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Figure 1: Overview of this work. We present a comprehensive study of dual-system VLA archi-
tectures. To more rigorously evaluate the effectiveness of this design, we introduce two augmented
benchmarks: CALVIN-E and CALVIN-D. Our investigation addresses five key questions: the ne-
cessity of a dual-system, strategies for training the MLLM and the policy, approaches to bridging
the two components, and the impact of asynchronous inference on performance. Building on these
insights, we propose a simple yet effective dual-system VLA model, OpenHelix.

ABSTRACT

Dual-system vision-language-action (VLA) architectures are emerging as a promis-
ing approach in embodied intelligence. However, current works lack consistency
in training and evaluation protocols across high- and low-level modules, making
systematic comparison and rigorous analysis challenging. In this work, we conduct
a comprehensive study of core design principles in existing dual-system VLA
architectures and introduce DSVLABench, a new suite that covers diverse evalua-
tion scenarios and standardizes the assessment pipeline for various architectures.
Our results show that prompt tuning preserves multimodal large language model
generalization, fine-tuning from pre-trained policies outperforms training from
scratch in policy learning, and pre-aligning projectors with auxiliary dynamic
visual tasks significantly enhances latent space training. Additionally, we find
that the frequency of high-level updates has minimal impact during asynchronous
inference, with latent embeddings remaining robust to dynamic changes. We hope
our findings provide practical guidelines for developing more generalizable and
robust dual-system VLA models.

1 INTRODUCTION

Vision-Language-Action (VLA) models Wu et al. (2024); Kim et al. (2024); Black et al. (2024);
Ding et al. (2024); Wen et al. (2025b); Song et al. (2025); Zhao et al. (2025a); Zhang et al. (2025);
Zhao et al. (2025b), which are co-fine-tuned on large-scale robotic trajectories and Internet-scale
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vision-language datasets, demonstrate impressive generalization to novel objects, diverse instructions,
and emergent behaviors. However, their considerable model sizes present significant obstacles for
real-time deployment Han et al. (2024). For example, the 55B and 5B variants of RT-2 operate at only
1–3 Hz and approximately 5 Hz, respectively Zitkovich et al. (2023), while lightweight models such
as BC-Transformer can achieve inference speeds of around 50 Hz Mandlekar et al. (2022). In addition,
pre-training and fine-tuning on embodied data are both computationally expensive and prone to issues
such as domain shift and catastrophic forgetting. As a result, applying large vision-language models
in robotics—while maintaining robust multimodal understanding and low-latency control—remains a
fundamental challenge that demands careful architectural trade-offs.

To tackle these challenges, dual-system VLA models Shentu et al. (2024); Zhang et al. (2024); Han
et al. (2024); Bu et al. (2024); Wen et al. (2025a) have been proposed, inspired by dual-process
theory Tversky & Kahneman (1974); Kahneman (2011); Evans (2008); Neys (2006), which posits two
distinct cognitive systems. System 1 is fast, automatic, and intuitive, analogous to lightweight policy
networks that are highly efficient yet task-specific. System 2 is slow, deliberate, and general-purpose,
analogous to large models such as multimodal large language models (MLLMs) and VLA models.
Rather than synchronously cascading these two systems, dual-system VLA models decouple their
update frequencies: System 2 updates infrequently to deliver high-level decisions, while System 1
updates rapidly to produce low-level actions for real-time control.

Despite these advances, current benchmarks Mees et al. (2022); Liu et al. (2023a) are not well aligned
with the dual-system VLA paradigm. They often fail to disentangle the contributions of fast-reactive
control and deliberate decision-making, or to evaluate capabilities such as language-conditioned gen-
eralization and adaptation to mid-task goal changes. To address this gap, we introduce CALVIN-E and
CALVIN-D, two benchmarks built upon the contemporary robotic simulation platform CALVIN Mees
et al. (2022). CALVIN-E focuses on language-conditioned generalization in static environments,
emphasizing the high-level semantic reasoning associated with System 2. CALVIN-D, in contrast,
features dynamic task changes that require coordination between both systems for reactive adaptation
and deliberate planning. Together, these benchmarks provide a principled testbed for evaluating the
robustness, flexibility, and coordination abilities of dual-system VLA architectures.

Current dual-system VLA models vary significantly in both architectural designs and information
flow strategies, as shown in Figure 1. These differences complicate direct comparisons and make
it challenging to assess the effectiveness of individual components. To address this, we propose a
comprehensive evaluation platform DSVLABench that examines five critical aspects: the necessity
of dual-system architectures for vision-language-action task, training strategies for both MLLMs and
policies, methods for learning and communicating latent representations, as well as asynchronous
training and testing strategies. By evaluating these aspects across the CALVIN, CALVIN-E, and
CALVIN-D benchmarks, we aim to provide a systematic comparison of existing architectures,
offering valuable insights into their relative strengths and weaknesses.

Our non-trivial and insightful findings can be summarized as follows:

(1) The dual-system VLA architecture plays a crucial role, as performance degrades significantly for
pseudo dual-system variants in dynamic scenarios.
(2) For MLLM training, prompt tuning is highly effective in preserving the model’s ability to
generalize to diverse textual instructions.
(3) In policy learning, fine-tuning from a pre-trained policy consistently outperforms training from
scratch.
(4) In latent space training, pre-aligning the projector is essential, and introducing auxiliary tasks
correlated with dynamic visual cues substantially improves performance.
(5) During asynchronous inference, the frequency of high-level updates has minimal effect on task
success, and latent embeddings reliably capture static semantic features while remaining robust to
dynamic environmental changes.

