
Studying Exploration in RL: An Optimal Transport
Analysis of Occupancy Measure Trajectories

Anonymous Author(s)
Affiliation
Address
email

Abstract

The rising successes of RL are propelled by combining smart algorithmic strategies1

and deep architectures to optimize the distribution of returns and visitations over the2

state-action space. A quantitative framework to compare the learning processes of3

these eclectic RL algorithms is currently absent but desired in practice. We address4

this gap by representing the learning process of an RL algorithm as a sequence of5

policies generated during training, and then studying the policy trajectory induced6

in the manifold of state-action occupancy measures. Using an optimal transport-7

based metric, we measure the length of the paths induced by the policy sequence8

yielded by an RL algorithm between an initial policy and a final optimal policy.9

Hence, we first define the Effort of Sequential Learning (ESL). ESL quantifies10

the relative distance that an RL algorithm travels compared to the shortest path11

from the initial to the optimal policy. Furthermore, we connect the dynamics of12

policies in the occupancy measure space and regret (another metric to understand13

the suboptimality of an RL algorithm), by defining the Optimal Movement Ratio14

(OMR). OMR assesses the fraction of movements in the occupancy measure space15

that effectively reduce an analogue of regret. Finally, we derive approximation16

guarantees to estimate ESL and OMR with a finite number of samples and without17

access to an optimal policy. Through empirical analyses across various environ-18

ments and algorithms, we demonstrate that ESL and OMR provide insights into19

the exploration processes of RL algorithms and the hardness of different tasks in20

discrete and continuous MDPs.21

1 Introduction22

In recent years, significant advancements in Reinforcement Learning (RL) have been achieved23

in developing exploration techniques that improve learning [10, 14, 20] along with new learning24

methods [46, 59, 49]. With growing computational resources, these techniques have led to various25

successful applications of RL, such as playing games up to human proficiency [72, 34], controlling26

robots [33, 39], tuning databases and computer systems [80, 9], etc. However, there remains a lack of27

consensus over approaches that can quantitatively compare these exploratory processes across RL28

algorithms and tasks [71, 6, 42]. This is attributed to some methods being algorithm-specific [78],29

while others provide theoretical guarantees for very specific settings [45, 2]. Thus, comparing the30

exploratory processes of these eclectic algorithms across the multi-directional space of RL algorithm31

design emerges as a natural question. However, the present literature lacks a metric to compare them32

except regret, which is often hard to estimate [69, 68].33

This paper aims to address this gap based on two key observations. First, we observe from the linear34

programming formulation of RL that solving the value maximisation problem is equivalent to finding35

an optimal occupancy measure [77, 60, 37]. Occupancy measure is the distribution of state-action pair36

Submitted to the 18th European Workshop on Reinforcement Learning (EWRL 2025). Do not distribute.

visits induced by a policy [4, 43]. Under mild assumptions, a policy maps uniquely to an occupancy37

measure. Second, we observe that any RL algorithm learns by sequentially updating policies starting38

from an initial policy to reach an optimal policy. The search for an optimal policy is influenced by39

the exploration-exploitation strategy and functional approximators, both of which impact the overall40

performance of the agent by determining the quality of experiences from which it learns [84, 42].41

Hereby, we term collectively the learning strategy and the exploration-exploitation interplay as the42

exploratory process.43

Contributions. 1. A Framework. Motivated by our observations, we abstract any RL algorithm44

as a trajectory of occupancy measures induced by a sequence of policies between an initial and a45

final (optimal) policy. The occupancy measure of a policy given an environment corresponds to46

the data-generating distribution of state-actions. Thus, we can quantify the effort of each policy47

update, i.e. the effort to shift the state-action data distributions, as the transportation distance between48

their occupancy measures. The total effort of learning by the algorithm can be measured as the49

total distance covered by its occupancy measure trajectory. We provide a mathematical basis for50

this quantification by proving that the space of occupancy measures is a differentiable manifold for51

smoothly parameterized policies (Section 3). Hence, we can compute the length of the occupancy52

measure trajectory on this manifold using Wasserestein distance as the metric [79].53

2. Effort of Sequential Learning. In contrast to RL, if we knew the optimal policy we could update54

our initial policy directly via supervised or imitation learning. Effort of this learning is represented by55

a direct, shortest (geodesic) path from initial to optimal policy on the occupancy measure manifold.56

To quantify the cost of the exploratory process to learn the environment, we define the Effort of57

Sequential Learning (ESL) as the ratio of the (indirect) path traversed by an RL algorithm in the58

occupancy measure space to the direct distance between the initial and optimal policy (Section 3.1).59

Lower ESL implies more efficient exploratory process.60

3. Efforts to learn that lead to Regret-analogue minimisation. Regret is a widely used optimality61

measure for reward-maximizing RL algorithms [35]. It measures the total deviation in the value62

functions achieved by a sequence of policies learned by an RL algorithm with respect to the optimal63

algorithm that always uses the optimal policy [73]. We show that regret is related to the sum of64

distances between the optimal policy and each policy in the sequence learned by the RL algorithm, in65

the occupancy measure space. We can define an analogue of instantaneous regret (at any one step66

during learning rather than cumulative), in the occupancy measure space, as the geodesic distance67

between the occupancy measure of the policy at this step in the learning sequence, and the optimal68

one. We find that not all policy updates lead to a reduction in this analogue of immediate regret,69

and thus define another index Optimal Movement Ratio (OMR) that measures the fraction that do70

(Section 3.2).71

4. Computational and Numerical Insights. We prove sample complexity guarantees to approximate72

ESL and OMR in practice as we do not have access to the occupancy measures but collection of73

rollouts from the corresponding policies (Section 4). We show the relation of empirical OMR and74

ESL to the true ones if the optimal policy is never reached by an algorithm. We conduct experiments75

on multiple environments, both discrete and continuous, with sparse and dense rewards, comparing76

state-of-the-art algorithms. We observe that by visualizing aspects of the path traversed (and by77

comparing ESL and OMR), we are able to compare and provide insights into their exploratory78

processes and the impact of task hardness on them (Section 5).79

2 Preliminaries80

Markov Decision Processes. Consider an agent interacting with an environment in discrete timesteps.81

At each timestep t ∈ N, the agent observes a state st, executes an action at, and receives a scalar82

reward R(st, at). The behaviour of the agent is defined by a policy π(at|st), which maps the83

observed states to actions. The environment is modelled as a Markov Decision Process (MDP) M84

with a state space S, action space A, transition dynamics T : S × A → S, and reward function85

R : S ×A → R. During task execution, the agent issues actions in response to visited states, and86

hence a sequence of states and actions ht = (s0, a0, s1, a1, ..., st−1, at−1, st), here called a rollout,87

is observed. In infinite-horizon settings, the state value function for a given policy π is the expected88

discounted cumulative reward over time Vπ(s) ≜ Eπ [
∑∞

t=0 γ
tR(st, at) | s0 = s], where γ ∈ [0, 1)89

2

is the discount rate. The goal is to learn a policy that maximises the objective Jπ
µ ≜ Es∼µ[Vπ(s)],90

where µ(s) is the initial state distribution.91

Occupancy Measure. The state-action occupancy measure is a distribution over the S ×A space92

that represents the discounted frequency of visits to each state-action pair when executing a policy93

π in the environment [77]. Formally, the occupancy measure of π is vπ(s, a) ≜ ρ
∑∞

t=0 γ
tP(st =94

s, at = a | π, µ), where ρ = 1− γ is the normalizing factor.95

Stationary Markovian policies allow a bijective correspondence with their state-action occupancy96

measures [26]. We express the objective Jπ
µ in terms of the occupancy measure as97

Jπ
µ =

1

ρ
E(s,a)∼vπ

[
R̄(s, a)

]
, (1)

where R̄(s, a) is the expected immediate reward for the state-action pair (s, a).98

Wasserstein Distance. Let µ, ν ∈ P(X) be probability measures on a complete and separable metric99

(Polish) space (X , dX). The p-Wasserstein distance between µ and ν is [79]100

Wp(µ, ν) ≜

(
min

π∈Π(µ,ν)

∫
X×X

c(x, x′) dπ(x, x′)

)1/p

, (2)

where the cost function is given by the metric as c(x, x′) = (dX (x, x′))p for some p ≥ 1. Π(µ, ν) is101

a set of all admissible transport plans between µ and ν, i.e. probability measures on X × X space102

with marginals µ and ν. Wasserstein distances induce geodesic in well-behaved spaces of probability103

measures. For more discussion, we refer to Appendix A.9. For this work, we consider 1-Wasserstein104

distance, i.e. p = 1, though the results are generalisable to p > 1.105

MDPs with Lipschitz Rewards. Following [65] and [38], we assume an MDP with LR-106

Lipschitz rewards (ref. Appendix A.1 for elaboration) that satisfies |R̄(s, a) − R̄(s′, a′)| ≤107

LRdSA((s, a), (s
′, a′)) for all s, s′ ∈ S and a, a′ ∈ A. Here, dSA((s, a), (s

′, a′)) = dS((s, s
′)) +108

dA((a, a
′)) is the metric defined on the joint state-action space S × A. This is a weaker condition109

than assuming a completely Lipschitz MDP. [65] showed that for any pair of stationary policies π110

and π′, the absolute difference between their corresponding objectives is111 ∣∣∣Jπ
µ − Jπ′

µ

∣∣∣ ≤ LR

ρ
W1(vπ, vπ′) , (3)

where W1(vπ, vπ′) is the 1-Wasserstein distance between the occupancy measures of the policies112

(ref. Appendix A.2 for details).113

3 RL Algorithms as Trajectories of Occupancy Measures114

The exploration process (i.e. the exploration-exploitation interplay and learning strategy) of an115

RL algorithm influences how the policy model updates its policies [36, 76]. During training, a116

policy trajectory, i.e. sequence of policies (π0, π1, . . . , πN), is generated over policy updates due117

to the exploratory process. We assume these policies belong to a set of stationary Markov policies118

parameterized by θ ∈ Θ. For policies in this set πθ ∈ ΓΘ, we define the space of occupancy measures119

corresponding to ΓΘ as M = {vπθ
(s, a) | πθ ∈ ΓΘ, θ ∈ Θ}.120

Proposition 1 (Properties of M). If the policy π has a smooth parameterization θ, then the space of121

occupancy measures M is a differentiable manifold. (Proof in Appendix A.3)122

We can endow the manifold M with a 1-Wasserstein metric W1 to the compute the length of123

any path on M since (M,W1) is a geodesic space (ref. Appendix A.9 for details). The path124

distance between occupancy measures corresponding to policies parameterised by θ, θ + dθ ∈ M is125

ds = W1(vπθ
, vπθ+dθ

). Additionally, in imitation learning, the 1-Wasserstein distance between the126

occupancy measures of the learner and expert can be used as a minimisable loss function to learn127

the expert’s policy [85]. Hence, the 1-Wasserstein distance reflects the effort required to achieve this128

imitation learning. Similarly, we propose the following quantification of the effort to update from one129

policy to another.130

Definition 1 (Effort of Learning). We define the 1-Wasserstein metric between occupancy measures131

of two policies π and π′, i.e. W1(vπ, vπ′), as the effort required to learn or update from one policy to132

the other.133

3

When a learning process causes an update between occupancy measures in M, we attribute the134

resulting update effort to the learning process and refer to it as the effort of learning. In a learning135

process, first the initial policy π0 is obtained typically by randomly sampling the model parameters,136

then these parameters θ undergo updates until a predefined convergence criterion is satisfied, yielding137

the final optimal policy πN = π∗. Since each policy has a corresponding occupancy measure, this138

process yields a sequence of points on M, which can be connected by geodesics between successive139

points, producing a curve. The length of the curve is computed by the summation of the finite140

geodesic distances between consecutive policies along it [53],141

C ≜
N−1∑
k=0

W1(vπθk
, vπθk+1

) , (4)

where θ0 and θN are respectively the initial and final parameter values before and after learning.142

3.1 Effort of Sequential Learning (ESL)143

As we saw above, RL generates a trajectory in the occupancy measure manifold M, whose length144

is given by Equation (4). Compared to the long trajectory of sequential policies generated by the145

exploratory process, the geodesic L is the ideal shortest path to the optimal policy πN = π∗ from146

π0, whose length is L = W1(vπ0
, vπN

). This path would be taken by an imitation-learning oracle147

algorithm that knows π∗. Both these paths are schematically depicted in Figure 1.148

Definition 2 (Effort of Sequential Learning (ESL)). We define the effort of sequential learning149

incurred by a trajectory of the exploratory process of an RL algorithm, relative to the oracle that150

knows π∗(= πN) as,151

η ≜

∑N−1
k=0 W1(vπk

, vπk+1
)

W1(vπ0 , vπN
)

(5)

Due to the stochasticity of the exploratory process, we introduce an expectation to obtain η̄ =152

Eπ0,µ [η]. We refer to η̄ as the effort of sequential learning (ESL).153

η̄ ≥ 1 and a larger η̄ corresponds to a less efficient exploratory process of the RL algorithm. Hence,154

an RL algorithm with η̄ ≈ 1 closely mimics the oracle and has an efficient exploratory process.155

3.2 Optimal Movement Ratio (OMR)156

Regret measures the total deviation in value functions incurred by a sequence of policies learned by157

an RL algorithm with respect to the optimal algorithm that always uses the optimal policy [73]. We158

show that regret is connected to the sum of distances from each policy (in the sequence learned by an159

RL algorithm) to the optimal policy in the occupancy measure space.160

Proposition 2 (Regret and Occupancy Measures). Given an MDP with LR-Lipschitz rewards, we161

obtain Regret ≜
∑N

k=1

(
Jπ∗

µ − Jπk
µ

)
≤ LR

ρ

∑N
k=1 W1(vπk

, vπ∗). (Proof in Appendix A.4)162

We refer to W1(vπk
, vπ∗) as the distance-to-optimal, and analogously use it as the expected immediate163

regret in the occupancy measure space. Furthermore, we refer to W1(vπk
, vπk+1

) as stepwise-distance.164

Interestingly, during training, the distance-to-optimal and stepwise-distance share a relationship165

illustrated in Figure 2. From Figure 2, we observe that if the change in distance-to-optimal, δk ≜166

W1(vπk
, vπ∗)−W1(vπk+1

, vπ∗) > 0, it indicates that the agent got closer to the optimal. We define167

the set K+ as containing indices k for which δk > 0, while K− contains the rest.168

Definition 3 (Optimal Movement Ratio (OMR)). We define the proportion of policy transitions that169

effectively reduce the distance-to-optimal, in a learning trajectory, as170

κ ≜

∑
k∈K+ W1(vπk

, vπk+1
)∑N−1

k=0 W1(vπk
, vπk+1

)
. (6)

Due to the stochasticity of the exploratory process, we introduce an expectation to obtain κ̄ =171

Eπ0,µ [κ]. We refer to κ̄ as the optimal movement ratio (OMR).172

Note that κ̄ ∈ [0, 1], and κ̄ → 1 indicates that nearly all the policy updates reduce the distance-to-173

optimal, thus showing high efficiency. κ̄ → 0 implies low efficiency, since only a small fraction of174

the policy updates contribute towards the reduction of the distance-to-optimal.175

4

Figure 1: Schematic of the policy trajectory C in
the space of occupancy measures M during RL
training (solid line) vs the geodesic L (shortest
path, dashed line) between the initial and final
points (i.e. π0 and πN = π∗).

