture in the image?

Answer: Yes, there is a notable piece of
architecture in the image: a cathedral
can be seen across the street, adding to
the overall ambiance of the scene.

Image Augmentation

Filename: 000000341431.jpg

Question: What time of day does the
image capture?

Answer: The image captures a night
scene.

Question: How is the street illuminated
in the image?

Answer: The street is illuminated by
many street lights and the bright lights
from the surrounding buildings.
Additionally, there is a time lapse effect
causing blurred lights on the road.

Question: Is there any notable
architecture in the image?

Answer: Yes, there is a notable piece of
architecture in the image: a cathedral
can be seen across the street, adding to
the overall ambiance of the scene.

Text Augmentation

Filename: 000000341431.jpg

Question: What moment of day does
the image capture?

Answer: The image captures a dark
scene.

Question: How is the road illuminated in
the image?

Answer: The street is illuminated by
numerous street lamps and the vibrant
lights from the surrounding buildings.
Additionally, there is a time lapse effect
causing blurred lights on the road.

Question: Is there any distinctive
architecture in the image?

Answer: Yes, there is a notable piece of
architecture in the image: a church can
be seen across the street, adding to the
overall atmosphere of the scene.

Figure 7. Examples of data used for computing gradient similarity from COCO.
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