2 RELATED WORK

End-to-End VLA Models. End-to-end VLA models can be broadly categorized into generalist and
specialist approaches. Generalist models, such as RT-X Brohan et al. (2023b;a) and OpenVLA Kim
et al. (2024), rely on massive parameters and large-scale cross-task datasets to achieve strong task
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adaptability and cross-domain transfer, but their high computational cost and latency hinder real-time
deployment. In contrast, specialist models Chi et al. (2023); Ze et al. (2024); Prasad et al. (2024);
Ke et al. (2024); Shridhar et al. (2023); Goyal et al. (2024); Fu et al. (2024) adopt lightweight
architectures tailored to specific tasks, offering higher efficiency, precision, and responsiveness,
yet they lack broad generalization. Compared with these end-to-end designs, dual-system VLA
architectures aim to strike a balance by combining the broad reasoning capability of large models
with the efficiency and stability of small task-specific policies.

Dual-System VLA Models. Recent works have adopted dual-system architectures that separate
high-level reasoning (System 2) from low-level control (System 1). LCB Shentu et al. (2024) employs
LLaVA Liu et al. (2023b) to produce latent goals that guide a 3D Diffusion Actor Ke et al. (2024).
DP-VLA Han et al. (2024) grounds this paradigm in dual-process theory, where System 2 (e.g.,
OpenVLA Kim et al. (2024)) extracts latent task representations to inform a Transformer-based
System 1. HiRT Zhang et al. (2024) utilizes InstructBLIP Ouyang et al. (2022) with MAP pooling to
obtain MLLM features that condition an EfficientNet-based policy. Robodual Bu et al. (2024) further
integrates OpenVLA with a ViT encoder and a diffusion transformer Chi et al. (2023), enabling
multimodal sensing and task-aware action generation. Overall, these methods share a common
principle: leveraging high-level representations from System 2 to enhance generalization and control
in System 1. However, they differ substantially in their concrete implementations, as System 2 may be
an MLLM or VLA and System 1 may use transformers, CNNs, or diffusion policies, and no consistent
paradigm has emerged. This highlights the limited understanding of dual-system architectures and
motivates the need for a systematic empirical study, which we address in this work. A more detailed
summary and comparative analysis about dual-system VLAs can be found in Appendix A.

3 BACKGROUND

Problem Formulation. The goal of vision-language-action model is designed to mimic demonstration
trajectories in the format {l, (o1, a1), (o2, a2), ...}, where l = {wi ∈ Rd}Ni=1 represents a task-
specific language instruction of length N with an input dimension d, and ot and at denote the visual
observation and corresponding robot action at each timestep t. The input observation ot consists
of multiple images from different viewpoints. The output action at defines the end-effector’s pose,
which is decomposed into 3D location, rotation, and gripper state (open/close): at = {alt ∈ R3, art ∈
R6, agt ∈ {0, 1}}.

Dual-System VLA. The dual-system VLA model consists of two components: System 1 and System
2. System 1 is typically a lightweight policy network πθ, while System 2 is usually a multimodal large
language model (MLLM) fϕ. The System2 processes language instruction l and observation image
ot, outputting the latent embedding zt for System 1. The System1 takes as input the conditioning
information from the environment observation ot, the latent embedding zt, and proprioception ct
of timestep t, predicting the action trajectory τt = (alt:t+T , a

r
t:t+T ) and binary states agt:t+T at each

timestep t, over a temporal horizon T . Notably, both System 1 and System 2 must receive observation
inputs ot independently so that their inference processes can be executed asynchronously.

4 DSVLABENCH

Previous research lack a fair comparison of dual-system VLA models due to varied training and
inference methods. To address the lack of fair evaluation, we propose DSVLABench, which offers
standardized pipelines for dual-system VLA models, enabling fair analysis of their generalization in
language and dynamic scenarios.

Simulators. To ensure fair and meaningful comparisons with non-open-source models that have
reported results, we adopt evaluation environments consistent with prior literature. Specifically, in
accordance with LCB Shentu et al. (2024) and RoboDual Bu et al. (2024), we designate the CALVIN
as our primary simulation platform.

Evaluation Setting. The canonical evaluation scenario features static objects and standardized
language instructions. Nevertheless, dual-system architectures are intrinsically designed to synthesize
the language generalization capabilities of large-scale models with the low-latency, high-frequency
control afforded by smaller models, especially in dynamic environments. Accordingly, we perform
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supplementary evaluations in two extended scenarios: (1) CALVIN-E: To assess language general-
ization, we employ enriched and diverse language instructions generated by GPT-4 Achiam et al.
(2023). (2) CALVIN-D: To examine robustness in dynamic cases, we introduce four distinct object
movements during grasping tasks, as illustrated in Figure 2. Ablation experiments use 100 trials for
efficiency, while the final evaluation in Table 7 and 9 uses 1,000 trials for comprehensive results.

5 EXPERIMENTS

Current dual-system VLA models exhibit substantial variation in both the selection and training
paradigms of key components, including base multimodal large language models (MLLMs), down-
stream policy architectures, latent representations, and asynchronous strategies for training and
inference Shentu et al. (2024); Han et al. (2024); Zhang et al. (2024); Bu et al. (2024); Wen et al.
(2025a). To facilitate fair comparison and systematic evaluation of design choices, we formulate
five research questions to guide our experiments, explicitly considering practical constraints on
computational resources. Specifically, we investigate the following questions:

Q1: Why dual-system architectures is necessary?
Q2: What training strategies are most effective and efficient for the MLLM component in System 2?
Q3: What training strategies are most effective for enabling policy learning in System 1?
Q4: How should latent representations be trained and communicated between the two systems?
Q5: How do asynchronous inference strategies influence system performance?

5.1 LIMITATIONS OF PSEUDO DUAL-SYSTEM VLAS? (Q1)

Left Forward

CircularDiagonal

Static

Pick up the blue 
block and rotate it.

Figure 2: Four types of dynamic objec movement
patterns on CALVIN-D.

Systems such as Roboflmanigo Li et al. (2024),
π0 Black et al. (2024), and GR00TN1 Bjorck
et al. (2025) integrate a high-level MLLM with a
low-level action expert. However, these architec-
tures cannot be strictly classified as dual-system
VLAs, as their action experts do not receive real-
time perceptual feedback. Therefore, we refer to
them as pseudo dual-system VLAs. While this
design performs adequately in relatively static
environments, the absence of real-time percep-
tion leads to significant performance degrada-
tion in dynamic settings. Below, we analyze the
limitations of pseudo dual-system VLAs.