Figure 2: Schematic of how distance-to-optimal
(denoted by xk) and stepwise-distance (denoted
by yk) on the occupancy measure space describe
exploratory process of an RL algorithm during
training.

The definitions of ESL and OMR assume that the policy at the end of learning is optimal. In176

Section 4.2, we define a version of ESL that is useful for the cases where an optimal policy is not177

reached. While this is not an empirical proxy, we show in Section 5.3 and Appendix B.5 that it is178

useful when the final policy is closer to optimal than the initial one. While regret also depends on an179

optimal policy, it is related to cumulative rewards, whereas our metrics do not explicitly depend on180

rewards. Still, we show a bound with regret in Proposition 2, and further discuss the possibility of181

extending our metrics to be reward-aware in Section 6. We show empirically that our metrics are182

complementary to regret in Section 5.2, and discuss other connections with regret in Section 7.183

3.3 Extension to Finite-Horizon Episodic Setting184

In the episodic finite-horizon MDP formulation of RL, in short Episodic RL [61, 7, 62], the agent185

interacts with the environment in multiple episodes of H steps. An episode starts by observing186

state s1, then for t = 1, . . . ,H , the agent draws action at from a (possibly time-dependent) pol-187

icy πt(· | st), observes the reward r(st, at), and transits to a state st+1 ∼ T (· | st, at). Here,188

the value function and the state-action value functions at step h ∈ [H] are respectively defined189

as V π
h (s) ≜ Eπ

[∑H
t=h r(st, at) | sh = s

]
and Qπ

h(s, a) ≜ Eπ

[∑H
t=h r(st, at) | sh = s, ah = a

]
.190

Following [4], we can define a finite-horizon version of occupancy measures as191

vHπ (s, a) ≜
1

H

H∑
t=1

P(st = s, at = a | π, µ). (7)

Following [77], work by [37] shows that vHπ can be used in the linear programming formulation for192

solving MDPs and satisfies the Bellman Flow Constraints (in Equation 19 from Appendix A.3). We193

prove that under some assumptions, the finite-horizon occupancy measures also construct a manifold,194

referred to as MH .195

Proposition 3 (Properties of MH). If the policy π has a smooth parametrization θ, then the space of196

finite-horizon occupancy measures MH is a differentiable manifold. (Proof in Appendix A.5)197

This allows us to similarly define a Wasserstein metric on this manifold, which in turn, allows us to198

compute ESL and OMR for evaluating different RL algorithms.199

4 Computational Challenges and Solutions200

Similar to regret, our method requires knowing the optimal policy. This is because the efficiency and201

effectiveness of exploratory processes of RL algorithms are highly coupled with their ability to reach202

optimal policy. ESL and OMR depend on the policies being stationary and Markovian.203

4.1 Policy datasets for computing occupancy measures204

We consider approximations of occupancy measures using datasets assumed to be drawn from these205

measures. We estimate the Wasserstein distance between the occupancy measures using a method206

5

introduced by [5] known as the optimal transport dataset distance (OTDD). OTDD uses datasets207

to estimate the Wasserstein distance between the underlying distributions. See Appendix A.6 for a208

detailed account of OTDD.209

Definition 4 (Policy dataset). A dataset of a policy Dπ is a set of state-action pairs drawn from the210

policy’s occupancy measure, i.e. Dπ = {(s(i), a(i))}mi=1 ∼ vπ. These can be constituted from the211

rollouts generated by the policy during task execution.212

We know from imitation learning that if we are given Dπ, generated by an expert policy, we can213

train a policy model on it in a supervised manner via behaviour cloning [32]. Thus, knowing Dπ can214

allow converting an RL task into a Supervised Learning (SL) task. Consider a scenario when we have215

access to a sequence of datasets (Dπ0
, . . . ,DπN

), each corresponding to policy πt for t ≥ 0. If we216

train (in a supervised manner) a policy model sequentially on these datasets, the model will undergo a217

similar policy evolution as the RL algorithm that generated the policy trajectory (πt)t≥0. This allows218

us to conceptualise learning in RL as a sequence of SL tasks with sequential transfer learning across219

the datasets (Dπ0 , . . . ,DπN
). We employ OTDD to estimate W1(vπk

, vπk+1
) using these datasets,220

i.e. dOT (Dπk
,Dπk+1

) ≈ W1(vπk
, vπk+1

), based on Proposition 4.221

Proposition 4 (Upper Bound on Estimation Error). Let an RL algorithm yield a sequence of222

policies π0, . . . , πN while training. Now, we construct N datasets Dπ0
, . . . ,DπN

, each consist-223

ing of M rollouts of the corresponding policies. Then, we can use these datasets to approxi-224

mate
∑N−1

k=0 W1(vππk
, vππk+1

) by
∑N−1

k=0 dOT (Dπk
,Dπk+1

) with an expected error upper bound225

2NE2√
M

+ NγT+1diam(SA). Here, T is the total number of steps per episode, diam(SA) is the226

diameter of the state-action space, and E2 is a positive-valued and polylogarithmic function of S and227

A. For finite horizon case, we can further reduce the error bound to 2NE2√
M

.228

Proof of Proposition 4 is in Appendix A.7. The results support that ESL and OMR can be estimated229

as230

η̄ = Eπ0,µ

[∑N−1
k=0 dOT (Dπk

,Dπk+1
)

dOT (Dπ0
,DπN

)

]
, and κ̄ = Eπ0,µ

[∑
k∈K+ dOT (Dπk

,Dπk+1
)∑N−1

k=0 dOT (Dπk
,Dπk+1

)

]
. (8)

4.2 When an optimal policy is not reached231

So far we have assumed that the algorithms converge at the optimal policy, i.e. πN = π∗. However,232

this is not always true. We consider a scenario when πN ̸= π∗, and define233

ηsub =

∑N−1
k=0 W1(vππk

, vππk+1
)

W1(vπ0
, vπN

)
, πN ̸= π∗ . (9)

Proposition 5. Given N ≥ 2 and π0 ̸= πN ̸= π∗, we obtain234

η − ηsub
η

≤ 2W1(vπN
, vπ∗)

W1(vπ0
, vπN

)
. (10)

This is true due to the triangle inequalities: W1(vπ0 , vπ∗) + W1(vπN
, vπ∗) ≥ W1(vπ0 , vπN

) and235

W1(vπN−1
, vπN

)+W1(vπN
, vπ∗) ≥ W1(vπN−1

, vπ∗). The proof is provided in Appendix A.8. Note236

that Equation (10) shows that when πN is close to π∗, then ηsub is a good approximation of η, and237

thus a good quantifier to determine the efficiency of the algorithm’s exploratory process. However,238

W1(vπN
, vπ∗) is dependent on the RL algorithm and hence a bound cannot be provided here. Still,239

ηsub might be useful when πN is closer to π∗ than π0. A fallible proxy for this could be when the240

performance of πN is better than that of π0, i.e. JπN
µ > Jπ0

µ . We show the usefulness of ηsub in our241

experimental results in Section 5.3 and Appendix B.5 for simple environments. It remains to be seen242

how useful ηsub is in complex environments.243

5 Experimental Evaluation244

In this section, we evaluate the proposed methods in the 2D-Gridworld and Mountain Car [58, 13]245

environments, to analyze our methods in discrete and continuous state-action spaces respectively.246

The 2D-Gridworld environment is of size 5×5 with actions: {up, right, down, left}. In the gridworld,247

6

we perform experiments on 3 settings namely:- A) deterministic with dense rewards, B) deterministic248

with sparse rewards, and C) stochastic with dense rewards. Further details about these settings are249

provided in Appendix B.1. The Mountain Car environment, in our experimentation, is a deterministic250

MDP with dense rewards that consists of both continuous states and actions - described in detail251

in [13]. Note that we used L1 distance and L2 distance as metrics (dX) for the state spaces of the252

2D-Gridworld and Mountain Car, respectively, which underpin the W1.253

Our experiments aim to address the following questions:254

1. What information can the visualization of the policy evolution during RL training provide about255

the exploratory process of the algorithm?256

2. How do ESL and OMR allow us to analyze the exploratory processes of RL algorithms?257

3. Does ESL scale proportionally with task difficulty?258

Summary of Results. In Section 5.1, we demonstrate that visualizing the evolution of distance-to-259

optimal and stepwise-distance of different RL algorithms during training reveals: 1) whether the260

agent is stuck in suboptimal policies, 2) the coverage area of the exploration processes, and 3) their261

varied characteristics over time. We further compare ESL and OMR of different algorithms on a few262

environments in Section 5.2. Finally, we show in Section 5.4 that ESL scales proportionally with task263

difficulty, and thus, reflects the effects of task difficulty on exploration and learning.264

5.1 Exploration Trajectories of RL Algorithms265

(I) DISCRETE MDP. To understand the utility of visualizing exploratory processes, we use the266

following RL algorithms: 1) Tabular Q-learning with a) ϵ-greedy (ϵ = 0) and b) ϵ-greedy (ϵ = 1)267

strategies; 2) UCRL2 [35]; 3) PSRL [61]; 4) SAC [28, 17]; and 5) DQN [57] with ϵ-decay. The268

algorithms solve a simple 5×5 gridworld with dense rewards, starting from top-left (0,0) to reach269

bottom-right (4,4). Figure 3 presents exploratory behaviours of the algorithms in both the occupancy270

measure space and state space.271

Figure 3: Top row: 3D plots of distance-to-optimal (x-axis) and stepwise-distance (y-axis) across
number of updates (z-axis), illustrating policy evolution in the occupancy measure space for algo-
rithms: ϵ(=0)-greedy and ϵ(=1)-greedy Q-learning, UCRL2, PSRL, SAC, and DQN (left to right).
Bottom row: Corresponding state visitation frequencies over the full training. The problem setting
is deterministic with dense rewards and 15 maximum number of steps per episode. (NB. Larger
versions of these plots are presented in Appendix D.1, while their 2D projections are in Figure 15 at
Appendix D.3, and corresponding performance plots are in Figure 12 at Appendix D.2.)

Q-learning: ϵ = 0 vs ϵ = 1. Note that ϵ = 0 updates the Q-table by only exploiting, while ϵ = 1272

by exploring. From the state visitations, we observe expected characteristics, like a preferred visit273

path for ϵ = 0, versus ϵ = 1 with visitation frequencies that are similar at states equidistant from274

the start-state and gradually decreasing as the distance from the start-state increases. From the275

policy evolution, we see how scattered and erratic the policy transitions are for ϵ = 0. Whereas ϵ276

= 1 is dominated by unchanging or little-changing policies seen by straight vertical line segments277

(indicating being stuck in suboptimality). In this setting, ϵ = 0 is characterised by transitioning278

between diverse policies (i.e. being aggressive with larger coverage area) while ϵ = 1 is likely to be279

stuck in suboptimality. The stuckness is due to high action randomness in ϵ = 1 that causes the agent280

to select suboptimal actions, slowing the convergence of the Q-table and not changing the learning281

policy until the best actions are discovered.282

7

UCRL2 vs PSRL. UCRL2 has nearly uniform state visits (with the exception of the start-state283

because the initial state distribution is 1 at state (0,0)), thus being consistent with literature since the284

algorithm selects exploratory state-action pairs more uniformly [35]. In contrast, PSRL has high285

visit frequencies along the diagonal states, because it selects actions according to the probability that286

they are optimal [61]. We observe from the policy evolution plots that PSRL has smoother policy287

transitions that are orientated towards optimality, while UCRL2 behaves more aggressively with288

policy transitions that do not taper as it approaches optimality. [61] highlighted that exploration in289

PSRL is guided by the variance of sampled policies as opposed to optimism in UCRL2. We observe290

in Figure 3 that the guiding variance in PSRL reduces after every policy update until optimality is291

reached, while UCRL2 maintains high variance.292

SAC vs DQN. The state visits of both the algorithms appear to be similar. SAC has higher visitation293

frequencies at the corners than DQN. Surprisingly from the policy evolution plots, we learn that294

both algorithms have a reluctance to transition between policies - hence the stuck in suboptimality295

vertical line segments, especially initially. This reluctance is due to the slow ‘soft updates’ of target296

networks [51] in the algorithms. We also observe that SAC approaches optimality more gradually297

than DQN.298

All algorithms. Figure 3 shows that UCRL2 was more meandering (with larger coverage area)299

towards optimality than the rest. SAC and DQN approached optimality more directly and smoothly300

(with smaller coverage area) than the rest. These characteristics are intuitively revealed by policy visu-301

alisation plots, and are aligned with literature, hence enhancing our understanding of the exploratory302

processes.303

(II) CONTINUOUS MDP. We use DDPG [51] and SAC to solve the Mountain Car. The policy304

evolutions of these algorithms are presented in Figure 4.305

DDPG vs SAC. Both exhibit short-distances (< 1) between policy updates (i.e. small coverage306

area). They depict no sign of being stuck or settling early on any particular policy, which shows their307

continuously exploratory nature. While they begin with almost constant mean distances-to-optimal308

and stepwise-distances, SAC drops its mean distance-to-optimal earlier than DDPG.309

Figure 4 illustrates how OMR changes with update number k. OMR(k) represents OMR starting310

with the kth policy as the initial policy, while OMR starts from the 0th policy (details of computing311

OMR(k) are in Appendix B.2). For both algorithms, OMR(k) remains near chance level (∼ 0.5)312

initially, then sharply increases near the final updates. This suggests that early policy updates are313

purely exploratory and oblivious to policy improvement but align with the optimal policy just before314

convergence. The efficiency of the algorithm depends on how early this transition occurs, e.g. starts315

earlier for SAC than DDPG, rendering SAC more efficient.

0 5000 10000 15000 20000
#updates

0.40

0.45

0.50

0.55

0.60

O
M

R(
k)

0 5000 10000 15000 20000
#updates

0.40

0.45

0.50

0.55

0.60

O
M

R(
k)

Figure 4: Top row: 3D plots of distance-to-optimal and stepwise-distance vs. number of updates for
DDPG and SAC. Bottom row: OMR(k) vs. #update, k, for the corresponding algorithms. Note that
corresponding performance plots are in Figure 13 in Appendix D.2.