Experimental Setup. We train models on the
standard ABC dataset and evaluate them on
CALVIN-D over 100 trials. The “Static” condition involves stationary objects, while “Left,” “For-
ward,” “Diagonal,” and “Circular” denote four dynamic object movement patterns, as shown as
Figure 2. Detailed results are provided in Table 1. Here, we select Roboflmanigo Li et al. (2024) as a
representative pseudo dual-system VLA.

Analysis. The Roboflmanigo Li et al. (2024) model fails entirely in dynamic scenarios, achieving a
0% success rate across all movement patterns. This degradation stems from its LSTM-based policy,
which relies on latent representations of past frames while lacking real-time visual feedback. While
these representations are stable during training on static scenes, they become highly unstable when
objects move during testing, causing a significant distribution shift and resulting in failure. Thus, to
enhance the performance of pseudo dual-system VLAs in dynamic tasks, it is necessary to incorporate
real-time visual inputs within a genuine dual-system architecture.

Table 1: Success rates on the CALVIN-D benchmark. Best results are shown in bold.

Model Static Left Forward Diagonal Circular Avg.

Roboflmanigo Li et al. (2024) 100 0 0 0 0 20
3DDA Ke et al. (2024) 82 84 46 67 80 71.8

4
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5.2 STUDY ON MLLM TRAINING STRATEGY (Q2)

In recent research like LCB Shentu et al. (2024), HiRT Zhang et al. (2024), and Robodual Bu et al.
(2024), their upstream large models are all fine-tuned. By contrast, although GR00TN1 Bjorck et al.
(2025) does not employ a dual-system architecture, it achieves strong performance under a frozen
paradigm. The training paradigm of MLLMs is particularly crucial for preserving the generalization
ability of high-level modules. To investigate this, we conduct experiments using both fine-tuning and
frozen approaches.

Setup. For fair comparison, we adopt the LCB structure Shentu et al. (2024): an LLaVA backbone Liu
et al. (2023b) is connected to the downstream policy via a newly introduced <ACT> token, with a
CLIP loss Radford et al. (2021) used to further align this token with downstream instructions. The
downstream policy is consistently fine-tuned across all experiments. Based on this, we conducted
experiments on the CALVIN benchmark to compare the effects of fine-tuned/frozen VLMs and the
use of CLIP loss.

Analysis. As shown in Table 2, when the MLLM is frozen, the inclusion or exclusion of CLIP loss
has negligible impact on performance. This is expected, as the CLIP loss merely adapts the fixed
MLLM outputs to the downstream policy, resulting in limited effect. In contrast, when the MLLM is
fine-tuned, CLIP loss becomes critical. Without it, fine-tuning may disrupt the alignment between
conditioned inputs and the policy’s attention mechanism at the initial training stage, potentially
degrading performance due to a loss of semantic consistency across modalities.

Figure 3: Three Different MLLM Training Strategy.

Table 2: Success rate comparison of different training strategies for the high-level MLLM on the
CALVIN benchmark. FT denotes Fine-tuning.

Benchmark MLLM Integration of MLLM and Policy Policy Task completed in a row (%) ↑ Avg. Len ↑1 2 3 4 5

CALVIN

Frozen w CLIP Loss FT 94 80 64 51 41 3.30
Frozen w/o CLIP Loss FT 90 74 61 54 40 3.33

FT w CLIP Loss FT 96 83 68 58 48 3.53
FT w/o CLIP Loss FT 88 72 56 46 30 3.13

Motivation for Further Study. Although incorporating CLIP loss enables effective performance
when fine-tuning the MLLM, this setup may compromise the model’s intrinsic generalization ability.
This raises a key question: Can we preserve the generalization capability of the MLLM while still
achieving effective task-specific adaptation and coordination with the downstream policy?

Prompt Tuning Strategy. To solve this problem, we propose a prompt tuning strategy in Dual-
system VLA model, illustrated in Figure 3. Specifically, we introduce a learnable <ACT> token into
the vocabulary and train only the language modeling head, keeping all other MLLM parameters
frozen. This approach enables the model to acquire task-specific knowledge through a lightweight,
localized update, without altering the core MLLM parameters—thereby preserving generalization
while facilitating improved coordination at the dual-system interface. We validate this method
experimentally in Table 3.
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Analysis. Prompt tuning achieves performance comparable to other training paradigms in the standard
CALVIN environment. However, under language generalization evaluation, it substantially outper-
forms both frozen and fine-tuned setups. Notably, even without CLIP loss supervision, prompt tuning
demonstrates improved generalization, suggesting that it minimally interferes with the MLLM’s
pretrained capabilities. These results demonstrate that prompt tuning is an effective strategy for
balancing adaptability and generalization in dual-system VLA models.

Table 3: Further comparison of success rates for different training strategies of the high-level MLLM
on the CALVIN and CALVIN-E benchmarks. FT denotes fine-tuning, and PT denotes prompt-tuning.

Benchmark MLLM Integration of MLLM and Policy Policy Task completed in a row (%) ↑ Avg. Len ↑1 2 3 4 5

CALVIN PT w CLIP Loss FT 94 78 62 52 42 3.28
PT w/o CLIP Loss FT 94 77 67 60 47 3.45

CALVIN-E

PT w CLIP Loss FT 81 54 41 27 15 2.09
PT w/o CLIP Loss FT 72 55 40 26 20 2.13
FT w CLIP Loss FT 76 49 30 15 4 1.74

Frozen w CLIP Loss FT 72 37 21 11 5 1.46

5.3 STUDY ON POLICY TRAINING STRATEGY (Q3)

Table 4: Success rate of different training strate-
gies for the low-level policy on CALVIN.

Policy Task completed in a row (%) ↑ Avg. Len ↑1 2 3 4 5

Fine-tuning 96 83 68 58 48 3.53
From-scratch 89 71 49 42 34 2.85

In previous approaches, policy training methods
can be generally divided into two categories: train-
ing from scratch Zhang et al. (2024); Bu et al.
(2024) or fine-tuning a pre-trained model Shentu
et al. (2024). Therefore, understanding the im-
pact of these two paradigms is essential for fair
comparison and reproducible research.

Setup. To ensure a rigorous and fair comparison, we standardize the large model configuration across
all experiments by following the LCB structure. The only variable is the downstream policy: one
variant uses a pre-trained 3DDA policy, while the other is trained from scratch. All other settings
remain fixed.

Analysis. As shown in Table 4, policies that are fine-tuned from a pre-trained model consistently
outperform those trained from scratch, achieving both higher performance and significantly faster
convergence. This demonstrates the clear advantage of leveraging pre-trained policies as initialization,
likely because they provide a strong prior and facilitate more efficient learning. Based on these
findings, we adopt the fine-tuning from a pre-trained policy paradigm as the default configuration
for all subsequent experiments, in order to maximize performance and training efficiency.

5.4 STUDY ON LATENT TRAINING STRATEGY WITH PROJECTOR PRE-ALIGNMENT (Q4)

Building on the above findings, we observe that pairing a pre-trained policy with a prompt-tuned
MLLM yields the best overall performance. However, the connection between the MLLM and
the downstream policy still demands careful design due to the potential semantic gap in their
representations. To investigate this integration, we conduct an ablation study on the role of the
connecting projector.

Setup. To bridge the representational gap between the upstream MLLM and the downstream policy,
we introduce an MLP projector as an intermediate module. We compare two training strategies:
(1) end-to-end training of the entire dual system; and (2) two stage training strategy, where the
weight of MLLM is initially frozen while the projector and policy are trained, followed by end-to-end
fine-tuning of all components. The difference between these strategies lies in whether the MLP
projector is pre-aligned with the downstream policy before end-to-end optimization. Experimental
results for these approaches are summarized in Table 5.

Analysis. Our results show that without pre-alignment, all types of MLLM configurations fail,
regardless of whether they are frozen, fine-tuned, or prompt-tuned. This highlights the critical role of
projector in aligning latent spaces and enabling effective communication between modules. Moreover,
while a two-stage training process is not necessary when both the projector and the downstream

6
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policy are trained from scratch, Table 4 demonstrates that this alternative yields significantly inferior
performance. These findings further emphasize the necessity of pre-training and careful modular
coordination to achieve optimal system behavior.

Table 5: Success rate comparison of different projector training strategies for learning latent represen-
tations on the CALVIN benchmark. Pre-alignment refers to training the projector prior to training the
MLLM. FT denotes fine-tuning, and PT denotes prompt-tuning.

Benchmark Pre-alignment MLLM Integration of MLLM and Policy Policy Task completed in a row (%) ↑
1 2 3 4 5

CALVIN

✓ Frozen w CLIP Loss FT 94 80 64 51 41
✓ FT w CLIP Loss FT 96 83 68 58 48
✓ PT w/o CLIP Loss FT 94 77 67 60 47
× Frozen w CLIP Loss FT 0 0 0 0 0
× FT w CLIP Loss FT 0 0 0 0 0
× PT w/o CLIP Loss FT 0 0 0 0 0

5.5 STUDY ON TESTING STRATEGY OF THE DUAL SYSTEM (Q5)

A notable advantage of dual-system models is their ability to perform asynchronous inference between
System 1 and System 2. To better understand its effect, we conduct extensive experiments analyzing
how asynchronous inference influences model performance and task success rate.

Setup. To assess the impact of asynchronous inference, we vary the number of low-level action
steps executed per high-level MLLM inference step, testing a range from 1 to 60. Our experiments
are conducted on the CALVIN-D benchmark. Notably, the maximum action duration for a single
command in the 3DDA policy is 60 environment steps.

Analysis. As illustrated in Figure 4, the model’s performance remains remarkably stable across all
tested settings for asynchronous step intervals, even under dynamic environmental conditions. This
result is somewhat unexpected, as it suggests that the frequency of high-level updates has limited
influence on overall task success—even as the environment evolves. Intuitively, one would expect
that more frequent high-level updates would enhance adaptability in dynamic scenarios. These
counterintuitive findings imply that the current MLLM exhibits a high degree of insensitivity to
changes in the visual scene.
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Figure 4: Evaluations on hierarchical inference. We evaluate the performance of the dual system
on the CALVIN benchmark, with inference steps set to 1 and 60, respectively.“Steps" refers to the
inference steps of action policy during a single MLLM inference step. The longest environmental
steps of the action policy Ke et al. (2024) are 60, which means MLLM only inference once and
represents the most typical asynchronous scenarios.

Extended Setup. To better understand this phenomenon, we further investigate the semantic content
encoded in the latent vectors produced by the MLLM. We project the latent action embeddings into
a semantic space and measure their similarity to a predefined vocabulary, aiming to interpret what
information the MLLM conveys through these tokens. This analysis is performed in a dynamic
environment where, for instance, a blue block suddenly appears on the left.

Extended Analysis. As shown in Figure 5, two key observations emerge:

1. Similarity to spatial words over time. Despite the robot arm’s movements, the latent embedding
consistently aligns more with “right” than “left,” and other spatial prepositions remain largely constant.
This suggests the action token encodes a static semantic representation, with the persistent “right”
association likely reflecting its broader usage (e.g., “correct”) rather than true spatial grounding.
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2. Top-10 most similar words. The latent embedding mainly reflects the instruction—target object,
spatial relations, and action semantics—with occasional irrelevant words. This indicates limited
visual reasoning, as the high-level token conveys task semantics more than dynamic visual context.
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Input: “A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, 
and polite answers to the human’s questions. USER: <im_start><image><im_end>\nCan you control the robot to 
take the blue block and rotate it to the right? ASSISTANT: <ACT>"

Figure 5: Evaluation on the shortcoming of existing dual systems. From top to bottom, the first row
displays the input to the MLLM. The second row visualizes a special scenario where, at environment
step 3, the blue block is manually shifted to the left. In the third row, we present the top 10 words
that are semantically closest to the latent embedding. The bottom row illustrates the probability
distribution of spatial words associated with the latent embedding.