8

5.2 Comparison of ESL and OMR across RL Algorithms and Environments, and their316

complementarity to number of updates and regret317

Tables 1-3 showcase how ESL and OMR are summary indices of the policy trajectories during318

learning by evaluating the algorithms in various settings.319

Algo. ESL OMR UC SR%
SAC 9.26±5.54 0.58±0.14 980±670 100
UCRL2 47.2±8.20⋆ 0.49±0.04 60.7±11 100
PSRL 23.2±11.5 0.52±0.06 34.1±9.34 100
DQN 12.4±7.13 0.54±0.11 161±93 98
ϵ(=1)-greedy 6.27±2.22 0.61±0.09 672±385 100
ϵ(=0.9)-decay 8.10±3.43 0.61±0.10 389±138 100
ϵ(=0)-greedy 15.5±5.28 0.53±0.06 176±37.9 84

Table 1: Evaluation of RL algorithms (over 40
runs) in the deterministic, dense-rewards set-
ting for 5×5 gridworld, including Effort of Se-
quential Learning (ESL), Optimal Movement Ra-
tio (OMR), number of updates to convergence
(UC), and success rate (SR). Lowest ESL, lowest
UC, and highest OMR values are in bold. The
highest ESL value is starred (⋆).

Algo. ESL OMR UC SR%
Deterministic, sparse

SAC 27.8±21.9 0.57±0.13 4385±3274 100
UCRL2 73.3±0.0 0.45±0.0 93.0±0.0 100
PSRL 73.2±54.1 0.52±0.076 100±67.3 100
DQN 137±154⋆ 0.49±0.08 12638±4431 80

Stochastic, dense
SAC 445±245 0.501±0.004 2463±2043 92
UCRL2 198±121 0.502±0.027 268±155 32
PSRL 55.4±33.6 0.52±0.04 76.1±50.6 92
DQN 458±311⋆ 0.502±0.01 1586±1077 24

Table 2: Evaluation of RL algorithms (over 40
runs) in the deterministic, sparse-rewards and
stochastic, dense-rewards settings for 5×5 grid-
world. Lowest ESL, highest OMR and lowest UC
values are in bold. The highest ESLs are starred.

Dense Rewards. We observe, in Table 1, that PSRL took the lowest number of updates (UC) to reach320

the optimal policy in contrast with SAC. Yet, PSRL was meandering more than SAC (see Figure 3).321

The relative directness of SAC is captured by lower ESL and higher OMR compared to PSRL. Even322

though SAC has larger UC than PSRL, it took a shorter path to optimality than PRSL. This shows323

that UC does not necessary correlate with ESL and OMR, and it provides incomplete information324

about the exploratory processes. Indeed, two algorithms may have the same UC, but different ESL325

and/or OMR due to different step-wise distances and varied movement towards optimality.326

Sparse Rewards. In the sparse rewards setting (Table 2), low performance of DQN is observed in327

both our indices and UC. However, SAC is more efficient with lowest ESL and highest OMR, yet328

UCRL2 has the lowest number of updates (UC). Note that UCRL2 is provably regret-optimal, while329

SAC does not have such rigorous theoretical guarantees but is known to be practically efficient, and330

this is well captured by ESL and OMR. So far, Tables 1 and 2 demonstrate how our indices provide a331

clearer picture of exploratory processes than the number of updates.332

Stochastic Transitions. In the stochastic setting (Table 2), by observing only successful cases, we333

notice that the meandering characteristic of PSRL and UCRL2 is more suitable for this setting than334

SAC and DQN (based on better ESL and OMR values). PSRL and UCRL2 have similar regret335

bounds [61]; yet in Tables 1 and 2, PSRL has better ESL and OMR (along with a higher success rate).336

This aligns with the regret analysis presented in [61].337

Table 3 corroborates with the policy evolution plots in Figure 4, in that due to SAC dropping its338

mean distance-to-optimal earlier than DDPG it exhibits a lower ESL. Additionally, we notice a339

trend of increasing ESL and decreasing OMR across algorithms when shifting from dense-rewards340

to sparse-rewards settings, from deterministic to stochastic transitions, from discrete to continuous341

environments, indicating an increase in the effort of the exploratory processes. We have shown that342

ESL and OMR enhance the understanding of exploratory processes by effectively summarizing the343

policy trajectories of algorithms during learning. They offer more insight than the number of updates,344

and align with regret when algorithms reach an optimal policy. In the next Section, we demonstrate345

the utility of ESL when an optimal policy is not reached.346

5.3 Usefulness of ESL when optimal policy is not reached347

When an optimal policy is not reached at the end of learning, ESL cannot be computed exactly. At348

this point, we propose to use an approximation of ESL, i.e. ηsub (Equation 9). A natural question349

9

Algo. ESL OMR UC SR%
DDPG 1881±500 0.501 23500±5268 100
SAC 1619±189 0.5 22700±2971 100

Table 3: Evaluation of RL algorithms in the Mountain Car continuous MDP (over 5 runs). The
variances for OMR are negligible.

arises: When the optimal policy is not reached, does the ηsub still yield insights about the exploratory350

process of RL? In Table 4, we compare ESL when the optimal policy was reached, i.e. η, versus when351

it was not, i.e. ηsub.

Algo. η ηsub d c
SAC 445±246 853±127 5.63±1.23 7.26±1.45
UCRL2 198±121 510±274 5.36±0.84 4.58±1.90
PSRL 55.4±33.6 361±43.6 4.97±1.34 3.91±0.48
DQN 458±311 1971±250 4.88±1.06 6.52±0.31

Table 4: Evaluation of algorithms in the stochastic, dense-rewards setting for 5×5 gridworld. When
the algorithm converged to optimality, η is the Effort of Sequential Learning, and d = W1(vπ0 , vπ∗)
is the distance between the initial and optimal policies. When the algorithm did not converge to the
optimal policy but some πN , we used ηsub and c = W1(vπ0

, vπN
) to denote the aforementioned

quantities. 40 training trials were used.

352

We observe that ηsub values are always greater than η values. However, they both yield the same353

efficiency ranking (e.g. PSRL, UCRL2, SAC and DQN). This indicates that ηsub reliably predicts354

results provided by η for relative comparison of algorithms.355

5.4 ESL Increases with Task Difficulty356

Figure 5 depicts the ESL values for Q-learning with ϵ-decay strategy (for ϵ = 0.9) across tasks with357

varying hardness. These tasks are deterministic 2D-Gridworld of sizes 5×5 and 15×15 matched358

with either dense or sparse rewards (as specified in Appendix B.1). We chose to assess the ϵ-decay359

Q-learning algorithm because it is simple and yet completes all these tasks. We observe that the360

ESL is lowest for [5×5] dense (5×5 grid, dense rewards) and highest for [15×15] sparse (15×15361

grid, sparse rewards) as anticipated. The results demonstrate that ESL scales proportionally with task362

difficulty, matching expectations that more difficult tasks demand greater effort of the exploratory363

process.364

E
SL

Figure 5: Q-learning with ϵ-greedy (ϵ = 0.9 decaying, averaged over 40 runs) across deterministic
2D-Gridworld (5×5 and 15×15) tasks. The 1st and 4th (from left to right) have dense rewards, while
the rest have sparse rewards (details in Appendix B.1).

Remarks. When the optimal policy is reached, we can use the visualisation of policy trajectories, as365

well as ESL (η) and OMR to study exploratory processes of an RL algorithm. When the optimal policy366

10

is not reached, we can still use the visualisation of policy trajectories and ESL-sub (ηsub) to study367

exploratory processes because they still capture characteristics of exploratory processes (e.g. high368

coverage, smooth exploration). Additionally, ESL (η or ηsub) captures the hardness of the task that369

we are solving. Thus, studying the occupancy measure trajectories and their corresponding indices370

can aid in making a knowledgeable choice of an RL algorithm that exhibits desired characteristics.371

6 Related Works372

Several prior works have utilized various components leveraged in our work, namely Wasserstein373

distance, occupancy measures, and the trajectory of RL on a manifold, but for different purposes.374

Here, we summarise them and elucidate the connections.375

In supervised learning, [5] proposed an optimal transport approach, namely Optimal Transport Dataset376

Distance (OTDD), to quantify the transferability between two supervised learning tasks by computing377

the similarity (i.e. distance) between the task datasets. Here, we conceptualise and define the effort of378

learning for RL, as a sequence of such supervised learning tasks. We observe that the total effort of379

sequential learning can be computed as the sum of OTDD distances between consecutive occupancy380

measures. Recently, [86] have developed generalized occupancy models by defining cumulative381

features that are transferable across tasks. In future, one can generalize our indices for the cumulative382

features constructed from some invertible functions of the step-wise occupancy measures.383

Optimal transport-based approaches are also explored in RL literature. These works broadly belong384

to two families. First line of works uses Wasserstein distance over a posterior distribution of Q-385

values [55, 50] or return distributions [75] to quantify uncertainty, and then to use this Wasserstein386

distance as a loss to learn better models of the posterior distribution of Q-values or return distributions,387

respectively. The second line of works uses Wasserstein distance between a feasible family of MDPs388

as an additional robustness constraint to design robust RL algorithms [1, 18, 30]. Here, we introduce389

a concept of using Wasserstein distance between occupancy measures to understand the exploratory390

dynamics. Incorporating this insight into better algorithm design would be an interesting future work.391

Recently, [15] related Wasserstein distance between reward-labelled Markov chains to bisimulation392

metrics which abstract state spaces. In the same spirit, we could use reward as the cost-function in393

computing our nested Wasserstein distance (OTDD) to obtain a reward- or value-aware OTDD to394

define broader bisimulation metrics with abstract state-action spaces, instead of just state spaces.395

As a parallel approach to optimal transport, the information geometries of the trajectory of an RL396

algorithm under different settings are studied. These approaches use mutual information as a metric397

instead of Wasserstein distance. [8] studied the information geometry of Bayesian multi-armed bandit398

algorithms. They considered a bandit algorithm as a trajectory on a belief-reward manifold, and399

proposed a geometric approach to design a near-optimal Bayesian bandit algorithm. [21, 44] studied400

information geometry of unsupervised RL and proposed mutual information maximisation schemes401

over a set of tasks and their marginal state distributions. [83] extended this approach with Wasserstein402

distance and demonstrated benefits of using Wasserstein distance than mutual information. We use403

Wasserstein distance as a natural metric in occupancy manifold which aligns with the hardness404

of different tasks. It would be interesting to extend our framework to understand the dynamics of405

unsupervised RL algorithms.406

7 Discussion407

Our work introduces methods to theoretically and quantitatively understand and compare the ex-408

ploratory strategies of different RL algorithms. Since learning in a typical RL algorithm happens409

through a sequence of policy updates, we propose to understand the exploratory process by visualiz-410

ing and analyzing the path traversed by an RL algorithm in the space of occupancy measures. We411

show the usefulness of this approach by conducting experiments on various environments and RL412

algorithms.413

Our results show that ESL and OMR provide insight into the evolution of the agent’s policy, revealing414

whether it is approaching the optimal policy in a steady or meandering manner. Additionally, they415

allow us to understand how the learning process of the same algorithm changes with different rewards416

and transitions structures, and task hardness. We emphasize that ESL and OMR complement the417

number of updates to converge and regret (see Appendix B.7) rather than replace them.418

11

We now discuss various practical aspects and future possibilities.419

Computational complexity. While efficiency is an important aspect, the primary focus of this work is420

to introduce a framework for analyzing exploration in RL using occupancy measures. It is of interest421

to utilize our approach to benchmark and compare the learning dynamics of various RL algorithms422

in more environments, especially large-scale or high-dimensional ones. Computing Wasserstein423

distances in such environments would incur high computational costs, however in recent years several424

methods such as greedy computation [16], hierarchical methods [47], and inexact proximal point425

methods [82] have been introduced to handle large-scale OT problems. For example, [23] leverages a426

block-diagonal approximation method to deal with high-dimensional probability distributions similar427

to ours, while anchor space OT [31] specifically addresses multiple OT problems with multiple428

distributions.429

Use of 1-Wasserstein metric W1. The W1 satisfies the Kantorovich-Rubinstein duality, making430

Equation (3) applicable and providing a basis for bounding regret in Proposition 2. In contrast,431

Wp>1 does not have such duality. Since W1(P,Q) ≤ Wp>1(P,Q) [79], W1 yields tighter regret432

bounds. Moreover, W1 is less sensitive to outliers and sampling discrepancies than Wp>1 [67],433

making it well-suited for our setting. Nevertheless, our approach extends to Wp>1. Compared to434

KL-divergence, W1 is a metric that satisfies symmetry and triangle inequality, which have been435

instrumental in our proofs and guarantees, while KL-divergence is not a metric. Additionally, Wp≥1436

leverages the geometry of the underlying support space [64]. This allows it to capture distances437

between distributions with disjoint support [64], which KL-divergence cannot capture. Hence, we438

use W1 in our approach.439

Choice of distance metric dX . The choice of the distance metric impacts the geometry of the support440

space [48], consequently the Wasserstein distances, and thus ESL and OMR. In our case, the support441

space (i.e. state-action space) is reduced to the state space, as the action space maps back to the state442

space via OTDD. Thus, the choice of distance metric should reflect the effort of moving in the state443

space. For example, in the Gridworld, we used L1 distance because only vertical and horizontal444

displacements are allowed, and L2 distance in the Mountain Car, as applicable to real-world spaces.445

Regret and Sum-of-distances-to-optimal (
∑N

k=1 W1(vπk
, vπ∗)). Comparing regret across policies446

measures the similarity of returns (with respect to optimal), disregarding behavioural differences, like447

variations in actions at the same states. This makes regret advantageous in settings without critical448

safety and physical constraints, e.g. games, due to its computational efficiency. In contrast, the449

sum-of-distance-to-optimal focuses on behavioural differences between policies, is reward-agnostic,450

and is well-suited for environments where safety and physical constraints are critical, e.g. robotics.451

While minimizing regret prioritizes matching the performance of the optimal policy, minimizing the452

sum-of-distance-to-optimal focuses on mimicking its behaviour. Thus, the sum-of-distance-to-optimal453

can be used similarly to regret, especially where the behaviour of achieving good performance is454

essential.455

Algorithm Selection and Design. Depending on the environment, we can select an algorithm with456

promising characteristics and spend more time optimising it to improve performance. For example,457

rather than tuning the hyper-parameters of multiple competing algorithms to find the best one, it may458

be more effective to first identify an algorithm best suited to an environment based on ESL and OMR,459

and then fine-tune it. The chosen algorithm might remain suitable across similar environments as460

well.461

Furthermore, we could incorporate an online adaptation of the exploratory process of the RL algorithm462

itself, based on recent estimates of the ESL and OMR. For example, if the current policy gives a463

better return than the initial policy, then we could adapt the exploratory parameters (at a slow rate)464

to optimise a running estimate of ηsub and a suitable approximation of OMR, thus enabling better465

exploration. However, the feasibility and convergence of such a scheme remain open.466