6 ENHANCING LATENT EMBEDDING LEARNING VIA VISUAL REASONING
AUXILIARY TASKS

As revealed in previous experiments, the information currently transmitted through the latent token is
insufficient for the downstream model to reliably complete complex tasks. To address this challenge,
we introduce a visual reasoning auxiliary task for latent embedding learning. However, most visual
reasoning tasks Shentu et al. (2024) typically require additional annotations, such as sub-task
planning. Although VLM/LLM can generate annotations semi-automatically, this process still incurs
considerable cost. Thus, we propose a simple and intuitive auxiliary visual reasoning task: by
supervising the high-level latent token to predict the target action already included in the dataset, we
explicitly encourage the MLLM to attend to both textual and visual information, thereby leveraging
its inherent visual reasoning capabilities, as illustrated in Figure 6.

Setup. Based on the above conclusions, we employ a two-stage training strategy, where the down-
stream model is fine-tuned from a pre-trained checkpoint, while the upstream large model adopts a
prompt-tuning paradigm. Then, we compare three upstream configurations: a standard MLLM; an
LLM-only variant in which visual input is removed from MLLM and the model purely as a large
language model; and an auxiliary-task variant, where the latent token is additionally connected to a
lightweight action head supervised by an auxiliary loss to predict action. The loss function is defined
as follows:

Llm(<ACT>) = ω1 · ||MLP(f l
ϕ(o

′
t, l

′))− alt||
+ ω2 · ||MLP(fr

ϕ(o
′
t, l

′))− art ||,
(1)

where ω1, ω2 are hyperparameters to balance the effect of each loss item, and MLP represents linear
layer. To reconstruct the sequence of 3D locations and 3D rotations, we apply the L1loss. Details on
the architecture and training are provided in Appendix A.3, Appendix A.4, and Figure 6.
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Analysis. As shown in Table 6, the results show that removing the visual modality and relying
solely on the LLM significantly degrades performance, confirming that the MLLM contributes
beyond language processing and retains meaningful visual-semantic capabilities. Furthermore,
adding auxiliary tasks leads to substantial improvements in success rates. This suggests that the
auxiliary losses encourage the MLLM to encode richer visual information into the latent token,
thereby enhancing the overall effectiveness of the upstream-downstream interface.

Table 6: Success rate comparison with and without auxiliary tasks for learning latent representation
on the CALVIN benchmark. FT denotes fine-tuning, PT denotes prompt-tuning.

Benchmark Type of MLLM Auxiliary Tasks Policy Task completed in a row (%) ↑ Avg. Len ↑1 2 3 4 5

CALVIN
MLLM w/o Vision (PT) × FT 77 48 26 16 10 1.77

MLLM (PT) × FT 94 77 67 60 47 3.45
MLLM (PT) ✓ FT 98 92 76 72 63 4.01

Comparison to State-Of-The-Art. We compare the performance of OpenHelix with other state-
of-the-art works on CALVIN ABC→D setting. Compared to 3DDA Ke et al. (2024), building on
the above insights, OpenHelix improves the average length on CALVIN ABC→D from 3.83 to
4.08. Moreover, it outperforms the previous dual-system state-of-the-art method, RoboDual Bu
et al. (2024), by 11.5%. Furthermore, although our method appears simple, it outperforms those
approaches Tian et al. (2024); Bu et al. (2025) that rely on complex video generation to guide latent
embedding learning, demonstrating the simplicity and efficiency of OpenHelix.

Table 7: Comparison on CALVIN ABC→D. (Environment Step=360)

Method Task completed in a row (%) ↑ Avg. Len. ↑
1 2 3 4 5

RoboFlamingo Li et al. (2024) 82.4 61.9 46.6 33.1 23.5 2.48
RobodualBu et al. (2024) 94.4 82.7 72.1 62.4 54.4 3.66
UniVLABu et al. (2025) 95.5 85.8 75.4 66.9 56.5 3.80
3DDA Ke et al. (2024) 95.7 88.1 78.6 65.7 55.3 3.83
SeerTian et al. (2024) 94.4 87.2 79.9 72.2 64.3 3.98

OpenHelix (Ours) 97.1 91.4 82.8 72.6 64.1 4.08

7 CONCLUSION & LIMITATION

Conclusion. Our study highlights the critical role of dual-system vision-language-action (VLA)
architectures in achieving robust and adaptable robotic control, particularly in complex, dynamic, and
language-guided environments. Through the introduction of the comprehensive DSVLABench suite,
we establish a standardized framework for systematic evaluation and comparison of dual-system
VLA models. Our experimental results demonstrate that prompt tuning preserves the generalization
capabilities of large multimodal language models, while policy fine-tuning from pre-trained models
consistently outperforms training from scratch. Notably, we observe that the frequency of high-level
updates has limited impact during asynchronous inference, with latent embeddings remaining stable
despite dynamic changes. Based on these insights, we propose a simple yet effective dual-system
VLA model, OpenHelix. We believe our findings offer the research community valuable guidelines
for advancing the development, training, and evaluation of dual-system VLA architectures toward
greater generalizability and robustness in robotic applications.

Limitation. This work presents the first exploration of a dual-system VLA model, with our current
focus primarily on training and evaluation strategies. However, as discussed in Appendix A.2, several
important aspects remain to be explored, including the choice of MLLM backbone, downstream policy
architecture, and the design of intermediate representations. Additionally, our current experimental
results are limited to simulation environments. Further exploration in areas such as real-world robot
deployment is a promising direction for future research. Finally, ensuring fast and efficient execution
of downstream policies within the dual-system framework remains an open challenge and will be a
key focus of our future work.