References467

[1] M. A. Abdullah, H. Ren, H. B. Ammar, V. Milenkovic, R. Luo, M. Zhang, and J. Wang.468

Wasserstein robust reinforcement learning. arXiv preprint arXiv:1907.13196, 2019.469

[2] A. Agarwal, N. Jiang, S. M. Kakade, and W. Sun. Reinforcement learning: Theory and470

algorithms, 2022.471

12

[3] M. Aleksandrowicz and J. Jaworek-Korjakowska. Metrics for assessing generalization of deep472

reinforcement learning in parameterized environments. JAISCR, 14(1):45–61, 2023.473

[4] E. Altman. Constrained Markov Decision Processes. Routledge, 1999.474

[5] D. Alvarez-Melis and N. Fusi. Geometric dataset distances via optimal transport. In Proceedings475

of the 34th International Conference on Neural Information Processing Systems, Red Hook,476

NY, USA, 2020. Curran Associates Inc.477

[6] S. Amin, M. Gomrokchi, H. Satija, H. van Hoof, and D. Precup. A survey of exploration478

methods in reinforcement learning, 2021.479

[7] M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning. In480

International conference on machine learning, pages 263–272. PMLR, 2017.481

[8] D. Basu, P. Senellart, and S. Bressan. Belman: An information-geometric approach to stochastic482

bandits. In Machine Learning and Knowledge Discovery in Databases: European Conference,483

ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, Proceedings, Part III, pages484

167–183. Springer, 2020.485

[9] D. Basu, X. Wang, Y. Hong, H. Chen, and S. Bressan. Learn-as-you-go with megh: Efficient486

live migration of virtual machines. IEEE Transactions on Parallel and Distributed Systems,487

30(8):1786–1801, 2019.488

[10] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying489

count-based exploration and intrinsic motivation. In Advances in Neural Information Processing490

Systems, pages 1471–1479. Curran Associates, Inc., 2016.491

[11] H. Bojun. Steady state analysis of episodic reinforcement learning. In H. Larochelle, M. Ranzato,492

R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing493

Systems, volume 33, pages 9335–9345. Curran Associates, Inc., 2020.494

[12] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.495

[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.496

Openai gym, 2016.497

[14] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation.498

In International Conference on Learning Representations, 2019.499

[15] S. Calo, A. Jonsson, G. Neu, L. Schwartz, and J. Segovia-Aguas. Bisimulation metrics are500

optimal transport distances and can be computed efficiently, 2024.501

[16] G. Carlier, A. Galichon, and F. Santambrogio. From knothe’s transport to brenier’s map502

and a continuation method for optimal transport. SIAM Journal on Mathematical Analysis,503

41(6):2554–2576, 2010.504

[17] P. Christodoulou. Soft actor-critic for discrete action settings, 2019.505

[18] E. Derman and S. Mannor. Distributional robustness and regularization in reinforcement506

learning. arXiv preprint arXiv:2003.02894, 2020.507

[19] M. P. Drazin. Pseudo-inverses in associative rings and semigroups. The American mathematical508

monthly, 65(7):506–514, 1958.509

[20] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills510

without a reward function. In International Conference on Learning Representations, 2019.511

[21] B. Eysenbach, R. Salakhutdinov, and S. Levine. The information geometry of unsupervised512

reinforcement learning. arXiv preprint arXiv:2110.02719, 2021.513

[22] R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel,514

A. Corenflos, K. Fatras, N. Fournier, L. Gautheron, N. T.H. Gayraud, H. Janati, A. Rakotoma-515

monjy, I. Redko, A. Rolet, A. Schutz, V.Seguy, D. J. Sutherland, R.Tavenard, A. Tong, and516

T. Vayer. Pot: Python optimal transport. Journal of Machine Learning Research, 22(78):1–8,517

2021.518

13

[23] Y. Gao and P. Chaudhari. An information-geometric distance on the space of tasks. In519

Proceedings of the 38th International conference on machine learning, pages 3553–3563.520

PMLR, 2021.521

[24] C. Gelada, S. Kumar, J. Buckman, O. Nachum, and M. G. Bellemare. Deepmdp: Learning con-522

tinuous latent space models for representation learning. In Proceedings of the 36th International523

Conference on Machine Learning, pages 2170–2179. PMLR, 2019.524

[25] A. Gibbs and F. E. Su. On choosing and bounding probability metrics. International Statistical525

Review / Revue Internationale de Statistique, 70(3):419–435, 2002.526

[26] A. Givchi. Optimal Transport in Reinforcement Learning. PhD thesis, Graduate School-Newark527

Rutgers, The State University of New Jersey, 2021.528

[27] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural529

networks. In International Conference on Artificial Intelligence and Statistics, 2010.530

[28] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy531

deep reinforcement learning with a stochastic actor. In Proceedings of the 35th International532

Conference on Machine Learning, 2018.533

[29] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,534

P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications, 2019.535

[30] L. Hou, L. Pang, X. Hong, Y. Lan, Z. Ma, and D. Yin. Robust reinforcement learning with536

wasserstein constraint. arXiv preprint arXiv:2006.00945, 2020.537

[31] J. Huang, X. Su, Z. Fang, and H. Kasai. Anchor space optimal transport as a fast solution to538

multiple optimal transport problems. IEEE Transactions on Neural Networks and Learning539

Systems, 2024.540

[32] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning541

methods. ACM Computing Surveys, 50:1–35, 2017.542

[33] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine. How to train your robot with543

deep reinforcement learning: lessons we have learned. The International Journal of Robotics544

Research, 40(4-5):698–721, 2021.545

[34] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G. Castaneda, C. Beattie,546

N. C. Rabinowitz, A. S. Morcos, A. Ruderman, N. Sonnerat, T. Green, L. Deason, J. Z. Leibo,547

D. Silver, D. Hassabis, K. Kavukcuoglu, and T. Graepel. Human-level performance in 3d548

multiplayer games with population-based reinforcement learning. Science, 364(6443):859–865,549

2019.550

[35] T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning.551

Journal of Machine Learning Research, 11(51):1563–1600, 2010.552

[36] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Journal of artificial intelligence research.553

Reinforcement Learning: A Survey, 4:237—-285, 1996.554

[37] K. Kalagarla, R. Jain, and P. Nuzzo. A sample-efficient algorithm for episodic finite-horizon555

mdp with constraints. In The 35th AAAI Conference on Artificial Intelligence, pages 8030–8037,556

2021.557

[38] M. Kallel, D. Basu, R. Akrour, and C. D’Eramo. Augmented bayesian policy search. In The558

12th International Conference of Learning Representations, volume 139, 2024.559

[39] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and D. Scaramuzza.560

Champion-level drone racing using deep reinforcement learning. Nature, 620(7976):982–987,561

2023.562

[40] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.563

14

[41] S. Kolouri, S. R. Park, M. Thorpe, D. Slepcev, and G. K. Rohde. Optimal mass transport: Signal564

processing and machine-learning applications. IEEE Signal Processing Magazine, 34:43–59,565

2017.566

[42] P. Ladosz, L. Weng, M. Kim, and H. Oh. Exploration in deep reinforcement learning: A survey.567

Information Fusion, 85:1–22, 2022.568

[43] R. Laroche and R. T. des Combes. On the occupancy measure of non-markovian policies in569

continuous mdps. In Proceedings of the 40th International Conference on Machine Learning,570

volume 202, 2023.571

[44] M. Laskin, H. Liu, X. Bin Peng, D. Yarats, A. Rajeswaran, and P. Abbeel. CIC: contrastive572

intrinsic control for unsupervised skill discovery. CoRR, abs/2202.00161, 2022.573

[45] T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.574

[46] A. Lazaridis, A. Fachantidis, and I. Vlahavas. Deep reinforcement learning: A state-of-the-art575

walkthrough. Journal of Artificial Intelligence Research, 69:1421–1471, 2020.576

[47] J. Lee, M. Dabagia, E. Dyer, and C. Rozell. Hierarchical optimal transport for multimodal577

distribution alignment. Advances in Neural Information Processing Systems, 32, 2019.578

[48] J. M. Lee. Manifolds and differential geometry, volume 107. American Mathematical Society,579

2009.580

[49] S. E. Li. Deep reinforcement learning. In Reinforcement learning for sequential decision and581

optimal control, pages 365–402. Springer, 2023.582

[50] A. Likmeta, M. Sacco, A. M. Metelli, and M. Restelli. Wasserstein actor-critic: directed583

exploration via optimism for continuous-actions control. In Proceedings of the AAAI Conference584

on Artificial Intelligence, volume 37, pages 8782–8790, 2023.585

[51] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.586

Continuous control with deep reinforcement learning. In International Conference on Learning587

Representations, 2016.588

[52] S. Liu. An evaluation of ddpg, td3, sac, and ppo: Deep reinforcement learning algorithms589

for controlling continuous system. In International Conference on Data Science, Advanced590

Algorithm and Intelligent Computing, 2023.591

[53] J. Lott. Some geometric calculations on wasserstein space. Communications in Mathematical592

Physics, 277:423—-437, 2008.593

[54] M. Memmel, P. Liu, D. Tateo, and J. Peters. Dimensionality reduction and prioritized exploration594

for polic search. In 25th International Conference on Artificial Intelligence and Statistics, 2022.595

[55] A. M. Metelli, A. Likmeta, and M. Restelli. Propagating uncertainty in reinforcement learning596

via wasserstein barycenters. Advances in Neural Information Processing Systems, 32, 2019.597

[56] C. D. Meyer. The role of the group generalized inverse in the theory of finite markov chains.598

SIAM Review, 17(3):443–464, 1975.599

[57] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.600

Playing atari with deep reinforcement learning, 2013.601

[58] A. W. Moore. Efficient Memory-based Learning for Robot Control. PhD thesis, University of602

Cambridge, 1990.603

[59] S. Müller, A. von Rohr, and S. Trimpe. Local policy search with bayesian optimization.604

Advances in Neural Information Processing Systems, 34:20708–20720, 2021.605

[60] G. Neu and C. Pike-Burke. A unifying view of optimism in episodic reinforcement learning.606

Advances in Neural Information Processing Systems, 33:1392–1403, 2020.607

15

[61] I. Osband, B. V. Roy, and D. Russo. (more) efficient reinforcement learning via posterior608

sampling. In Advances in Neural Information Processing Systems, pages 3003—-3011, 2013.609

[62] R. Ouhamma, D. Basu, and O. Maillard. Bilinear exponential family of mdps: frequentist610

regret bound with tractable exploration & planning. In Proceedings of the AAAI Conference on611

Artificial Intelligence, volume 37, pages 9336–9344, 2023.612

[63] V. M. Panaretos and Y. Zemel. Statistical aspects of wasserstein distances. Annual Review of613

Statistics and its Applications, 6:405–431, 2019.614

[64] G. Peyré. Computational optimal transport. Foundations and Trends in Machine Learning,615

11(5-6):355–607, 2019.616

[65] M. Pirotta, M. Restelli, and L. Bascetta. Policy gradient in lipschitz markov decision processes.617

Machine Learning, 100(2-3):255––283, 2015.618

[66] M. L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. John619

Wiley and Sons, 1994.620

[67] S. Raghvendra, P. Shirzadian, and K. Zhang. A new robust partial p-wasserstein-based metric621

for comparing distributions, 2024.622

[68] G. O. Ramos, A. L. C. Bazzan, and B. C. da Silva. Analysing the impact of travel information for623

minimising the regret of route choice. Transportation Research Part C: Emerging Technologies,624

88:257–271, 2018.625

[69] G. O. Ramos, B. C. da Silva, and A. L. C. Bazzan. Learning to minimise regret in route choice.626

In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, pages627

846–855, 2017.628

[70] F. Santambrogio. Optimal Transport for Applied Mathematicians. Bikhauser Cham, 2015.629

[71] H. Van Seijen, H. Nekoei, E. Racah, and S. Chandar. The loca regret: a consistent metric to630

evaluate model-based behavior in reinforcement learning. Advances in Neural Information631

Processing Systems, 33:6562–6572, 2020.632

[72] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,633

M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and634

D. Hassabis. Mastering the game of go without human knowledge. nature, 550(7676):354–359,635

2017.636

[73] S. R. Sinclair, S. Banerjee, and C. L. Yu. Adaptive discretization in online reinforcement637

learning. Operations Research, 71(5):1636–1652, 2023.638

[74] M. Sommerfeld, J. Schrieber, Y. Zemel, and A. Munk. Optimal transport: Fast probabilistic639

approximation with exact solvers. Journal of Machine Learning Research, 20:1–23, 2019.640

[75] K. Sun, Y. Zhao, Y. Liu, B. Jiang, and L. Kong. Distributional reinforcement learning via641

sinkhorn iterations. arXiv preprint arXiv:2202.00769, 2022.642

[76] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction, 2nd Edition. MIT643

press, 2018.644

[77] U. Syed, M. Bowling, and R. E. Schapire. Apprenticeship learning using linear programming.645

In Proceedings of the 25th International Conference on Machine Learning, pages 1032–1039.646

PMLR, 2008.647

[78] H. Tang, R. Houthooft, D. Foote, X. Chen A. Stooke, Y. Duan, J. Schulman, F. De Turck, and648

P. Abbeel. #exploration: A study of count-based exploration for deep reinforcement learning.649

In Advances in Neural Information Processing Systems, pages 2753–2762. Curran Associates,650

Inc., 2017.651

[79] C. Villani. Optimal Transport Old and New. Springer Berlin, Heidelberg, 2009.652

16

[80] J. Wang, I. Trummer, and D. Basu. Udo: universal database optimization using reinforcement653

learning. Proceedings of the VLDB Endowment, 14(13):3402–3414, 2021.654

[81] P. N. Ward. Linear programming in reinforcement learning, 2021. MSc thesis.655

[82] Y. Xie, X. Wang, R. Wang, and H. Zha. A fast proximal point method for computing exact656

wasserstein distance. In Uncertainty in artificial intelligence, pages 433–453. PMLR, 2020.657

[83] Y. Yang, T. Zhou, Q. He, L. Han, M. Pechenizkiy, and M. Fang. Task adaptation from skills:658

Information geometry, disentanglement, and new objectives for unsupervised reinforcement659

learning. In The Twelfth International Conference on Learning Representations, 2024.660

[84] L. Zhang, K. Tang, and X. Yao. Explicit planning for efficient exploration in reinforcement661

learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,662

editors, Advances in Neural Information Processing Systems, volume 32, pages 7488–7497.663

Curran Associates, Inc., 2019.664

[85] M. Zhang, Y. Wang, X. Ma, L. Xia, J. Yang, Z. Li, and X. Li. Wasserstein distance guided665

adversarial imitation learning with reward shape exploration. In IEEE 9th Data Driven Control666

and Learning Systems Conference, pages 1165–1170, 2020.667

[86] C. Zhu, X. Wang, T. Han, S. S. Du, and A. Gupta. Transferable reinforcement learning via668

generalized occupancy models, 2024.669

17

A Theoretical Analysis670

A.1 MDP with Lipschitz Rewards671

Given two metric spaces (X , dX) and (Y, dY), a function f : X → Y is called 1-Lipschitz continuous672

if [79]:673

dY (f(x), f(x
′)) ≤ dX(x, x′), ∀(x, x′) ∈ X (11)

This implies that the Lipschitz semi-norm over the function space F(X,Y), defined as674

∥f∥L = sup
x ̸=x′

{
dY (f(x), f(x

′))

dX(x, x′)
| ∀(x, x′) ∈ X

}
, (12)

is ≤ 1. When (X , dX) is a Polish space and µ, ν ∈ P(X), the Kantorovich-Rubinstein formula675

states that [79]:676

W1(µ, ν) = sup
∥f∥L≤1

{∫
X
f dµ−

∫
X
f dν

}
= sup

∥f∥L≤1

{Eµ [f(X)]− Eν [f(X)]} ,
(13)

where W1(µ, ν) is the 1-Wasserstein distance between µ and ν with f as the cost function.677

Note that when ∥f∥L ≤ LR for any LR > 0, then the function f is called LR-Lipschitz continuous,678

and Eq. (13) becomes [24],679

W1(µ, ν) =
1

LR
sup

∥f∥L≤LR

{Eµ [f(X)]− Eν [f(X)]} . (14)

Now, we consider X = S ×A, i.e. the state-action space, Y = R, i.e. the real line, and the function680

f to be the reward function R̄. Then, we can call the reward function R̄ to be LR-Lipschitz if681

|R̄(s, a)− R̄(s′, a′)| ≤ LRdSA((s, a), (s
′, a′))

for all s, s′ ∈ S, and a, a′ ∈ A, and dSA((s, a), (s
′, a′)) = dS((s, s

′)) + dA((a, a
′)) being the682

metric on the state-action space S × A. If the reward function R̄ of an MDP is LR-Lipschitz, we683

refer it as an MDP with Lipschitz rewards.684

A.2 Performance Difference and Occupancy Measures685

We know that686

Jπ
µ =

1

ρ
E(s,a)∼vπ

[
R̄(s, a)

]
. (15)

Using Eq. (15), we write for two policies π and π′, with µ(s) as the initial state distribution,687 ∣∣∣Jπ
µ − Jπ′

µ

∣∣∣ = 1

ρ

∣∣E(s,a)∼vπ

[
R̄(s, a)

]
− E(s,a)∼vπ′

[
R̄(s, a)

]∣∣ (16)

Given an MDP with LR-Lipschitz rewards, the Kantorovich-Rubinstein formula dictates that [24]:688

sup
∥R̄∥L≤LR

∣∣E(s,a)∼vπ

[
R̄(s, a)

]
− E(s,a)∼vπ′

[
R̄(s, a)

]∣∣ = LRW1(vπ, vπ′) (17)

By dividing both sides of Eq. (17) by ρ, and due to an upper bound by the supremum, this inequality689

follows:690 ∣∣∣Jπ
µ − Jπ′

µ

∣∣∣ ≤ LR

ρ
W1(vπ, vπ′) (18)

18

A.3 Proof of proposition 1691

The Linear Programming formulation for solving MDPs, assuming discrete state and action spaces,692

is [66]:693

max
vπ

∑
s,a

r(s, a)vπ(s, a)

subject to
∑
a

vπ(s, a) = p0(s) + γ
∑
s′,a

T (s | s′, a)vπ(s′, a)

vπ(s, a) ≥ 0 ∀(s, a) ∈ S ×A ,

(19)

where p0(s) is the initial state distribution and T (s | s′, a) is the transition probability. The constraints694

of this optimization problem are often referred to as Bellman Flow Constraint.695

A stationary policy π has a corresponding occupancy measure vπ(s, a) that satisfies the Bellman flow696

constraint [77], and hence π and vπ(s, a) share a bijective relationship [77, 26],697

π(a | s) = vπ(s, a)

uπ(s)
(20)

with698

uπ(s) =
∑
a′

vπ(s, a
′) = p0(s) + γ

∑
s′,a′

T (s | s′, a′)vπ(s′, a′) (21)

By rearranging Eq. (20) to699

vπ(s, a) = π(a | s)uπ(s) (22)

and substituting Eq. (22) into Eq. (21), we can rewrite Eq. (21) as (defining Pπ ≜
∑

a T (s |700

s′, a)π(a | s′)),701

p0(s) = uπ(s)− γ
∑
s′,a

T (s | s′, a)π(a | s′)uπ(s
′)

≜ uπ(s)− γ
∑
s′

Pπ(s | s′)uπ(s
′)

(23)

which in matrix form is702

p0 = uπ − γPπuπ

= (I− γPπ)uπ ,
(24)

where p0,uπ ∈ R|S| are column vectors and Pπ ∈ R|S|×|S| are matrices. Solving for uπ , we get703

uπ = (I− γPπ)
−1

p0 (25)

The inverse matrix (I− γPπ)
−1 exists because for γ < 1, (I− γPπ) is a strictly diagonally704

dominant matrix [77]. Thus, (I− γPπ)
−1

=
∑∞

t=0(γP
π)t, where

∑∞
t=0(γP

π)t forms a valid705

Neumann series [81]. We let Aπ =
∑∞

t=0(γP
π)t, so Eq. (25) can be written as uπ = Aπp0. We706

can therefore express Eq. (22) in matrix form as:707

vπ = Π⊙
(
uT
π ⊗ 1

)T
= Π⊙

(
pT
0 (A

π)T ⊗ 1
)T

,
(26)

where Π,vπ ∈ R|S|×|A|, 1 ∈ R|A| is a column vector of ones, ⊗ presents the Kronecker product,708

and ⊙ denotes the Hadamard product.709

If we consider the case of a parameterized policy Π(θ), then the derivative of vπ with respect to θ is710

∇θvπ =∇θ

[
Π⊙

(
pT
0 (A

π)T ⊗ 1
)T]

=∇θΠ⊙
(
pT
0 (A

π)T ⊗ 1
)T

+Π⊙∇θ

(
pT
0 (A

π)T ⊗ 1
)T

=∇θΠ⊙
(
pT
0 (A

π)T ⊗ 1
)T

+Π⊙
(
pT
0 (∇θA

π)T ⊗ 1
)T (27)

19

The first term in Eq. (27) is differentiable since the policy is parameterized by θ. We expand ∇θA
π711

as follows:712

∇θA
π = ∇θ

(∞∑
t=0

(γPπ)t

)
= ∇θ

(
I+ (γPπ) + (γPπ)2 + · · ·+ (γPπ)t + . . .

)
= 0 +∇θ(γP

π) + 2(γPπ)∇θ(γP
π) + 3(γPπ)2∇θ(γP

π) + · · ·+ t(γPπ)t−1∇θ(γP
π) + . . .

=
(
I+ 2(γPπ) + 3(γPπ)2 + · · ·+ t(γPπ)t−1 + . . .

)
∇θ(γP

π)

=

(∞∑
t=0

(t+ 1)(γPπ)t

)
∇θ(γP

π)

=

∞∑
t=0

(t+ 1)(γPπ)tγ∇θP
π

≡
∞∑
t=0

(t+ 1)(γPπ)tγ∇θ

∑
s′,a

T (s|s′, a)π(a|s′)


=

∞∑
t=0

(t+ 1)(γPπ)tγ

∑
s′,a

T (s|s′, a)∇θπ(a|s′)

 .

(28)

Since Eq. (28) shows that ∇θA
π is differentiable, ∇θvπ is also differentiable based on Eq. (27).713

Proceeding similarly, given the same conditions, we see that all higher derivatives of vπ also exist714

with respect to θ. Thus, the space of parametrized occupancy measures vπ forms a differentiable715

manifold.716

A.4 Proof of proposition 2717

Regret is a common metric for evaluating agents, that measures the total loss an agent incurs over718

policy updates by using its policy in lieu of the optimal one, defined as [61],719

Regret = Es∼µ

[∑
k

(V ∗(s)− Vπk
(s))

]
(29)

where V ∗ = Vπ∗ is the value function of the optimal policy π∗ while Vπk
(s) is the value function of720

policy πk, and µ is the initial state distribution.721

Since Jπ
µ = Es∼µ[Vπ(s)], we can conclude from Eq. (29) that722

Regret = Es∼µ

[∑
k

(V ∗(s)− Vπk
(s))

]
=
∑
k

[Es∼µ(V
∗(s)− Vπk

(s))]

=
∑
k

(
Jπ∗

µ − Jπk
µ

)
=
∑
k

∣∣∣Jπ∗

µ − Jπk
µ

∣∣∣
≤
∑
k

LR

ρ
W1(vπ∗ , vπk

)

(30)

The last inequality is due to Eq. (18).723

20

A.5 Proof of proposition 3724

Let us begin the proof by defining the visitation probability at any step h ∈ [H] in an episode,725

following policy π(a|s). Specifically,726

qhπ(s, a) ≜ P(sh = s, ah = a) ∀h ∈ [H] and qhπ(s, a) ≜ 0 ∀h ∈ N ∧ h > H . (31)

Thus, we rewrite Eq. (7) as vHπ (s, a) = 1
H

∑H
h=1 q

h
π(s, a).727

Then, following [37], we can write the Linear Programming formulation for solving episodic MDP728

MH as729

max
{qhπ}H

h=1

∑
h,s,a

r(s, a)qhπ(s, a)

subject to
∑
a

qhπ(s, a) =
∑
s′,a

T (s | s′, a)qh−1
π (s′, a) ∀h ∈ [H] ∧ h > 1 ,

q1π(s, a) = π(a|s)µ(s) ,
qhπ(s, a) ≥ 0 ∀h ∈ [H], (s, a) ∈ S ×A ,

(32)

where µ(s) is the initial state distribution and T (s | s′, a) is the transition probability. The constraints730

of this optimization problem are often referred to as Bellman Flow Constraints.731

This implies that732

H+1∑
h=2

∑
a

qhπ(s, a) =

H+1∑
h=2

∑
s′,a

T (s | s′, a)qh−1
π (s′, a)

=⇒
∑
a

q1π(s, a) +

H+1∑
h=2

∑
a

qhπ(s, a) =

H+1∑
h=2

∑
s′,a

T (s | s′, a)qh−1
π (s′, a) +

∑
a

q1π(s, a)

=⇒
∑
a

H+1∑
h=1

qhπ(s, a) =

H+1∑
h=2

∑
s′,a

T (s | s′, a)qh−1
π (s′, a) +

∑
a

q1π(s, a)

=⇒ H
∑
a

vHπ (s, a) =
∑
s′,a

T (s | s′, a)(
H+1∑
h=2

qh−1
π (s′, a)) + µ(s)

=⇒ H
∑
a

vHπ (s, a) = H
∑
s′,a

T (s | s′, a)vHπ (s′, a) + µ(s)

=⇒
∑
a

vHπ (s, a) =
∑
s′,a

T (s | s′, a)vHπ (s′, a) +
1

H
µ(s)

=⇒ uH
π (s) ≜

∑
a

vHπ (s, a) =
∑
s′,a

T (s | s′, a)π(a|s′)uH
π (s′) +

1

H
µ(s) . (33)

Now, we denote uH
π and µ̄ as corresponding column vectors and the transition matrix Pπ ≜733 [∑

s′,a T (s | s′, a)π(a|s′)
]
. Thus, we obtain734

(I− Pπ)uH
π =

1

H
µ̄. (34)

We can therefore express the finite horizon occupancy measure in matrix form as735

vH
π = Π⊙

(
(uH

π)T ⊗ 1
)T (35)

where Π,vπ ∈ R|S|×|A|, 1 ∈ R|A| is a column vector of ones, ⊗ presents the Kronecker product, ⊙736

denotes the Hadamard product.737

21

If we consider the case of a parameterized policy Π(θ), the derivative of vH
π with respect to θ is738

∇θv
H
π =∇θ

[
Π⊙

(
(uH

π)T ⊗ 1
)T]

=∇θΠ⊙
(
(uH

π)T ⊗ 1
)T

+Π⊙∇θ

(
(uH

π)T ⊗ 1
)T

=∇θΠ⊙
(
(uH

π)T ⊗ 1
)T

+Π⊙
(
(∇θu

H
π)T ⊗ 1

)T (36)

The first term in Eq. (36) is differentiable since the policy is parameterized by θ. We show that ∇θu
H
π739

exists using Eq. (34) as follows:740

∇θ

[
(I− Pπ)uH

π

]
=

1

H
∇θµ̄

∇θ(I− Pπ)uH
π + (I− Pπ)∇θu

H
π = 0

−∇θPπuH
π + (I− Pπ)∇θu

H
π = 0

(I− Pπ)∇θu
H
π = ∇θPπuH

π

(37)

In Eq. (37), we observe that (I − Pπ)−1 may or may not exist. To address this, we use the group741

inverse, a generalized matrix inverse that extends the concept of inversion to both singular and742

invertible matrices [19]. For a square matrix C ∈ Rn×n, its group inverse C# satisfies the conditions743

CC#C = C, C#CC# = C# and CC# = C#C.744

The group inverse is useful in analysing Markov chains [56] and coincides with the standard inverse745

when C is invertible. Using group inverse (I− Pπ)#, Eq. (37) can be expressed as,746

∇θu
H
π = (I− Pπ)#∇θPπuH

π +w (38)

where w is a vector in the null space of (I− Pπ). Note that w = 0 for ergodic Markov chains [56].747

An episodic MDP induces an ergodic Markov chain that admits a unique stationary distribution [11]748

(see also Appendix B.3). Thus, Eq. (38) simplifies to749

∇θu
H
π = (I− Pπ)#∇θPπuH

π (39)

= (I− Pπ)#

∑
s′,a

T (s|s′, a)∇θπ(a|s′)

uH
π (40)

which shows that ∇θu
H
π is differentiable and so is ∇θv

H
π . Proceeding similarly, given the same750

conditions, we see that all higher derivatives of vH
π also exist with respect to θ. Thus, the space of751

parametrized finite-horizon occupancy measures vHπ forms a differentiable manifold MH .752

A.6 Optimal Transport Dataset Distance (OTDD)753

Suppose we have two datasets, each consisting of feature-label pairs, DA = {(tiA, ui
A)}mi=1 ∼754

PA(t, u) and DB = {(tiB , ui
B)}ni=1 ∼ PB(t, u) with tA, tB ∈ T and uA, uB ∈ UA,UB. These755

datasets can be used to create empirical distributions P̂A(t, u) and P̂B(t, u). OTDD is the p-756

Wasserstein distance between the datasets DA and DB - which is essentially the distance between757

their empirical distributions P̂A and P̂B - with the cost function defined as the metric of the joint758

space T × U [5].759

Naturally, the metric on this joint space can be defined as dT U ((t, u), (t
′, u′)) =760

(dT (t, t
′)p + dU (u, u

′)p)
1/p, for p ≥ 1. However, in most applications dT is readily available,761

while dU might be scarce, especially in supervised learning (SL) between labels from unrelated label762

sets [5]. Further, we want dT and dU to have the same units to be addable. To overcome these issues,763

dU is expressed in terms of dT by mapping labels u to distributions over the feature space P(T)764

as u → αu(T) ≜ P (T | U = u) ∈ P(T). Therefore, the distance between the labels u and u′ is765

defined as the p-Wasserstein distance between αu(T) and αu′(T),766

dU (u, u
′) = Wp(αu(T), αu′(T))

=

(
min

π∈Π(αu,αu′)

∫
T ×T

(dT (t, t
′))p dπ(t, t′)

)1/p (41)

22

The metric on the joint space becomes,767

dT U ((t, u), (t
′, u′)) =

(
dT (t, t

′)p +Wp
p (αu(T), αu′(T))

)1/p (42)

Let Z = T × U , then the p-Wasserstein distance between P̂A(t, u) and P̂B(t, u) is a "nested"768

Wasserstein distance:769

Wp
p (P̂A, P̂B) = min

π∈Π(PA,PB)

∫
Z×Z

(dZ(z, z
′))p dπ

= min
π∈Π(PA,PB)

∫
T U×T U

(
dT (t, t

′)p +Wp
p (αu, αu′)

)
dπ

(43)

W p
p (P̂A, P̂B) is the OTDD between datasets DA and DB , often expressed as dOT (DA,DB). This is770

used in transfer learning to determine the distance (or similarity) between datasets. Figure 6 illustrates771

OTDD when applied to RL using datasets of state-action pairs.772

Figure 6: Illustration of OTDD when applied to RL.