9
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A APPENDIX

A.1 A SUMMARY OF DUAL-SYSTEM VLAS.

We introduce recent Dual-System VLA approaches below, with a comparative analysis of their dis-
tinctive features summarized in Table 8. It is important to note that for asynchronous inference to
occur, System1 must incorporate real-time perception inputs (such as RGB images). According
to this criterion, approaches like π0 Black et al. (2024), GR00TN1 Bjorck et al. (2025), and similar
methodologies cannot be properly classified within the dual-system framework as they lack this
essential characteristic.

LCB Shentu et al. (2024) adopts LLaVA Liu et al. (2023b) as its System 2. Given a high-level task
description and an RGB observation, LLaVA generates a textual action description along with an
<ACT> token. The <ACT> token, derived from the final layer, serves as a high-level latent goal.
System 1 is a pre-trained 3D Diffusion Actor Ke et al. (2024) that takes the RGB image, point cloud,
and <ACT> token as input to generate actions. System 2 is fine-tuned using LoRA Hu et al. (2022),
while System 1 is fine-tuned in a standard manner.

DP-VLA Han et al. (2024) introduces dual-process theory to justify the rationale behind the dual-
system architecture. It presents a more generalizable design choice, where System 2 is not limited
to MLLMs Achiam et al. (2023); Liu et al. (2023b); Radford et al. (2021), but can also be VLA
models Zitkovich et al. (2023); Kim et al. (2024); Team et al. (2024) that are pre-trained on robot
data. In experiments, DP-VLA adopts OpenVLA Kim et al. (2024) as System 2 and uses its encoder
to extract latent representations from language instructions and RGB observations to guide System 1.
System 1 is implemented using a Transformer architecture Mandlekar et al. (2022), which encodes
RGB images and proprioceptive inputs into actions. System 2 is kept frozen, while System 1 is
trained from scratch.

HiRT Zhang et al. (2024) adopts InstructBLIP Ouyang et al. (2022) as System 2 and utilizes the
final-layer representations obtained from encoding both language instructions and RGB observations.
These representations are processed with MAP pooling to produce MLLM latent features that guide
System 1. System 1 uses an EfficientNet-B3 Tan & Le (2019) backbone combined with a MAP
block to encode RGB inputs into actions. System 2 is fine-tuned using LoRA Hu et al. (2022), while
System 1 is trained from scratch.

Robodual Bu et al. (2024) adopts OpenVLA Kim et al. (2024) as System 2 and extracts latent
representations from language instructions and RGB observations. It uses both the task latent derived
from the instruction and the final action latent as guidance signals. System 1 encodes RGB, depth,
tactile, and proprioceptive inputs using a ViT-based encoder Vaswani et al. (2017), and employs a
Perceiver Resampler Shridhar et al. (2023) to distill key features. A DiT model Chi et al. (2023) then
generates actions by conditioning on the distilled features, the task latent, and a noisy action input.
System 2 is fine-tuned using LoRA, while System 1 is trained from scratch.

Table 8: Method comparisons of dual-system VLA models. Here, L, R, P, D, T, and PC represent
different modalities: Language, RGB, Proprioception, Depth, Tactile, and Point Cloud, respectively.
FT denotes fine-tuning. Pretrain and Scratch denote fine-tuning a pre-trained policy head and training
a policy head from scratch, respectively.

Method System 2 Latent Rep. System 1

Model Input Training Policy Head Sensory Training

LCB Shentu et al. (2024) LLaVA-7B L+R Lora FT Lang(<ACT>) 3D Diffusion Actor Ke et al. (2024) R+P+PC Pretrain
DP-VLA Han et al. (2024) OpenVLA-7B L+R Frozen Vis+Lang Transformer R+P Scratch
HiRT Zhang et al. (2024) InstructBLIP-7B L+R Lora FT MaxPooling(Vis+Lang) RT-1 Brohan et al. (2023c) R Scratch
Robodual Bu et al. (2024) OpenVLA-7B L+R Lora FT Action+Lang DiT R+D+T+P Scratch

DexVLA Wen et al. (2025a) Qwen2-VL-2B L+R Lora FT Lang ScaledDP Zhu et al. (2024) R+P Scratch
Helix N/A L+ R + P N/A N/A Transformer R+P N/A

A.2 KEY DESIGN OF DUAL-SYSTEM VLA MODELS

The central challenge lies in designing the architecture of the two systems and structuring the
information flow from the slower, deliberative component (System 2) to the faster, reactive component
(System 1) in a manner that preserves the strengths of the former while effectively guiding the latter
to execute robotic actions. Achieving this balance is crucial for developing robotic systems that
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are both performant and generalizable. As illustrated in Figure 1, addressing this objective requires
solving several core design issues:

1. MLLM Selection. The requirements for MLLMs vary across different VLA scenarios, and
selecting a suitable foundation model is critical for achieving robust performance in robotic tasks.
For example, the foundation model used in Flower Reuss et al. (2025) demonstrates strong spatial
awareness and low-level visual capabilities, enabling it to achieve state-of-the-art performance across a
range of benchmarks. In contrast, MiniVLA Belkhale & Sadigh (2024) adopts Qwen-VL 0.25B Wang
et al. (2024) as its base model to reduce inference costs and computational overhead. These examples
illustrate the growing need to identify MLLMs that are both lightweight and sufficiently capable for
robotic applications, especially as the landscape of vision-language models evolves rapidly.

Another open question is whether pre-training MLLMs on robotics-specific datasets is necessary.
Such pre-training not only narrows the domain gap but also improves the model’s robustness in
following diverse language instructions, as evidenced by experiments in Robodual Bu et al. (2024).
Determining the trade-off between general-purpose and robotics-specific MLLM pretraining remains
an important direction for future work.