A.7 Proof of Proposition 4773

We compute the error in occupancy measure for both the infinite and finite horizon cases. In infinite774

horizon MDPs, the occupancy measure is defined as the expected discounted number of visits of a775

state-action pair (s, a) in a trajectory [43]: µ = (1− γ)
∑∞

t=0 γ
tµt, where µt = P (st, at | π, η) is776

the state-action probability distribution at time step t with the initial state distribution η following777

the policy π. In finite horizon MDPs, the occupancy measure is the expected number of visits of a778

state-action pair (s, a) in an episode of length H [4]: µ = 1
H

∑H
t=1 µt.779

First, we derive error bounds for the infinite horizon MDP in which γ < 1 and the occupancy measure780

is approximated using a finite number of samples collected up to a finite number of time steps T .781

Later, we derive error bounds for the finite horizon MDP.782

A.7.1 Infinite Horizon MDPs783

Estimated Occupancy Measure. For convenience, we express the occupancy measure as µ =784

(1 − γ)
∑∞

t=0 γ
tµt, where µt = P (st, at | π, η) is the state-action probability distribution at time785

step t with the initial state distribution η following the policy π. To compute µ, we roll out N episodes786

(each of multiple time steps) using π, and take N number of samples at t to approximate µt. Thus,787

the empirical occupancy measure µ̂ is given by µ̂ = ρ
∑T

t=0 γ
tµ̂N

t , where ρ = 1∑T
t=0 γt . Note that788

the total number of samples in the policy dataset Dπ is |Dπ| = N(T + 1).789

23

Occupancy Measure Estimation Error. Consider two occupancy measures µ = (1− γ)
∑∞

t=0 γ
tµt790

and ν = (1 − γ)
∑∞

t=0 γ
tνt (with estimates µ̂ = ρ

∑T
t=0 γ

tµ̂
Nµ

t and ν̂ = ρ
∑T

t=0 γ
tν̂Nν

t). For791

independent sets {µt}t≥0 and {νt}t≥0, the Wasserstein distance has the following additive property792

[63],793

Wp(
∑
t

µt,
∑
t

νt) ≤
∑
t

Wp(µt, νt) (44)

While for a ∈ R [63],794

Wp(aµ, av) = |a|Wp(µ, v) (45)

Therefore, for our scenario where p = 1, the Wasserstein distance between µ and ν is given by:795

W1(µ, ν) = W1((1− γ)

∞∑
t=0

γtµt, (1− γ)

∞∑
t=0

γtνt)

≤ (1− γ)

∞∑
t=0

γtW1(µt, νt)

(46)

while for µ̂ and ν̂,796

W1(µ̂, ν̂) ≤ ρ

T∑
t=0

γtW1(µ̂
Nµ

t , ν̂Nν
t) (47)

In the RL problems we consider, the state-action space Z = S × A is commonly defined as the797

subset of the Euclidean space Z ∈ RB , where usually B ≥ 2. Theorems 1 and 3 in [74] establish the798

following error bounds between the true and empirical probability distributions,799

E[W1(µ̂
Nµ

t , µt)] ≤ E2N
− 1

2
µ

E[W1(ν̂
Nν
t , νt)] ≤ E2N

− 1
2

ν

(48)

where800

E2 ≤ 4B1/2diam(Z) ·
{
2 + (1/2)log2|Z| if B = 2

|Z|1/2−1/B
[
2 + 1/(2B/2−1 − 1)

]
if B > 2

Note that |Z| and diam(Z) denote the cardinality and diameter of Z , respectively.801

Suppose a = W1(µ̂, ν̂), b = W1(µ̂, µ), c = W1(ν̂, µ), d = W1(µ, ν), and e = W1(ν̂, ν). Then by802

performing two reverse triangle inequalities,803

|a− c| ≤ b and |c− d| ≤ e

=⇒ |a− d| ≤ b+ e
(49)

Eq. (49) implies that,804

E[|W1(µ̂, ν̂)−W1(µ, ν)|] ≤ E[W1(µ̂, µ) +W1(ν̂, ν)]

= E[W1(ρ

T∑
t=0

γtµ̂
Nµ

t , µ) +W1(ρ

T∑
t=0

γtν̂Nν
t , ν)]

= E[W1(ρ

T∑
t=0

γtµ̂
Nµ

t , µ)] + E[W1(ρ

T∑
t=0

γtν̂Nν
t , ν)]

+ E[W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , µ)−W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , µ)]

+ E[W1((1− γ)

∞∑
t=0

γtν̂Nν
t , ν)−W1((1− γ)

∞∑
t=0

γtν̂Nν
t , ν)]

(50)

24

By virtue of triangle inequalities, we get805

W1(ρ

T∑
t=0

γtµ̂
Nµ

t , (1− γ)

∞∑
t=0

γtµ̂
Nµ

t) ≥ W1(ρ

T∑
t=0

γtµ̂
Nµ

t , µ)−W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , µ)

W1(ρ

T∑
t=0

γtν̂Nν
t , (1− γ)

∞∑
t=0

γtν̂Nν
t) ≥ W1(ρ

T∑
t=0

γtν̂Nν
t , ν)−W1((1− γ)

∞∑
t=0

γtν̂Nν
t , ν)

(51)

Therefore, the right-hand-side (R.H.S) of Eq. (50) can be further simplified as806

R.H.S ≤ E[W1(ρ

T∑
t=0

γtµ̂
Nµ

t , (1− γ)

∞∑
t=0

γtµ̂
Nµ

t)] + E[W1(ρ

T∑
t=0

γtν̂Nν
t , (1− γ)

∞∑
t=0

γtν̂Nν
t)]

+ E[W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , µ)] + E[W1((1− γ)

∞∑
t=0

γtν̂Nν
t , ν)]

(52)

For simplicity, we denote µ̂∞ = (1 − γ)
∑∞

t=0 γ
tµ̂

Nµ

t (similarly ν̂∞) and µ̂T = ρ
∑T

t=0 γ
tµ̂

Nµ

t807

(similarly ν̂T), where ρ = 1∑T
t=0 γt = 1−γ

1−γT+1 . Using Theorem 4 in [25], the 1-Wasserstein metric808

W1 and the total variation distance dTV satisfy the following,809

W1(µ̂∞, µ̂T) ≤ diam(Z) · dTV (µ̂∞, µ̂T)

= diam(Z) · 1
2

∑
z∈Z

|µ̂∞(z)− µ̂T (z)| (53)

However,810

µ̂∞ − µ̂T = (1− γ)

∞∑
t=0

γtµ̂
Nµ

t − 1− γ

1− γT+1

T∑
t=0

γtµ̂
Nµ

t

= (1− γ)

∞∑
t=0

γtµ̂
Nµ

t − 1− γ

1− γT+1

T∑
t=0

γtµ̂
Nµ

t

+ (1− γ)

T∑
t=0

γtµ̂
Nµ

t − (1− γ)

T∑
t=0

γtµ̂
Nµ

t

= (1− γ)

(∞∑
t=0

γtµ̂
Nµ

t −
T∑

t=0

γtµ̂
Nµ

t

)
+

(
(1− γ)− 1− γ

1− γT+1

) T∑
t=0

γtµ̂
Nµ

t

= (1− γ)

∞∑
t=T+1

γtµ̂
Nµ

t − γT+1 1− γ

1− γT+1

T∑
t=0

γtµ̂
Nµ

t

≤ (1− γ)

∞∑
t=T+1

γtµ̂
Nµ

t

= γT+1 1− γ

γT+1

∞∑
t=T+1

γtµ̂
Nµ

t

= γT+1µ̂T+1,∞

(54)

where 1−γ
γT+1 normalizes

∑∞
t=T+1 γ

tµ̂
Nµ

t . We utilize Eq. (54) in Eq. (53) as,811

W1(µ̂∞, µ̂T) ≤ diam(Z) · 1
2

∑
z∈Z

|µ̂∞(z)− µ̂T (z)|

≤ diam(Z) · 1
2

∑
z∈Z

|γT+1µ̂T+1,∞(z)|

=
γT+1

2
diam(Z)

(55)

25

Eq. (55) also applies for W1(ν̂∞, ν̂T), therefore by substituting these into Eq. (52),812

R.H.S ≤ E[W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , µ)] + E[W1((1− γ)

∞∑
t=0

γtν̂Nν
t , ν)] + γT+1diam(Z)

= E[W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , (1− γ)

∞∑
t=0

γtµt)]

+ E[W1((1− γ)

∞∑
t=0

γtν̂Nν
t , (1− γ)

∞∑
t=0

γtνt)] + γT+1diam(Z)

≤ (1− γ)

∞∑
t=0

γt
(
E[W1(µ̂

Nµ

t , µt)] + E[W1(ν̂
Nµ

t , νt)]
)
+ γT+1diam(Z) .

(56)

By substituting Eq. (48) into Eq. (56)813

R.H.S ≤ (1− γ)

∞∑
t=0

γt
(
E2N

− 1
2

µ + E2N
− 1

2
ν

)
+ γT+1diam(Z)

= E2
(
N

− 1
2

µ +N
− 1

2
ν

)
+ γT+1diam(Z)

(57)

Therefore, Eq. (50) becomes:814

E[|W1(µ̂, ν̂)−W1(µ, ν)|] ≤ E2
(
N

− 1
2

µ +N
− 1

2
ν

)
+ γT+1diam(Z) (58)

Over the full trajectory in the occupancy measure space. The true distance between consecutive815

policies πi and πi+1 after an update is W1(vπi
, vπi+1

), which is induced by the ith policy update.816

We estimate this distance using datasets of the policies, i.e. approximated distributions, using817

W1(v̂πi
, v̂πi+1

).818

For M roll out episodes of each πi, we use Eq. (58), with Nµ = Nν = M , to derive the following819

error bounds,820

E
[∣∣W1(vπi

, vπi+1
)−W1(v̂πi

, v̂πi+1
)
∣∣] ≤ 2E2M− 1

2 + γT+1diam(Z) (59)
which is consistent with learning from Dπi

and then Dπi+1
. By summing sequentially through821

policies encountered during RL training, we compute the total distance over a path of N segments822

obtained via policy updates:823

N−1∑
i=0

E
[∣∣W1(vπi , vπi+1)−W1(v̂πi , v̂πi+1)

∣∣] ≤ 2NE2M− 1
2 +NγT+1diam(Z) (60)

Since |
∑

t xt| ≤
∑

t |xt| then,824

E

[∣∣∣∣∣
N−1∑
i=0

W1(vπi
, vπi+1

)−
N−1∑
i=0

W1(v̂πi
, v̂πi+1

)

∣∣∣∣∣
]
≤ 2NE2√

M
+NγT+1diam(Z) (61)

A.7.2 Finite Horizon MDPs825

Occupancy Measure Estimated Error. Consider two occupancy measures µ = 1
H

∑H
t=1 µt and826

ν = 1
H

∑H
t=1 νt with estimates µ̂ = 1

H

∑H
t=1 µ̂

Nµ

t and ν̂ = 1
H

∑H
t=1 ν̂

Nν
t . From Eq. (49), we have827

E[|W1(µ̂, ν̂)−W1(µ, ν)|]
≤ E[W1(µ̂, µ) +W1(ν̂, ν)]

= E[W1(
1

H

H∑
t=1

µ̂
Nµ

t ,
1

H

H∑
t=1

µt) +W1(
1

H

H∑
t=1

ν̂Nν
t ,

1

H

H∑
t=1

νt)]

≤ 1

H

H∑
t=1

E[W1(µ̂
Nµ

t , µt)] +
1

H

H∑
t=1

E[W1(ν̂
Nν
t , νt)]

≤ E2
(
N

− 1
2

µ +N
− 1

2
ν

)
(62)

26

Therefore for the total path in the occupancy measure space with M roll out episodes of each πi,828

the error bound is829

E

[∣∣∣∣∣
N−1∑
i=0

W1(vπi
, vπi+1

)−
N−1∑
i=0

W1(v̂πi
, v̂πi+1

)

∣∣∣∣∣
]
≤ 2NE2√

M
(63)

by assigning Nµ = Nν = M in Eq. (62), which concludes the proof.830

A.8 Proof of Proposition 5831

By definition of ηsub, we get832

ηsub =

∑N−2
i=0 W1(vπi

, vπi+1
) +W1(vπN−1

, vπN
)

W1(vπ0
, vπN

)

=

∑N−2
i=0 W1(vπi

, vπi+1
) +W1(vπN−1

, vπN
)

W1(vπ0 , vπ∗)
× W1(vπ0

, vπ∗)

W1(vπ0 , vπN
)

≥
∑N−2

i=0 W1(vπi
, vπi+1

) +W1(vπN−1
, vπ∗)−W1(vπN

, vπ∗)

W1(vπ0
, vπ∗)

× W1(vπ0
, vπ∗)

W1(vπ0
, vπN

)

=

(
η − W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

)
W1(vπ0 , vπ∗)

W1(vπ0
, vπN

)
. (64)

The inequality above is true due to the triangle inequality W1(vπN−1
, vπN

) + W1(vπN
, vπ∗) ≥833

W1(vπN−1
, vπ∗).834

By applying triangle inequality, we also get835

W1(vπ0
, vπ∗) +W1(vπN

, vπ∗) ≥ W1(vπ0
, vπN

) .