2. Policy Selection. The choice of small models is relatively less controversial, with the current
general consensus being that models based on DiT structure and Flow Matching structure can both
meet current needs. However, with the introduction of new policy models such as CARP Gong
et al. (2024), Dense Policy Su et al. (2025), and other new architectures, downstream small models
may also see new designs. Additionally, like Robodual Bu et al. (2024), whether downstream small
models need more modal information, and which modal information is essential for system1, is also
a potential question.

3. Latent Feature Representation Selection. The selection of latent feature representations is one
of the most complex and underexplored aspects of dual-system VLA models. Existing methods
vary widely in their design choices, and addressing this gap requires a comprehensive view that
includes not only dual-system architectures but also insights from single-system approaches Black
et al. (2024); Bjorck et al. (2025); Li et al. (2024). For instance, DP-VLA Han et al. (2024) directly
uses the final-layer hidden embedding of the MLLM as the latent representation. In contrast, GR00T-
N1 Bjorck et al. (2025) selects hidden states from intermediate layers, motivated by the hypothesis
that mid-level features may contain richer visual information and enable more efficient inference.
Further, Roboflamingo Li et al. (2024) and HiRT Zhang et al. (2024) aggregate final-layer language
and visual features using max pooling as inputs to downstream modules.

Beyond directly extracting hidden states, some methods introduce learnable latent tokens. For
example, LCB Shentu et al. (2024) introduces a dedicated <ACT> token that is jointly optimized with
the rest of the model to facilitate upstream–downstream communication. This strategy has shown
promising results in improving alignment. Robodual Bu et al. (2024) further extends this idea by
incorporating multiple <ACT> tokens along with final-layer language features to enrich the latent
space. Outside the robotics domain, more sophisticated latent selection strategies have been proposed.
MetaQuery Pan et al. (2025) and LEGO Lai et al. (2024), for instance, use structured querying or
compositional mechanisms to dynamically extract task-relevant features from pretrained backbones.
In summary, the choice of latent representations plays a pivotal role in enabling effective dual-system
coordination. Identifying representations that are both semantically expressive and compatible with
downstream policy learning remains an important direction for future research.

4. MLLM Training Strategy. A central question in training MLLMs is whether it is possible
to preserve their inherent generalization capabilities while achieving effective integration with
downstream tasks. Existing approaches primarily include fully frozen models or end-to-end fine-
tuning. However, identifying alternative fine-tuning strategies that better balance generalization and
task-specific adaptation remains an important direction for future research.

5. Policy Training Strategy. An important consideration in training the policy is how to reduce
overall training cost. Leveraging a pre-trained policy and fine-tuning it for the target task can
significantly reduce training time and resource consumption. In contrast, training the policy from
scratch may lead to longer convergence times and increased instability, particularly due to the potential
mismatch in optimization objectives between upstream and downstream components. Whether such
objectives hinder convergence remains an open question and warrants further investigation.
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6. Dual-System Integration (Latent Training) Strategy. A core challenge in dual-system VLA
models is how to effectively embed latent information from the high-level MLLM (System 2) as
conditioning input into the downstream low-level policy (System 1). In LCB Shentu et al. (2024),
the authors proposed using CLIP loss to constrain the upstream latent features to remain close
to the original CLIP text embedding, thereby facilitating the connection between upstream and
downstream components. However, this design inherently limits the model’s generalization ability,
as it forces the latent representations to align with training-specific embeddings and reduces the
semantic flexibility of the MLLM. Furthermore, due to inevitable dimensional mismatches between
upstream and downstream components when introducing new embeddings, it is common to insert a
projector module between them. The training of this projector requires careful design. In particular,
when the downstream policy is pre-trained, it is important to first align the projector without updating
the MLLM. If both components are unfrozen and trained simultaneously, training becomes unstable
and often fails to converge. These observations indicate that the integration strategy, especially the
design and training procedure of the projector, plays a critical role in enabling stable and effective
communication between the two systems.

7. Dual-System Asynchronous Strategy. Lastly, there are asynchronous strategies for dual-system
models. LCB Shentu et al. (2024), HiRT Zhang et al. (2024), and Robodual Bu et al. (2024) employ
different asynchronous approaches, with LCB Shentu et al. (2024) being the most naive, using
synchronous training but asynchronous testing. Theoretically, differences in inference frequency
between upstream and downstream components could affect final performance. However, this is not
entirely accurate - if the upstream features being provided aren’t effective to begin with, perhaps
asynchronous inference between upper and lower layers is merely a pseudo-requirement. Therefore,
more experiments are needed to verify this.

In this work, we standardize experimental conditions 1, 2, 3, and 7 to ensure consistency, and focus
our evaluation primarily on conditions 4, 5, and 6. These conditions involve widely applicable
techniques that are largely independent of the specific choices made in conditions 1, 2, 3, and 7.
Through this controlled comparison, we aim to offer insights that may inspire and guide future
research in this domain.

A.3 ARCHITECTURE DETAILS

Our system comprises two main components: a pre-trained MLLM fϕ and a pre-trained policy πθ,
with parameters ϕ and θ, respectively. The MLLM includes a text-only large language model and a
vision encoder, which projects images into the embedding space of the language model, allowing
for a multi-modal understanding of textual and visual inputs. The pre-trained policy consists of a
vision encoder and transformer-based diffusion model. Using multiple cross-attention layers, the
diffusion model incorporates a lot of conditioning information, such as 3D scene representations,
proprioception information, and condition/instruction tokens from the high-level model. In this work,
we leverage LLaVA [27] as the high-level MLLM and 3D Diffuser Actor as the low-level pre-trained
diffusion policy. Notably, we use a linear layer to replace the 3D Diffuser Actor’s text encoder,
aligning the dimension of the latent embedding output by the large model with the input dimension
of the low-level policy.

A.4 TRAINING

Prompt Tuning. In order to avoid the degradation of MLLM, we introduce one learnable token
<ACT> ∈ Rd at end of language instruction l. The new instruction l′ is defined as l′ = {l,<ACT>}.
During training, all parameters of MLLM are frozen; we only update the embedding of learnable
token <ACT>.