This implies that836

W1(vπ0
, vπ∗)

W1(vπ0 , vπN
)
≥ 1− W1(vπN

, vπ∗)

W1(vπ0 , vπN
)
. (65)

Eq. (64) and Eq. (65) together yield837

ηsub ≥
(
η − W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

)(
1− W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

)
= η − W1(vπN

, vπ∗)

W1(vπ0
, vπN

)
− η

W1(vπN
, vπ∗)

W1(vπ0
, vπN

)
+

(
W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

)2

≥ η

(
1− W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

)
− W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

≥ η

(
1− 2W1(vπN

, vπ∗)

W1(vπ0 , vπN
)

)
.

The second last inequality is due to non-negativity of
(

W1(vπN
,vπ∗)

W1(vπ0
,vπN

)

)2
. The last inequality is due to838

the fact that η ≥ 1.839

Thus, we conclude that840

η − ηsub
η

≤ 2W1(vπN
, vπ∗)

W1(vπ0
, vπN

)
.

A.9 Wasserstein Spaces as Geodesic Spaces841

Given probability measures µ, ν ∈ P(X) on a metric space X ⊂ RB with metric dX (x, x′),842

the Wasserstein distance Wp(µ, ν) is the minimal transport cost for c(x, x′) = (dX (x, x′))p with843

p ≥ 1 [79]. The Wasserstein distance Wp(µ, ν) takes a distance on X and creates out of it a distance844

on P(X)[64]. Proposition 5.1 in [70] asserts that Wp is a distance over P(X).845

27

Definition A.9 (Wasserstein Space). [70] Given a Polish space X , for each p ∈ [1,∞), the space846

P(X) endowed with the distance Wp is a Wasserstein space Wp of order p.847

Theorem 5.27 in [70] states that if X is a convex space, then the space Wp is a geodesic space (length848

space). Thus, the geodesic (shortest path distance) between µ, ν ∈ P(X) is given by Wp(µ, ν) [41].849

It was mentioned in Appendix A.7.1 that the RL problems we consider consist of the state-action850

space Z = S ×A ∈ RB : B ≥ 2 (subsets of the Euclidean space). Given that Euclidean spaces are851

convex spaces [12], our space of occupancy measures M is a Wasserstein space W1 = (M,W1) and852

thus a geodesic space. Therefore, W1(µ, ν) measures the shortest path on the surface of the manifold853

M between probability distributions µ and ν.854

28

B Additional Experimental Analysis and Results855

B.1 Environment Description856

2D-Gridworld environment of size 5x5 with actions: {up, right, down, left}. The start and goal857

states are always located at top-left and bottom-right, respectively. In the gridworld, we perform858

experiments on three settings namely:- A) Deterministic, dense rewards setting: State transitions are859

deterministic. The reward function is given by ∥st − sg∥1, where st is the agent state at timestep t860

and sg is the goal state. B) Deterministic, sparse rewards setting: State transitions are deterministic861

and all states issue a reward of -0.04 except the goal state with reward of 1. C) Stochastic, dense862

rewards setting: Actions have a probability of 0.8 in the instructed direction and 0.1 in each adjacent863

direction. Reward function is as defined in setting A.864

2D-Gridworlds (Task Difficulty). Figure 7 depicts the configurations of the 5 tasks that were used865

to assess ESL with respect to task hardness. They are all deterministic with actions: {up, right, down,866

left}, and mostly have the start-state at the top-left and the goal-state at the bottom-right - with only867

one task that has the goal-state at the center. In the order of appearance: a) [5x5] dense: has size 5x5868

and dense rewards, b) [5x5] sparse (hard): has size 5x5 and sparse rewards, c) [5x5] sparse (easy):869

has size 5x5, sparse rewards, and goal-state at the center, d) [15x15] dense: has size 15x15 and dense870

rewards, and e) [15x15] sparse: has size 15x15 and sparse rewards. The reward functions for both871

dense and sparse rewards are as previously described above for 2D-Gridworld.872

Figure 7: Five gridworld tasks with the same action space, but different rewards, state space and
location of the goal state.

B.2 OMR(k): OMR over number of updates873

OMR is defined for the entire policy trajectory by Equation 6 as,874

κ ≜

∑
k∈K+ W1(vπk

, vπk+1
)∑N−1

k=0 W1(vπk
, vπk+1

)
.

To observe how it changes with respect to updates, we compute OMR from update i onwards till the875

end of the learning trajectory, i.e. over subsequences with a decreasing number of policy updates876

with increasing i, using:877

κ(i) ≜

∑
k∈K+,k≥i W1(vπk

, vπk+1
)∑N−1

k=i W1(vπk
, vπk+1

)
, such that i ∈ [0, N − T] (66)

where T ≈ 0.9N to ensure that the last subsequence of policy updates have at least 10% of the total878

updates in the trajectory.879

29

B.3 Computation of Occupancy Measures880

The finite-horizon occupancy measure is defined as [4],881

vHπ (s, a) =
1

H

H∑
t=1

P(st = s, at = a | π, µ)

for which the probability of the state-action pair selected is time-dependent. If we restrict our analysis882

to stationary policies where π(at|st) = π(a|s), then the probability of the state-action pair becomes883

time-independent and thus,884

vHπ (s, a) = P(s, a | π, µ)

This implies that the use of stationary policies in finite-horizon MDPs, as observed in practice with885

many episodic MDPs [54, 3, 52], induces stationary occupancy measures - where the expected886

number of state-action pair visits are independent of the time-step. Work by [11] provides extensive887

details about the existence of stationarity in episodic MDPs and shows (in Theorem 4) that,888

E(s,a)∼vH
π

[
R̄(s, a)

]
=

Eζ∼Mπ

[∑H(ζ)
t=1 R(st, at)

]
Eζ∼Mπ

[H(ζ)]
(67)

where ζ is the episodic state-action pair trajectory, H(ζ) is the episode length corresponding to ζ,889

and Mπ is the markov chain induced by policy π. We verified the correctness of our vHπ computation890

by calculating the relative error derived from Equation 67 to check its validity. The relative error is891

given as892

Rel. Error % = 100 ∗
E(s,a)∼vH

π

[
R̄(s, a)

]
Eζ∼Mπ

[H(ζ)]− Eζ∼Mπ

[∑H(ζ)
t=1 R(st, at)

]
Eζ∼Mπ

[∑H(ζ)
t=1 R(st, at)

] (68)

Figure 8 depicts Rel. Error% vs number of updates in the stochastic 2D-Gridworld environment with893

dense rewards. We observe that increasing the number of rollouts M reduces the estimation error894

of vHπ . For M = 10, the absolute relative error can be as high as 50% with the mean less than 10%.895

While for M = 500, the maximum absolute relative error is 4%.

0 200 400 600 800
#updates

40

35

30

25

20

15

10

5

0

Re
l.

Er
ro

r
%

0 200 400 600 800
#updates

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Re
l.

Er
ro

r
%

Figure 8: Rel. Error% vs number of updates plots in the 2D-Gridworld environment where vHπ is
estimated using M = 10 rollouts (left) and M = 500 rollouts (right).

896

B.4 Effects of the number of rollouts - SAC897

The policy dataset Dπi
in a deterministic environment is made up of (s,a) pairs generated from a898

single episode of the policy πi. In a deterministic environment, this sequence remains the same across899

repeats of episodes, for each policy πi (deterministic) at update step i. Therefore, a single rollout is900

sufficient to estimate the occupancy measure vπi . In a stochastic environment, rollouts are impacted901

by the environment’s stochasticity. Thus, multiple rollouts are needed to estimate the occupancy902

measure accurately. As the number of rollouts increases, the occupancy measure should converge903

and become less noisy.904

30

Table 5 shows that, in a stochastic setting, the ESL values converge as the number of rollouts increases.905

OMR appears to be invariant across various the number of rollouts, and the mean number of updates906

appear to be consistent around 2900 (with exception for #rollouts = 1). The results indicate that from907

about 6 rollouts, the estimated occupancy measures become less noisy. This aligns with Eq. (61),908

which shows that increasing the number of rollouts reduces estimation error.909

#rollouts ESL OMR UC
1 849.1±468.5 0.500±0.004 1849±742.2
3 618.6±257.3 0.501±0.005 2413±1397
6 445.4±245.8 0.501±0.042 2462±2043
9 428.1±234.4 0.503±0.004 2281±1743

Table 5: Evaluation of SAC algorithm in the stochastic, dense-rewards setting for 5x5 gridworld
with 40 maximum steps per episode across various number of rollouts. The effects of #rollouts on
the Effort of Sequential Learning (ESL), Optimal Movement Ratio (OMR), and number of updates to
convergence (UC) are observed.

B.5 ηsub can be a reasonable proxy for η, when optimal policy is not fully reached910

We compare ESL when the optimal policy was reached, denoted η, versus when it was not, denoted911

ηsub, in Tables 6 and 7. First, we observe that the number of rollouts impacts the metric values.912

Second, ηsub values are always greater than η values. Note that UCRL2 and PSRL update their913

policies only at the end of each episode, whereas SAC and DQN update theirs after each time step.914

Hence, UCsub = 499 for both UCRL2 and PSRL.915

The ESL values (both η and ηsub) in Table 7 are lower than those in Table 6, as expected since more916

data samples reduce estimation error. The distance from the initial policies to the final polices are not917

so different. Using both Tables 6 and 7, we notice that comparing algorithms with ηsub yields the918

same efficiency ranking (e.g. PSRL, UCRL, SAC and DQN) as η. This indicates that ηsub reliably919

predicts results provided by η for comparing algorithms.920

The results presented in Table 2 for stochastic dense-rewards setting are consistent with those in921

Table 7 because the number of rollouts used was Nr = 6.922

Algo. η ηsub d c UC UCsub

SAC
849±
468

3623±
4166

5.63±
1.50

5.26±
2.10

1850±
742

7451±
3535

UCRL2
230±
155

613±
999

5.65±
0.93

5.45±
2.15

284±
180

499±
0.0

PSRL
86.2±
44.4

389±
102

4.96±
1.26

5.29±
1.49

97.2±
52.5

499±
0.0

DQN
564±
478

3911±
1710

5.52±
1.39

6.54±
2.05

1213±
1061

9097±
1904

Table 6: Evaluation of algorithms in the stochastic, dense-rewards setting for 5x5 gridworld with
40 maximum steps per episode with the number of rollouts Nr = 1. The total number of training
episodes is 500. When the algorithm converged at optimality, η is the Effort of Sequential Learning,
d = W1(π0, π

∗) is distance from initial policy to the optimal policy, and UC is the number of updates
to convergence. When the algorithm did not converge at the optimal policy, rather a non-optimal πN ,
we use ηsub, c = W1(π0, πN), and UCsub to denote the aforementioned quantities. 40 training trials
were used.

B.6 Effects of Hyperparameters - UCRL2923

Table 8 illustrates the effects of hyperparameter values in the UCRL2 algorithm. The environment is924

deterministic dense-rewards setting with 200 training episodes. We observe that high exploration925

rates (δ → 0) appear to align with high ESL and UC, while high exploitation rates (δ → 1) appear to926

align with low ESL and UC. OMR appears to be invariant across various δ values.927

31

Algo. η ηsub d c UC UCsub

SAC
445±
246

853±
127

5.63±
1.23

7.26±
1.45

2463±
2043

6293±
441

UCRL2
198±
121

510±
274

5.36±
0.84

4.58±
1.90

268±
155

499±
0.0

PSRL
55.4±
33.6

361±
43.6

4.97±
1.34

3.91±
0.48

76.1±
50.6

499±
0.0

DQN
458±
311

1971±
250

4.88±
1.06

6.52±
0.31

1586±
1077

13713±
6907

Table 7: Evaluation of algorithms in the stochastic, dense-rewards setting for 5x5 gridworld with
40 maximum steps per episode with the number of rollouts Nr = 6. The total number of training
episode is 500. When the algorithm converged at optimality, η is the Effort of Sequential Learning,
d = W1(π0, π

∗) is distance from initial policy to the optimal policy, and UC is the number of updates
to convergence. When the algorithm did not converge at the optimal policy however some πN , we
use ηsub, c = W1(π0, πN), and UCsub to denote the aforementioned quantities. 40 training trials
were used.

δ ESL OMR UC SR%
0.1 47.76±7.768 0.512±0.033 62.26±9.977 100
0.3 39.29±5.860 0.515±0.034 58.08±7.746 100
0.5 38.26±6.747 0.511±0.036 56.92±9.111 100
0.7 37.48±5.094 0.507±0.029 56.68±7.460 100
0.9 36.40±5.301 0.510±0.036 54.86±7.326 100

Table 8: Evaluation of UCRL2 algorithm in the deterministic, dense-rewards setting for 5x5
gridworld with 15 maximum steps per episode. Different confidence parameter δ ∈ (0, 1) were
evaluated to see their effects on Effort of Sequential Learning (ESL), Optimal Movement Ratio
(OMR), number of updates to convergence (UC), and success rate (SR). Note that as δ → 0, the agent
approaches absolute exploration, and with δ → 1 absolute exploitation.

B.7 Extended Discussion of Usefulness of ESL and OMR928

The quantities like regret and number of updates (UC) are outcomes of the exploratory processes,929

and thus reflect only a partial view of the underlying exploration mechanisms. We propose ESL and930

OMR to complement regret and number of updates as metrics but not to replace them.931

1. Complementarity of ESL and OMR with respect to UC:932

a. Case 1. Let us consider two RL algorithms that reach optimality with the same number of updates,933

i.e. they have the same UC. How would one be able to distinguish the exploratory processes of934

these algorithms? ESL and OMR are the summary metrics of the policy trajectory during learning.935

These can reveal which algorithm’s exploratory process is more direct versus meandering, smooth936

versus noisy, or has large versus small coverage area in the policy space (Figures 3 and 4, top rows).937

Therefore, ESL and OMR quantify with granularity the characteristics of the exploratory process of938

an RL algorithm for any given environment.939

b. Case 2. Let us consider the case when optimality is not reached but the maximum number of940

updates is attained by two RL algorithms. How would one be able to evaluate the exploratory941

processes of these algorithms and systematically uncover which exploratory process demonstrates942

desired characteristics? Looking into the training trajectories of RL algorithms in an environment943

and corresponding higher/lower ESLs (ηsub, Section 4.2), we can make a knowledgeable choice of944

an RL algorithm exhibiting desired characteristics (e.g. high coverage, smooth exploration). We have945

shown in Section 4.2 and results in Section 5.3 (also Appendix B.5) that ranking based on suboptimal946

ESL is aligned with true ESL, and additionally, the visualization of the training trajectories (Figures 3947

and 4) can indicate the characteristics of corresponding RL algorithms even when optimal policy is948

not reached.949

c. Experimental Evidence. UCRL2 is known to be provably regret-optimal and is designed to950

continuously explore. SAC does not have such rigorous theoretical guarantees but is known to be951

practically efficient. In Table 1, by UC, we observe that SAC is significantly suboptimal than UCRL2.952

But SAC has lower ESL than UCRL2 as its exploration is smoother. Additionally, OMR for SAC is953

32

higher than that of UCRL2. They together indicate that SAC takes smoother but larger number of954

policy transitions aligned to optimal direction for exploration, while UCRL2 exhibits bigger policy955

changes and in diverse manner trying to cover the environment faster.956

2. Complementarity of ESL and OMR with respect to Regret:957

UCRL2 and PSRL have the same order of regret bound [61]. But PSRL leads to smoother policy958

transitions that are much more orientated towards optimality (as shown in Figure 3), while UCRL2959

leads to less smooth policy transitions that do not taper as it approaches optimality. This information960

is not evident from regret but from corresponding ESLs and OMRs (Table 1).961

3. Insights for Algorithm Design:962

Knowing ESL (or suboptimal ESL) and OMR can assist with developing algorithms that emphasize963

certain exploratory characteristics. We can develop algorithms with grades of coverage or directness,964

while also being able to visualize this. Ultimately, depending on the environment, we can choose965

which characteristics of exploratory process are well suited. In contrast, looking only at the final966

outcomes of RL algorithms like regret and number of updates does not include these nuances.967

33

C Specifications of the RL Algorithms under Study968

C.1 Methods for simulation results (Discrete MDP)969

Model parameter initialisation. We initialised model parameters for deep learning RL algorithms970

like DQN and SAC by uniformly sampling weight values between −3 · 10−4 and 3 · 10−4 and the971

biases at 0. For tabular Q-learning algorithms, we randomly initialized the Q-values between −1.0972

and 1.0. For UCRL and PSRL, the policy model was randomly initialized. Note that all Wasserstein973

distances were computed using a python package POT [22]. Additionally, L1 norm was used in our974

Wasserstein metric cost function as the ground metric for the 2D gridworld environment.975

Results in Figure 3. The problem setting was deterministic with dense-rewards and 15 maximum976

number of steps per episode. The total number of episodes was 200. The convergence criterion was977

satisfied when maximum returns were produced by an algorithm over 5 consecutive updates. The978

results showcase a single representative run of each algorithm. The confidence parameter δ = 0.1979

was utilized for UCRL2. The α parameter for SAC was autotuned using the approach in [29] along980

with hyperparameters described in Table 9. While DQN began with ϵ = 1.0 and the value decayed as981

ϵ[t + 1] = max{0.9999 × ϵ[t], 0.0001}. Table 10 shows hyperparameters for DQN. Note that the982

ADAM [40] optimizer was used in all the neural network models.983

Table 9: SAC Hyperparameters.

Parameter Value
learning rate 5 · 10−4

discount(γ) 0.99
replay buffer size 104

number of hidden layers (all networks) 1
number of hidden units per layer 32
number of samples per minibatch 64
nonlinearity ReLU
entropy target -4
target smoothing coefficient (τ) 0.01
target update interval 1
gradient steps 1
initial exploration steps
before model starts updating 500

Table 10: DQN Hyperparameters.

Parameter Value
learning rate 5 · 10−2

discount(γ) 0.99
replay buffer size 104

number of hidden layers (all networks) 1
number of hidden units per layer 32
number of samples per minibatch 64
nonlinearity ReLU
target smoothing coefficient (τ) 0.001
target update interval 1
gradient steps 1
initial exploration steps
before ϵ decays 500

Results in Tables 1 and 2. The problem settings had 40 maximum number of steps per episode, and984

the convergence criterion was satisfied when maximum returns were produced by an algorithm over985

5 consecutive updates. The means and standard deviations for each algorithm were computed over 50986

runs. The total number of episodes was 200 for results in Table 1, and 500 in Table 2. For results in987

Figure 5, the Q-learning with decaying ϵ-greedy where ϵ = 0.9 was employed in the gridworld tasks988

described in Appendix B.1. A convergence criterion of 50 consecutive model updates with maximum989

34

returns was utilized. We aggregated the result over 40 training trials and the maximum number of990

steps per episode was 60.991

C.2 Methods for simulation results (Continuous MDP)992

Model parameter initialisation. We initialised model parameters for the deep learning SAC993

algorithm by uniformly sampling weight values between −3·10−4 and 3·10−4 and the biases at 0. For994

the DDPG algorithm, the output layer weight values were initialised using Xavier Initialization [27],995

while the rest were uniformly sampled between −3 · 10−3 and 3 · 10−3. This was done on both the996

actor and critic networks. The ADAM [40] optimizer was used in all the neural network models.997

In both algorithms, 1) a discount factor γ = 0.99 was used, 2) 500 initial steps were taken before998

updating model weights, and 3) replay buffer size was 106. Tables 11 and 12 display hyperparameters999

for DDPG and SAC, respectively.1000

Results in Figure 4. The problem setting was Mountain Car continuous [58] with 999 maximum1001

number of steps per episode [13]. The total number of training episodes was 100. The convergence1002

criterion was satisfied when maximum returns were produced by an algorithm over 10 consecutive1003

updates. The results showcase a single representative run of each algorithm. For results in Table1004

3, the mean and standard deviations for each algorithm were computed over 5 runs. While RL1005

training was conducted in a continuous state-action space, we discretized it for Wasserstein distance1006

calculations between occupancy measures, using 4 bins for actions and 10 bins for states. Note that all1007

Wasserstein distances were computed using a python package POT [22]. Additionally, L2 norm was1008

used in our Wasserstein metric cost function as the ground metric for the Mountain Car environment.1009

Table 11: DDPG Hyperparameters.

Parameter Value
number of samples per minibatch 128
nonlinearity ReLU
target smoothing coefficients (τ) 0.001
target update interval 1
gradient steps 1
number of hidden layers (all networks) 2
number of hidden units per layer 64
Actor learning rate 5 · 10−4

Critic learning rate 5 · 10−3

Table 12: SAC Hyperparameters.

Parameter Value
learning rate 3 · 10−3

number of hidden layers (all networks) 2
number of hidden units per layer 64
number of samples per minibatch 128
nonlinearity ReLU
target smoothing coefficient (τ) 0.001
target update interval 1
gradient steps 1

35

D Supplementary Results1010

In this section we present enlarged versions of results in Figure 3 (see Section D.1) and additional1011

plots that support the results in the main paper (see Section D.3).1012

D.1 Enlarged Visualisation of the Occupancy Measure Trajectories1013

Figures 9 - 11 are enlarged versions of enlarged versions of Figure 3. For each algorithm, there is a1014

visualisation of the policy trajectory and visualisation of the state visitation below it.1015

Figure 9: Top row: Scatter plots of distance-to-optimal and stepwise-distance over updates for
ϵ(=0)-greedy and ϵ(=1)-greedy Q-learning. Bottom row: State visitations.

36

Figure 10: Top row: Scatter plots of distance-to-optimal and stepwise-distance over updates for
UCRL2 and PSRL. Bottom row: State visitations.

Figure 11: Top row: Scatter plots of distance-to-optimal and stepwise-distance over updates for SAC
and DQN. Bottom row: State visitations.

37

D.2 Performance Plots1016

This section contains Return plots of the algorithms. This allows us to assess the learning of algorithms1017

from the performance perspective. Figures 12 and 13 depict performance evolution that corresponds1018

to settings in Figures 3 and 4, respectively. Note that while all algorithms find the optimal policy,1019

UCRL2 and ϵ(=1)-greedy Q-learning fail to remain there if training continues without truncation. As1020

a result, their performance does not improve over time compared to those that stabilize at the optimal1021

policy.1022

0 50 100 150 200 250
Episodes

140

120

100

80

60

40

20

Re
tu

rn

(=0)-greedy (=1)-greedy UCRL2 PSRL SAC DQN

Figure 12: Return plots of algorithms: ϵ(=0)-greedy and ϵ(=1)-greedy Q-learning, UCRL2, PSRL,
SAC, and DQN averaged over 5 runs in the deterministic 5×5 Gridworld with dense rewards.

0 20 40 60 80 100
Episodes

60

40

20

0

20

40

60

80

100

Re
tu

rn

ddpg sac

Figure 13: Return plots of algorithms: DDPG and SAC averaged over 5 runs in the continuous
Mountain Car problem.

38

D.3 Evolution of stepwise-distance, distance-to-optimal, and OMR(k)1023

In this section we present 2 dimensional versions of the policy trajectories in Figures 3 and 4,1024

along with corresponding OMR evolution plots. These are stepwise-distance vs. updates, distance-1025

to-optimal vs. updates, and OMR(k) plots for the algorithms. Figure 14 presents plots for the1026

continuous environment Mountain Car, while Figure 15) presents plots for the discrete environment1027

2D Gridworld.1028

DDPG

0 5000 10000 15000 20000
#updates

0.0

0.1

0.2

0.3

0.4

0.5

st
ep

w
is

e_
di

st
an

ce

0 5000 10000 15000 20000
#updates

0.0

0.2

0.4

0.6

0.8

di
st

an
ce

_t
o_

op
ti

m
al

0 5000 10000 15000 20000
#updates

0.40

0.45

0.50

0.55

0.60

O
M

R(
k)

SAC

0 5000 10000 15000 20000
#updates

0.0

0.1

0.2

0.3

0.4

0.5

st
ep

w
is

e_
di

st
an

ce

0 5000 10000 15000 20000
#updates

0.0

0.2

0.4

0.6

0.8
di

st
an

ce
_t

o_
op

ti
m

al

0 5000 10000 15000 20000
#updates

0.40

0.45

0.50

0.55

0.60

O
M

R(
k)

Figure 14: Plots in the first column are stepwise-distance vs. number of updates, second column
distance-to-optimal vs. number of updates, and third OMR(k) vs. number of updates. Top row plots
belong to DDPG algorithm, while bottom row plots belong to SAC.

39

ϵ(=0)-greedy

0 25 50 75 100 125 150 175
#updates

0

2

4

6

8

st
ep

w
is

e_
di

st
an

ce
0 25 50 75 100 125 150 175

#updates

0

2

4

6

di
st

an
ce

_t
o_

op
ti

m
al

0 25 50 75 100 125 150 175
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

ϵ(=1)-greedy

0 500 1000 1500 2000 2500
#updates

0
1
2
3
4
5
6

st
ep

w
is

e_
di

st
an

ce

0 500 1000 1500 2000 2500
#updates

0

2

4

6

8

di
st

an
ce

_t
o_

op
ti

m
al

0 500 1000 1500 2000 2500
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

UCRL2

0 10 20 30 40 50 60 70 80
#updates

0.0
2.5
5.0
7.5

10.0
12.5

st
ep

w
is

e_
di

st
an

ce

0 10 20 30 40 50 60 70 80
#updates

0

2

4

6

di
st

an
ce

_t
o_

op
ti

m
al

0 10 20 30 40 50 60 70
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

PSRL

0 5 10 15 20 25
#updates

0

2

4

6

8

st
ep

w
is

e_
di

st
an

ce

0 5 10 15 20 25
#updates

0

2

4

6

di
st

an
ce

_t
o_

op
ti

m
al

0 2 4 6 8 10 12 14
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

SAC

0 10 20 30 40
#updates

0
1
2
3
4
5
6

st
ep

w
is

e_
di

st
an

ce

0 10 20 30 40
#updates

0

2

4

6

di
st

an
ce

_t
o_

op
ti

m
al

0 5 10 15 20 25 30 35
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

DQN

0 10 20 30 40 50 60
#updates

0

1

2

3

st
ep

w
is

e_
di

st
an

ce

0 10 20 30 40 50 60
#updates

0

2

4

6

8

di
st

an
ce

_t
o_

op
ti

m
al

0 10 20 30 40 50
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

Figure 15: Plots in the first column are stepwise-distance vs. number of updates, second column
distance-to-optimal vs. number of updates, and third OMR(k) vs. number of updates. The plots in
the row belong to algorithms in the following order from top to bottom: ϵ(=0)-greedy, ϵ(=1)-greedy,
UCRL2, PSRL, SAC, and DQN.

E Technical Appendices and Supplementary Material1029

Technical appendices with additional results, figures, graphs and proofs may be submitted with1030

the paper submission before the full submission deadline (see above), or as a separate PDF in the1031

ZIP file below before the supplementary material deadline. There is no page limit for the technical1032

appendices.1033

40

	Introduction
	Preliminaries
	RL Algorithms as Trajectories of Occupancy Measures
	Effort of Sequential Learning (ESL)
	Optimal Movement Ratio (OMR)
	Extension to Finite-Horizon Episodic Setting

	Computational Challenges and Solutions
	Policy datasets for computing occupancy measures
	When an optimal policy is not reached

	Experimental Evaluation
	Exploration Trajectories of RL Algorithms
	Comparison of ESL and OMR across RL Algorithms and Environments, and their complementarity to number of updates and regret
	Usefulness of ESL when optimal policy is not reached
	ESL Increases with Task Difficulty

	Related Works
	Discussion
	Theoretical Analysis
	MDP with Lipschitz Rewards
	Performance Difference and Occupancy Measures
	Proof of proposition 1
	Proof of proposition 2
	Proof of proposition 3
	Optimal Transport Dataset Distance (OTDD)
	Proof of Proposition 4
	Infinite Horizon MDPs
	Finite Horizon MDPs

	Proof of Proposition 5
	Wasserstein Spaces as Geodesic Spaces

	Additional Experimental Analysis and Results
	Environment Description
	OMR(k): OMR over number of updates
	Computation of Occupancy Measures
	Effects of the number of rollouts - SAC
	eta_sub can be a reasonable proxy for eta, when optimal policy is not fully reached
	Effects of Hyperparameters - UCRL2
	Extended Discussion of Usefulness of ESL and OMR

	Specifications of the RL Algorithms under Study
	Methods for simulation results (Discrete MDP)
	Methods for simulation results (Continuous MDP)

	Supplementary Results
	Enlarged Visualisation of the Occupancy Measure Trajectories
	Performance Plots
	Evolution of stepwise-distance, distance-to-optimal, and OMR(k)

	Technical Appendices and Supplementary Material