Multimodal Reasoning Learning. As we discussed in section 5.5, we know that these previous
methods do not fully utilize MLLM’s visual reasoning capability. Specifically, they align the output
of the large MLLM model with the output from the text encoder of CLIP. Using purely textual
information to supervise the fine-tuning of the MLLM can lead to the degradation of multimodal
reasoning capability. Therefore, we designed an auxiliary task to leverage the multimodal reasoning
capability of the MLLM fully. This task is very simple and requires no additional data preparation
process. The output embedding z<ACT>t = fϕ(o

′
t, l

′) from the learnable prompt token is passed
through linear layers to predict the action trajectories τt and gripper actions agt . Through supervised
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Figure 6: Detailed framework. (a) The high-level MLLM (left) takes a third-person RGB image,
task instruction, and a learnable token as input. After processing through the large language model,
we extract the feature embedding of this token from the final layer as the latent goal for the low-level
policy. To fully utilize the MLLM’s multimodal reasoning capability, we propose an auxiliary task
that uses MLPs to predict the action (including position, rotation, and open/close state) based on this
feature embedding, ensuring it captures both visual and textual information. (b) The low-level policy
(right) receives the latent goal from the high-level MLLM, combines it with 3D scene tokens and
proprioception tokens, and iteratively predicts action noise to generate an accurate action trajectory
and gripper state. Notably, our approach keeps all parameters of the MLLM frozen and only fine-
tunes the learnable prompt to adjust the MLLM’s output, which significantly reduces training costs
compared to previous methods.

training on this task, we ensure that the large model has to utilize visual input information and that
the latent embedding contains a blend of multimodal information. The loss function is defined as
follows:

Llm(<ACT>) = ω1 · ||MLP(f l
ϕ(o

′
t, l

′))− alt||
+ ω2 · ||MLP(fr

ϕ(o
′
t, l

′))− art ||,
(2)

where ω1, ω2 are hyperparameters to balance the effect of each loss item, and MLP represents linear
layer. To reconstruct the sequence of 3D locations and 3D rotations, we apply the L1loss.

Diffusion Learning. Following the previous diffusion-based approach Chi et al. (2023); Ke et al.
(2024); Ze et al. (2024), we train our model using the action denoising objective. During training,
we randomly sample a time step t and a diffusion step i, adding noise ϵ = (ϵl, ϵr) to a ground-truth
trajectory τ0t . The objective is defined as:

Lpolicy(θ,<ACT>) = BCE(πg
θ (ot, z

<ACT>
t , ct, τ

i
t , i), a

g
t:t+T )

+ ω3 · ||ϵlθ(ot, z<ACT>t , ct, τ
i
t , i)− ϵlt:t+T ||

+ ω4 · ||ϵrθ(ot, z<ACT>t , ct, τ
i
t , i)− ϵrt:t+T ||,

(3)

where ω3, ω4 are also hyperparameters to balance loss items. Please refer to [1] for the details of the
loss function.

Two stage training. We adopt a two-stage training approach to train our proposed dual system. In
the first stage, to initially align the embedding produced by the MLLM with the feature space of the
pre-trained policy, we freeze the parameters of the large model and the low-level policy, training only
the prompt and projection layers. In the second stage, we keep the large model frozen and unfreeze
the low-level policy, fine-tuning it together with the prompt and projection. The objectives in both
stages remain unchanged. The only difference between the two stages is whether the low-level policy
is frozen. In summary, our loss function includes two components and can be defined as follows:

Ltotal = Llm + Lpolicy (4)
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Table 9: Results on CALVIN ABC-D: We report both success rates and average task completion
length (out of 5 tasks) per evaluation sequence. MLLM (PT) denotes our proposed prompt tuning
method for MLLM training. Policy(P) indicates loading from a pretrained policy model. Asy(10)
represents inference with a 10-step time delay. AUX denotes the additionally introduced auxiliary
tasks. EP = 360 indicates that each task is allowed up to 360 environment steps for execution.

Type Method Task completed in a row (%) ↑ Avg. Len. ↑1 2 3 4 5

CALVIN

Only Policy 92.2 78.7 63.9 51.2 41.2 3.27
MLLM (PT) + Policy(P) 92.2 79.2 65.0 52.9 40.9 3.30
MLLM (PT) + AUX + Policy(P) + Asy(10) 93.3 81.8 67.9 56.6 46.0 3.45
MLLM (PT) + AUX + Policy(P) + Asy(60) 92.8 79.7 67.5 57.3 46.9 3.44
MLLM (PT) + AUX + Policy(P) + Asy(60) (EP=360) 97.1 91.4 82.8 72.6 64.1 4.08

CALVIN-E

Only Policy 65.2 39.1 20.3 11.7 6.1 1.42
MLLM (PT) + Policy(P) 71.3 44.9 28.4 17.5 10.3 1.72
MLLM (PT) + AUX + Policy(P) + Asy(10) 78.9 57.1 40.2 29.5 20.2 2.26
MLLM (PT) + AUX + Policy(P) + Asy(60) 78.1 56.5 38.9 27.0 19.5 2.20
MLLM (PT) + AUX + Policy(P) + Asy(60) (EP=360) 84.3 66.8 49.4 35.2 24.3 2.60

A.5 RESULTS

Based on the results presented in Table 9, the following conclusions—consistent with those from the
previous empirical study—can be drawn:

1. Importance of Prompt Tuning: The integration of upper and lower layers via prompt tuning
has been shown to substantially enhance performance, especially in language generalization
scenarios.

2. Effectiveness of Auxiliary Tasks: The inclusion of additional auxiliary tasks signifi-
cantly enhances both standard task performance and generalization capability, primarily by
strengthening the model’s action proficiency.

3. Minimal Impact of Asynchronous Inference: Asynchronous inference has a negligible
effect on the inference performance of the general task model. Even when asynchronous in-
ference is performed only once (Asy (60)), the final performance remains largely unchanged.
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